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Attraction  Force  Characteristics  Engendered  by 
Bounded,  Radially  Diverging  Air Flow 

When axially  directed airflow  enters a parallel plate  passage through  a hole  in  one of the  plates,  the ensuing  diverging 
radialflow is such  that a depressedpressure region occurs to  some  extent over the inlet  region of the  passage. Zf the  plate 
against  which the inlet  air stream  impinges is  allowed to  move  freely,  it will, under  proper  flow  and  other  conditions, 
assume a position of stable  equilibrium reflecting a balance  among  plate  weight,  the  momentum repelling force of the 
stream, and  a  net restraining attraction  force  due to  the radial pressure distribution  in the  passage. This phenomenon, 
the “Bernoulli” or “axi-radial” effect,  has long been of interest  in  areas such  as  gasjilm lubrication and radial dzyusers, 
and it  has  been applied extensively in IBM  systems  for  contactless transport  and motion control of semiconductor wafers 
on an air film. A steady,  laminar, incompressible flow analysis for a representative  axisymmetric circular  disk model is 
presented  here. A one-dimensional approach, using the general  energy equation in conjunction with  a passage  flow 
friction  factor  variation, is  applied to  obtain  an  approximate relationship for  radial pressure  distribution.  The  friction 
factor,  embodying  the influence of varying viscous and inertial forces, is postulated on the  basis of specialized radialflow 
studies  in  the literature. By  also applying the  momentum  balance  condition,  an  approximate overall solution  is obtained 
which, for arbitrary model  dimensions, describes the relationship among equilibrium passage  spacing, resultant  reaction 
fluid force  and  free disk weight,  and a flow  Reynolds  number.  The analytical predictions are compared with results from 
model  experiments, and generally favorable  agreement  is  indicated. 

Introduction 
The  transportation and other motion  control of thin, frag- 
ile wafers,  as required in semiconductor processing, are 
accomplished under essentially contactless conditions  by 
air film systems developed in IBM [ 1 ,  21. In  essence, wa- 
fers  are  moved  on a lubricating film  of air which exerts 
prescribed  multidirectional control of their motion. The 
supporting air film combines  suction-generating and flow- 
redirection  effects based  on  two fluid mechanics  phenom- 
ena;  thus  both  attraction  and laterally  directed control 
forces  are imposed on  the wafer.  Basically, the film is 
generated by a symmetric  configuration  consisting of a 
flat surface containing an arrangement of recessed, 
curved-wall  regions, or channels.  The flat surface por- 
tions contain a pattern of small holes of a given internal 
length through which pressurized air is supplied.  Multiple 
air jets issuing  from the holes  impinge  against the  wafer 

surface and, in turning to flow in essentially  radial direc- 
tions,  create local  suction  regions which collectively act 
to restrain  vertical motion of the wafer. A part of the  air 
flowing radially  away  from the  impact region is  redirected 
down  into  the  curved-wd  channels by  action of the  sec- 
ond  phenomenon. This results in a particular  augmenta- 
tion of surface friction effects which, in turn,  produce  ad- 
ditional control of wafer motion in horizontal  directions. 

The air film, resulting  from the simultaneous action of 
the  above flow effects,  characteristically assumes  an  es- 
sentially  uniform  thickness. A theoretical  treatment of the 
flow behavior in the overall film region, with associated 
aspects  such as variations of film thickness  and of forces 
on  the wafer  with flow conditions,  is extremely complex 
and is not available. In  fact, a comprehensive  theoretical 
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analysis of either of the constituent flow phenomena  con- 
sidered separately  also poses  formidable difficulties. In 
relation to  the first case, a number of analytical studies 
have  been  made,  for  example, of radial pressure distribu- 
tion for diverging flow between stationary parallel plates 
[3-71. These  studies, based on  steady,  laminar, in- 
compressible flow in a purely  radial  direction, show  the 
existence of a depressed  pressure region associated  with 
the  action of both inertial  and  viscous forces.  In  the  par- 
ticular situation  where a flow jet  is introduced  through  a 
hole in one of the plates  and impinges against the  opposite 
surface,  the flow, in turning to  the radial  direction, sepa- 
rates, in general,  to  some  extent  over  the lower  plate sur- 
face. The flow parameters vary  in both  the  transverse  and 
radial directions in the  entrance region,  and a natural 
pressure  loss  occurs here  without  any  actual  reduction in 
the  area of the plate  passage. An approximate  solution 
describing some of these  complex entrance flow charac- 
teristics is  presented in [8]. It  is  apparent  that  an  overall 
theoretical treatment,  even  for a simple,  free-disk, single- 
inlet-hole,  axisymmetric model of this flow phenomenon 
is quite difficult, since it is keyed  to  the establishment of 
an analytical  description of the  pressure variation over 
the entire passage. Consequently,  the developments de- 
scribed in [ l], where  this  phenomenon and  the flow-direc- 
tion or  Coanda effect interact in the  air film, were carried 
out largely by  experimental  means. In  essence, this in- 
volved experiments and certain supporting analyses of 
the first phenomenon treated  alone, followed by  similar 
studies of evolved, multiple-jet models of the film surface, 
where both flow effects are  operative. 

In this paper, we present  an analysis of the suction- 
generating attraction  phenomenon,  the “Bernoulli” or 
“axi-radial” effect [l], which is based  on a representa- 
tive,  axisymmetric, circular  disk model,  as shown in Fig. 
l(a). Air at density p flows axially through  a central  tube 
(radius ri, length 1)  from  a reservoir s, where  its velocity is 
practically zero  and  its  pressure is p s ,  and  impinges 
against the  upper disk which is free  to move in the z direc- 
tion. From this  region, the air stream  turns  and flows, 
with no azimuthal  variation, radially outward  through in- 
let i of the parallel  disk  passage  (at  separation h )  to  the 
outlet  location o (radius r,,). At o the flow emerges into  the 
atmosphere,  at which location the  pressure is the  ambient 
pressure p a .  Under  proper flow conditions,  the  free disk 
of weight W assumes a stable  equilibrium  position h,  in 
balance  with the effects of the momentum repelling force 
of the  air  stream  and  the restraining attraction  force  due 
to  the  net effect of the  pressure variation in the flow pas- 
sage.  Characteristically, as  the supply flow rate Q is 
changed,  these  forces individually assume different Val- 
ues  the  sum of which is equal to an  exerted resultant fluid 
force S. Thus,  for  the present case where the disk is al- 

lowed to move freely,  the  reaction  to this force is a con- 
stant  equal  to  Win  accordance with  the equilibrium con- 
dition. The  values of the flow repelling and  attraction 
forces  at a given Q are coupled to a particular  disk  dis- 
placement h. Consequently, h varies with Q in a manner 
that reflects the relative influence of these  forces. 

The  present analysis is based on  steady, laminar, in- 
compressible flow conditions. The approximate  radial 
pressure  distribution,  as influenced by the action of both 
inertial and viscous forces, is obtained by an  ax- 
isymmetric,  one-dimensional treatment involving the gen- 
eral energy equation in conjunction with a postulated  fric- 
tion factor variation in the flow passage.  Using  this  pres- 
sure distribution  relationship and accounting for flow 
energy losses in the inlet tube,  an approximate  overall so- 
lution is obtained by application of the momentum bal- 
ance  condition.  The solution describes,  for  arbitrary 
model dimensions, the relationship  among equilibrium 
passage  spacing,  resultant  reaction fluid force  and  free 
disk  weight,  and a flow Reynolds number.  The analytical 
predictions are compared with results obtained  from  ex- 
periments with the  present model configuration. 

The  notation used in the following analysis is listed  be- 
low. 

Notation 

r,z = radial, transverse  coordinates. 
h = disk  spacing. 
de = hydraulic  diameter of radial flow passage, 2h. 
1 = length of axial flow passage. 
1, = hydrodynamic entrance length of axial passage. 
k = length ratio, 111, 
p = static  pressure (absolute). 
p a  = surrounding atmospheric  pressure. 
p = mass  density. 
v = kinematic  viscosity. 
7, = wall shear  stress or skin  friction. 
Q = volumetric flow rate. 
u = velocity in the radial direction. 
U = bulk average  velocity, Ql2rrt-h. 
f = friction factor, ~ T , / P U ’ .  
R = local  radial  passage  Reynolds number, Qlrrrv. 
R,  = R(r/2h)  = overall  Reynolds number, Q/2?rhv. 
F = dimensionless radius, 2r/h-. 
2 = dimensionless transverse  coordinate, 2z/h.  
ii = dimensionless radial velocity, u / U .  
K = constant in the friction factor,  Eq. (7). 
E = flow energy content  at location r .  
C = energy correction  factor in pressure  distribution, 

W = weight of free disk. 177 
Eq. (3). 
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Figure 1 Axi-radial flow model (a) and control volume for the 
analysis (b). 

S = resultant fluid force  exerted  on disk. 
Subscripts: s = supply  location. 

i = radial  passage  inlet  location. 
o = radial  passage  outlet  location. 

P = dimensionless pressure, h2(p - pa)/4pv2R,. 
F = dimensionless resultant fluid reaction force, 

s / r p v 2 .  

Analysis 
Referring to  the model in Fig. l(a), the  free disk of weight 
W is at  an equilibrium displacement h corresponding to a 
given steady flow rate Q of constant density p ,  and  sup- 
plied at a reservoir  pressure p,. The  forces acting on  the 
disk and  the conditions for equilibrium are obtained by 

application of the momentum  principle in conjunction 
with the  control volume in Fig. l(b).  In  accordance with 
the one-dimensional assumptions,  the steady flow at  the 
tube inlet (s) and  exit (0) regions is  taken  to be of uniform 
velocities Q / r r :  and Q/2rroh,  respectively. In  addition, 
the  pressure p in the radial passage ri I r 5 ro is  taken  to 
be uniform in the z direction and  thus varies  only with r. 
Consequently,  the  pressure ( p )  and skin  friction (7,) vari- 
ations with r a re  the  same along both disk surfaces;  there- 
fore,  it is assumed  that a net  force  that would be exerted 
on  the  free disk due  to  an  actual difference in these varia- 
tions is  not  existent here.  This  assumption is  considered 
to  be plausible over much of the disk space  since ri is 
generally much  less than ro. In  the radial  inlet  region 
where  the flow parameters  vary in both  rand z directions, 
this assumption  does not  apply to  any reasonable extent. 
Here,  the  average  pressure with respect  to  the z direction 
decreases very  rapidly to a low  value  as  the flow turns  to 
the radial  direction. However,  since this decrease,  as well 
as  the  general two-dimensional flow variations, actually 
occurs  over a small region relative to  that of the  entire 
disk space,  the basic  assumption that p varies  only  with r 
for ri I r I ro, where ri << rot is considered to  be a rea- 
sonable  approximation of the  actual overall  conditions. 

The fluid repelling force  for  the disk region 0 I r I ri is 
obtained  by  application of the momentum  integral equa- 
tion [9] with the above assumptions  to  the control  volume 
of Fig. l(b). Taking the upward  direction as positive,  this 
force  is given  by 2 r  J: ( p  - pa)rdr which, in accordance 
with the momentum  balance condition in the z direction, 
is equal  to Q 2 p / r r :  + ( p ,  - pa)rr: - 2rr$rW, where T, is 
the  average skin  friction  in the inlet tube.  The  term 
2rri1rw, representing  the  average flow friction force,  is 
written  equivalently as rr:Aps, where Ap, denotes  the 
pressure loss in the  tube.  In addition to  the  momentum 
force, a second  force  acts  on  the  free disk due  to  the  pres- 
sure variation over  the surface  region ri I r s r,. This 
force is given  by 2rJ:: (p  - p,)rdr. Thus,  the  resultant 
fluid force S acting on  the disk is  equal  to the sum of these 
forces  and is 

where S may act in the positive or negative directions  de- 
pending on  the relative  magnitude of the  constituent 
forces.  When the disk is in  equilibrium, the weight W act- 
ing in the negative  downward  direction is just  equal  to S; 
therefore,  the  free disk equilibrium condition is given  by 
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To 

- w + 2a IT, ( P  - P p r  = 0. (2) 

The  pressure distribution  relationship p = p(r)  for  the in- 
tegration required  above is obtained  in  approximate form 
by the  approach described  below. 

Pressure  distribution on free disk 
In general,  the  pressure distribution  in the overall flow 
passage  reflects the actions of both acceleration and vis- 
cous  forces  even  at very  low  local  Reynolds numbers. 
The  acceleration  forces  are most  pronounced in the inlet 
region of the disk  passage, where significant momentum 
effects are coupled with the flow turning  abruptly from 
the axial to  the radial direction.  As the flow continues 
radially outward,  these  forces gradually decrease  as  the 
flow condition is approached  where viscous forces  are 
dominant.  Characteristically, the flow is of a two-dimen- 
sional nature in the inlet region, where flow redirection 
and separation effects occur,  and gradually  transforms to 
a one-dimensional,  purely radial character with increase 
in distance r from the inlet. In the  latter region, the  trans- 
verse velocity profile (u)  of the flow approaches  the  char- 
acteristic  invariant  parabolic form,  and  the  pressure  var- 
ies logarithmically with radius r .  In the inlet region, the 
velocity profile is of a transversely  asymmetric form  that 
varies  with r ,  and the  pressure  changes in accordance 
with dominant inertial  effects. Between these two limits, 
the velocity profile and pressure variations with radius  re- 
flect the influence of interacting  viscous  and  inertial ef- 
fects. 

For  the special case of purely  radial flow between  sta- 
tionary disks [Fig. 2(a)], the velocity profile in the ideal- 
ized  situation is uniform at  the  entry location r = ri and, 
as  the flow develops with increasing  boundary layer 
growth, it approaches  the invariant  parabolic form  as 
r + m. Livesey [4], in treating the infinite disk  condition 
(i.e., approximated  by the condition h << r, ) ,  assumed a 
parabolic profile at all radii  and  using an integral method 
obtained an approximate  solution for the pressure distri- 
bution in which both viscous and inertial forces are active. 
Savage [5] and  Jackson  and  Symmons [6] obtained  similar 
type  solutions based on power  series expansions of the 
Navier-Stokes  equations with a radially dependent veloc- 
ity profile. In addition,  Boyack and Rice [7] obtained an 
approximate solution using a different  form of radially de- 
pendent velocity profile in conjunction with a momentum 
integral analysis. The basic  form of the established  di- 
mensionless pressure distribution  relationship in the 
radial passage  is given by 

where the first and  second terms on the right-hand side 

hL-l Uniform entering velocity profile 

P I  I I Boundary  layer 
I 1 

- r 

t "- o *  

I 

t" 

/ 
Developed flow region 

(a)  

Figure 2 Illustration of purely  radial flow characteristics (a) 
and  axi-radial flow characteristics (b). 

represent  the viscous and inertial pressure effects,  re- 
spectively. The coefficient C is an energy correction fac- 
tor,  the value of which depends on the  shape of the veloc- 
ity profile. For C = 0.5, the inertia  term in Eq. (3)  repre- 
sents  the Bernoulli equation. Livesey [4] obtained a value 
of C = 0.6, which reflects the  fact  that,  for  the  same  aver- 
age velocity (U), a parabolic  velocity profile possesses 20 
percent more  momentum than a uniform profile. The so- 
lutions of Savage [5], Jackson  and Symmons [6], and 
Boyack and Rice [7], all of which are based on a radially 
varying  velocity profile, show  values of C = 0.771 (for 
both [5] and [6]) and C = 0.72, respectively. For F + Fi 
(where Fi << Fo), the  exact  pressure distribution  solution 
must approach  the Bernoulli equation.  Consequently,  the 
above  approximations  err  at small F by at least 20,54,  and 
44 percent, respectively. 

As F -+ F0, the inertia term in Eq. (3) becomes  much 
smaller  relative to  the viscous term,  and  the dimension- 
less  velocity profile approaches a parabolic form, viz., 

( 5 )  
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thus  as P + io, the friction factor  approaches  the 
value for fully developed flow, viz . ,  

where R and R, are  the local and overall  Reynolds  num- 
bers,  respectively.  The  Livesey solution [4], based  on a 
parabolic profile [Eq. (411, requires  that  fR/24 = 1 at all 
radii,  which is physically incorrect  since,  as F+  F i ,  f must 
increase due  to  the increasing  influence of the  accelera- 
tion forces.  The radially varying profiles in the  other solu- 
tion methods cited above [S-71 show  such  an  increase in 
f; however,  the  results  are in considerable  disagreement 
with results from other more valid solutions  focusing on 
the  entrance region alone (e .g . ,  that obtained using the 
internal boundary layer  approximation  technique de- 
scribed in [lo]). In  essence, it is shown that  the  actual 
friction factor variation in the flow-developing region is 
such  that  as F + F,, 

6K 
f+- 3 dK 
where  K is a constant approximately equal  to  0.36  for  the 
symmetric entrance configuration of Fig. 2(a). Thus, as F 
+ F, (where Fi < K ) ,  Eqs. (6) and (7) show  that  the in- 
creasing  friction factor in the inlet region can  ultimately 
have a limiting value  much greater than that  for devel- 
oped flow. 

It is noted  that  the dimensionless  radius i. formed from 
the local radius  r, disk  spacing h,  and  the root of the  over- 
all Reynolds  number R, give the local scale of the impor- 
tance of viscous effects relative to inertial  effects, Also, 
R, is not a function of r and,  since F is scaled  by the *,,, 
small values of i. do not  necessarily imply small values of 
physical  radii r.  Thus, the above limiting friction factor 
cases,  as well as the limiting pressure distribution case 
[ i .e. ,  from  Eq. (3)], can be  associated with domains  not 
necessarily  close to r, or ro. Finally, the local Reynolds 
number R, which provides the  criterion  for  the  existence 
of laminar or turbulent flow, is  associated with R, by the 
relationship  R = (2h/r)Ro. In  the  present flow case, h is 
always much  less  than local values of r;  hence laminar 
flow values of R  correspond to much  larger  values of R,. 

In  an investigation of radial flow in which viscous and 
inertial effects interact in a general way, Murphy, Coxon, 
and  McEligot [ 111 proposed an approximate  relationship 
for  the variation of the friction factor in the radial space, 
as  based  on a numerical  solution of the boundary layer 
approximations of the  Navier-Stokes equations for inter- 
nal flows. Applying their general results  to  the configura- 
tion of Fig. 2(a), the  friction factor variation in the region 

where K = 0.36. Thus,  for F+F, or F+Fi, Eq. (8) shows 
that f approaches  the limiting cases of Eq. (6) or Eq. (7), 
respectively. In  the intermediate  radial  region, the f varia- 
tion is  at a maximum deviation of approximately 8 per- 
cent  from  the numerical  solution results [ 111. In  the axi- 
radial  configuration of Fig. 2(b), the asymmetric flow in 
the inlet region is coupled with the  existence of separation 
effects. Hagemp [8], in an investigation of this  situation  in 
connection with the inherent restrictor effect in gas  bear- 
ings, used  an integral  method to  obtain a first approxima- 
tion to  the inlet region energy losses generated  by the 
flow separation behavior. In  essence,  an examination of 
these  results  shows  that  the limiting inlet region friction 
factor  is actually of the  form given  by Eq. (7), where K ,  
reflecting the additional influence of the  asymmetric  con- 
dition,  now has  an  apparent  average value of approxi- 
mately 0.4. In a general sense,  the flow characteristics of 
the configurations of Figs. 2(a) and 2(b) are qualitatively 
similar in that  for both cases acceleration  effects are 
dominant in the inlet  regions  followed  by  radial  transition 
to developed flow conditions.  Consequently, it is as- 
sumed  that  the friction factor variation  given  by Eq. (8) 
for :he region Fi I F I Fa, and with  K = 0.4, also  repre- 
sents a good approximation for  the axi-radial configura- 
tion of Fig. 2(b). Accordingly,  this  friction factor relation- 
ship is  used in obtaining the approximate pressure distri- 
bution acting  on  the  free disk. 

As discussed  above, in the region ri I r 5 ro,  an  aver- 
age uniform pressure with respect to the z direction is as- 
sumed at any radial  location  in the disk space.  The dif- 
ferential  energy loss in the radial flow, viz . ,  dE = 

(2 f Uz/de)dr, becomes  upon substitution  for  de, U ,  and Q 
= 2?rhvR,: dE = (f vZRt/rZh)dr.  Substitution for f from 
Eq. (8) [with R = (2h/r)R, and i = 2r/h*J, integrating 
between  radial locations  ro  and r for fixed values of  R, and 
h, and  substitution of the  results in the general  energy 
equation for  steady flow gives the following equation  for 
the  pressure distribution: 

180 F, 5 i. I Fo is given by 
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or in dimensionless  form. 

By way of comparison, it is  seen  that,  for K = 0, Eq. (10) 
reduces  to  Eq. (3) in which C = 0.5. The  pressure distri- 
bution for  the integration  required in Eq. (1) or  Eq. (2) is 
thus given by Eq. (9). 

0 Free  disk  equilibrium  relationship 
For Ap, in Eq. (1) or  Eq. (2), we take  into  account  the 
additional pressure loss associated with the developing 
flow condition in the  entrance region of the inlet tube [ 101. 
The overall pressure loss that  occurs  for  the  tube of 
length 1 is written here in the form Ap8 = pU2 [81/riR, + 
1.141, where R, is  the local Reynolds number Q/rrriv. In 
terms of this expression,  the  tube length  required for  the 
fully developed flow condition is given by l/r, = ld/ri L 

0.232 Ri. Defining 111, = k, this  condition is written as l/ri 
= k(0.232 Ri), and  thus  the flow is developed  for k L 1 .  
Substituting for l/ri, U ,  and Ri in terms of R, in the  above 
equation for Ap, gives the following expression  for  the 
inlet  tube pressure  loss: 

4hZpv2R: 
Ap, = - ., (1.86k + 1.14). 

Substitution into  Eq. (1) of Eqs. (9) and (1 l), and for p,  - 
p a  obtained  by  combination of Eq. (9) (with r = ri) and 
Eq. (11) with the  general energy equation, results in the 
following equation  for  the resultant fluid force S:  

(12) 
Substituting F = 2rIh- and F = S/rrpvz, the dimen- 
sionless  form of Eq. (12) becomes 
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I Dimensionless radius, i= 2 r / h  

Figure 3 Radial pressure distribution P with dimensionless 
outer disk  radius i., as parameter  [by Eq. (lo)]. 

The  free disk  equilibrium  relationship, Eq. (2). is thus 
given by Eq. (12) for S = Wand in dimensionless  form  by 
Eq. (131, where F = W/rrpvz. 

The total pressure  drop in the model configuration, viz., 
p ,  - pa ,  is given  by 

1 4hZ 
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The dimensionless form of Eq. (14) is 

1 16 

2i-: F;Ro 
P, = - + - (1.86k + 114) 

(F, + -1 
+ In (Fi + d m  ' 

where P, = h2(p, - pa)/4pv2R,. 
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Figure 4 Resultant  fluid force F vs Fi, for Fo = 0.5 and overall 
Reynolds number R, as parameter [by Eq. (13)]. 

Characteristics of the  axi-radial flow model 
Referring to  Eq. (lo), the  characteristics of the dimen- 
sionless pressure distribution P for  the  case K = 0.4 are 
illustrated in Fig. 3 for several parametric values of the 
dimensionless outlet radius Po. From Eq. (10) it is seen that 
P has a maximum value at ? = 0.707(-K2 + m y ’ ’  
= 0.556. Thus,  from  the definition of i. and R,, it fol- 
lows that  the physical  radius r for maximum P is equal 
to 0.556(hQ/&~)’’~. As seen  in Fig. 3, a  maximum posi- 
tive pressure is exhibited only for Fo values  greater  than 
0.556. For i., 5 0.556, no maximum exists  and  the pres- 
sures  are negative  throughout the radial  passage. For a 
value of i., greater  than 0.556, it is apparent  that a coun- 
teracting  negative pressure region will occur only for di- 
mensionless  inlet  radii i. = i., less than a particular maxi- 
mum value. For  example,  for the cases ;, = 1 and i., = 
0.7, the inlet radii fi must be  less  than 0.3 and 0.4, respec- 
tively, in order  for  an  attraction  force influence to  occur. 

The  characteristics of the dimensionless resultant fluid 
182 force F acting on the  free  disk, as described by Eq. (13) 

F, = 0.0263 \ 
I I I I I 
2 4 6 8 10 12 

‘vera11 Rcynoldsnumbcr, 13, X IO4 

Figure 5 Resultant  fluid force F vs R,, for i., = 0.5 and F, as 
parameter [by Eq. (13)]. 

for values of k = 1 and K = 0.4, are illustrated  in Fig. 4 for 
F0 = 0.5. Here, F is plotted  against i., with the overall 
Reynolds  number as the  parameter. As seen,  for  the 
range 0.1351 5 Fi 5 0.5, a repelling resultant  force  exists, 
while an  attraction  resultant  force  is exhibited for Fi val- 
ues less  than 0.1351. For a given constant value of R,, 
there  exists a particular ti value for which the  attraction 
force is a maximum; for smaller i., values,  the  attraction 
force  decreases  as  shown.  The  characteristics of this case 
are exhibited in a different  form in Fig. 5 ,  which shows F 
plotted  against R, with 7, as  the  parameter. As seen,  for 
values of Fi < 0.1351, the  attraction  force  increases with 
R,. For  the  particular situation where Fi has a value in the 
range of 0.1351 to  the fi value  where the maximum attrac- 
tion occurs (Fig. 4), the  attraction  force  decreases contin- 
uously over  the  entire given R, range ( e . g . ,  as in the  case 
where Fi = 0.1053). For ti values  smaller than  the low 
value in this range, a repelling force  occurs initially and 
subsequently decreases with increases in R,, e . g . ,  as il- 
lustrated by the  cases Fi = 0.0184 and Fi = 0.0263. 
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I Dimensionless  inlet  radius, Ti = 2r , /h  d q  

Figure 6 Total pressure  drop Pg vs ii , for io = 0.5 and  overall 
Reynolds  number  as  parameter  [by Eq. (I$]. 

The variation of the dimensionless total  pressure  drop 
P, with Fi, as  described by Eq. (15) for k = 1, K = 0.4, and 

= 0.5, is illustrated in Fig. 6 for different  values of the 
parameter R,. For  values of Fi > 0.1351, Ps becomes in- 
creasingly insensitive to  the value of R,, while for Fi < 
0.1351 in the disk attraction force range,  the sensitivity of 
Ps with R, is considerable. 

Experimental  verification 
A schematic  diagram of the basic  experimental apparatus 
that was constructed  to  study the flow characteristics is 
shown in Fig. 7. In  essence, it consists of a fixed disk  and 
a parallel free disk constrained  to  accurately controlled 
motion in the vertical  direction by means of a low-friction 
guide shaft and ball bushing  arrangement. The  free disk 
weight is adjusted  by means of a  lever-arm, sliding-weight 
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J 
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Orifice Row meter 
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Figure 7 Illustration of the  experimental  apparatus. 

mechanism,  which is connected to  the guide  shaft  by  a 
low-friction roll pin arrangement. Thus, a range of free 
disk weights is  obtained by locating the sliding weights at 
particular distances from the fulcrum. The  top  part of the 
guide shaft is attached  to a transducer arrangement for 
measurements of disk  displacement and resultant fluid 
force.  The fixed disk is provided with static  pressure  taps 
located  at different spacing  along three radial  lines  spaced 
120 degrees apart.  The  taps  are  connected  to a manifold- 
manometer  bank arrangement  for  measurements of radial 
pressure distribution.  Because of the incorporated  ax- 
isymmetric flow conditions, the pressure is invariant in 
the azimuthal direction; hence the  static  pressure distri- 
bution in any  given  radial  direction is provided by a l l  the 
taps.  The fixed disk is connected to a  plenum chamber by 
means of different tube lengths for  the  purpose of investi- 
gating developing  inlet flow effects on the  overall flow be- 
havior. In  operation, metered air is supplied to  the disk 
passage via the plenum at  pressure p ,  and flow rate Q. For 
a given free disk weight adjustment W ,  measurements  are 
thus made of static  pressures p and  displacement h. In 
other  experiments,  the resultant fluid force S and disk  dis- 
placement h are  measured  for various  supply flow condi- 
tions. 

The  above  experimental technique  was  used to investi- 
gate several  combinations of fixed disk  inlet  and  outlet 
radii for various free disk weight and flow rate conditions. 
The experimental results reported here  were obtained for 183 
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Calculatcd by Eq. (12) 
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Figure 8 Resultant disk fluid force S vs flow rate Q ,  with Qh as 
parameter, for ri = 3.17 mm and ro = 50.81 mm; comparison of 
experiments and calculation by Eq. (12). 
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Figure 9 Disk  fluid force S and total pressure dropp, - p a  vs 
displacement h ,  with Q as parameter, for r$ = 3.17 mm and ro = 
50.81 mm; comparison of experiments and calculations by Eqs. 
(12) and (14). 

radii ri = 3.17 mm and ro = 50.81 mm,  for  supply  air con- 
ditions of p = 1.2 kg/m3 and v = 1.5 X m2/s, and for k 
= 1. The variation of S with Q for various  values of the 184 
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parameter Qh,  as calculated  by Eq. (12), is  shown in Fig. 
8. As seen,  the experimental results  also  shown  on this 
plot are in very  good  agreement with the  theoretical pre- 
dictions.  Figure 9 shows  the corresponding  variation of S 
with h ,  as illustrated for  constant flow rates of Q = 2.83 X 

m3/s and 3.11 x m3h. As seen, a maximum at- 
traction  force S of approximately - 1.2 N occurs  at h = 
0.45 mm and of -2.05 N at h = 0.41 mm for  each of these 
flow rates,  respectively. As an illustration of this effect, if 
the model of Fig. 1 is considered to  be in an  inverted posi- 
tion, a disk of weight W = 1.2 N will be  suspended  at h = 
0.45 mm for Q = 2.83 x m3/s, in accordance with the 
equilibrium condition. From a more  general  viewpoint, if 
Q is held constant  and h is  varied, Fig. 9 illustrates the 
weight-lifting capability of the overall flow effect, in ac- 
cordance with the equilibrium condition, S - W = 0. For 
the model in the upright  position  shown in Fig. 1,  the dis- 
placement h and flow rate Q for a disk of a given weight W 
in equilibrium (viz., S = constant = W) vary  as shown in 
Fig. 8. For example,  for a given value of W, Fig. 8  shows 
the variation of Qh with Q ,  and  thus Q vs h is obtained 
for  the  particular disk weight. 

For Q = 2.83 X m3/s, the overall Reynolds number 
R, is approximately 6.7 X lo4. The corresponding local 
Reynolds numbers R at  the inlet and  outlet regions are 
thus 18 900 and 1182, respectively. For Q = 3.11 X 

lop3 m3/s and R, = 8.1 x lo', the local  inlet  and  outlet 
Reynolds  numbers are approximately 20 800 and 1300, re- 
spectively. In contrast to the  case of flow in a pipe, where 
R = 2100 for  the transition  from  laminar to turbulent flow, 
no such Reynolds number criterion is available for flows 
of the present  kind.  Assuming for the  moment that relami- 
narization occurs for R = 2100, then turbulent flow condi- 
tions are indicated from  the disk space inlet to r = 29  mm 
and r = 31 mm for  the first and second flows, respec- 
tively. However, in view of the complex  situation  associ- 
ated with flow separation  and  the variable  disk space flow 
area, this assumption  is not valid; hence,  the  actual  extent 
of turbulent flow conditions is not  predictable. On the 
other  hand,  the  favorable agreement  indicated  between 
experimental results  and  the  present theoretical  treatment 
is evidently due to the friction factor variation  used [ i . e . ,  
Eq. (8) with K = 0.41 which approximates the overall ef- 
fects of these changing flow conditions in the region ri I r 
5 r,,. The total pressure  drop variation, p ,  - p a ,  as calcu- 
lated  by Eq. (14) for  each of the  above flow rate  cases, is 
also in good agreement with experimental measurements, 
as shown in Fig.  9. In this  particular set of experiments, S 
was  varied,  and  the flow rate Q was  maintained at a con- 
stant value  by  adjusting the  pressure p ,  - pa. As seen, 
p ,  - p a  initially decreases rapidly with increases in h and 
eventually assumes  an essentially constant value for  each 
of the flow rates. 
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The  static  pressure distribution  in the disk space,  as 
calculated by Eq. (9) for  each of the  above flow rates, is 
compared with experimental  measurements in Figs. 1O(a) 
and 10(b). The  agreement is seen to be good for  the radial 
region beyond r = 7  mm. For the immediate inlet region, 
viz., between ri = 3.17 mm and r = 7 mm,  the experimen- 
tal results differ  considerably  from the analytical  predic- 
tions. This is evidently due  to  the complex flow character- 
istics in this  region,  which cannot  be  accounted  for by the 
present one-dimensional  analytical treatment. From an 
overall  viewpoint, however,  the present  approximate  the- 
oretical treatment  apparently provides a very good de- 
scription of the flow characteristics  as verified by the fa- 
vorable  agreement with experimental results. 

Discussion  and  conclusions 
An approximate  analytical  description of the overall char- 
acteristics of the "axi-radial" flow phenomenon has been 
obtained on  the basis of one-dimensional, steady, lami- 
nar, incompressible flow assumptions for a representative 

model. The  resultant solution, which for  arbitrary model 
dimensions describes  the  free disk force and dis- 
placement  relationship with the flow parameters, is keyed 
to  the analytical description of the  radial pressure distri- 
bution in the flow passage.  This  description is obtained 
here by a proposed  friction factor variation which reflects 
the influence of inertial and viscous forces,  as well as flow 
separation effects in the radial inlet region. The occur- 
rence of separation,  even  for very low Reynolds num- 
bers, induces a highly destabilizing effect to  the laminar 
flow in this  region. Thus,  the  pressure distribution rela- 
tionship  obtained  reflects to  an  extent  the effects of the 
turbulent flow conditions in the  upstream region of the 
passage. The  solution,  as  expressed by Eq. (12), provides 
a means  for determining  device  dimensions and flow con- 
ditions for particular as well as optimal attraction force 
characteristics.  For  example, in the  particular  case con- 
sidered  where Fo = 0.5, it was  seen that Fi must  be  less 
than 0.1351 in order  for  an  attraction  force  to  develop; 
also,  there exist particular values of Fi and R, for which 
the  attraction  force is a maximum. 185 
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The overall comparison of the present  theoretical pre- 
dictions with experiments  is seen to be  generally favor- 
able. An exception to this, which apparently  does not  ap- 
preciably influence the  other calculated characteristics, 
concerns  the  pressure distribution in the inlet region [Fig. 
10(a)]. The rapid decrease in pressure  from  the  free disk 
stagnation value, which occurs  as  the flow enters  the 
radial region, cannot  be described  by the  present analyti- 
cal approach.  The  depressed  pressure region described 
by the analysis predicts  lower  pressures  than  those ob- 
served experimentally. This  disagreement,  however, oc- 
curs in the immediate  vicinity of the inlet region so that its 
effect on  the  overall calculated characteristics  is appar- 
ently  small. In  experiments with other  device dimensions 
and flow conditions, generally favorable agreement was 
observed with the analytical  predictions. One  aspect  that 
was investigated in particular pertained to  the developed 
flow length of the inlet tube [Eq. (1 l)]. In  essence, it was 
observed  that  for k < 1 the  attraction  force diminished 
and flow instabilities tended  to  occur.  This  behavior  was 
most pronounced  for k values  less than approximately 
0.3. For k values greater than  approximately 0.8, very 
stable conditions were  observed, which tended  to become 
rapidly insensitive to  further increases  in k. An analytical 
description of the  latter behavior is also not within the 
capability of the  present one-dimensional  model. 

The  present  treatment  is based on a single air  jet im- 
pinging against the  free disk. When multiple  air jets im- 
pinge against the  surface,  the  attraction  force  is  decreased 
due  to flow interaction effects. These  effects, in turn, de- 
pend on  the  number of jets  as well as  their arrangement 
with respect  to a  given impingement area.  The  present 
solution is not  applicable to this case;  consequently  the 
wafer air film system developments  mentioned  earlier 
[ l ,  21 were carried  out largely by experimental  means 
guided initially by the  present analytical results. 
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