176

J. A. PAIVANAS AND J. K. HASSAN

J. A. Paivanas
J. K. Hassan

Attraction Force Characteristics Engendered by
Bounded, Radially Diverging Air Flow

When axially directed air flow enters a parallel plate passage through a hole in one of the plates, the ensuing diverging
radial flow is such that a depressed pressure region occurs to some extent over the inlet region of the passage. If the plate
against which the inlet air stream impinges is allowed to move freely, it will, under proper flow and other conditions,
assume a position of stable equilibrium reflecting a balance among plate weight, the momentum repelling force of the
stream, and a net restraining attraction force due to the radial pressure distribution in the passage. This phenomenon,
the “‘Bernoulli’’ or “‘axi-radial’’ effect, has long been of interest in areas such as gas film lubrication and radial diffusers,
and it has been applied extensively in IBM systems for contactless transport and motion control of semiconductor wafers
on an air film. A steady, laminar, incompressible flow analysis for a representative axisymmetric circular disk model is
presented here. A one-dimensional approach, using the general energy equation in conjunction with a passage flow
friction factor variation, is applied to obtain an approximate relationship for radial pressure distribution. The friction
Sfactor, embodying the influence of varying viscous and inertial forces, is postulated on the basis of specialized radial flow
studies in the literature. By also applying the momentum balance condition, an approximate overall solution is obtained
which, for arbitrary model dimensions, describes the relationship among equilibrium passage spacing, resultant reaction
Sfluid force and free disk weight, and a flow Reynolds number. The analytical predictions are compared with results from
model experiments, and generally favorable agreement is indicated.

Introduction

The transportation and other motion control of thin, frag-
ile wafers, as required in semiconductor processing, are
accomplished under essentially contactless conditions by
air film systems developed in IBM [1, 2]. In essence, wa-
fers are moved on a lubricating film of air which exerts
prescribed multidirectional control of their motion. The
supporting air film combines suction-generating and flow-
redirection effects based on two fluid mechanics phenom-
ena; thus both attraction and laterally directed control
forces are imposed on the wafer. Basically, the film is
generated by a symmetric configuration consisting of a
flat surface containing an arrangement of recessed,
curved-wall regions, or channels. The flat surface por-
tions contain a pattern of small holes of a given internal
length through which pressurized air is supplied. Multiple
air jets issuing from the holes impinge against the wafer

surface and, in turning to flow in essentially radial direc-
tions, create local suction regions which collectively act
to restrain vertical motion of the wafer. A part of the air
flowing radially away from the impact region is redirected
down into the curved-wall channels by action of the sec-
ond phenomenon. This results in a particular augmenta-
tion of surface friction effects which, in turn, produce ad-
ditional control of wafer motion in horizontal directions.

The air film, resulting from the simultaneous action of
the above flow effects, characteristically assumes an es-
sentially uniform thickness. A theoretical treatment of the
flow behavior in the overall film region, with associated
aspects such as variations of film thickness and of forces
on the wafer with flow conditions, is extremely complex
and is not available. In fact, a comprehensive theoretical
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analysis of either of the constituent flow phenomena con-
sidered separately also poses formidable difficulties. In
relation to the first case, a number of analytical studies
have been made, for example, of radial pressure distribu-
tion for diverging flow between stationary parallel plates
[3-7]. These studies, based on steady, laminar, in-
compressible flow in a purely radial direction, show the
existence of a depressed pressure region associated with
the action of both inertial and viscous forces. In the par-
ticular situation where a flow jet is introduced through a
hole in one of the plates and impinges against the opposite
surface, the flow, in turning to the radial direction, sepa-
rates, in general, to some extent over the lower plate sur-
face. The flow parameters vary in both the transverse and
radial directions in the entrance region, and a natural
pressure loss occurs here without any actual reduction in
the area of the plate passage. An approximate solution
describing some of these complex entrance flow charac-
teristics is presented in [8]. It is apparent that an overall
theoretical treatment, even for a simple, free-disk, single-
inlet-hole, axisymmetric model of this flow phenomenon
is quite difficult, since it is keyed to the establishment of
an analytical description of the pressure variation over
the entire passage. Consequently, the developments de-
scribed in [1], where this phenomenon and the flow-direc-
tion or Coanda effect interact in the air film, were carried
out largely by experimental means. In essence, this in-
volved experiments and certain supporting analyses of
the first phenomenon treated alone, followed by similar
studies of evolved, multiple-jet models of the film surface,
where both flow effects are operative.

In this paper, we present an analysis of the suction-
generating attraction phenomenon, the ‘‘Bernoulli’’ or
‘‘axi-radial’’ effect [1], which is based on a representa-
tive, axisymmetric, circular disk model, as shown in Fig.
1(a). Air at density p flows axially through a central tube
(radius r,, length [) from a reservoir s, where its velocity is
practically zero and its pressure is p,, and impinges
against the upper disk which is free to move in the z direc-
tion. From this region, the air stream turns and flows,
with no azimuthal variation, radially outward through in-
let i of the parallel disk passage (at separation /) to the
outlet location o (radius r,). At o the flow emerges into the
atmosphere, at which location the pressure is the ambient
pressure p,. Under proper flow conditions, the free disk
of weight W assumes a stable equilibrium position 4, in
balance with the effects of the momentum repelling force
of the air stream and the restraining attraction force due
to the net effect of the pressure variation in the flow pas-
sage. Characteristically, as the supply flow rate Q is
changed, these forces individually assume different val-
ues the sum of which is equal to an exerted resultant fluid
force S. Thus, for the present case where the disk is al-
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lowed to move freely, the reaction to this force is a con-
stant equal to W in accordance with the equilibrium con-
dition. The values of the flow repelling and attraction
forces at a given Q are coupled to a particular disk dis-
placement /. Consequently, 4 varies with Q in a manner
that reflects the relative influence of these forces.

The present analysis is based on steady, laminar, in-
compressible flow conditions. The approximate radial
pressure distribution, as influenced by the action of both
inertial and viscous forces, is obtained by an ax-
isymmetric, one-dimensional treatment involving the gen-
eral energy equation in conjunction with a postulated fric-
tion factor variation in the flow passage. Using this pres-
sure distribution relationship and accounting for flow
energy losses in the inlet tube, an approximate overall so-
lution is obtained by application of the momentum bal-
ance condition. The solution describes, for arbitrary
model dimensions, the relationship among equilibrium
passage spacing, resultant reaction fluid force and free
disk weight, and a flow Reynolds number. The analytical
predictions are compared with results obtained from ex-
periments with the present model configuration.

The notation used in the following analysis is listed be-
low.

Notation

= radial, transverse coordinates.

= disk spacing.

hydraulic diameter of radial flow passage, 2A.
= length of axial flow passage.

= hydrodynamic entrance length of axial passage.
= length ratio, I/],

static pressure (absolute).

surrounding atmospheric pressure.

mass density.

kinematic viscosity.

= wall shear stress or skin friction.

= volumetric flow rate.

= velocity in the radial direction.

bulk average velocity, Q/2wrh.

= friction factor, 27, /pU”.

= local radial passage Reynolds number, Q/mrv.
= R(r/2h) = overall Reynolds number, Q/2whv.
dimensionless radius, 2r/h\/R—o.
dimensionless transverse coordinate, 2z/A.
dimensionless radial velocity, u«/U.

= constant in the friction factor, Eq. (7).

flow energy content at location r.

= energy correction factor in pressure distribution,
Eq. (3).

weight of free disk.
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Figure 1 Axi-radial flow model (a) and control volume for the
analysis (b).

S = resultant fluid force exerted on disk.
Subscripts: s = supply location.
i = radial passage inlet location.
o = radial passage outlet location.

P = dimensionless pressure, hX(p — pa)/4pV2R0.

F = dimensionless resultant fluid reaction force,
S/mpv’.

Analysis

Referring to the model in Fig. 1(a), the free disk of weight
W is at an equilibrium displacement / corresponding to a
given steady flow rate Q of constant density p, and sup-
plied at a reservoir pressure p,. The forces acting on the
disk and the conditions for equilibrium are obtained by
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h w / i’ velocity Q/2arr h
T L ,

application of the momentum principle in conjunction
with the control volume in Fig. 1(b). In accordance with
the one-dimensional assumptions, the steady flow at the
tube inlet (s) and exit (o) regions is taken to be of uniform
velocities Q/ﬂ'rzi and Q/2rr h, respectively. In addition,
the pressure p in the radial passage r, < r < r_is taken to
be uniform in the z direction and thus varies only with r.
Consequently, the pressure (p) and skin friction () vari-
ations with r are the same along both disk surfaces; there-
fore, it is assumed that a net force that would be exerted
on the free disk due to an actual difference in these varia-
tions is not existent here. This assumption is considered
to be plausible over much of the disk space since 7, is
generally much less than r,. In the radial inlet region
where the flow parameters vary in both r and z directions,
this assumption does not apply to any reasonable extent.
Here, the average pressure with respect to the z direction
decreases very rapidly to a low value as the flow turns to
the radial direction. However, since this decrease, as well
as the general two-dimensional flow variations, actually
occurs over a small region relative to that of the entire
disk space, the basic assumption that p varies only with r
for r, = r = r,, where r, << r, is considered to be a rea-
sonable approximation of the actual overall conditions.

The fluid repelling force for the disk region 0 < r < r; is
obtained by application of the momentum integral equa-
tion [9] with the above assumptions to the control volume
of Fig. 1(b). Taking the upward direction as positive, this
force is given by 2z [{' (p — p,)rdr which, in accordance
with the momentum balance condition in the z direction,
is equal to Q’p/nr} + (p, — p Y’ — 2arir,, where 7 is
the average skin friction in the inlet tube. The term
2nrlr,,, representing the average flow friction force, is
written equivalently as rrziAps, where Ap, denotes the
pressure loss in the tube. In addition to the momentum
force, a second force acts on the free disk due to the pres-
sure variation over the surface region r, < r < r_. This
force is given by 2n [ :’:(p — p,rdr. Thus, the resultant
fluid force S acting on the disk is equal to the sum of these
forces and is

2
S = nrp, ~ p,) + ir’: ~ mrAp,

i

To
+ ZWJ (p — prdr, (1)
Ty
where § may act in the positive or negative directions de-
pending on the relative magnitude of the constituent
forces. When the disk is in equilibrium, the weight W act-
ing in the negative downward direction is just equal to §;
therefore, the free disk equilibrium condition is given by
2

p
ﬂ-rzi(ps -p) Tt o’ - 1rrziAp8

i
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The pressure distribution relationship p = p(r) for the in-
tegration required above is obtained in approximate form
by the approach described below.

® Pressure distribution on free disk

In general, the pressure distribution in the overall flow
passage reflects the actions of both acceleration and vis-
cous forces even at very low local Reynolds numbers.
The acceleration forces are most pronounced in the inlet
region of the disk passage, where significant momentum
effects are coupled with the flow turning abruptly from
the axial to the radial direction. As the flow continues
radially outward, these forces gradually decrease as the
flow condition is approached where viscous forces are
dominant. Characteristically, the flow is of a two-dimen-
sional nature in the inlet region, where flow redirection
and separation effects occur, and gradually transforms to
a one-dimensional, purely radial character with increase
in distance r from the inlet. In the latter region, the trans-
verse velocity profile (&) of the flow approaches the char-
acteristic invariant parabolic form, and the pressure var-
ies logarithmically with radius r. In the inlet region, the
velocity profile is of a transversely asymmetric form that
varies with r, and the pressure changes in accordance
with dominant inertial effects. Between these two limits,
the velocity profile and pressure variations with radius re-
flect the influence of interacting viscous and inertial ef-
fects.

For the special case of purely radial flow between sta-
tionary disks [Fig. 2(a)], the velocity profile in the ideal-
ized situation is uniform at the entry location r = r, and,
as the flow develops with increasing boundary layer
growth, it approaches the invariant parabolic form as
r — o, Livesey [4], in treating the infinite disk condition
(i.e., approximated by the condition # << r ), assumed a
parabolic profile at all radii and using an integral method
obtained an approximate solution for the pressure distri-
bution in which both viscous and inertial forces are active.
Savage [5] and Jackson and Symmons [6] obtained similar
type solutions based on power series expansions of the
Navier-Stokes equations with a radially dependent veloc-
ity profile. In addition, Boyack and Rice [7] obtained an
approximate solution using a different form of radially de-
pendent velocity profile in conjunction with a momentum
integral analysis. The basic form of the established di-
mensionless pressure distribution relationship in the
radial passage is given by
P=31n’—_°—c(é—_l—2), 3)

r r r °

where the first and second terms on the right-hand side
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Figure 2 Illustration of purely radial flow characteristics (a)
and axi-radial flow characteristics (b).

represent the viscous and inertial pressure effects, re-
spectively. The coefficient C is an energy correction fac-
tor, the value of which depends on the shape of the veloc-
ity profile. For C = 0.5, the inertia term in Eq. (3) repre-
sents the Bernoulli equation. Livesey [4] obtained a value
of C = 0.6, which reflects the fact that, for the same aver-
age velocity (U), a parabolic velocity profile possesses 20
percent more momentum than a uniform profile. The so-
lutions of Savage [5], Jackson and Symmons [6], and
Boyack and Rice 7], all of which are based on a radially
varying velocity profile, show values of C = 0.771 (for
both [5] and [6]) and C = 0.72, respectively. For r — r,
(where 7, << F,), the exact pressure distribution solution
must approach the Bernoulli equation. Consequently, the
above approximations err at small 7 by at least 20, 54, and
44 percent, respectively.

As F — F,, the inertia term in Eq. (3) becomes much
smaller relative to the viscous term, and the dimension-
less velocity profile approaches a parabolic form, viz.,

i = %(1 -, @

The local friction factor f = 27,/pU®, where 7, =
pv(du/dz),_, ., is

-5 )
- U2 0z z=h|2 '
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thus as 7 — 7, the friction factor approaches the
value for fully developed flow, viz.,
24 67
> 5 T J—
R Vi R,
where R and R, are the local and overall Reynolds num-
bers, respectively. The Livesey solution [4], based on a
parabolic profile [Eq. (4)], requires that fR/24 = 1 at all
radii, which is physically incorrect since, as 7 — 7,, f must
increase due to the increasing influence of the accelera-
tion forces. The radially varying profiles in the other solu-
tion methods cited above [5-7] show such an increase in
f; however, the results are in considerable disagreement
with results from other more valid solutions focusing on
the entrance region alone (e.g., that obtained using the
internal boundary layer approximation technique de-
scribed in [10]). In essence, it is shown that the actual
friction factor variation in the flow-developing region is
such that as r — Fis
6K
for— )
V'R,
where K is a constant approximately equal to 0.36 for the
symmetric entrance configuration of Fig. 2(a). Thus, as
— F, (where 7, < K), Eqs. (6) and (7) show that the in-
creasing friction factor in the inlet region can ultimately
have a limiting value much greater than that for devel-
oped flow.

f , ©

It is noted that the dimensionless radius 7 formed from
the local radius r, disk spacing /4, and the root of the over-
all Reynolds number R, give the local scale of the impor-
tance of viscous effects relative to inertial effects, Also,
R is not a function of r and, since 7 is scaled by the VR,
small values of 7 do not necessarily imply small values of
physical radii r. Thus, the above limiting friction factor
cases, as well as the limiting pressure distribution case
[i.e., from Eq. (3)], can be associated with domains not
necessarily close to r; or r,. Finally, the local Reynolds
number R, which provides the criterion for the existence
of laminar or turbulent flow, is associated with R, by the
relationship R = (2h/r)R,. In the present flow case, A is
always much less than local values of r; hence laminar
flow values of R correspond to much larger values of R,

In an investigation of radial flow in which viscous and
inertial effects interact in a general way, Murphy, Coxon,
and McEligot [11] proposed an approximate relationship
for the variation of the friction factor in the radial space,
as based on a numerical solution of the boundary layer
approximations of the Navier-Stokes equations for inter-
nal flows. Applying their general results to the configura-
tion of Fig. 2(a), the friction factor variation in the region
F, <7 =<F, is given by
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fR K\?

=1+ (7) : ®)
where K =~ 0.36. Thus, for 7—7, or 7—¥,, Eq. (8) shows
that f approaches the limiting cases of Eq. (6) or Eq. (7),
respectively. In the intermediate radial region, the f varia-
tion is at a maximum deviation of approximately 8 per-
cent from the numerical solution results [11]. In the axi-
radial configuration of Fig. 2(b), the asymmetric flow in
the inlet region is coupled with the existence of separation
effects. Hagerup [8], in an investigation of this situation in
connection with the inherent restrictor effect in gas bear-
ings, used an integral method to obtain a first approxima-
tion to the inlet region energy losses generated by the
flow separation behavior. In essence, an examination of
these results shows that the limiting inlet region friction
factor is actually of the form given by Eq. (7), where K,
reflecting the additional influence of the asymmetric con-
dition, now has an apparent average value of approxi-
mately 0.4. In a general sense, the flow characteristics of
the configurations of Figs. 2(a) and 2(b) are qualitatively
similar in that for both cases acceleration effects are
dominant in the inlet regions followed by radial transition
to developed flow conditions. Consequently, it is as-
sumed that the friction factor variation given by Eq. (8)
for the region 7, = ¥ =< 7, and with K = 0.4, also repre-
sents a good approximation for the axi-radial configura-
tion of Fig. 2(b). Accordingly, this friction factor relation-
ship is used in obtaining the approximate pressure distri-
bution acting on the free disk.

As discussed above, in the region r, < r < r , an aver-
age uniform pressure with respect to the z direction is as-
sumed at any radial location in the disk space. The dif-
ferential energy loss in the radial flow, viz., dE =
(2fU*/d )dr, becomes upon substitution for d,, U, and Q
= 2rhvR,: dE = (fv’R:/r*h)dr. Substitution for f from
Eq. (8) [with R = (2h/r)R, and 7 = 2r/h\/R ], integrating
between radial locations r, and r for fixed values of R and
h, and substitution of the results in the general energy
equation for steady flow gives the following equation for
the pressure distribution:

~

.. [12]1
p—pa=pvR0;;; r+

Kh\?
7 )R

=

~———

R,
2

J o

——
‘~| —
e‘w' —_

(r +
0
+ In

(r+
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or in dimensionless form,

1 1
=3—_Vr+K2——_—\/F§+K2
r ra

2

+ 1n (10)

(F, + VF, + K°) } ‘(i_i)
(r+\/r§+K2)

TR
By way of comparison, it is seen that, for K = 0, Eq. (10)
reduces to Eq. (3) in which C = 0.5. The pressure distri-
bution for the integration required in Eq. (1) or Eq. (2) is
thus given by Eq. (9).

[/

o Free disk equilibrium relationship

For Ap_ in Eq. (1) or Eq. (2), we take into account the
additional pressure loss associated with the developing
flow condition in the entrance region of the inlet tube [10].
The overall pressure loss that occurs for the tube of
length [ is written here in the form Ap, = pU® [8I/r,R, +
1.14], where R, is the local Reynolds number Q/mrp. In
terms of this expression, the tube length required for the
fully developed fiow condition is given by I/r, = I,/r, =
0.232 R,. Defining I/1, = k, this condition is written as I/r,
= k(0.232 R)), and thus the flow is developed for k = 1.
Substituting for //r,, U, and R, in terms of R in the above
equation for Ap, gives the following expression for the
inlet tube pressure loss:

an? pvR

Ap = 2 (1.86k + 1.14) . (11

Substitution into Eq. (1) of Egs. (9) and (11), and for p, —
p, obtained by combination of Eq. (9) (with » = r) and
Eq. (11) with the general energy equation, results in the
following equation for the resultant fluid force S:

4h® 1(2
vazR[ [ (186k+214)+—(r +1)—lni}
rz ro ri

2
12 | r, Kh\?
3 [— o+ (—) R,

(12)

Substituting 7 = 2r/hV/R_ and F = S/mpv®, the dimen-
sionless form of Eq. (12) becomes

342 L —
R, D+ RSV ALK
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Figure 3 Radial pressure distribution P with dimensionless
outer disk radius 7, as parameter [by Eq. (10)].

1 (7
P+ K +—(%+1)
2\7,

1 7

+ 3?0(— - =
2

2

" K (r +\/i‘ +K 'OJ
+3(A+ —|n —In-2|=F
P2 (F, + \/iz + K% 7y (13)

The free disk equilibrium relationship, Eq. (2), is thus
given by Eq. (12) for § = W and in dimensionless form by
Eq. (13), where F = W/7rpv2.

The total pressure drop in the model configuration, viz.,
P, — D, 1s given by

. 1 4
ps— a:pyRo R0—2_;+r_4(1.86k+ 1.14)

ro i

L S (KR, -t e (K
e ", r;+ 2 R, ., r, 3 o

. KhQ
(r0+ ro + (7) Ro)
+in ]} (14)
,  [Kn\’
(2T
2

The dimensionless form of Eq. (14) is

1 16
P=—5+

=2 -4
*2F PR

(1.86k + 114)

o

1
+3[_—\/‘2+K2 ——\/'2+K

7
+In {7, +\/ri+K!
VTRl

where P, = h*(p, — p,)/4pv'R,.

(15)
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Figure 4 Resultant fluid force F vs 7, for 7, = 0.5 and overall
Reynolds number R, as parameter [by Eq. (13)].

Characteristics of the axi-radial flow model

Referring to Eq. (10), the characteristics of the dimen-
sionless pressure distribution P for the case K = 0.4 are
illustrated in Fig. 3 for several parametric values of the
dimensionless outlet radius 7. From Eq. (10) it is seen that
P has a maximum value at 7 = 0.707(—K* + VK® + 0.444)”
= 0.556. Thus, from the definition of 7 and R, it fol-
lows that the physical radius r for maximum P is equal
to 0.556(hQ/8wv)'”. As seen in Fig. 3, a maximum posi-
tive pressure is exhibited only for 7, values greater than
0.556. For 7, < 0.556, no maximum exists and the pres-
sures are negative throughout the radial passage. For a
value of 7, greater than 0.556, it is apparent that a coun-
teracting negative pressure region will occur only for di-
mensionless inlet radii 7 = 7, less than a particular maxi-
mum value. For example, for the cases F,=1land 7 =
0.7, the inlet radii 7, must be less than 0.3 and 0.4, respec-
tively, in order for an attraction force influence to occur.

The characteristics of the dimensionless resultant fluid
force F acting on the free disk, as described by Eq. (13)

J. A. PAIVANAS AND J. K. HASSAN
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4
Overall Reynolds number, R, X 10

Figure 5 Resultant fluid force F vs R, for 7 = 0.5 and 7, as
parameter [by Eq. (13)].

for values of kK = 1 and K = 0.4, are illustrated in Fig. 4 for
F, = 0.5. Here, F is plotted against 7, with the overall
Reynolds number as the parameter. As seen, for the
range 0.1351 = 7, < 0.5, a repelling resultant force exists,
while an attraction resultant force is exhibited for 7, val-
ues less than 0.1351. For a given constant value of R,
there exists a particular 7, value for which the attraction
force is a maximum; for smaller 7, values, the attraction
force decreases as shown. The characteristics of this case
are exhibited in a different form in Fig. 5, which shows F
plotted against R with 7, as the parameter. As seen, for
values of 7, < 0.1351, the attraction force increases with
R,. For the particular situation where 7, has a value in the
range of 0.1351 to the 7, value where the maximum attrac-
tion occurs (Fig. 4), the attraction force decreases contin-
uously over the entire given R range (e.g., as in the case
where 7, = 0.1053). For 7, values smaller than the low
value in this range, a repelling force occurs initially and
subsequently decreases with increases in R, e.g., as il-
lustrated by the cases 7, = 0.0184 and 7, = 0.0263.
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Figure 6 Total pressure drop P vs 7, for 7/, = 0.5 and overall
Reynolds number as parameter [by Eq. (15)].

The variation of the dimensionless total pressure drop
P_with 7, as described by Eq. (15) for k = 1, K = 0.4, and
F, = 0.5, is illustrated in Fig. 6 for different values of the
parameter R . For values of 7, > 0.1351, P, becomes in-
creasingly insensitive to the value of R, while for 7, <
0.1351 in the disk attraction force range, the sensitivity of
P_with R is considerable.

® Experimental verification

A schematic diagram of the basic experimental apparatus
that was constructed to study the flow characteristics is
shown in Fig. 7. In essence, it consists of a fixed disk and
a parallel free disk constrained to accurately controlled
motion in the vertical direction by means of a low-friction
guide shaft and ball bushing arrangement. The free disk
weight is adjusted by means of a lever-arm, sliding-weight
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N
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Variable tube length to plenum
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-—

Orifice flow meter Regulator

Thermocouple

Figure 7 Illustration of the experimental apparatus.

mechanism, which is connected to the guide shaft by a
low-friction roll pin arrangement. Thus, a range of free
disk weights is obtained by locating the sliding weights at
particular distances from the fulcrum. The top part of the
guide shaft is attached to a transducer arrangement for
measurements of disk displacement and resultant fluid
force. The fixed disk is provided with static pressure taps
located at different spacing along three radial lines spaced
120 degrees apart. The taps are connected to a manifold-
manometer bank arrangement for measurements of radial
pressure distribution. Because of the incorporated ax-
isymmetric flow conditions, the pressure is invariant in
the azimuthal direction; hence the static pressure distri-
bution in any given radial direction is provided by all the
taps. The fixed disk is connected to a plenum chamber by
means of different tube lengths for the purpose of investi-
gating developing inlet flow effects on the overall flow be-
havior. In operation, metered air is supplied to the disk
passage via the plenum at pressure p_ and flow rate Q. For
a given free disk weight adjustment W, measurements are
thus made of static pressures p and displacement 4. In
other experiments, the resultant fiuid force § and disk dis-
placement / are measured for various supply flow condi-
tions.

The above experimental technique was used to investi-
gate several combinations of fixed disk inlet and outlet
radii for various free disk weight and fiow rate conditions.
The experimental results reported here were obtained for
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Figure 8 Resultant disk fluid force S vs flow rate Q, with Qh as
parameter, for r, = 3.17 mm and r, = 50.81 mm; comparison of
experiments and calculation by Eq. (12).
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Figure 9 Disk fluid force S and total pressure drop p, — p, vs
displacement /, with Q as parameter, for r, = 3.17 mm and r, =
50.81 mm; comparison of experiments and calculations by Eqgs.
(12) and (14).

radii r, = 3.17 mm and r, = 50.81 mm, for supply air con-
ditions of p ~ 1.2 kg/m® and » = 1.5 X 10™° m¥s, and for k
= 1. The variation of S with Q for various values of the
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parameter Qh, as calculated by Eq. (12), is shown in Fig.
8. As seen, the experimental results also shown on this
plot are in very good agreement with the theoretical pre-
dictions. Figure 9 shows the corresponding variation of S
with A, as illustrated for constant flow rates of Q = 2.83 X
107 m%s and 3.11 x 10~ m%s. As seen, a maximum at-
traction force S of approximately —1.2 N occurs at & =~
0.45 mm and of —2.05 N at /= 0.41 mm for each of these
flow rates, respectively. As an illustration of this effect, if
the model of Fig. 1 is considered to be in an inverted posi-
tion, a disk of weight W = 1.2 N will be suspended at / =
0.45 mm for Q = 2.83 x 10~° m¥s, in accordance with the
equilibrium condition. From a more general viewpoint, if
Q is held constant and 4 is varied, Fig. 9 illustrates the
weight-lifting capability of the overall flow effect, in ac-
cordance with the equilibrium condition, S — W = 0. For
the model in the upright position shown in Fig. 1, the dis-
placement 4 and flow rate Q for a disk of a given weight W
in equilibrium (viz., § = constant = W) vary as shown in
Fig. 8. For example, for a given value of W, Fig. 8 shows
the variation of Q4 with Q, and thus Q vs & is obtained
for the particular disk weight.

For Q = 2.83 x 10~* m%s, the overall Reynolds number
R, is approximately 6.7 X 10%. The corresponding local
Reynolds numbers R at the inlet and outlet regions are
thus 18 900 and 1182, respectively. For @ = 3.11 X
107 m%s and R, ~ 8.1 x 10%, the local inlet and outlet
Reynolds numbers are approximately 20 800 and 1300, re-
spectively. In contrast to the case of flow in a pipe, where
R = 2100 for the transition from laminar to turbulent flow,
no such Reynolds number criterion is available for flows
of the present kind. Assuming for the moment that relami-
narization occurs for R =~ 2100, then turbulent flow condi-
tions are indicated from the disk space inlet to » = 29 mm
and r = 31 mm for the first and second flows, respec-
tively. However, in view of the complex situation associ-
ated with flow separation and the variable disk space flow
area, this assumption is not valid; hence, the actual extent
of turbulent flow conditions is not predictable. On the
other hand, the favorable agreement indicated between
experimental results and the present theoretical treatment
is evidently due to the friction factor variation used [i.e.,
Eq. (8) with K = 0.4] which approximates the overall ef-
fects of these changing flow conditions in the region r, =< r
= r,. The total pressure drop variation, p_ — p,, as calcu-
lated by Eq. (14) for each of the above fiow rate cases, is
also in good agreement with experimental measurements,
as shown in Fig. 9. In this particular set of experiments, S
was varied, and the flow rate Q was maintained at a con-
stant value by adjusting the pressure p, — p . As seen,
p, — p, initially decreases rapidly with increases in /4 and
eventually assumes an essentially constant value for each
of the flow rates.
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Figure 10 Pressure distribution in disk space p — p_, with Q as parameter, forr = 3.17 mm to r, = 23 mm (a) and for r, = 23 mm to
r = 50.81 mm (b); comparison of experiments and calculations by Eq. (9).

The static pressure distribution in the disk space, as
calculated by Eq. (9) for each of the above flow rates, is
compared with experimental measurements in Figs. 10(a)
and 10(b). The agreement is seen to be good for the radial
region beyond r =~ 7 mm. For the immediate inlet region,
viz.,between r, = 3.17 mm and r ~ 7 mm, the experimen-
tal results differ considerably from the analytical predic-
tions. This is evidently due to the complex flow character-
istics in this region, which cannot be accounted for by the
present one-dimensional analytical treatment. From an
overall viewpoint, however, the present approximate the-
oretical treatment apparently provides a very good de-
scription of the flow characteristics as verified by the fa-
vorable agreement with experimental results.

Discussion and conclusions

An approximate analytical description of the overall char-
acteristics of the ‘‘axi-radial’’ flow phenomenon has been
obtained on the basis of one-dimensional, steady, lami-
nar, incompressible flow assumptions for a representative
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model. The resultant solution, which for arbitrary model
dimensions describes the free disk force and dis-
placement relationship with the flow parameters, is keyed
to the analytical description of the radial pressure distri-
bution in the flow passage. This description is obtained
here by a proposed friction factor variation which reflects
the influence of inertial and viscous forces, as well as flow
separation effects in the radial inlet region. The occur-
rence of separation, even for very low Reynolds num-
bers, induces a highly destabilizing effect to the laminar
flow in this region. Thus, the pressure distribution rela-
tionship obtained reflects to an extent the effects of the
turbulent flow conditions in the upstream region of the
passage. The solution, as expressed by Eq. (12), provides
a means for determining device dimensions and flow con-
ditions for particular as well as optimal attraction force
characteristics. For example, in the particular case con-
sidered where 7, = 0.5, it was seen that 7, must be less
than 0.1351 in order for an attraction force to develop;
also, there exist particular values of 7, and R, for which
the attraction force is a maximum.
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The overall comparison of the present theoretical pre-
dictions with experiments is seen to be generally favor-
able. An exception to this, which apparently does not ap-
preciably influence the other calculated characteristics,
concerns the pressure distribution in the inlet region [Fig.
10(a)]. The rapid decrease in pressure from the free disk
stagnation value, which occurs as the flow enters the
radial region, cannot be described by the present analyti-
cal approach. The depressed pressure region described
by the analysis predicts lower pressures than those ob-
served experimentally. This disagreement, however, oc-
curs in the immediate vicinity of the inlet region so that its
effect on the overall calculated characteristics is appar-
ently small. In experiments with other device dimensions
and flow conditions, generally favorable agreemerit was
observed with the analytical predictions. One aspect that
was investigated in particular pertained to the developed
flow length of the inlet tube [Eq. (11)]. In essence, it was
observed that for k < 1 the attraction force diminished
and flow instabilities tended to occur. This behavior was
most pronounced for k values less than approximately
0.3. For k values greater than approximately 0.8, very
stable conditions were observed, which tended to become
rapidly insensitive to further increases in k. An analytical
description of the latter behavior is also not within the
capability of the present one-dimensional model.

The present treatment is based on a single air jet im-
pinging against the free disk. When multiple air jets im-
pinge against the surface, the attraction force is decreased
due to flow interaction effects. These effects, in turn, de-
pend on the number of jets as well as their arrangement
with respect to a given impingement area. The present
solution is not applicable to this case; consequently the
wafer air film system developments mentioned earlier
[1, 2] were carried out largely by experimental means
guided initially by the present analytical results.
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