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Statistics of Breakdown

A derivation is given for the statistics of breakdown, including the effect of defects. The particular case where break-
downs are random in time and defects are randomly distributed is considered in detail. Results are obtained that are
applicable to any kind of breakdown test. It is shown how relationships between the breakdown distributions for various
breakdown tests and for different conditions in a particular test are generated. These relations are given for life tests
(constant field) and for ramp tests (field proportional to time). It is found that an ordering of defect types according to
their susceptibility to breakdown is not unique, but generally depends on the test conditions. This implies that the fields

and temperatures used in screening procedures must be chosen with care.

Introduction

Dielectric breakdown is an important source of failure in
electronic systems. Although the phenomenon has been
studied extensively [1, 2], a systematic analysis of the sta-
tistics of breakdown has not been previously set forth.
However, a statistical model of dielectric breakdown is
required for precise reliability projections and assess-
ments of the dielectric quality from data obtained in
breakdown tests. Such a model is presented in this paper.

A statistical breakdown model restricted to defect-free
devices was derived by Solomon, Klein, and Albert [3].
They assumed breakdowns to be random, independent
events. With this assumption, and in the absence of de-
fects, the breakdown statistics are determined by the
breakdown probability, which in turn depends on the test
conditions and the time on test. We derived a model in-
corporating the effect of defects for the case of one defect
type [4]; i.e., for the case in which the probability of
breakdown is the same at each defect. In addition to spec-
ification of the probability of breakdown at the defect and
in defect-free regions, a knowledge of the defect distribu-
tion is required in the determination of the breakdown
statistics. In the present paper, we treat the more general
case of many defect types, the distinguishing character-
istic being the breakdown probability at the defect. For
each defect type, the probability of breakdown at that de-

fect is required. The breakdown statistics depend on
these probabilities and on the distribution of the defects.

Initially, the problem is formulated and the results are
obtained in terms of subsets of devices having equal prob-
abilities for breakdown. These subsets contain devices
having identical numbers of defects of each type. The sta-
tistical independence of breakdowns at defects and in de-
fect-free regions is then utilized, together with the as-
sumption of independent Poisson distributions, to obtain
results in terms of the defect types. Also, by assuming a
particular form for the probabilities of breakdown at de-
fects and in defect-free regions as functions of time and
field, explicit results are obtained for the mean number of
devices broken down and the standard deviation of this
number. This is done for the commonly used ramp and
life breakdown tests. Relations among various tests fol-
low directly from these results. Rather than using a single
transformation equation to relate the breakdown distribu-
tion of different tests, the different defect types are trans-
formed separately.

Statistical model

In a breakdown experiment, or in actual use, an electric
field (which may be variable) is applied and the time to
breakdown is the quantity of interest. This time generally
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depends on the field and the temperature, but may fluc-
tuate even at constant field and temperature. In addition,
the time to breakdown depends on the structure of the
device. Breakdowns may occur with higher probabilities
at defects—regions in which deviations of any kind exist
that may affect breakdown. For instance, these devia-
tions may be regions of thinner dielectric, impurities, or
interface barrier modulations. Given a set of N devices,
subsets can be formed where the a priori breakdown
probability for each device of a subset is the same; i.e.,
they have identical defects. Let N be the number of
devices in the ath subset and p_(t) be the probability that
a device in this subset will break down within time ¢, and
let there be « subsets. The probability that n devices will
break down within ¢, for the given N, is

P = 3TN aen - st
(En,=n} o=1

Here, the notation N is used to indicate the dependence

of p,onthe N (a = 1, - - -, k) and the sum is over the

non-negative integer solutions of 2n_ = n.

If many sets of NV devices are extracted from the same
population, 2 Py (t, N) will vary if the N_ are not all identi-
cal. Let p(N) be the probability that N out of N devices
will be of the subset a for @ = 1, - - -, k. Then the proba-
bility that n devices will break down within ¢ is given by

pt,m = S p(Np,t, N). @)

(ENG=N}

The expectation value of n, (n), and the standard devia-
tion o are given by

(n) = > (NJp (D), ?3)

= Y AN P M[1 = p 1]

+ Z pozpB«NaNB) - <Na)<NB))’ (4)
o8
where
(N,) = SN _p(N), ©)
(NN, = SN N,o(N), ©)

and the sums in Eqgs. (5) and (6) are over the non-negative
integer solutions of ZN_ = N. These results are easily
interpreted. The results [Eq. (3)] for (n) and the first sum
on the right of Eq. (4) follow because for each «, n_is a
binomial distribution and (N,) is the expected number of
devices in the ath subset. The second sum on the right of
Eq. (4) is due to deviations in the N.

If the probabilities of choosing devices of different sub-
sets are independent,
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i N
pN) = oy PY e ENg= N ()
1 K*

where P _is the probability of choosing a device of the ath
subset. In this case, we have

(N = NP, ®
WA NN - )PP, a# B,
N = lNPu + NN - DP? a =g, ®

and therefore,

(ny = N X P,p D, (10)

=N [2 Papa(t)][l -3 Papa(t)] = (m)(1 = (n)/N).
o o (11)

Independent Poisson distributions of defects
The device subsets are characterized by the breakdown
probability and this implies that devices belonging to the
same subset have equal numbers of defects of the various
types. Let there be r different types of defects. Then, the
ath subset can be characterized by the r numbers, #, ,,
* +, n,,, which specify the number of defects of each
type for that subset. Now it is assumed that breakdowns
at the defect and in the defect-free region are independent
events. The probability p_(r) of a breakdown within time ¢
for devices in the subset o can be formulated as

Py =1— gt -+ g}, (12)

where g, is the probability that a breakdown does not oc-
cur at a defect of type i within ¢fori =1, - - -, rand q, is
the corresponding probability for the defect-free region.

If the defects of each type are distributed indepen-
dently with Poisson distributions,

Aexp (— }\)

=[] +—7FT—% (13

n

i=1 a.i'

where A, is the mean number of defects of type i per
sample. In this case, there are an infinite number of sub-
sets corresponding to different (n,,, * - -, n,,), where
each n,, ranges from zero to infinity. The expectation
value for the fraction of samples breaking down within ¢ is
obtained for this case by using Eqs. (12) and (13) in Eq.
(10). The result is

f@) =1~ gyexp [ -2\ - qi)} : (14)

The standard deviation is obtained directly from Eq.

(11):
(@/N)* = f(1 = f)/N.
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The interpretation of Eq. (14) is straightforward. In a
breakdown test, a defect is only counted if a breakdown
occurs at the defect. Therefore, the effective mean num-
ber of defects of type i is the product of the mean number
A, and (1 — g,), the probability that a breakdown occurs at
a defect of type i. The factor g, is the fraction of samples
not having any defects and not broken down at time ¢.
Thus, (1 — f}/q,is the usual expression for the fraction of
samples not having ‘‘defects’’; i.e., if defects are consid-
ered to be only those which would break down at time ¢
on the average, for which the effective mean numbers are

AL — q).

As a function of time, the shape of the fraction broken
down, f(z), is apparent from Eq. (14). The g,, being prob-
abilities that a breakdown did not occur up to time ¢, de-
crease monotonically from one to zero as ¢ increases from
zero to infinity. This will always be the case; the details of
this excursion will, however, depend on the relationship
between the g, and the time, field, and temperature. Sup-
pose that an interval exists such that, during this interval,
all g, with i < jand i # 0 can be considered to vanish, and
all g, with / > jand i = 0 are approximately unity. Also in
this time interval, g, goes from zero to one. Then f(¢) in-
creases from

oo (-Sa)) o [1-ew (-2

i.e., a step in f(¢) will occur of size

exp (—]_Zl M)][l = exp (—A)],

which is just the fraction of devices which do not have the
defects of types 1 to (j — 1) but do have the defect of type
J. This result is physically intuitive and could have been
anticipated without calculation. In general, breakdowns
at different defects will overlap in time and f(¢) will de-
viate from a stepped structure. Nevertheless, the physical
picture will still prevail; those samples having defects
more susceptible to breakdown will most likely break
down first and these are defects for which the excursion
of g, from 1 to 0 will occur at earlier times. A screening
procedure, the application of a field for some preset time,
is thus possible. This would eliminate devices containing
those defects for which g, — 0 in that time.

Breakdowns random in time

To proceed further, a form must be chosen for the break-
down probabilities in the various regions. Klein [5-7] has
advocated that intrinsic breakdown mechanisms (defect-
free) are inherently random, and experimental evidence
exists supporting this view [3, 6, 8]. Evidence also exists
for the random nature of breakdowns at defects [4]. As-
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suming that breakdowns are random events, the g, are
given by

q; = exp [—J (l/fri)dt] . (15)
[}

Solomon, Klein, and Albert [3] prescribe the field depen-
dence of 7, the mean time to breakdown for the defect-
free region, to be

Ty = Top €XD (—F/F ), (16)

where F is the electric field, indicating evidence for such
an exponential field dependence. Adopting the point of
view that the processes involved in breakdown at defects
are the same as for defect-free regions, with possibly al-
tered rates, the form for 7, is

T, = 7,0 €Xp (= F/F,) a7

for each of the defect types. In general, we would expect
the 7, and F,; to be functions of temperature. The temper-
ature dependence arises from that of the processes in-
volved in breakdown, which for electronic breakdown are
charge-carrier injection and motion, impact ionization,
and recombination.

The expectation value for the fraction of devices bro-
ken down within time ¢, f(z), is now specified by using
Egs. (15)-(17) in Eq. (14). It is convenient to recast Eq.
(14) as

O =1-qyy, "y,
y,=exp[-A(1 - g)]. (18)

There are (3r + 2) parameters which enter f(¢), three
for each of the defects, A, F,, and 7,, and two for the
defect-free region, F, and r,,. We discuss now the role of
these parameters for several breakdown tests. Indepen-
dent of the nature of the test, f(r) is given by Eq. (18) and
if the parameters are known, the breakdown distribution

can be predicted.

Life test
In a life test, the field and temperature are constant, and
therefore

g, = exp (—t/r), 1, =7, €xp (=F /Fy),
qi = exp (‘t/'ri)a Ti = Ti() eXp (-FL/Fi())a

y,=exp{-\[l —exp(—t/z)}, i=12,---r, (19

where the life test field is designated as F,. Since the
range of times 7 covered in a life test is often many orders
of magnitude, it is more convenient to use s = In ¢ as the
variable. Another advantage is that in terms of s the anal-
ysis parallels that for the ramp test to be discussed next.
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Figure 1 (s} - In7) and [(F}/F,)) — In (Rr/F )] as functions
of ), [Egs. (22) and (31)]. Note the sensitivity to A, for A, — 1.
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A

Figure 2 As, and F,/F, [Eqs. (23) and (31)] as functions of A,,
indicating insensitivity to A, over the entire range as inferred
from the scale of the ordinate.

Consider the case of two life tests, one at a field F | and
one at F,. Equal values of y, are obtained in the two tests
at values of s, and s, such that the value of g, is the same
in the two tests. This occurs when

eXp s,  exps,

T Tig

) 20

where
Ty = Ty €Xp (—F,/F,)) and 7, = 7, exp (=F,/F,) .

Thus, equal values of y, are obtained at s, and s, for the
two tests if
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s, — s, = —(F, ~ F)/F, @1

2 1 0

and this holds for i = 0, 1, - - -, r. It is seen that as a
function of s, the shape of y, is invariant with respect to a
change in field. The entire curve y (s) is translated parallel
to the s axis by an amount given by Eq. (21) and the mag-
nitude of the translation depends on F,, thus being dif-
ferent for the different defect types. A pure translation of
the entire f(s) curve results only if all the F,  are the
same, i = 0, 1, - - -, r. This is only possible if all the 7,,
differ. In fact, since the defect types are distinguished by
the two parameters 7,, and F;,, at least one of these must
be different for any pair of defects and for 7., and F .

As a consequence of Eq. (21), defects cannot generally
be ordered according to their susceptibility to breakdown
in a life test, since the ordering depends on the field. This
stems from the dependence of the 7, 0n the field. Unless 1)
all the F, are the same, and thus the types are distin-
guished only by the 7, , or 2) all the 7., are the same, and
thus the F, are all different, an ordering of the 7, accord-
ing to magnitude will not be preserved as the field
changes.

To characterize y, further, it is desirable to specify its
location on the s = In ¢ scale and give a measure of its
width in s. Its location can be specified by 5%, the value of
s where y, = [1 + exp (=A)]/2. From Eqgs. (19), 5% is giv-
en by

sh=In7, +In [(—ln {()xi)_l In [(exp A, + ])/2]})]. 22)

The second term on the right of Eq. (22) is a slowly
varying function of A,, which is plotted in Fig. 1. Ex-
cept for large values of A (A > 1), the variation of s*
with A, can be neglected, and s* is thus mainly deter-
mined by 7. A measure of the width of y,, As,, can be
provided by the difference in the values of s for which
I -y, is 0.1[1 — exp (—x)] and 0.9[1 — exp (—A))), i.e.,
the values of s where y, has decreased by 0.1 and 0.9 of
the difference between its maximum and minimum values.
Thus,
As, =

i

{m [(A)""In (0.9 + 0.1 exp A)] 23)

In[(A)"In (0.1 + 0.9 exp A\)]]

This is a slowly varying function of A, and is plotted in
Fig. 2, for which A, < 1 is about 3.1. Similarly, we can
define s as the value of s for which g, = 0.5, and As, as
the difference in the values of s for which g, = 0.1 and 0.9.
The results are

s5=1In7 + In (In 2),

As, = 1o (P21 3084 2%
S = In = 3. .
¢ (In 0.9) @9
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Figure 3 Normalized fraction of breakdown for a single defect
type, (1 —y,)/[1 ~ exp (—A,)], as a function of (s — In 7)) for A, =
0.1, 1, and 10.

These equations are essentially the same as Egs. (22) and
(23) for small A,

The parameters entering y,, A, F, , and 7, can be deter-
mined in the following way: A, from lim y, = exp (=) as
s — », F, from the translation of y, given by Eq. (21) for
life tests at different fields, and 7,, from the measured s%
and the already determined values of A, and s, Thus, life
tests are required for at least two different fields. Ac-
tually, the degree of complexity in extracting the parame-
ters depends on the degree of overlap in s of the y,. Since
different y, shift by different amounts if the F,; are dif-
ferent, life tests at different fields can resolve the defect
types.

In Fig. 3, we plot (1 — y,)/{1 — exp (—A))], the normal-
ized fraction of breakdown for a single defect type, as a
function of (s — In7) for A, = 0.1, 1, and 10. The in-
sensitivity to A, for A, =< 1 is apparent, indicating that A,
essentially only affects the normalization. The shape of y,
is also not a function of 7, since y; can be written as

Y, = exp ("}‘1{1 —exp[—exp (s —In T,)]}) . 25)

For any life test, breakdowns due to a single defect
type or in the defect-free region will occur over an essen-
tially constant interval in s = In ¢. Using our measure of
width to specify this interval, i.e., As, of Eq. (23) and As,
of Eq. (24), the result is that this interval is about 3.1. This
means that a single defect type will cause breakdowns for
about a factor of ten in time. The same is true for defect-
free breakdowns. However, breakdowns are often ob-
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Figure 4 The rate of breakdown (in s = In ¢) for a single defect
type, —(dy/ds)/[1 ~ exp (—A;)]as a function of (s — In ) for A,
= 0.1, 1, and 10 (curves are as in Fig. 3).

~0.8

Inz

—24] | 1 1 1
0.04 0.1 1 10

Figure 5 In z as a function of \; z is defined by Eq. (26).

served to cover many factors of ten in time. This can be
considered as evidence for the existence of multiple de-
fect types.

The y, are the expectation values for the fraction of de-
vices not broken down at time ¢ if breakdowns have only
occurred at the ith defect type. The rate of device break-
downs due to defects of type i is given by the negative of
the time derivative of y,. In Fig. 4, we plot

& let)
ds [1—exp (—\)

m
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as a function of (s — In 7) for A\, = 0.1, 1, and 10. A skew-
ness is evident in the rate of device breakdown, and the
relative insensitivity to A, is apparent. The peak occurs at
a value of (s — In 7)) = In z, where z is the solution of

A= (1 —2)/zexp (—2). (26)

Figure 5 is a plot of z vs. A, It is interesting to compare
In z, the value of (s — In 7,) at the peak rate, with (s*i —
In 7)) as given by Eq. (24), which is the value of (s — In 7))
when half the devices have broken down, if breakdowns
have only occurred at defects of type i. We find that for A,
=< 1, the difference [In z — (s*, — In 7))] is about equal to
0.35 or approximately equal to —In (In 2).

Similarly, we can consider the rate of device break-
downs if breakdowns have occurred only in the defect-
free regions:

d
- (1 —q,) =[exp (s — In7)] exp {exp [—(s — In 7)]}.
(27)

In this case the peak rate occurs at s = In 7,, whereas
(1 — g, = 0.5 occurs atsf)< = In 7, + In (In 2). The differ-
ence between peak rate and s’g is exactly ~In (In 2) for
defect-free breakdowns.

Ramp test

In a ramp test, the field F varies linearly in time so that F
= Rt, where R is the ramp rate. The g,, as given by Eq.
(15), are for this case

q, = exp {(—F,,/Rr)lexp (F/F,)) — 1]},
i=0,1,---,r (28)

These g, are to be substituted into Eq. (18) to obtain y, and
S (), the expectation value for the fraction broken down
up to time ¢.

The parameter defining a ramp is the ramp rate R, and
we consider the effect of changing R from R, to R,. The
contribution to breakdown from the defect type will be
the same at the two ramp rates for fields F, and F,, such
that y, are the same. Since the g, will be equal for equal
values of [exp (F/F,) — 1]/R, the relation between F,
and F, is

[exp (F,/F,) — 11/R, = [exp (F,/F,) — 1]/R,, (29

or, since usually exp (F/F,) >> 1,

F,— F, = F,In (R,/R). 30)
Therefore, as was the case for life tests at different

fields, y, in ramp tests at different ramp rates is translated

parallel to the field axis with no alteration of its shape.
This translation differs for defect types with different F,,
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so that an ordering of defect types according to their sus-
ceptibility is also not generally possible in ramp tests.
This ordering will depend on the ramp rate.

Since, as a function of field, the shape of y, is invariant
with ramp rate, we can characterize its location by F*,
the value of the field where (1 — y)/[1 — exp (-=A)] = 0.5,
as for a life test, and its width AF, by the difference in the
fields where (1 — y)/[1 — exp (—A,)] = 0.9 and 0.1. These
are then given by

Fj = Fylln (Rr,,/F,)]
+ F,ln (—ln {27 In[(exp A, + 1)/2]}) ,

3D

In[A7'In (0.9 + 0.1 Y
AF1.=len[n[ ; In ( exp 1)]]’

In[A7' In (0.1 + 0.9 exp A)]

where we approximated [exp (F/F,) — 1] = exp (F/F,).
The logarithmic functions of A, occurring here and plotted
in Figs. 1 and 2 are the same as those in Egs. (22) and (23)
for the life test. In fact, [(F}/F,) — In (Rr,/F,)] is the
same function of A, as (s} — In 7)) and AF/F, is the same
function of A, as As,. This is to be expected since with the
above approximation, in which F/F, is replaced with s
and Rr,/F, with 7(F)), the g, for a ramp test [Eq. (28)]
become the g, for a life test [Eq. (19)]. Thus, there is no
fundamental difference between these two types of tests.

In fact, any test gives essentially the same information
since it is described by Eq. (17). The only difference be-
tween tests is the particular forms of the g, which are
given by Eq. (15). Between these tests there exist trans-
formations which relate the test variables. The require-
ment that y, in one test be equal to that in the other is the
condition which gives rise to these relations. This condi-
tion was used to obtain Egs. (21) and (22), which related
the times for equal y, in life tests at different ficlds and
fields for equal y, in ramp tests at different ramp rates.
The conditions are, more explicitly, that for the two tests
the integrals in the exponent of Eq. (15) be equal. As an-
other application of this transformation we derive the
time ¢ in a life test at F, and field F in a ramp test at ramp
rate R such that y, in the two tests are equal. The require-
ment of equal values for the integral in Eq. (15) for the
two tests is that

(t/7,) €xp (F,/F) = (F, /Rr, )exp (F/F,) = 1]
= (F,o/Rr ) exp (F/F,)
so that the relation is [9]

Int=In (Fm/R) + (F — FL)/F“, i=0,1,---,r

.(32)

This relation will be different for those defect types hav-
ing different F,.
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Figure 6 Experimental results and calculation of cumulative fraction of breakdown vs. the electric field for Al-SiO,-Si MOS capacitors

at two different ramp rates.

A distinction between ramp test and life test is that
while for life tests the width As, is only a weak function of
A, [Eq. (23)], in a ramp test the width AF, is proportional
to F, [Eq. 31)]. Thus, whereas in a life test device break-
downs caused by any of the defect types occur in about a
factor of ten in time, in a ramp test the range of fields for
which a defect type will contribute breakdowns will vary
with F .

Also, as for life tests, the determination of parameters
requires at least two tests at different ramp rates. Thus

IBM J. RES. DEVELOP. ¢ VOL. 25 @ NO. 3 e MAY 198!

the F, can be determined, using Eq. (30), from the trans-
lations of the f(F) curve caused by the different defect
types. The f(F) curve will not generally translate as a
whole, since the translations, depending on F,, will be
different for different types. The same is true for f(s) in
life tests at different fields. Again, A\, mainly affects the
total excursion of y,, which is 1 — exp (— A)), and 7, can
be found from the field F% [see Eq. 31)].

The form of y,, (1 — y)/[1 — exp (—A))], as a function of
[F/F,, + In (F,/Rr)] is the same as for a life test as a
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Table 1 Parameters required to fit data of Fig. 6 according to Eq. (17) for f; the g, are given by Eq. (29).

Defect types

1 2 3 4

5 6 7 8

0.0253
1.75 x 107
0.271

0.0725 0.1068
3.32x 10 6.328 x 10°
0.244 0.37

0.1278
1.92 x 10"
0.2714

0.4316
3.037 x 10"
0.219

0.1143
1.16 x 10"
0.3693

0.4902
1.807 x 10*
0.242

0.2333
5.235 x 10"
0.338

function of s — In 7,, which is depicted in Fig. 3. Similar-
ly, if the abscissa of Fig. 4 is interpreted as F/F, +
In (F/Rr ), Fig. 5 gives (d/ds}{(1 X y)/[1 — exp (—A )1}
for the ramp test as a function of this variable.

As an example, we present in Fig. 6 experimental data
obtained using MOS capacitors (Al-SiO,-Si, p-type) at
two ramp rates, R = 0.2 MV/cm-s (O) and 0.002 MV/cm-s
(O). This field was such that the silicon at the interface
was inverted and a strong light source was used to ensure
this condition. However, at fields ahove = 8.5 MV/cm
and at the faster rate, a significant voltage drop was pres-
ent in the Si and not all the capacitors were broken down.
The shift of f with ramp rate is clearly evident in this fig-
ure. Also, the shift is not constant over the entire distribu-
tion. Parameters required to fit the data according to Eq.
(17) for f, with the g, given by Eq. (28), are listed in Table

1. Eight defect types were required to achieve the fit; g, =
1 for the range of fields covered.

Effect of temperature

As we stated earlier, dependence of f on temperature en-
ters via the temperature dependence of the processes in-
volved in breakdown. For electronic breakdowns, these
processes are charge injection and motion, impact ioniza-
tion, and recombination [1, 7]. The field and temperature
dependences of these processes are, in general, separable
so that the 7,  and F,; are expected to depend on the tem-
perature. For different defect types the 7, and F, are
functions of temperature such that for a given test condi-
tion (say, F in a life test or R in a ramp test), the ordering
of the 7, could be altered with temperature. Thus, a
change in temperature can change the order in time (field)
in which the different defects contribute to breakdown in
a life (ramp) test.

Screening

A screening procedure is sometimes used which elimi-
nates devices that would otherwise fail at early times
when used in an electronic system; for dielectric devices,
this is a breakdown test. Let g, be the probability that a
breakdown occurs at a defect of the ith type during the
screen, and g, be the same quantity under conditions of
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actual use. The expectation value for the fraction failed
during use f, (), not counting devices broken down during
the screen, is then

f‘;(t) =1 ~Gos9oa CXP [_2A1q5(1 - qw)]a (33)

where ¢ is the time under use.

For the screen to be effective, g, should be small for
defect types for which g, is small at use times less than
the desired lifetime of the system. The order in time at
which defects cause breakdowns depends on the test con-
ditions, i.e., the field in a life test, ramp rate for a ramp
test, and in both tests the temperature. Thus, the condi-
tions must be chosen to break down the right defects.

Discussion

A statistical model of breakdown has been presented re-
lating the breakdown distribution to distributions of de-
fects and probabilities of breakdown of defects and de-
fect-free regions. A specific form was chosen for these
probabilities [Egs. (15), (16), and (17)] which assumed
that the mean times to breakdown are exponential func-
tions of the field. This form was chosen, basically, be-
cause it is a reasonable fit to experimental evidence [3]
and lends itself to simplified mathematical manipulations.

Processes involved in electronic breakdown have pre-
viously been considered in detail [1, 10-12]. The essential
point is that breakdown results from a positive feedback
mechanism which consists of the following processes:

1. Charge injection (assumed to be electrons) from the
cathode into the insulator.

2. The dynamics of the motion of the injected electrons,
which determines their energy distribution and the
rate of impact ionization.

3. A resulting positive charge distribution, which can be
diminished by recombination with electrons, moving
towards the cathode and enhancing the field between
the positive charge and the cathode.

4. This field enhancement increases the rate of electron |
injection and impact ionization—giving rise to further
field enhancement, etc.
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Computations based on the average rates of these pro-
cesses indicate that a limited current is possible only be-
low a certain field, which depends on the temperature and
properties of the insulator and its interface affecting the
enumerated processes. Thus, based on the average rates,
breakdown occurs only when this field is exceeded. How-
ever, allowing for fluctuations in these processes, break-
downs can occur below this deterministic field. There-
fore, in order to derive a form for the mean time to break-
down, a solution which includes the effects of fluctuations
is required. Such a solution is as yet, to the best of our
knowledge, unavailable. Although an exponential depen-
dence of the mean time to breakdown on the field is un-
likely to be an exact solution, it should nevertheless pro-
vide a reasonable approximation, since most of the enu-
merated processes are very strong functions of the field.
Furthermore, as already stated, an exponential form is
supported experimentally.
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