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Statistics of Breakdown 

A derivation is  given  for  the  statistics of breakdown, including the  eflect of defects.  The  particular  case where  break- 
downs are random  in  time  and  defects  are  randomly  distributed is considered in detail.  Results are obtained  that  are 
applicable to any kind of breakdown  test.  It  is  shown  how  relationships  between  the  breakdown  distributions  for various 
breakdown  tests  and for  diflerent  conditions  in  a  particular  test  are  generated.  These relations are  given for  life  tests 
(constant  field)  and  for  ramp  tests lfield proportional  to  time).  It  is  found  that  an ordering of defect  types according to  
their susceptibility to  breakdown is not  unique,  but generally depends on the  test  conditions.  This  implies  that  the  fields 
and  temperatures  used  in  screening  procedures  must  be  chosen with care. 

Introduction 
Dielectric breakdown is an  important  source of failure in 
electronic systems. Although the phenomenon has been 
studied extensively [ 1, 21, a systematic  analysis of the  sta- 
tistics of breakdown  has not  been  previously set  forth. 
However, a statistical model of dielectric  breakdown is 
required for  precise reliability projections  and assess- 
ments of the  dielectric quality  from data obtained in 
breakdown tests.  Such a model is presented in this paper. 

A  statistical breakdown model restricted to defect-free 
devices was derived by Solomon, Klein, and Albert [3]. 
They assumed  breakdowns to be random, independent 
events. With this assumption, and in the  absence of de- 
fects,  the  breakdown statistics are  determined by the 
breakdown  probability, which in turn  depends on the  test 
conditions and  the time on  test. We derived a model in- 
corporating the effect of defects  for  the  case of one defect. 
type [4]; i.e., for  the  case in which the probability of 
breakdown is the  same  at  each  defect.  In addition to spec- 
ification of the probability of breakdown at the defect  and 
in defect-free regions, a knowledge of the defect  distribu- 
tion is required in the determination of the breakdown 
statistics. In the  present  paper, we treat  the more  general 
case of many defect  types,  the distinguishing character- 
istic being the  breakdown probability at  the defect. For 
each defect  type,  the probability of breakdown  at  that de- 

fect is required. The breakdown statistics  depend on 
these  probabilities and  on  the distribution of the defects. 

Initially, the  problem is formulated and  the results are 
obtained in terms of subsets of devices having equal prob- 
abilities for  breakdown.  These  subsets contain  devices 
having identical numbers of defects of each  type.  The sta- 
tistical independence of breakdowns  at  defects and in de- 
fect-free  regions is  then utilized, together with the  as- 
sumption of independent Poisson  distributions, to  obtain 
results in terms of the defect types. Also, by assuming  a 
particular  form for  the probabilities of breakdown  at de- 
fects and in defect-free regions as  functions of time and 
field, explicit results  are obtained for  the mean number of 
devices  broken down and the  standard deviation of this 
number. This is done  for  the commonly  used ramp and 
life breakdown tests. Relations among various  tests fol- 
low directly  from these results. Rather  than using a single 
transformation equation  to  relate  the  breakdown distribu- 
tion of different tests,  the different defect  types  are  trans- 
formed separately. 

Statistical model 
In a breakdown experiment, or in actual  use,  an  electric 
field (which may be variable) is applied and the  time to 
breakdown is the  quantity of interest. This  time generally 
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depends  on  the field and  the  temperature,  but may fluc- 
tuate  even  at  constant field and  temperature.  In addition, 
the time to  breakdown  depends  on  the  structure of the 
device. Breakdowns may occur with higher  probabilities 
at defects-regions  in which deviations of any kind exist 
that may affect breakdown.  For  instance,  these devia- 
tions  may  be  regions of thinner  dielectric, impurities, or 
interface barrier modulations.  Given  a set of N devices, 
subsets  can be  formed where  the a priori breakdown 
probability for  each device of a subset is the  same; i.e., 
they have identical defects.  Let N, be  the  number of 
devices in the a th  subset  and p,( t )  be  the probability that 
a device  in  this subset will break  down within  time t ,  and 
let there be K subsets.  The probability that n devices will 
break down within t ,  for  the given N,, is 

Here,  the notation N is used to indicate the  dependence 
of p, on  the N ,  (a = 1, . . ., K )  and  the  sum is over  the 
non-negative integer  solutions of Zn, = n. 

-+ 

If many sets of$ devices  are  extracted  from  the  same 
population,y,(t, N) will vary if the N ,  are not all identi- 
cal. Let p(N) be the probability that N u  out of N devices 
will be of the  subset a for a = 1 ,  . a ,  K .  Then  the proba- 
bility that n devices will break down within t is given by 

The  expectation  value of n, (n), and  the  standard devia- 
tion u are given  by 

(n) = 1 ( N , ) P , ( ~ ) ,  (3) 

where 

(Nu)  = ZN,P($, ( 5 )  

= ZNaNBp($> (6) 

and the  sums in Eqs. (5) and (6)  are  over  the non-negative 
integer solutions of ZN,  = N .  These  results  are easily 
interpreted. The  results [Eq. (3)] for (n) and  the first sum 
on  the right of Eq. (4) follow because  for each a ,  n, is a 
binomial distribution and (N, )  is the  expected number of 
devices  in the crth subset.  The  second  sum  on  the right of 
Eq. (4) is  due to deviations in the N,. 

If the probabilities of choosing devices of different sub- 
168 sets  are  independent, 
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where P ,  is the probability of choosing a device of the a t h  
subset.  In this case,  we  have 

(N,)  = NP,, (8) 

and  therefore, 

(11) 

Independent  Poisson  distributions  of  defects 
The device subsets  are  characterized by the breakdown 
probability and  this implies that devices belonging to  the 
same  subset  have  equal  numbers of defects of the  various 
types.  Let  there be r different types of defects.  Then,  the 
a th  subset  can  be  characterized by the r numbers, n,,,, 

, n,,,, which  specify the  number of defects of each 
type  for  that  subset.  Now it is assumed that  breakdowns 
at  the  defect  and in the defect-free region are independent 
events.  The probability p,(t)  of a breakdown within time t 
for devices in the  subset a can be  formulated as 

. . .  

p,(t) = 1 - qoqy . * * qy, ( 12) 

where qi is the probability that a breakdown  does not oc- 
cur  at a defect of type i within t for i = 1, . . e ,  r and qo is 
the corresponding  probability for  the defect-free region. 

If the defects of each  type  are  distributed indepen- 
dently with Poisson  distributions, 

(13) 

where hi is the  mean number of defects of type i per 
sample. In this case,  there  are  an infinite number of sub- 
sets corresponding to different * * . , n,,,), where 
each n,,, ranges from  zero to infinity. The  expectation 
value for  the  fraction of samples  breaking down within t is 
obtained for this case by using Eqs. (12) and (13) in Eq. 
(10). The result is 

The  standard deviation is obtained directly from Eq. 
(11): 



The  interpretation of Eq. (14) is straightforward. In a 
breakdown test, a defect is only counted if a breakdown 
occurs  at  the  defect.  Therefore,  the effective mean num- 
ber of defects of type i is  the  product of the mean number 
Ai and (1 - si), the probability  that  a breakdown  occurs  at 
a defect of type i. The  factor qo is the fraction of samples 
not having any  defects  and not broken down at time t .  
Thus, (1 - f ) / q o  is the usual  expression for  the fraction of 
samples not having “defects”; i . e . ,  if defects  are consid- 
ered to be only those which would break down at time t 
on the average,  for which the effective mean  numbers are 
A i U  - 41). 

As a function of time,  the shape of the fraction  broken 
down,f(t), is apparent from Eq. (14). The qi, being prob- 
abilities that a breakdown did not occur  up  to time t ,  de- 
crease monotonically from  one  to  zero  as t increases from 
zero  to infinity. This will always be the  case;  the details of 
this  excursion will, however, depend on  the relationship 
between  the qi and  the  time, field, and  temperature. Sup- 
pose that  an interval exists  such  that, during  this interval, 
all qi with i < j and i # 0 can be  considered to  vanish, and 
all qi with i > j and i = 0 are approximately  unity. Also in 
this time interval, qi goes from zero  to  one.  Thenf(t) in- 
creases from 

[ l - e x p ( - z A i ) ]  1-1 to [ l - e x p ( - i A i ) ] ;  1=1 

i .e . ,  a step  inf(t) will occur of size 

[exp (-2 A A ] [ l  - exp (-Aj)], 
L \ i=l / J  

which is just  the  fraction of devices which do not  have the 
defects of types 1 to (j - 1) but do  have  the defect of type 
j .  This  result is physically intuitive and could have been 
anticipated  without  calculation. In  general, breakdowns 
at different defects will overlap in time and f ( t )  will de- 
viate  from  a stepped  structure.  Nevertheless, the  physical 
picture will still prevail; those samples  having defects 
more  susceptible to breakdown will most likely break 
down first and these  are  defects  for which the excursion 
of qi from  1 to 0 will occur  at earlier times. A screening 
procedure,  the application of a field for  some  preset  time, 
is thus possible.  This would eliminate devices containing 
those defects for which qi -+ 0 in that  time. 

Breakdowns  random in time 
To proceed further, a form must  be chosen  for  the break- 
down  probabilities in the various  regions. Klein [5-71 has 
advocated  that intrinsic  breakdown mechanisms (defect- 
free)  are inherently random, and experimental evidence 
exists supporting  this view [3, 6, 81. Evidence  also exists 
for  the random nature of breakdowns at  defects [4]. As- 

suming  that breakdowns  are random events,  the 
given by 

1 

4i are 

(15) 

Solomon, Klein, and Albert [3] prescribe the field depen- 
dence of T ~ ,  the  mean time to breakdown for  the defect- 
free region, to  be 

T o  = Too exp ( -F/Foo)> (16) 

where F is the  electric field, indicating evidence  for such 
an exponential field dependence. Adopting the point of 
view that the processes involved in breakdown  at defects 
are the  same as  for defect-free  regions, with possibly al- 
tered rates,  the  form  for T~ is 

T~ = T~~ exp ( - F / F , )  (17) 

for  each of the defect  types. In general, we would expect 
the T~~ and Fio to be  functions of temperature.  The temper- 
ature dependence arises from that of the  processes in- 
volved in breakdown, which for electronic  breakdown are 
charge-carrier  injection  and  motion,  impact  ionization, 
and recombination. 

The expectation  value for the fraction of devices bro- 
ken down within time t ,  f ( t ) ,  is now specified by using 
Eqs. (15)-(17)  in Eq. (14). It is convenient to  recast  Eq. 
(14) as 

f ( t )  = 1 - q o Y I Y ,  . . ’ Y ,  3 

y i  = exp [-Xi( l  - qi)] . (18) 

There  are (3r  + 2 )  parameters which enterf(t), three 
for each of the defects, A t ,  F i ,  and T ~ ~ ,  and two  for the 
defect-free  region, Foo and T ~ ~ .  We discuss now the role of 
these  parameters  for  several breakdown tests. Indepen- 
dent of the nature of the  test,f(r) is given by Eq. (18) and 
if the  parameters  are  known, the breakdown distribution 
can  be predicted. 

Life  test 
In a life test,  the field and temperature  are  constant, and 
therefore 

qo = exp ( - t / ~ ~ ) .  T~ = T~~ exp (-FL/Fo0), 

qi = exp ( - t / ~ ~ ) ,  T~ = T~~ exp ( -FL/Fio ) ,  

y i  = exp { - h i [ l  - exp (-r/5-J]}, i = 1, 2, . *,  r ,  (19) 

where  the life test field is designated as FL. Since the 
range of times r covered in a life test is often many orders 
of magnitude, it  is more convenient to use s = In t as the 
variable. Another  advantage is that in terms of s the anal- 
ysis parallels that  for  the ramp test  to be discussed  next. 
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Figure 1 (s: - In 7, )  and [(FTIF,,) - In (Zhi0/FiO)] as  functions 
of X i  [Eqs. (22) and (31)]. Note  the  sensitivity to X, for A, + 1. 

G- a 3.0 I I I I I I 1 
0.03 0.1 1 10 100 

X i  

Figure 2 As, and FJF,, [Eqs. (23) and (31)] as functions  of X,, 
indicating  insensitivity  to hi over  the  entire  range as inferred 
from the scale of the ordinate. 

Consider the  case of two life tests,  one  at a field FL1 and 
one at FL2. Equal values of y ,  are  obtained in the two  tests 
at values of s1 and s2 such  that  the value of q, is the  same 
in the  two  tests.  This  occurs when 

7il = TfOexp ( -FLllF, , )  and T~~ = Ti0 exp (-FL,lFi0) . 
Thus,  equal values of y ,  are obtained at s1 and s2 for the 

170 two tests if 

and this  holds for i = 0,  1 ,  * . ., r .  It is seen  that  as a 
function of s, the  shape of y ,  is invariant  with  respect to a 
change in field. The  entire  curve y,(s)  is translated parallel 
to the s axis by an  amount given by Eq. (21) and  the mag- 
nitude of the  translation  depends  on Fio, thus being dif- 
ferent for  the different  defect types. A pure translation of 
the  entire f(s) curve results  only if all the F,, are  the 
same, i = 0 ,  1 ,  . . ., r .  This is only  possible if all the T i ,  

differ. In  fact,  since  the  defect  types  are distinguished by 
the two parameters Ti0 and Fio, at  least  one of these must 
be different for  any pair of defects and for T~~ and Foo. 

As a consequence of Eq. (21), defects  cannot generally 
be ordered  according  to  their susceptibility to breakdown 
in a life test,  since  the ordering depends  on  the field. This 
stems from  the  dependence of the T ,  on  the field. Unless 1) 
all the Fio are  the  same, and thus  the  types  are distin- 
guished only  by the T , ~ ,  or 2) all the T , ~  are  the  same,  and 
thus  the F,, are all different, an ordering of the T ,  accord- 
ing to magnitude will not be preserved  as  the field 
changes. 

To  characterize y ,  further, it is desirable to specify its 
location on  the s = In t scale and give a measure of its 
width in s. Its location can be specified by s y ,  the  value of 
s where yi = [l + exp (-Ai)]/2. From  Eqs. (19), s*, is giv- 
en by 

The  second term on  the right of Eq. (22) is a slowly 
varying  function of A i ,  which is plotted in Fig. 1. Ex- 
cept  for large values of A (A > l), the variation of S T  
with A i  can  be neglected, and s4 is thus mainly deter- 
mined by T ~ .  A measure of the width of yi ,  Asi, can  be 
provided by the difference in the values of s for which 
1 - yi  is 0.1[1 - exp ( - A i ) ]  and 0.9[1 - exp ( - A i ) ] ,  i . e . ,  
the values of s where y i  has  decreased by 0.1 and 0.9 of 
the difference between its maximum and minimum values. 
Thus, 

Asi = In 
In [(A,)" In (0.9 + 0.1 exp A,)] 

{In [(A,)" In (0.1 + 0.9 exp As} ' (23) 

This is a slowly varying  function of A, and is plotted in 
Fig. 2, for which A, < 1 is about 3.1.  Similarly, we can 
define s! as  the  value of s for which qo = 0.5, and As, as 
the difference in the values of s for which qo = 0.1 and 0.9. 
The results are 
s* - , - In T~ + In  (In 2), 

Aso = In (i: - = 3.084. 
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Figure 3 Normalized fraction of breakdown for  a single defect 
type, (1 - yi)/[l - exp (-Ai)], as a function of (s - In T i )  for A, = 
0.1, 1 ,  and 10. 

These equations  are essentially the  same  as  Eqs. (22) and 
(23) for small A,. 

The  parameters entering y,, A,, F,,, and Ti0 can be deter- 
mined in the following way: A, from lim y, = exp ( -Ai)  as 
s -+ m, F,, from  the translation of yi given  by Eq. (21) for 
life tests  at different fields, and T,, from the measured s*, 
and the already determined values of A, and s*,. Thus, life 
tests  are required for  at  least  two different fields. Ac- 
tually, the  degree of complexity in extracting the  parame- 
ters  depends  on  the degree of overlap in s of the y,. Since 
different y, shift by different amounts if the F,, are dif- 
ferent, life tests  at different fields can resolve the  defect 
types. 

In Fig. 3, we plot (1 - y,)/[l - exp ( - A i ) ] ,  the normal- 
ized fraction of breakdown  for a single defect  type,  as a 
function of (s - In 7 )  for A, = 0.1, 1, and 10. The in- 
sensitivity to A, for Ai 5 1 is apparent, indicating that A, 
essentially  only  affects the normalization. The  shape of y ,  
is also  not  a  function of T( since yi can  be written as 

y ,  = exp -Ad1 - exp [-exp (s - ln~,)]} . i 1 (25) 

For  any life test, breakdowns due  to a single defect 
type or in the defect-free region will occur  over  an  essen- 
tially constant interval in s = In t .  Using our measure of 
width to specify  this  interval, i.e., Asi of Eq. (23) and Aso 
of Eq. (24), the result is that this  interval is about 3.1. This 
means that a single defect  type will cause breakdowns for 
about a factor of ten in time. The  same is true  for defect- 
free breakdowns.  However,  breakdowns  are often ob- 

-8 - 4  0 

- InT, 

Figure 4 The rate of breakdown (in s = In t )  for  a single defect 
type,  -(dy/ds)/[l - exp ( -Ai)]  as  a function of (s - In T i )  for hi 
= 0.1, 1 ,  and 10 (curves  are  as in Fig. 3). 

.E - 2.4 I 1 I I I 
0.04 0.1 1 1 

hi 

Figure 5 In z as  a function of Ai;  z is  defined  by Eq. (26). 

served to  cover  many  factors of ten in time.  This can  be 
considered as  evidence for the  existence of multiple de- 
fect  types. 

The yi are  the  expectation  values  for  the fraction of de- 
vices not broken  down at time t if breakdowns  have only 
occurred at  the  ith  defect  type.  The  rate of device break- 
downs due  to  defects of type i is given  by the negative of 
the time  derivative of y, .  In Fig. 4, we plot 

" L  ds 1 - l - y i  exp (-A,) 1 171 
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as a  function of (s - In T ~ )  for A, = 0.1, 1 ,  and 10. A skew- 
ness is evident in the  rate of device breakdown,  and  the 
relative  insensitivity to A, is apparent.  The peak occurs  at 
a value of (s - In T ~ )  = In z, where z is the solution of 

A, = ( 1  - z)/z exp (-z). (26) 

Figure 5 is a  plot of z vs. hi. It is interesting to  compare 
In z, the value of (s - In T J  at the  peak  rate, with (s*, - 
In T> as given by Eq. (24), which is the value of (s - In 7,) 

when half the  devices have broken  down, if breakdowns 
have only occurred  at  defects of type i. We find that  for A, 
5 1 ,  the difference [In z - (s*, - In T,)] is  about equal to 
0.35 or  approximately  equal  to -In  (In 2). 

Similarly, we  can  consider  the  rate of device  break- 
downs if breakdowns have occurred  only in the defect- 
free regions: 

In this case  the peak rate  occurs  at s = In T ~ ,  whereas 
( 1  - q,,) = 0.5 occurs  at si = In T~ + In  (In 2). The differ- 
ence  between peak rate  and s*, is exactly -In  (In 2) for 
defect-free  breakdowns. 

Ramp test 
In a ramp  test,  the field F varies  linearly in time so that F 
= Rt ,  where R is the ramp rate.  The qi, as given by Eq. 
( 1 3 ,  are  for this case 

4, = exp {(-Fi,/R.rio)[exp (FIF,,) - 111, 

i = 0, 1 ,  . . ., r .  (28) 

These qi are  to be substituted  into  Eq. (18) to obtain y ,  and 
f ( t ) ,  the  expectation value for  the  fraction broken down 
up  to time t .  

The  parameter defining a ramp is the  ramp  rate R ,  and 
we consider the effect of changing R from R ,  to R,. The 
contribution to breakdown from the  defect  type will be 
the  same  at  the  two  ramp  rates  for fields F, and F,, such 
that yi are  the  same. Since the q, will be  equal  for equal 
values of [exp (FIF,,) - l]/R, the relation between F, 
and F, is 

[exP (Fl/Fio)  - lI/R1 = [ ~ X P  W2/Fi0) - 1 1 / 4  (29) 

or, since  usually exp (F/Fio) >> 1 ,  

F, - F, = F,,ln ( R 2 / R l ) .  (30) 

Therefore,  as  was  the  case  for life tests  at different 
fields, yi in ramp  tests  at different  ramp rates is translated 
parallel to  the field axis with no alteration of its shape. 

1 72 This  translation differs for  defect  types with different Fie, 
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so that  an ordering of defect  types according to  their  sus- 
ceptibility is  also not  generally possible in ramp tests. 
This  ordering will depend  on  the ramp rate. 

Since,  as a function of field, the shape of yi is invariant 
with ramp rate, we can characterize its  location by F * ,  
the value of the field where (1 - yJ/[ 1 - exp (-hi)] = 0.5, 
as  for a life test, and its width AFi by the difference in the 
fields where (1 - yi)/[l - exp (-Ai)] = 0.9 and 0.1. These 
are  then given by 

= Fi0[ln (RTio/Fi0)1 

AF, = Fio In 
In [A;' In (0.9 + 0.1 exp A,)] 
In [A;' In (0.1 + 0.9 exp A i ) ]  

where we approximated  [exp (F/Fi,,) - 11 -- exp (FIF,,,). 
The logarithmic  functions of Ai occurring  here  and  plotted 
in Figs. 1 and 2 are  the  same  as  those in Eqs. (22) and (23) 
for  the life test.  In  fact, [(c/Fio) - In (RTio/Fi,,)] is the 
same function of A, as (ST - In T J  and q / F i o  is the  same 
function of Ai as Asi. This is  to  be expected  since with the 
above  approximation, in which F/F,,  is replaced  with s 
and RT,,/F~, with 7$(FL), the qi for a ramp  test [Eq. (28)] 
become the qi for a life test  [Eq. (19)]. Thus,  there is no 
fundamental difference between  these  two  types of tests. 

In  fact, any test gives  essentially  the same information 
since it is described by Eq. (17). The only difference be- 
tween tests is the  particular  forms of the q,, which are 
given by Eq. (15). Between these  tests  there exist trans- 
formations which relate the  test variables. The require- 
ment that yi in one  test be equal  to that in the other is the 
condition which gives  rise to  these relations.  This  condi- 
tion was  used to obtain Eqs. (21) and (22), which related 
the times for equal  yi in life tests  at different fields and 
fields for  equal y ,  in ramp  tests  at different ramp  rates. 
The conditions are, more  explicitly,  that for  the  two  tests 
the integrals in the  exponent of Eq. (15) be  equal. As an- 
other application of this transformation we derive  the 
time t in a life test  at FL and field F in a ramp test  at ramp 
rate R such  that y, in the  two  tests  are equal. The require- 
ment of equal  values for  the integral in Eq. (15) for  the 
two tests  is  that 

( t /T iO)  exP (FL/Fi0) = (Fio/RTio)[exp (F/Fio) - 11 

(Fto/RTi0) exP (F/Fio) 

so that  the relation is [9] 

In t = In (Fio/R) + (F - FL)/Fio i = 0, 1, . a ,  r . 
(32) 

This relation will be different for those defect  types hav- 
ing different Fio. 
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Figure 6 Experimental results and calculation of cumulative fraction of breakdown v s .  the electric field for AI-SO,-Si MOS capacitors 
at two different ramp rates. 

A  distinction  between ramp  test and life test  is  that 
while for life tests the width Asi is only a weak function of 
Ai [Eq. (23)], in a ramp test the width AFi is proportional 
to Fio [Eq. (31)]. Thus,  whereas in a life test device break- 
downs  caused by any of the  defect  types  occur in about a 
factor of ten in time, in a ramp test  the  range of fields for 
which a defect type will contribute breakdowns will vary 
with Fio. 

the Fio can be determined, using Eq. (30), from the  trans- 
lations of thef(F)  curve  caused by the different defect 
types.  The f ( F )  curve will not generally translate  as a 
whole,  since the  translations, depending on Fio, will be 
different for different types.  The  same is true  forf(s) in 
life tests  at different fields. Again, hi mainly affects the 
total  excursion of yi, which is 1 - exp (- hi), and T~~ can 
be found from  the field [see Eq. (31)]. 

Also, as  for life tests, the  determination of parameters The  form of y i ,  (1 - y J / [  1 - exp ( -A i ) ] ,  as a function of 
requires  at  least two tests  at different ramp rates.  Thus [F/Fio + In (Fio/R~, , , ) ]  is the  same  as for a life test  as a 173 
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Table 1 Parameters  required to fit  data of Fig. 6 according to Eq. (17) forf; the ql are given by Eq. (29). 

Defect types 

1 2 3 4 5 6 7 8 

AI 0.0253 0.0725 0.1068 0.1278 0.1143 0.2333 0.4902 0.4316 

T , ~  1.75 X 10' 3.32 X 10'' 6.328 X 10' 1.92 X IO" 1.16 X 10" 5.235 X 10'' 1.807 X IOl5 3.037 X IO'' 

Fm 0.271 0.244 0.37 0.2714 0.3693 0.338 0.242 0.219 

function of s - In 7i, which is  depicted in Fig. 3. Similar- 
ly, if the abscissa of Fig. 4 is interpreted as F/Fio + 
In (F,,,/RT,J, Fig. 5 gives (d/ds){( 1 X y,)/[l - exp (-Ai)]} 
for  the  ramp  test as a function of this  variable. 

As an  example, we present in Fig. 6 experimental data 
obtained using MOS capacitors (Al-Si02-Si,  p-type) at 
two  ramp  rates, R = 0.2 MV/cm-s (0) and 0.002 MV/cm-s 
(0). This field was  such that  the silicon at  the interface 
was inverted  and a  strong light source was  used to  ensure 
this condition.  However,  at fields ahove = 8.5 MV/cm 
and at  the  faster  rate, a significant voltage drop was pres- 
ent in the Si and  not all the capacitors were  broken  down. 
The shift  off with ramp  rate is clearly  evident in this fig- 
ure. Also, the shift is not constant over the entire distribu- 
tion. Parameters required to fit the data according to  Eq. 
(17) forf, with the qi given by Eq. (28), are listed in Table 
1. Eight defect  types were required to achieve the fit; qo = 

1 for the range of fields covered. 

Effect of temperature 
As we stated earlier, dependence off on  temperature en- 
ters via the temperature dependence of the  processes in- 
volved in breakdown. For  electronic  breakdowns,  these 
processes  are charge  injection and motion,  impact  ioniza- 
tion,  and recombination [ 1, 71. The field and temperature 
dependences of these  processes  are, in general, separable 
so that  the T~~ and Fio are  expected  to depend on  the tem- 
perature.  For different defect  types  the T~~ and Fi, are 
functions of temperature  such  that  for a given test condi- 
tion (say, F in a life test  or R in a ramp  test),  the ordering 
of the T~ could  be altered with temperature.  Thus, a 
change  in temperature  can change  the order in time (field) 
in which the different defects  contribute  to breakdown in 
a life (ramp)  test. 

Screening 
A screening procedure is sometimes  used which elimi- 
nates  devices  that would otherwise fail at  early times 
when  used in an electronic system;  for dielectric devices, 
this is a breakdown test.  Let qi, be the probability that a 
breakdown  occurs  at a defect of the ith  type during the 

1 74 screen,  and qi, be the  same  quantity  under conditions of 
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actual  use.  The expectation  value for  the fraction failed 
during usef,(r), not  counting  devices  broken down during 
the  screen, is then 

fa (4  = 1 -qmq,exp [-C.Aiqis(l - q ~ ) ] ,  (33) 

where t is the time under  use. 

For  the  screen  to be  effective, qi, should be small for 
defect  types  for which qia is small at use times less than 
the  desired lifetime of the  system.  The  order in time at 
which defects  cause  breakdowns depends on  the  test con- 
ditions, i .e. ,  the field  in a life test, ramp rate  for a ramp 
test,  and in  both tests the temperature.  Thus,  the condi- 
tions  must  be chosen  to  break  down  the right defects. 

Discussion 
A statistical model of breakdown has been presented  re- 
lating the breakdown  distribution to distributions of de- 
fects  and probabilities of breakdown of defects  and de- 
fect-free  regions.  A specific form was chosen for  these 
probabilities [Eqs. (IS), (16), and (17)] which assumed 
that  the mean times to  breakdown  are exponential func- 
tions of the field. This  form was chosen, basically,  be- 
cause  it is a reasonable fit to experimental  evidence [3] 
and  lends itself to simplified mathematical  manipulations. 

Processes involved in electronic  breakdown have  pre- 
viously been  considered in detail [ 1 ,  10 - 121. The essential 
point is that breakdown results from  a  positive feedback 
mechanism which consists of the following processes: 

1. Charge  injection  (assumed to be electrons) from the 

2. The dynamics of the motion of the injected electrons, 
which determines  their energy  distribution  and the 
rate of impact  ionization. 

3.  A resulting  positive  charge distribution, which can  be 
diminished by  recombination with electrons, moving 
towards  the  cathode  and enhancing the field between 
the positive charge  and  the  cathode. 

4. This field enhancement increases the  rate of electron I 

injection and impact ionization-giving rise to  further 
field enhancement,  etc. 

cathode  into  the insulator. 
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Computations based  on  the average rates of these pro- 
cesses indicate that a limited current is possible only be- 
low a certain field, which depends  on  the  temperature and 
properties of the  insulator  and its  interface affecting the 
enumerated processes.  Thus, based on  the average rates, 
breakdown occurs only when this field is exceeded. How- 
ever, allowing for fluctuations in these  processes, break- 
downs  can  occur below  this  deterministic field. There- 
fore, in order  to  derive a form  for  the  mean time to break- 
down, a  solution which includes the effects of fluctuations 
is required.  Such  a  solution is as  yet,  to  the best of our 
knowledge,  unavailable. Although an exponential  depen- 
dence of the mean time to breakdown on  the field is un- 
likely to be an  exact  solution, it should nevertheless pro- 
vide a  reasonable approximation, since  most of the  enu- 
merated processes  are very  strong functions of the field. 
Furthermore,  as  already  stated,  an exponential  form is 
supported experimentally. 
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