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Wire Length Distribution for Placements of Computer 
Logic 

I t  is shown  from simple  theoretical  considerations  that the distribution fk of wire lengths for a good two-dimensional 
placement on a  square  Manhattan grid should be of the form fk = g /ky  ( I  I k I L) andf,  = 0 ( k  > L), where y is related  to 
the Rent partitioning  exponent  p by the equation 2p + y = 3. Three placements were investigated and the distribution 
functions  for wire length  were found  to  follow the above relationships. 

Introduction 
In the  layout of integrated logic circuit chips, particularly 
for VLSI applications, a major portion of the physical 
space of the chips is required for interconnection routing. 
Theory and experimental  results  have  been  developed 
[ 1, 21 which allow an approximate  prediction of wiring 
space  requirements.  This work is based upon the so- 
called “Rent’s Rule,” [3, 41 which  relates  circuit count  to 
I/O count. We take  this work one  step  further and use a 
rather crude theoretical  derivation and experimental 
study to  develop a wire  length  distribution relationship. 
This result is important for  calculating  average  results  for 
circuits,  which depend not on average  length  but on other 
averages, as for  example  average inverse length. In par- 
ticular,  we find that  the distribution function is given by 

f ,  = g / k Y  (1 5 k 5 L )  

= O  ( k >  L ) ,  (1) 

where f k  is the  fraction of wires  with  length k ;  g is a nor- 
malization constant; L is a constant related to the size of 
the  array and adequacy of the placement;  and y is a con- 
stant  characteristic of the logic. 

We find that L is of  the order of W/2, when  the  size of 
the  array is W X W. The  Rent relationship [3, 41, which 
was  used to  develop  the wire length relationship in the 
earlier work [l] and was experimentally verified for a 
number of graphs [3], states  that  the  average number of 
terminals T per  complex of C circuits  is given by 

T = ACP, (2) 

which gives us another  constant, p (which  we shall call 
the Rent constant), characteristic of the logic complex. 
We find, both from simple theoretical  considerations  and 
experimental results,  that 

y =  3 - 2p. (3) 

In this context it should be noted that M. Feuer [5]  found 
that Rent’s Rule can  be derived by using the distribution 
law of Eq. (1) with Eq. (3). 

Equation (1) is of the form of the  Pareto-Levy distribu- 
tion [6] when 1 I y < 3; similar laws occur in many con- 
texts, e . g . ,  word frequencies,  noise in transmission  chan- 
nels,  and many others. Like the Gaussian  distributions, 
however,  they have  the property that  their convolutions 
are again Pareto-Levy  distributions;  however,  they do 
not  have finite second moments, and for y 5 2, not even 
finite averages; in our  case, however, the truncation at k 
= L ensures  that both first and  second  moments are finite, 
even if they may be extremely large. Table 1 shows the 
asymptotic  behavior of moments which may be observed 
from our  results [we use Eq. (3) to relate y and p ] .  Rela- 
tively large second moments are indicated for wire  length, 
even if the average  wire length is small, as  whenp < 0.5. I 
believe that  the distribution log presented here depends 
on the chip following Rent’s rule  and on the placement 
algorithm optimizing wire lengths as  far  as possible. How- 
ever,  even if the placement algorithm does  not optimize 
completely,  the  large  second  moments  derived  here prob- 
ably still hold true. 
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The  fact  that a large  fraction of the  wires  have long wire 
lengths has a significant impact on  system  performance, 
since circuits with  long  wires tend  to  be slowed down; 
such  an impact has  been  observed in practice [7]. Unfor- 
tunately, Dansky  does not give the full distribution of the 
wire lengths in the  nets, so the distribution  law of his net 
lengths cannot  be  determined from the  results  presented 
in that  paper.  However, the long tail observed by him is 
suggestive of a distribution  law similar to that given in this 
study. 

Mathematical  considerations 
We develop  here a crude derivation of Eq. (1).  In pre- 
vious work [ 1, 21, a formula for  average length  distribu- 
tion was  derived using Rent's Rule and a hierarchical 
placement method. Essentially,  this consists of dividing a 
square  array of cell  locations into  four  equal  square  ar- 
rays. One knows then, from Rent's Rule, the  number of 
connections crossing boundary  lines. Each of the  four 
areas is again subdivided  into four  equal  areas  and  the 
logic partitioned to fit into those  four  areas.  This is contin- 
ued until the individual areas  are individual  elements of 
the original logic. 

Let us  denote by t ,  the number of terminals  for a com- 
plex consisting of K elements (in units, modules, cards, 
etc.). Then [3, 41 

tK = A K ~ ,  (4) 

where p is the  Rent  exponent and  A the  number of termi- 
nals per individual  complex. Let C  be the number of ele- 
ments to be placed and T, the  total  number of terminals 
for K-sized groups.  Then 

TK = AKpC/K 

= ACK~-'. (5 )  

Denote  by NK the  number of connections crossing  bound- 
aries of K-sized groups;  denote by a, the number of con- 
nections per  terminal  for  nets  connecting K-sized groups; 
then we have 

N,  = c+4CKP". (6) 

Note that 0.5 5 aK 5 1 and  that it does not  introduce 
significant error  to  assume  that aK is constant; i . e . ,  a = 

f f K .  

Secondly, we may compute  the  number of connections 
between  K-sized groups not connecting groups of size 
4K, as 

A N K =  N ,  - N ,  

= aCKp"( 1 - 4p"1). 

We note  that  these  connections  tend to have  an average 

Table 1 Asymptotic behavior of distribution moments. 

@rst  moment 
m ,  

(second  moment) 
mz 

average wire length) 

P Y 

> O S  <2 zL2p--1 

=0.5 = 2  -log L 

< O S  >2 f(P) 

Table 2 Placement results. 

Graph  Node No .  of Array Exptl. p 0.57xRt,,,,, 
ID count  connections  size R 

(A) 2146 7302 48 x 48 3.53 0.7 4.30 

(B) 576 1383 24 X 24 2.98 0.7 2.99 

(C) 528 1046 24 X 24 2.20 0.5 2.29 

length of roughly a; we may consider  these con- 
nections to be distributed among the lengths di? to 2v% 
- 1 ,  so that, if n, is  the number of connections of length k, 
then 

fi I k I 2 f i  - 1: nk = CKP-'( 1 - 4'-') / 2 a .  

Actually, we note k = a, so we may  write  very  crudely 

nk = aCkZP-' 
( 1  - 4p-1) 

2k ' 

or, i f f k  is the  fraction of wires  with  length  k, then  we may 
write 

k=l  

with L being an  upper bound on k .  This  crude argument 
leads us then to Eq. (1) .  No value for L is  derived; we do 
note that it should  be of the order of 

Experimental  results 
Studies  were carried  out  on  three graphs: 

(A) A graph representing high-speed logic studied  pre- 
viously by Landman  and  Russo [3] and  denoted  there 
as  L2; its Rent  exponent  was found to be 0.75. 

(B) A 572-node graph, which was partitioned out of 
graph  (A); its  Rent  exponent  was  found  to be 0.75. 

(C) A 524-block graph representing  a  hand  calculator 
logic chip. Its  Rent  exponent was found  to  be 0.59. 

The  graphs were  placed using the hierarchical  placement 
program  developed  earlier [8]; distances  were obtained as 
shown in Table 2. The  placement  for (A) was,  as  com- 153 
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Figure 1 Graph (A): plot of nk,  number of connections of length 
k ,  versus k .  

pared to  the  theoretical R ,  better than either of the  other 
two graphs; however,  the algorithm was allowed to  do a 
far  better  job in that  case than in either of the  other two 
cases. 

The  wire length distribution  from  placement is given in 
Table 3. A fit was  done  to  the first k points  such that  at 
least 95% of all the wires  were  included;  the  equation to 
be fitted was 

log nk = log A - y log k ,  ( 10) 

and a least-squares  method  was  used. The plots in Figs. 1 
and 2 show that  for k > L there is a rapid drop in n, below 
that predicted by the fitted equation; we  approximate  this 
by saying  that  for k > L, f k  is zero.  Table 4 holds the 
results for fitting Eq. (1)  for y + 2p, where the  standard 
deviation is also  given. APL plots of the  data with the com- 
puted curves  are included in Figs. 1 and 2 on a log-log 
scale. The fit is  adequate in all cases  for the first set of 
points. In agreement with the  crude theory  described in 

154 the  introduction, y + 2p is  quite  close to 3 in all cases. 
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Figure 2 Graphs (B) and (C): plot of nk,  number of connections 
of length k ,  versus k .  

We consider briefly the case of an  exponential distribu- 
tion;  we would then find that nk+Jnk is roughly a con- 
stant;  however,  Table 5 shows  the  values found for the 
three cases.  The  fact that this ratio  increases with k 
makes this kind of distribution unlikely. Other kinds of 
distributions (e.g. ,  Poisson) would yield a decreasing ra- 
tio with k ,  so such distributions are  even more unlikely. 
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Table 3 Wire length distributions. 
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