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Wire Length Distribution for Placements of Computer

Logic

It is shown from simple theoretical considerations that the distribution f, of wire lengths for a good two-dimensional
placement on a square Manhattan grid should be of the form f, = gk’ (1 =k <L) andf, =~ 0(k > L), where yis related to
the Rent partitioning exponent p by the equation 2p + y = 3. Three placements were investigated and the distribution
Sfunctions for wire length were found to follow the above relationships.

Introduction

In the layout of integrated logic circuit chips, particularly
for VLSI applications, a major portion of the physical
space of the chips is required for interconnection routing.
Theory and experimental results have been developed
[1, 2] which allow an approximate prediction of wiring
space requirements. This work is based upon the so-
called ‘‘Rent’s Rule,”’ {3, 4] which relates circuit count to
/O count. We take this work one step further and use a
rather crude theoretical derivation and experimental
study to develop a wire length distribution relationship.
This result is important for calculating average results for
circuits, which depend not on average length but on other

. averages, as for example average inverse length. In par-

ticular, we find that the distribution function is given by
f. = g/k” Ql=k=1L)
=0 (k>1L), D

where f, is the fraction of wires with length &; g is a nor-
malization constant; L is a constant related to the size of
the array and adequacy of the placement; and v is a con-
stant characteristic of the logic.

We find that L is of the order of W/2, when the size of
the array is W X W. The Rent relationship [3, 4], which
was used to develop the wire length relationship in the
earlier work [1] and was experimentally verified for a
number of graphs [3], states that the average number of
terminals T per complex of C circuits is given by

T = AC”, @

which gives us another constant, p (which we shall call
the Rent constant), characteristic of the logic complex.
We find, both from simple theoretical considerations and
experimental results, that

y=~3 - 2p. 3)

In this context it should be noted that M. Feuer [5] found
that Rent’s Rule can be derived by using the distribution
law of Eq. (1) with Eq. (3).

Equation (1) is of the form of the Pareto-Levy distribu-
tion [6] when 1 = y < 3; similar laws occur in many con-
texts, e.g., word frequencies, noise in transmission chan-
nels, and many others. Like the Gaussian distributions,
however, they have the property that their convolutions
are again Pareto-Levy distributions; however, they do
not have finite second moments, and for y < 2, not even
finite averages; in our case, however, the truncation at k
= L ensures that both first and second moments are finite,
even if they may be extremely large. Table 1 shows the
asymptotic behavior of moments which may be observed
from our results [we use Eq. (3) to relate v and p]. Rela-
tively large second moments are indicated for wire length,
even if the average wire length is small, as whenp < 0.5. 1
believe that the distribution log presented here depends
on the chip following Rent’s rule and on the placement
algorithm optimizing wire lengths as far as possible. How-
ever, even if the placement algorithm does not optimize
completely, the large second moments derived here prob-
ably still hold true.
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The fact that a large fraction of the wires have long wire
lengths has a significant impact on system performance,
since circuits with long wires tend to be slowed down;
such an impact has been observed in practice [7]. Unfor-
tunately, Dansky does not give the full distribution of the
wire lengths in the nets, so the distribution law of his net
lengths cannot be determined from the results presented
in that paper. However, the long tail observed by him is
suggestive of a distribution law similar to that given in this
study.

Mathematical considerations

We develop here a crude derivation of Eq. (1). In pre-
vious work [1, 2], a formula for average length distribu-
tion was derived using Rent’s Rule and a hierarchical
placement method. Essentially, this consists of dividing a
square array of cell locations into four equal square ar-
rays. One knows then, from Rent’s Rule, the number of
connections crossing boundary lines. Each of the four
areas is again subdivided into four equal areas and the
logic partitioned to fit into those four areas. This is contin-
ued until the individual areas are individual elements of
the original logic.

Let us denote by ¢, the number of terminals for a com-
plex consisting of K elements (in units, modules, cards,
etc.). Then [3, 4]

1, = AK?, “)

where p is the Rent exponent and A the number of termi-
nals per individual complex. Let C be the number of ele-
ments to be placed and T, the total number of terminals
for K-sized groups. Then

T, = AK’C/K
= ACK"™", )

Denote by N, the number of connections crossing bound-
aries of K-sized groups; denote by «, the number of con-
nections per terminal for nets connecting K-sized groups;
then we have

N, = a, ACK™™". ©

Note that 0.5 = «, =< 1 and that it does not introduce
significant error to assume that «, is constant; i.e., a =

Q.

Secondly, we may compute the number of connections
between K-sized groups not connecting groups of size
4K, as

AN, =N, - N,
= aCK"7'(1 — 4°7)). )

We note that these connections tend to have an average
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Table 1 Asymptotic behavior of distribution moments.

P Y m m

(first m;ment (second rrztoment)
average wire length)
>0.5 <2 =% ~L%
=0.5 =2 ~log L ~L%
<0.5 >2 fip) ~L*

Table 2 Placement results.

Graph Node No. of Array Exptl. p 0.57xR
ID count connections  size R

theor.

(A) 2146 7302 48 x 48 3.53 0.7 4.30
B) 576 1383 24 x24 298 0.7 2.99
© 528 1046 24x24 220 05 2.29

length of roughly VK; we may consider these con-
nections to be distributed among the lengths VK to 2K
— 1, so that, if n, is the number of connections of length k,
then

VK k=K - Lin~CK"(1 -4 /2VK.
Actually, we note k = VK, so we may write very crudely
. (1 — 411—1)

n, = aC kP % s

®
or, if f, is the fraction of wires with length &, then we may
write

L
_ 123 2p~3
Se= k") ’CZ:l K, ©)

with L being an upper bound on . This crude argument
leads us then to Eq. (1). No value for L is derived; we do
note that it should be of the order of v/ C.

Experimental resuits
Studies were carried out on three graphs:

(A) A graph representing high-speed logic studied pre-
viously by Landman and Russo [3] and denoted there
as L2; its Rent exponent was found to be 0.75.

(B) A 572-node graph, which was partitioned out of
graph (A); its Rent exponent was found to be 0.75.

(C) A 524-block graph representing a hand calculator
logic chip. Its Rent exponent was found to be 0.59.

The graphs were placed using the hierarchical placement
program developed earlier [8]; distances were obtained as
shown in Table 2. The placement for (A) was, as com-
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Figure 1 Graph (A): plot of n,, number of connections of length
k, versus k.

pared to the theoretical R, better than either of the other
two graphs; however, the algorithm was allowed to do a
far better job in that case than in either of the other two
cases.

The wire length distribution from placement is given in
Table 3. A fit was done to the first ¥ points such that at
least 95% of all the wires were included; the equation to
be fitted was

logn, =log A — vylogk, (10)

and a least-squares method was used. The plots in Figs. 1
and 2 show that for k > L there is a rapid drop in , below
that predicted by the fitted equation; we approximate this
by saying that for k > L, f, is zero. Table 4 holds the
results for fitting Eq. (1) for v + 2p, where the standard
deviation is also given. APL plots of the data with the com-
puted curves are included in Figs. 1 and 2 on a log-log
scale. The fit is adequate in all cases for the first set of
points. In agreement with the crude theory described in
the introduction, y + 2p is quite close to 3 in all cases.
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Figure 2 Graphs (B) and (C): plot of r,, number of connections
of length &, versus k.

We consider briefly the case of an exponential distribu-
tion; we would then find that n,_ /n, is roughly a con-
stant; however, Table 5 shows the values found for the
three cases. The fact that this ratio increases with k
makes this kind of distribution unlikely. Other kinds of
distributions (e.g., Poisson) would yield a decreasing ra-
tio with k, so such distributions are even more unlikely.
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Table 3 Wire length distributions.

k n, k n, k n, k n, k n,
Graph (A)
1 3480 11 84 21 18 31 6 42 1
2 1206 12 60 22 18 32 2 44 1
3 615 13 66 23 11 33 2 45 1
4 369 14 56 24 11 34 1 46 1
5 309 15 33 25 8 35 2
6 233 16 26 26 12 36 3
7 194 17 29 27 8 37 1
8 141 18 15 28 5 38 2
9 111 19 15 29 3 39 1
10 119 20 16 30 4 40 2
Graph (B)
1 605 6 51 11 7 16 6
2 250 7 32 12 12 17 4
3 129 8 26 13 5 18 1
4 75 9 42 14 4 20 1
5 65 10 24 15 3 29 1
Graph (C)
1 592 6 16 11 2 17 1
2 219 7 16 12 3 21 1
3 82 8 12 13 4 25 1
4 46 9 12 14 1
5 29 10 6 15 3
Table 4 Results for fitting distributors. Table § Distribution ratios (n,,,/n,).
Graph No. of Log A vy P vy +2p Graph Graph Graph
D points (A) (B) (C)
fitted
k=1 0.35 0.41 0.37
(A) L=14 355x0.04 1.55+0.05 075 3.05 = 0.04 k=2 0.51 0.51 0.37
k=3 0.61 0.58 0.56
(B) L=12 279 +0.07 1.48 +£0.09 0.75 2.98 = 0.09 k=4 0.82 0.87 0.63
(© L= 9 282=008 191006 0.5 3.09 + 0.06 k=S5 0.76 0.79 0.54
4. W. E. Donath, ‘‘Equivalence of Memory to ‘Random 7. A. H. Dansky, ‘‘Bipolar Circuit Design for a 5000-Circuit
Logic,” ** IBM J. Res. Develop. 18, 401-407 (1974). VLSI Gate Array,”” IBM J. Res. Develop. 25, 116-125 (1981,
5. M. Feuer, ‘‘Connectivity of Random Logic,’’ Proceedings of this issue).
the Workshop on Large-Scale Networks and Systems, IEEE 8. W. E. Donath, IBM Tech. Disclosure Bull. 17, 3121-3125
1980 Symposium on Circuits and Systems, Houston, TX, pp. (1975).
7-11.
6. Application of such distributions is characteristic of much of
the work of B. Mandelbrot, who was very helpful in in-
troducing me to the necessary subject matter. See for ex- Received October 14, 1980; revised December 8, 1980
ample B. Mandelbrot, *‘Self Similar Error Clusters and Com-
munications Systems and the Concept of Conditional Station-
arity,”” IEEE Trans. Commun. Syst. COM-13, 71-90 (1965); .
and P. Levy, Theorie de I'Addition des Variables Aleatoires, The author is located at the IBM Thomas J. Watson Re-
Gauthier-Villars, Paris, 1954, search Center, Yorktown Heights, New York 10598.
155
IBM J. RES. DEVELOP. & VOL. 25 & NO. 3 & MAY 1981 W. E. DONATH




