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Computer  Simulation of High-Resolution  Electron 
Micrographs  Using  Dynamical  Electron  Scattering 

A system of computer  programs has been implemented  that calculates both high-resolution images and  diffraction pat- 
terns of generalized objects  for the conventional  transmission  electron microscope. Multi-slice dynamical electron  scat- 
tering of 256 X 256 = 65 536 beams is incorporated  into these  programs, which allows Bragg reflections and the diffuse 
scattering  contributions between  these reflections to be included in the computations.  Images can therefore be obtained 
from imperfect  crystalline  structures  and for disordered objects such as amorphous materials. Both bright- and dark-field 
images are obtained with this system in either the axial or tilted-beam imaging modes. Examples of surface  effects in Au 
crystals, the [ I l l ]  split  Crowdion  interstitial in tungsten, and an amorphous Fefilm model  are  considered in the  context 
of dynamical electron  scattering. 

Introduction 
Under favorable imaging conditions, the conventional 
transmission electron microscope is capable of resolving 
point resolutions approaching 3 A and  line resolutions 
considerably less than 2 A (the unit A, used throughout 
this paper, is equivalent to the SI metric 0.1 nm). A wide 
range of materials and objects have been studied at or 
near these resolutions, including  organometallic mole- 
cules containing heavy atoms [ 1 ,  21, amorphous materials 
[3-71, perfect crystalline structures [8, 91, crystals con- 
taining  small  voids [lo] and  point defects [ll-131, and 
some extended defects [ 14,  151. While the list  is  certainly 
more extensive than indicated here, most of the above 
work  and other subsequent studies have resorted to im- 
age  modeling  by the computer to interpret the phase con- 
trast micrographs  in all but the most  simple  and apparent 
cases. By knowing the appropriate electron optical pa- 
rameters as well as the specimen orientation, it is  possible 
in theory to closely approximate an electron micrograph 
of any object. This statement is made  with some caution, 
however, since  most of the computer simulations do not 
use the appropriate electron-scattering formalism or have 
limited  capability  in  computing the effect of the electron 
microscope  on the transmitted and scattered waves ema- 
nating  from the specimens. 

Basically,  most image computations use the weak 
phase object (WPO) scattering approximation, where 
single scattering is used and all the atoms are considered 
to lie  in a single object plane.  This is a good  approxima- 
tion for calculations of singleatom images of the type 
shown by Hashimoto et al. [l] and for organometallic 
molecules shown by Krakow [16]. However, for 
amorphous films more than a few monolayers thick, and 
where  dynamical or multiple electron scattering can oc- 
cur, the weak phase object approximation will not  be a p  
propriate; for example, Kenaya et al. [17], Graczyk and 
Chaudhari [6], and Krivanek and  Howie [4]. In these 
cases, there would  not  only  be the problem of multiple 
electron scattering but also that of projection of object 
features onto a single  image  plane. These problems pre- 
clude any quantitative identification of image features or 
measurement of accurate diffraction intensities. 

The same arguments about weak phase objects apply to 
crystalline materials, where the dynamical scattering can 
also cause severe problems. What appear to be  ex- 
ceptions to this rule, where  single scattering gives  good 
approximations, are as follows: 1) the observations on 
small  holes  in graphite films  by Iijima [lo], where the 
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graphite  lattice is at most a few tens of atomic layers 
thick; 2) the  observations of crystalline (001) Au surfaces 
[18], where one is dealing with atoms of Au within one 
unit cell of the bounding  surface; and 3) the  contrast ex- 
pected from  the diffuse elastic  scattering of displaced 
atoms in a crystalline  lattice that  shows intensities in 
agreement with computer calculations [12, 131. It must be 
pointed out  that  the  above results do not  consider  any 
depth  to  the  crystal; i . e . ,  all features  are contained in a 
single plane. This  means,  for  example,  that  the image cal- 
culations of holes  in (1) do not take  into  account  the thick- 
ness of the whole film and only a fraction of the total  crys- 
talline  thickness is considered.  For  surface  features men- 
tioned in (2), only one  surface is evaluated;  thus  top and 
bottom features  have not  been fully considered.  For (3) 
only the diffuse scattering produced  by the  direct beam 
was  evaluated; therefore  the contributions of Bragg scat- 
tering to  the diffuse scattering and diffuse-diffuse scatter- 
ing have not  been  included. Although the  above  three ex- 
amples give good quantitative  agreement with experi- 
ment,  the diffraction intensities could be in considerable 
error. 

To  date, dynamical multi-slice electron diffraction the- 
ory  has been  applied to  the calculation of lattice images of 
small crystalline defect  structures by  Cowley and Fields 
[ 19, 201 and by O'Keefe  and Iijima [ 141. By  restricting the 
number of beams  or  Fourier coefficients to manageable 
numbers (=4000 beams), calculations  could  be  performed 
at the  rate of seven minutes per  slice, which is ex- 
ceedingly slow  computationally. The film thickness con- 
sidered  was  only 19 A, which, even  for heavy  tungsten 
oxides, is barely  in the dynamical  regime. By further re- 
stricting the  number of beams to 496 components and se- 
verely limiting the size of the strain field and  the real and 
reciprocal  space-sampling  intervals [20], the slice calcu- 
lations could be  extended  to a crystal a few hundred A 
thick. These  results,  however, have apparently used large 
slice-thickness values of 10-15 A to  accommodate  an ex- 
tended  strain field, which for the Au interstitial case 
would severely limit the accuracy of the diffraction and 
image calculations at 100 kV. It is apparent  that  the com- 
putational procedures of the above-mentioned studies  are 
very  restricted in their  use and that  objects which deviate 
from the simplest cases of ordered crystalline structures 
cannot be considered efficiently. 

Because of the  constraints mentioned above,  the pur- 
pose of this paper  is  to describe a system of computer 
programs that can efficiently calculate electron  micre 
scope images and diffraction patterns  for multi-slice dy- 
namical electron scattering.  The  number of beams,  as 
well as  the  number of slices, is not as  restricted  as in ear- 
lier work  on this subject. Also, one need  not limit the real 
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space  or reciprocal space dimensions as severely. The 
computer programs are designed to avoid  duplication of 
computational procedures  and  excessive VO operations 
that  consume valuable CPU time. The versatility of these 
programs is shown by several examples, which include 
surface topography in crystals, point defect configura- 
tions with strain  fields,  amorphous  materials,  and ex- 
tended  defects in crystals. 

Diffraction  and  image  theory 

e Image  intensity 
The  theory of bright- and dark-field image  formation in 
the conventional  microscope has been presented pre- 
viously for weak phase  objects  under tilted  beam illumi- 
nation for  both  elastic and  inelastic  scattering [12,  161. 
Only a brief outline of the  important  aspects of the  theory 
(which has been modified for dynamical electron  scatter- 
ing) is included here. 

For  an inclined plane  wave  reaching the  specimen,  the 
complex  amplitude of the wave disturbance in the range 
plane at some  point Pi = (x i ,  yi) can be  written as 

JIT(xi, Y J  = ; $n(f / )P(W) exp - f /  * Pi 4 ' I  1 ( 2;i ) 
= - ~ - l { $ n ( w w ) } ,  (1) 

A 
where 9" is the  inverse  Fourier  transformation operation. 
The image plane intensity, in the  coherent imaging mode, 
is  the  square modulus of this  complex  amplitude l$T12. 
The angular wave distribution emerging from  the bottom 
of the object $,(f/) requires a more  detailed  discussion, 
which is given in the  next section. The  vector variable + 
is given by the relation 

f / = a ! + j ,  (2) 

which defines the angular  position of the  wave with re- 
spect  to  the  microscope optic axes  and where a! is  the 
scattering angle with respect  to  the  direct beam  (see 
Fig. 1). In this paper it is assumed that  the incident beam 
is spatially coherent  and  that  the  electrons  are mono- 
energetic; i . e . ,  there  is no energy spread  due  to  the elec- 
tron  source.  The combined  effects of spherical  aberration 
and defocus of the objective lens, as well as  the diffraction 
limit (objective aperture limit), are  contained in the pupil 
function term of Eq. (1): 

P(lrjl) = A(17jl) exp [-i-y(lf/l)]. (3) 

Only that  portion of the  total wave front which falls 
within the  objective  aperture, which is centered  on  the 
optic  axis, is transmitted  to  the image plane. This condi- 
tion is expressed by aperture function A(lf/I), contained in 
the pupil function, which is defined as 59 

WILLIAM KRAKOW 



Optic 
axis 

I aperture 

Figure 1 Ray  diagram of the  microscope  geometry  for  tilted 
beam imaging. 6 is the beam tilt  angle, 6 the  scattering  angle 
with respect to the  direct  transmitted beam, and 4 the  scattering 
angle  with respect to the  optic axis. Here vectors are used  to 
specify  both magnitude y d  direction. The coordinates  in  the 
back focal plane (fi’,j‘,ij ) are  obtained  by  multiplying  the  an- 
gles (6,P,+j) by  the focal length of the  objective lens. 

A(lijI) = 1 for l i j l  < R 

= 0 for l i j l  2 R ,  (4) 

where R is the aperture radius in angular coordinates. 
Here a bright-field  image  is  obtained for l j l  < R and a 
dark-field  image for l j l  2 R .  The  pupil function also con- 
tains the phase shift y ,  introduced by the objective lens: 

where C, is the spherical aberration coefficient,  Afthe  de- 
60 focus, and A the electron wavelength. 

The power spectrum of the image intensity is the 
square modulus of the Fourier transform of the image 
plane intensity. Filtered electron microscope images are 
obtained first  by a Fourier transformation of the image 
intensity, by application of the appropriate filter function, 
and then by back-transformation to produce the filtered 
image. 

DSffraction in crystals 
The form of the scattered wave  emerging from the bottom 
of the crystal $,,(<) shown in Eq. (1) requires further ex- 
planation in terms of the mathematical formalism. Essen- 
tially, the basic feasibility for multi-slice  formalism has 
been  given  by  Cowley  and  Moodie [21] and  numerical 
evaluation methods have been  summarized by  Goodman 
and  Moodie [22]. This formalism  has  been  applied to per- 
fect crystalline structures requiring a limited  number of 
Bragg beams.  Preliminary  investigations have been a p  
plied  to arrays of defects using  methods of periodic con- 
tinuation  and superlattices of these defects [20-221. This 
latter method  is rather cumbersome  and requires match- 
ing  of boundary conditions at the edges of a real-space 
superlattice, which  in practice cannot be achieved for 
many classes of objects such as amorphous materials, ex- 
tended defects, and even point defects with extended 
strain fields. Since multi-slice computational procedures 
were  readily available for perfect crystals, the periodic 
continuation method  was adapted to introduce an arti- 
ficial reciprocal lattice mesh  between strong Bragg  reflec- 
tions. Here, one can sample the deviations in scattering 
due to a lack of order in the object. This requires careful 
consideration of the fineness of the mesh for the artificial 
lattice to include  all the Fourier components used to form 
an image. In essence, this method  is equivalent to sam 
pling  an interval of reciprocal space points fine  enough to 
include the effects of diffuse scattering. Therefore, one 
need  not extend the object by periodic continuation since 
all the information is contained in the original object if the 
reciprocal space scattering is  sampled  in  fine  enough  in- 
tervals. This is the basis of the multi-slice  formalism  used 
in this paper. It does not assume any approximations to 
the scattering by omitting cross terms [20], but considers 
fully the interaction of the Bragg and  diffuse scattering in 
all  regions of reciprocal space (e.g., Huang scattering). It 
also allows a number of different defects to be  included in 
the same field  of view, which  would  be  difficult  using  peri- 
odic continuation. 

The multi-slice  formalism presented here is for a “gen- 
eralized” object and is similar to that of a perfect crystal 
except that reciprocal lattice vectors corresponding to 
Bragg reflections are now replaced by vectors i j  corre- 
sponding to an arbitrary reciprocal space region. These 
vectors can include regions  between the Bragg  reflections 
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or, in the  case of an amorphous object,  any reciprocal 
space  vector. By considering discrete crystalline layers, 
the form of the  scattering exiting from the nth layer  is 
given by the  recursion relation 

Jl,(rS.) = [JI,-,(.S)P.-,(.S)I * Q,(rS.), (6) 

where * specifies a convolution product of these  complex 
arrays.  The  Fresnel propagation  function P,, from the n to 
n + 1 layer is specified by the two-dimensional distribu- 
tion function 

P,($ = exp (~Tz,,$/A), (7) 

where Z, is the  distance  between  the  layers.  (The  func- 
tions here  are displayed  without their arguments to 
shorten  the notation.) The scattering  distribution of the 
object Q, on  the nth layer is given by the sum of a direct 
beam term  represented by a delta function  and a weak 
phase  object scattering  distribution  representing the 
atomic potential  distribution of the  object, 

e,(&) = 6(&) - iF,(&)AZn, (8) 

where AZ, is the slice or  layer thickness  and F, is  the 
scattering  distribution of the nth layer, given  by 

F,,(&) = 2 &(a) exp [y  (& . t,)], (9) 
all atoms 

j 

where 4 is  the atomic scattering  factor  for  each  atom at a 
real space position i-,. 

For  the initial layer  n = 1 ,  in Eq. (6) is replaced by 
a delta  function 6($ - p), where p represents  the  direct 
beam  tilt.  Beam tilt need  only  be taken into account in 
this initial delta  function; all future convolutions  using 
Eq. (6) will include  its  effect. Of course,  the propagation 
distance Z,, and slice thickness  are  also modified for beam 
tilt by increasing their  respective  distances by the recipro- 
cal of the  cosine of the beam tilt angle. 

Computational  procedures 
The calculation of atomic images involves the  use of a 
series of computer programs to input  atomic  position data 
and obtain a numerical  solution to  Eq. (1). Before the im- 
age can be obtained,  however,  the recursion  relation of 
Eq. (6) is evaluated to  obtain  the electron wave  front 
emerging from  the object of interest. 

The  procedures used to calculate  electron  micrographs 
are  as follows: 

1. Input  data  on atom type  and coordinates are stored  on 
files for  each unique  slice of atomic  positions; i . e . ,  
each small but finite thickness slice is considered to lie 
in a single plane. 

2. The scattering  distribution of each unique layer is cal- 
culated using the WPO approximation of Eq. (9), 
where  the atomic scattering  factors  are calculated 
from analytical functions.  These complex scattered 
wave distributions are then  permanently stored  for fu- 
ture  use in the multi-slice diffraction computations. 

3. The  delta function representing the  direct  beam incli- 
nation is calculated  and archived  for  future  use. 

4. For a specified object  distribution, a menu of scatter- 
ing distribution types  is  created which consists of a 
finite number of weak phase object  slices, the  separa- 
tion between slices Z,, and  the slice  thickness AZ,,. 

5 .  The propagating  function of Eq. (7) is calculated for 
unity  thickness and  stored  for  future  use. 

6. The solution of the nth recursion relation in Eq. (6) is 
then  obtained. Here,  the menu of scattering  distribu- 
tions  must begin with the  direct beam intensity  distri- 
bution  function  and successive scattering  distributions 
from succeeding  slices are called by the menu. The 
scattering distribution  need  not  be  acquired  again if it 
is identical to  that of the preceding  layer. The  same  is 
true of the propagation  function if the  distance be- 
tween  layers is constant.  In addition to  these time-sav- 
ing features, all convolutions are performed using fast 
Fourier transform (FFT) algorithms. The emerging 
wave  function can then  be  used to calculate the dif- 
fraction intensity at  the  bottom of the  crystal by  ob- 
taining  its square modulus. 

7.  Image  intensity computations  are then  performed  us- 
ing the various  microscope input  parameters (C,, Af, 
A, R ,  . * .) in Eq. (1). 

8. Image  intensities are  then  stored in an  array  where  the 
contrast is stretched to  the maximum available de- 
pending on  the particular  display mode used.  Typical 
hard  copy is obtained on plain paper using font  charac- 
ters resolving 140 distinct  grey  levels of intensity. 

For most of the work presented here a total of 256 X 

256 picture  elements  were  used at picture  element  resolu- 
tions of 0.5 or 0.25 A, which are well beyond the resolu- 
tion limits achieved in practice in any conventional  micro- 
scope  at 100 kV. In  fact,  the maximum resolution in any 
computed image, which will soon be demonstrated, is 
2 A. This condition is sufficient to include  enough image 
points  to avoid biasing effects in computed  images. 

The computation  times for  the multi-slice diffraction 
computations  are = 13 s of CPU time per slice on  an IBMI 
370 processor  for the 256 X .256 complex arrays.  It  is 
therefore possible to  compute diffraction intensities of an 
object  several hundred angstroms thick  at a slice  thick- 
ness of a few angstroms in perhaps  ten minutes.  This  rep- 
resents  an increase of approximately 400 to 500 times in 
computational speed over  previous numerical  evaluation 61 
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It is also important to point out that  most multi-slice 
computations using a large number of beams consider  the 
scattering  distributions for  each slice to be  identical, thus 
reducing or eliminating I/O operations  on  the  computer. 
The point of this paper is that this  approach cannot be 
used for generalized objects,  since  the  layers or slices are 
often  nonrepeating.  As specified in the calculation proce- 
dure item (4), a menu of different  scattering  distributions 
are  created  that  are not  unique. 

procedures  and  computer  systems in [14, 19,  201, where 
numbers  are  stated explicitly. It  is believed that  these dif- 
ferences  are  due partially to  the  use of two-dimensional 
FFT techniques now being incorporated into several 
computer  systems or minicomputers that  are compatible 
with IBM software. It  has  now been recognized that  Ish- 
izuka  and  Uyeda [23] have  made  use of the FFT routines 
for up to 8192 Bragg beams.  This number of beams is nec- 
essary  for  accurate diffraction intensities for a complex 
structure like chlorinated  Cu-phthalocyanine. However, 
their  method  considers  only Bragg beams  for a perfect- 
crystal  structure  and  does not  consider  deviations from 
periodic structure  that  produce diffuse scattering between 
the Bragg reflections. Also,  no timing data is given for 
their multi-slice calculations; therefore, it is difficult to 
compare  their results  with the examples given in this  pa- 
per or to  compare  their  computational times with those 
presented  here. 

It must also  be pointed out  that if one wishes to con- 
sider a  “generalized” object,  one must  make  a com- 
promise between  the number of Bragg reflections and  the 
total number of reciprocal space  points evaluated. For ex- 
ample,  there  are 169 Bragg beams  but 256 X 256 recipro- 
cal  space points  evaluated for  the [ 1 1  13 split Crowdion in 
tungsten.  However, including these regions of reciprocal 
space  away  from  the Bragg reflections  permits diffraction 
calculations dealing with crystal size and  shape effects, 
grain boundary diffraction effects, etc. 

Image  computational speeds  are  also typically very  fast 
and  use FFT techniques.  Depending on  the size of the 
objective aperture,  the total CPU time  varies between 15 
and 60 s,  including display CPU time.  Image filtration and 
calculation of the power  spectrum of an image are  com- 
parable to  the image computational time. It  is  not unreal- 
istic to perform 20 or 30 image computations per  day; this 
is comparable  to  the  output  expected from experimental 
high-resolution electron microscope  experiments. 

At present,  the image computations  presented  here  do 
not  include the effects of incident-beam  divergence  (par- 
tial coherence)  and  thermal diffuse scattering,  and  assume 
only elastic scattering processes.  It should  be  emphasized 

that  the  increased time required  to  do a realistic simula- 
tion with multiple scattering,  compared with the WPO 
method, involves  not  only a factor corresponding to  the 
number of slices  but also a factor corresponding to the 
number of plane-wave components required to  represent 
the  actual incident beam’s spatial  coherence.  This is usu- 
ally very simply incorporated in the image intensity  calcu- 
lation for a weak phase  object by modifying the micro- 
scope  transfer function ( e . g . ,  see Krakow and Siege1 
[24]). For dynamical scattering, this would require  that 
separate image computations be performed for  each beam 
direction,  and image intensities would then be  summed. 
This is,  at  present,  an  intractable problem involving a sev- 
eral-hundred-fold increase in computer  power or CPU 
time,  and would tax  the limits of the largest computer 
mainframe. 

Image  computation  results 
The  intent of these  computer modeling experiments  is  to 
match  images of real electron micrographs and predict the 
types of images one might expect  under specific micro- 
scope conditions where single scattering is not valid. 
Here, a widely diverse  class of objects ranging from  crys- 
talline to  amorphous  demonstrate  the versatility of the 
computer program system. 

Crystalline (001) Au films and surface strucrure 
The  surface  structure of (001) Au  films has been under 
investigation using high-resolution imaging by  this author 
during the  past few years [18, 251 and it is apparent  that, 
in addition to  the bulk lattice periodicity of 2.03 A corre- 
sponding to (200) bulk  reflections,  larger  periodicities  ex- 
ist from a surface  lattice of partially filled unit  cells. The 
surface period is 2.86 A and  corresponds  to mixed Miller 
indices of (110) reflections,  which are forbidden in the 
bulk structure. 

Here, a model of the (001) surface of Au was  con- 
structed with the aid of the  computer by using a primitive 
two-dimensional  lattice  periodicity of 2.86 A. A  frac- 
tional occupancy criterion  was chosen arbitrarily such 
that of all atomic sites available in a perfect  face-cen- 
tered-cubic (fcc) lattice only 75% could  be filled. The first 
layer  was filled using a random number generator  to as- 
sign either occupied or empty  sites  for  the atom  positions. 
The  next  layer  was  somewhat  more difficult to construct 
since  the stacking sequence along the [OOl] direction is of 
the  ABABAB. * . type,  where  the B layers are shifted by 
an  amount a,/2 in the [loo] and [OlO] directions. Here 
again, a fractional occupancy of 75% was assumed  with 
the additional  criterion  applied that  each  one of these 
atoms must  be supported by four  atoms from the  layer 
below it. If this  criterion was  not  met,  the  atom  was  as- 
sumed  to sit  in an  unstable position and  hence  was not 
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included in the model. The  same  procedure was repeated 
for  successive layers until the number of atoms which 
could exist in a  stable configuration was exhausted, i.e., 
the  surface terminated. 

The  above  procedure  can be applied to  either  top or 
bottom surfaces of a thin film where a change in the ran- 
dom  number  generator will produce a different atomic  ar- 
rangement of surface atoms.  The bulk lattice is generated 
simply by filling  all sites in a 40 X 40-atom array (114 X 

114-A area)  and shifting the  next layer by a,/2 along the 
[ 1001 and [OlO] directions to  form a layer of a perfect  fcc 
lattice one unit cell thick with a lattice constant of 4.06 A. 

Displayed in Fig. 2 is a model of the  top surface of Au, 
which consists of three partially filled monolayers  dis- 
played in projection. The  layers contain  1189,337, and 22 
atoms, corresponding  respectively to 74, 22,  and 1.5 per- 
cent of the possible  atomic  sites.  Figure  3(a) is the  com- 
puted diffraction pattern intensity using Eq. (9) from  the 
layer containing 337 atoms, while Fig. 3(b) shows the dif- 
fraction pattern of the  perfect  fcc  lattice. It is interesting 
to  note  that  the 337-atom-lattice diffraction pattern  con- 
tains both  the unmixed indexed reflections characteristic 
of the bulk lattice  and mixed indexed  reflections, as well 
as a considerable amount of scattered intensity away 
from  the Bragg spots.  This indicates  considerable dis- 
order in the surface arrangement, i.e., missing atoms.  The 
perfect crystal  pattern in Fig. 3(b) shows  neither these 
forbidden reflections nor diffuse scattering. 

Using the recursion  relation of Eq. (6) ,  a  number of dif- 
ferent diffraction patterns  have been  obtained using top 
surface layers, bulk crystals,  and bottom surface  layers. 
Film thicknesses up to 300 8, have  been considered, of 
which the  top 6 A and  bottom 6 A were the surface layers 
described above.  For a wide range of thicknesses, the dif- 
fraction patterns  are similar to  those of Fig. 3(b) and  there 
are additional weak reflections  located  at the  centers of 
the  squares defined by the matrix or bulk lattice reflec- 
tions. These reflections can  be  seen if the image display of 
the diffraction data is properly  scaled;  however,  Fresnel 
and Fraunhoffer diffraction effects from the edges of the 
model are  also visible if too many decades of intensity are 
included. This problem  could be alleviated by construct- 
ing a model which has a  circular  boundary  instead of the 
square  shape currently employed. 

Examples of computer-generated images of the (001) 
Au film with one rough surface  are shown in Fig. 4. Fig- 
ure 4(a) shows the effect of using tilted beam illumination 
such  that  the (200) bulk reflection and  the direct beam are 
equally inclined to  the optic axes of the  microscope. The 
microscope  parameters used  were /3 = 0.0091 radians, R 
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Figure 2 Au atom position model for one (001)  surface using a 
75% occupancy criterion. Here three layers of 1189, 337  and 22 
atoms are superimposed. The primitive unit cell of the surface is 
indicated by the letter P, while the bulk fcc lattice is indicated by 
the letter F. 
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Figure 3 Computed ( 0 0 1 )  diffraction  pattern intensities (a) from 
a 337-atom  layer of the surface; (b) from a layer containing the 
perfect fcc unit cell structure. Note that the forbidden reflections 
of mixed indices in (a) are not present in (b). The reciprocal 
space display is -2 A"/side. 

= 0.015 radians, Af = 850 A ,  X = 27.02 k l .  Here  the 
2.03-A lattice  fringes characteristic of the bulk structure 
are visible and  the power  spectrum of this image, which is 
characteristic of a tilted beam  image, is displayed in Fig. 
4(b). Since  the (200) bulk lattice fringes occur  at angular 
distance in the power  spectrum of  0.018 radians,  a  circu- 
lar filter function  can  be  applied to image (a) which allows 



Figure 4 Computer-generated  tilted beam bright-field  images of one Au surface  and  the  bulk lattice: (a) image  including the (002) bulk 
lattice  reflection and two {llO} surface  reflections;  (b)  power spectrum of image (a); (c) surface  lattice image showing 2.86-A periodicities 
by  removing  the  bulk lattice image of (a). 

Figure 5 Experimental  micrographs of (a) (200) bulk lattice  fringes, (b) power  spectrum  of image (a), (c) surface  lattice  image  from the 
{110} reflections. 

only the (1 10) reflections to  be imaged. For  an  angular 
radius of R = 0.015 radians,  the corresponding filtered 
image is displayed in Fig. 4(c) and clearly shows  the 2.86- 

lattice periodicity. The filtered image is equivalent to 
obtaining an image where  the microscope  objective aper- 
ture is smaller  than the diffraction limit necessary  to re- 
solve the (200) bulk lattice  periodicity. A large objective 
aperture can be employed if the sample is appropriately 
tilted to eliminate the bulk lattice (200) periodicities ( i .e . ,  
say a tilt about a [220] axis). 

In  order  to show the  exactness of the  computer mod- 
eling calculations,  real experimental micrographs of a 

64 (001) Au film are displayed in Fig. 5 .  Figure 5(a) shows 

the (200) bulk lattice periodicity and Fig. 5(b) is  its  corre- 
sponding power  spectrum. Figure 5(c) is an image of the 
(001) surface lattice  obtained by filtering out  the bulk lat- 
tice  periodicities.  It  can  be seen  that excellent agreement 
between experimental  micrographs and  the computer-cal- 
culated  images has been achieved  for  both bulk and  sur- 
face  lattice  structures. 

Point  defects-[Ill]  split  Crowdion  interstitial in 
tungsten 
In  order  to  demonstrate  that  electron microscope  images 
of localized disorder in bulk crystals can  be computed  for 
dynamical electron scattering, the [ 11 11 split Crowdion 
interstitial will be considered here. A unit cell model of 
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this defect  is shown in Fig. 6. Up  to this time all the prior 
dynamical  computational procedures (e.g., Ref. [20]) 
considered  a weak phase  object approximation by taking 
the  atom  to lie in a single scattering  plane.  This implies 
that  the three-dimensional effect of the strain field was 
totally  negated. 

Here  examples will be shown of propagation of elec- 
tron  wavefronts through several slices of crystalline ma- 
terial  where differing strain-field distribution and  hence 
diffuse elastic scattering  distributions are obtained de- 
pending on  the  distance  from  the defect core.  It  is impor- 
tant  to  emphasize  that in a real experimental  situation the 
visualization of point defects is still somewhat tentative, 
since no  one  has worked with  a  system where  the  strain- 
field distribution is well known. Here,  the intent is to 
show  that, given a model of the atomic  displacements of a 
point defect,  one can  calculate using dynamical theory 
the image intensity produced by the scattering from a  de- 
fect in a crystal.  Furthermore,  one can  predict the in- 
tensity and image features  expected in real electron mi- 
crographs. 

The  lattice model for  the [I  1 I] split Crowdion  inter- 
stitial was obtained by first constructing  via  the computer 
a perfect  body-centered-cubic  (bcc)  crystalline lattice. 
Here,  each  lattice  layer  consisted of a planar arrangement 
of atoms with a square primitive two-dimensional lattice 
with a d-spacing of 3.16 A. Thus adjacent  layers  could  be 
constructed by shifting the lattice by 112 the d-spacing 
along the  three (100) directions simultaneously. The lat- 
eral  extent of the model corresponded  to 15 x 15 atoms 
per  layer, which is equivalent to a  crystal  dimension of 
-50 A on a side. 

The  defect strain field can be  included in the  perfect 
lattice  by using the tabulated values of Benedek and Ho 
[26]. In this case  the  number of atoms considered for  this 
strain field consisted of 182 atoms where  each atom  was 
assigned an ideal lattice  position site in terms of integer 
numbers representing half unit cell parameters (a,b,c).  If 
these integer  numbers matched the  perfect  bcc  lattice in- 
tegers,  the strain-field displacement  was added  to  the 
atom  positions  vectorially. Different heights of the  defect 
were  assigned different position  designations or negative 
integer numbers c, so that different slices  through the 
crystals contained  different strain-field contributions  de- 
pending on  the level of the  defect sampled.  Figure 7 is a 
projected strain-field map of the split Crowdion with di- 
rections of the displacements from  the ideal lattice posi- 
tions. Here  the  correct magnitudes of the displacement 
vectors  are not  shown because  they  are  at most  a  few 
hundredths of an  angstrom,  except  for  the  core  atoms 
(see Ref. [27]). Furthermore,  the strain field is displayed 

A 

Figure 6 Schematic  diagram of the unit cell  containing  a [ 1 1  11 
split  Crowdion  interstitial  in tungsten. The  black dots show the 
location of the  interstitial  and displaced W atoms where  the  latter 
occupied  the  lattice site at  the center of the cell in a  perfect crys- 
tal. 

- 
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IR (i) 
Figure 7 Map of the atom displacements  (strain  field) for a 
[I 111 split  Crowdion  interstitial  in  tungsten  (182  atoms)  when 
projected onto the microscope  image  plane.  Here  the  crystal  is 
tilted  by  10"  about a [lo01 direction to allow  atoms at  different 
depths to be visible. 

with a 10" tilt to allow atoms  at different depths  to  be 
clearly displayed. This is a rotation  about  the  abscissa of 
10" or in terms of Eulers angles 0 = lo", 4 = I,!J = 0" (see 
Ref. [28]). 65 
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(a) (b) (C)  

Figure 8 Diffraction patterns of the [ I1  I] split  Crowdion  defect  in  tungsten for a (001) orientation.  (a) and (b) are  weak  phase  object 
patterns  from  single layers  containing  strain-field  distributions  unique  to  each  layer.  Note  the  diffuse  scattering and  the  primitive lattice 
periodicity. (c) is  the  multi-slice  diffraction pattern of 22 layers  containing  the  whole  Crowdion  defect.  Note  that  the  reciprocal  lattice 
pattern  here  is  fcc,  which  is the reciprocal  space  representation of a bcc  crystal.  The  display  distance of the images  is 4 A"/side. 

(a)  (b) 

Figure 9 Dynamical  diffraction  dark-field  images of the [ 11 I] 
split  Crowdion in tungsten,  (a)  from a (002) matrix  reflection,  (b) 
from the diffuse scattering region  near  the (002) reflection. See 
Fig. 8(c)  for  the  location  and size of the  objective aperture. 

The  computed diffraction patterns using Eq. 9 for weak 
phase  object layers of the  bcc  crystal containing the 
Crowdion defect  are  shown in Figs. 8(a) and (b). Images 
(a) and (b)  were derived,  respectively, from atoms with 
position  designations (a,b,l) and (a,b,O). The  latter  corre- 
sponds  to  the layer  through the  center of the  defect  and 
includes the (O,O,O) position atom (see Fig. 6). Here Fig. 
8(b) was  constructed  from  one more atom than the 15 x 
15 = 225 required for  the  other layers to allow accommo- 
dation of the  extra interstitial atom.  In Figs. 8(a) and (b), 
the images are displayed  with eight decades of intensity  to 
show  the Bragg scattering and  the background diffuse 
elastic scattering  due  to  the  strain field. The ringing along 
the line connecting the diffraction spots is due  to edge 
diffraction effects, which unfortunately occur  because  the 
original bcc model has  its boundaries  perpendicular to 66 
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these  directions.  These edge  effects can be discounted in 
images and  are of no  concern  except  that they somewhat 
mask the Bragg scattering. Note  that both diffraction pat- 
terns  show a primitive square lattice  consisting of a 13 x 
13 array of Bragg spots. This is expected  since each  layer 
has a  spacing of 3.16 A in a primitive square lattice. It is 
not until multi-slicing occurs  that  the  bcc  nature of the 
diffraction pattern is apparent from the cumulative scat- 
tering effect of two or more adjacent layers. 

The  results  for dynamical electron diffraction from a 
crystal containing the Crowdion  defect for a film thick- 
ness of approximately 50 A were  obtained  from the kine- 
matic scattering distributions. Here  the sequencing of lay- 
ers  was five layers of perfect bcc lattice one unit cell thick 
( i . e . ,  two monolayers),  followed by 12 layers each a 
monolayer  thick and containing  unique strain-field distri- 
butions. This was then  followed by five layers of a perfect 
bcc lattice one unit cell thick. The diffraction pattern  for 
multi-slicing is shown in Fig.  8(c). Here it can  be seen  that 
the reciprocal  space (001) projection is an fcc unit cell, 
which is to  be  expected when a bcc real lattice is trans- 
formed to reciprocal space. A reciprocal  lattice  unit cell 
has  been boxed in to  make  observation easier. Note  that 
the diffuse scattering is not visible because too  few  dec- 
ades of intensity  were  included. The  curvature of the 
Ewald sphere  is  apparent  for this pattern where the in- 
cident  beam  intensity is along the [001] zone. 

The  results of image computations from the dynamical 
diffraction pattern  are displayed in Fig. 9 for  two  cases of 
dark-field imaging. Here a small  objective aperture was 
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used to avoid  a  lattice imaging mode. It  demonstrates  that 
images can be visualized even when the objective aper- 
ture  is diffraction-limited by an angular  radius of R = 
0.005 radians, which corresponds  to a real-space  resolu- 
tion of ~ 3 . 7  A. Figure 9(a) represents imaging fr6m a 
(002) matrix reflection, while Fig. 9(b) represents  an im- 
age formed from  the diffuse elastic  scattering  from a re- 
gion adjacent  to this reflection. The  exact diffraction con- 
ditions from images 9(a) and (b) are displayed by small 
circles  labeled  respectively a and b in Fig. 8(c) to  show 
the reciprocal space regions  sampled.  It  must  be  reiter- 
ated  that  the  dotted diffraction lines  around each Bragg 
spot  are of no  consequence  since they are  produced by 
edge diffraction and hence  do not contribute  to  the image 
in the region of the defect  as evidenced by Fig. 9. 

0 Amorphous materials 
To  demonstrate  the multi-slice diffraction computation of 
an  amorphous material, a model consisting of  5390 atoms 
was provided from a portion of the Finney model [29], 
which is composed of  7928 atoms. This model has been 
used  extensively by Graczyk  and Chaudhari [6] and 
Chaudhari [30] to investigate the scattering properties of 
dense  random packings of atoms and to  determine 
whether dislocation-like defects could  be supported in 
amorphous metallic solids. In  the experiments described 
here  the model was  scaled to  the  nearest neighbor  dis- 
tance in Fe of  2.55 A and all diffraction computations 
were based upon the  scattering  factors  for this atomic 
species.  The 5390-atom model geometry is in the  form of 
a cylinder which is  48 A deep and 45 A in diameter. A 
view along the cylinder axis of  all the  atoms in projection 
is shown in Fig. 10. This  is  the orientation of the model 
used for  electron microscope imaging and diffraction cal- 
culations  where the incident  beam is approximately  paral- 
lel to  the cylinder  axis. 

For  the multi-slice calculation the model was divided 
into slices 4 A thick along the cylinder axis.  The atomic 
population of each slice varied in number  between 420 
and 455 atoms. An example of the diffraction pattern  and 
images obtained from  one of these thin slices is shown in 
Fig. 11. Here image (a) is the  computed diffraction pattern 
and images (b) and  (c)  are images with a contrast  transfer 
function  (CTF) of unity for microscope  resolutions of 1.5 
and 2.5 A, respectively. These resolutions correspond  to 
objective aperture  sizes of  0.025 and 0.015 radians, re- 
spectively,  for 100-kV electrons. 

The  results  for multi-slicing through  twelve 4-A layers 
of Fe  are shown in Fig. 12. The diffraction pattern dis- 
played in (a) shows  an  apparent broadening of the  second 
diffuse halo over  the weak phase  object  pattern of Fig. 
1 l(a).  Images in Figs. 12(b) and (c) are bright-field images 

- 20 - 10  0  10 20 

R ( A )  
Figure 10 Atomic  distribution  of  atoms  for  an  amorphous  solid 
seen in  projection along  the  cylinder axis. Here  the  cylinder con- 
tains 5390 atoms  and  the  display  represents  the  projection  of 
-48 A thickness. 

with  a CTF of unity for  objective  aperture  sizes of 0.025 
and 0.015 radians and  can be  compared  directly to  the 
weak phase object  images of Figs. ll(b)  and (c). It  is in- 
teresting to note in Fig. 12(b) that  there is a correspon- 
dence  between  the  atom positions of the  model'and  the 
white  image features;  however, here we are well beyond 
the  point-to-point  resolving power of a real 100-kV micro- 
scope.  The  darkened regions in Fig. 12(b) correspond  to 
regions which are  less  densely populated in traversing the 
full thickness of the cylinder. Here,  because  the  darkened 
regions do not allow precise  atomic  position data to be 
determined, only projected density variations can  be ob- 
tained. This situation is considerably worsened  when  the 
microscope  resolution is diminished to 2.5 8, in Fig. 
12(c). Here there are  poorer  correlations  between bright 
image patches and the  projected density of atoms.  The 
situation is not favorable in dark-field imaging with micro- 
scope  aberrations  as shown in Fig. 12(d). Here  the bright 
fringelike patches  are  uncorrelated with the number  den- 
sity of the model. The  poor agreement of the dark-field 
image is due  to sampling of a limited region of reciprocal 
space, which enhances image features with  spatial  sepa- 
rations  along given directions. 

The  apparent  broadness of the diffraction pattern  due 
to multi-slicing in the  amorphous model is more  easily vi- 67 
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Figure 11 (a) Diffraction pattern of a 4-A-thick slice of the amorphous model which contains 420 atoms. The display is 4 A"/side. (b) 
Weak phase object bright-field image for a contrast transfer function of unity and a resolution level of 1.5 A. (c) Same as image (b) except 
that the resolution is now 2.5 A. 

(a) (b) (C) ( 4  

Figure 12 (a) Multi-slice diffraction pattern from the amorphous model a48  8, thick. The reciprocal space display is 1 4  A"/side. (b) 
Bright-field  axial  illumination image obtained from pattern (a) for a resolution of 1.5 A and a contrast transfer function of unity. (c) Same 
as image (b), but the resolution is now 2.5 A. (d) Tilted beam  dark-field  image from the first  diffraction halo as indicated in (a). The 
resolution level is ~ 2 . 1  A. In images (b) to (d) the display size is 64 kside. 

sualized by taking  line scans of the intensity in the dif- 
fraction pattern for successive layers; see Fig. 13. Here 
approximately the first three decades of intensity were 
plotted. It is apparent that the intensity of the subsidiary 
maxima increases in  progressing to further layers, but 
most important is the degradation of the sharpness of the 
subsidiary diffraction  maxima even for a relatively thin 
sample. These effects will be  more prominent for thicker 
films, which implies that obtaining  radial distribution 
functions by electron diffraction in amorphous solids is 
questionable since the single scattering distributions upon 
which they are based are no longer valid.  In  view  of this 
finding, a more critical check of the  significance of  mul- 
tiple scattering effects in an amorphous sample is needed. 
The interpretation of diffraction pattern line traces at dif- 

68 ferent thicknesses is somewhat confused by speckle ef- 
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fects. What is needed is a comparison of the same total 
thickness of the diffraction patterns and  images, comput- 
ed  by  multi-slice and a single  large-slice equivalent to the 
total thickness. This comparison, however, may not have 
meaningful  information since a single large slice  would 
soon violate the criterion of the WPO approximation re- 
quiring that the scattering be  small compared to the in- 
cident beam intensity. This problem will certainly be  sig- 
nificant  in Fe films  and of greater importance in higher- 
atomic-number amorphous materials. 

Discussion  and  conclusion 
For any  detailed interpretation of electron microscope 
images  and  diffraction patterns, computer calculations of 
model structures are invaluable when atoms are in close 
proximity.  In the last section a number of examples of 
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materials with three-dimensional distributions of atoms 
were used to demonstrate the necessity of being able to 
calculate the wave distributions from  different layers pro- 
gressively to simulate the scattering processes occurring 
in a real electron microscope. In this  manner one is able 
to investigate a  priori many  different classes of materials 
and optimize the requirements of the specific material, 
such as thickness and orientation, as well as optimizing 
the appropriate electron microscope parameters. 

The examples chosen for the image computations using 
multi-slice theory comprise objects where  localized  dis- 
order occurs. In particular, the cases of crystalline sur- 
faces, which  can  be  rough  on an atomic scale, can be 
dealt  with for both the top and  bottom surfaces. Here it 
was possible to show that surface structure can be  visual- 
ized and its detail separated from  the  bulk lattice periodic- 
ities. A second area which was considered involved  point 
defects which  have an accompanying three-dimensional 
strain  field  extending a few tens of angstroms from the 
defect core. This class of objects can be expanded with 
the present computational procedures to include ex- 
tended defects existing over larger  dimensions  in the 
crystal both laterally  and  along the direction of propaga- 
tion of the electron wave fronts. The important point to 
emphasize is that any defect in a crystalline material can 
be treated regardless of its location in depth and the ex- 
tent of its strain field. Of course, an amorphous material 
can be  regarded as a special case of a crystalline material 
with defects. Here the disordering applies to all the atoms 
in the model opposed to specific atoms, as in the case of 
point defects. For an amorphous material each layer will 
be unique, whereas the strain field  of a crystalline defect 
will have periodic components and  be  bounded  in depth 
by perfect crystalline layers. 

For different objects one must therefore create a menu 
of slices and propagate through the specified layers. The 
simplest case to treat is that of a perfect crystal where 
each slice has the same weak phase object scattering dis- 
tribution. Provided the perfect crystal has a reasonably 
large lateral extent, only  Bragg scattering occurs. In this 
case there should  be no diffuse scattering due to short- 
range order; hence  in practice it is  only necessary to eval- 
uate the regions of reciprocal space corresponding to the 
Bragg reflections. In other words, for perfect crystalline 
structures the system of programs which  has been de- 
scribed can be simplified  and  the  requirement of 256 x 256 
reciprocal lattice points can be reduced considerably for 
this special case. As soon as any  nonperiodic component 
is introduced, this criterion will  be violated. In  other 
words, any  deviation  from a perfect periodic structure re- 
quires a full reciprocal space evaluation. Even the in- 
troduction of free atoms on surfaces requires the evalua- 

i 
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Figure 13 Line scans of the  diffraction  data of the  amorphous 
model after slicing  through (a) 1 layer, (b) 6 layers and (c) 12 
layers.  Each  layer is 4 A thick. 

tion of the full range of reciprocal space. This latter topic 
will be considered in the numerical analysis of electron 
micrographs of crystalline Si containing defects and sur- 
face contaminant atoms in another publication [27]. 

Some further discussion of the system  of computer pro- 
grams is worthwhile to emphasize the computational ca- 
pability of the system of computer programs for multi- 
slicing and imaging. Here, diffraction patterns are com- 
puted either for axial  illumination or the tilted-beam case. 
In this manner  it is possible to obtain bright-field  images if 
the beam  tilt is less than the objective aperture angle, or 
tilted  dark-field  images if the tilt is greater than the aper- 
ture diameter. It is also possible to include  effects of astig- 69 
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matism during the image  calculation  and  approximate  the 
effect of partial coherence in a  similar  manner. Of course 
it  is  possible to consider different electron wavelengths, 
which demands that the weak  phase object scattering be 
reevaluated as well as the multi-slice  computations. 
The system of programs can compute most  forms  of 
images and  diffraction patterns which one can  achieve 
in a  conventional  transmission  microscope. Furthermore, 
this system applies to a  generalized object containing  any 
atomic arrangement of atoms  and  is  not as restrictive as 
earlier  methods of dynamical electron diffraction. 
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