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Computer Simulation of High-Resolution Electron
Micrographs Using Dynamical Electron Scattering

A system of computer programs has been implemented that calculates both high-resolution images and diffraction pat-
terns of generalized objects for the conventional transmission electron microscope. Multi-slice dynamical electron scat-
tering of 256 x 256 = 65 536 beams is incorporated into these programs, which allows Bragg reflections and the diffuse
scattering contributions between these reflections to be included in the computations. Images can therefore be obtained
from imperfect crystalline structures and for disordered objects such as amorphous materials. Both bright- and dark-field
images are obtained with this system in either the axial or tilted-beam imaging modes. Examples of surface effects in Au
crystals, the [111] split Crowdion interstitial in tungsten, and an amorphous Fe film model are considered in the context

of dynamical electron scattering.

Introduction

Under favorable imaging conditions, the conventional
transmission electron microscope is capable of resolving
point resolutions approaching 3 A and line resolutions
considerably less than 2 A (the unit A, used throughout
this paper, is equivalent to the SI metric 0.1 nm). A wide
range of materials and objects have been studied at or
near these resolutions, including organometallic mole-
cules containing heavy atoms [1, 2], amorphous materials
[3-7], perfect crystalline structures [8, 9], crystals con-
taining small voids [10] and point defects [11-13], and
some extended defects [14, 15]. While the list is certainly
more extensive than indicated here, most of the above
work and other subsequent studies have resorted to im-
age modeling by the computer to interpret the phase con-
trast micrographs in all but the most simple and apparent
cases. By knowing the appropriate electron optical pa-
rameters as well as the specimen orientation, it is possible
in theory to closely approximate an electron micrograph
of any object. This statement is made with some caution,
however, since most of the computer simulations do not
use the appropriate electron-scattering formalism or have
limited capability in computing the effect of the electron
microscope on the transmitted and scattered waves ema-
nating from the specimens.

Basically, most image computations use the weak
phase object (WPO) scattering approximation, where
single scattering is used and all the atoms are considered
to lie in a single object plane. This is a good approxima-
tion for calculations of single-atom images of the type
shown by Hashimoto et al. [1] and for organometallic
molecules shown by Krakow [16]. However, for
amorphous films more than a few monolayers thick, and
where dynamical or multiple electron scattering can oc-
cur, the weak phase object approximation will not be ap-
propriate; for example, Kenaya et al. [17], Graczyk and
Chaudhari [6], and Krivanek and Howie [4]. In these
cases, there would not only be the problem of multiple
electron scattering but also that of projection of object
features onto a single image plane. These problems pre-
clude any quantitative identification of image features or
measurement of accurate diffraction intensities.

The same arguments about weak phase objects apply to
crystalline materials, where the dynamical scattering can
also cause severe problems. What appear to be ex-
ceptions to this rule, where single scattering gives good
approximations, are as follows: 1) the observations on
small holes in graphite films by Iijima [10], where the
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graphite lattice is at most a few tens of atomic layers
thick; 2) the observations of crystalline (001) Au surfaces
[18], where one is dealing with atoms of Au within one
unit cell of the bounding surface; and 3) the contrast ex-
pected from the diffuse elastic scattering of displaced
atoms in a crystalline lattice that shows intensities in
agreement with computer calculations [12, 13]. It must be
pointed out that the above results do not consider any
depth to the crystal; i.e., all features are contained in a
single plane. This means, for example, that the image cal-
culations of holes in (1) do not take into account the thick-
ness of the whole film and only a fraction of the total crys-
talline thickness is considered. For surface features men-
tioned in (2), only one surface is evaluated; thus top and
bottom features have not been fully considered. For (3)
only the diffuse scattering produced by the direct beam
was evaluated; therefore the contributions of Bragg scat-
tering to the diffuse scattering and diffuse-diffuse scatter-
ing have not been included. Although the above three ex-
amples give good quantitative agreement with experi-
ment, the diffraction intensities could be in considerable
error.

To date, dynamical multi-slice electron diffraction the-
ory has been applied to the calculation of lattice images of
small crystalline defect structures by Cowley and Fields
[19, 20] and by O’Keefe and lijima [14]. By restricting the
number of beams or Fourier coefficients to manageable
numbers (=4000 beams), calculations could be performed
at the rate of seven minutes per slice, which is ex-
ceedingly slow computationally. The film thickness con-
sidered was only 19 A, which, even for heavy tungsten
oxides, is barely in the dynamical regime. By further re-
stricting the number of beams to 496 components and se-
verely limiting the size of the strain field and the real and
reciprocal space-sampling intervals [20], the slice calcu-
lations could be extended to a crystal a few hundred A
thick. These results, however, have apparently used large
slice-thickness values of 10-15 A to accommodate an ex-
tended strain field, which for the Au interstitial case
would severely limit the accuracy of the diffraction and
image calculations at 100 kV. It is apparent that the com-
putational procedures of the above-mentioned studies are
very restricted in their use and that objects which deviate
from the simplest cases of ordered crystalline structures
cannot be considered efficiently.

Because of the constraints mentioned above, the pur-
pose of this paper is to describe a system of computer
programs that can efficiently calculate electron micro-
scope images and diffraction patterns for multi-slice dy-
namical electron scattering. The number of beams, as
well as the number of slices, is not as restricted as in ear-
lier work on this subject. Also, one need not limit the real
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space or reciprocal space dimensions as severely. The
computer programs are designed to avoid duplication of
computational procedures and excessive 1/0 operations
that consume valuable CPU time. The versatility of these
programs is shown by several examples, which include
surface topography in crystals, point defect configura-
tions with strain fields, amorphous materials, and ex-
tended defects in crystals.

Diffraction and image theory

® [mage intensity

The theory of bright- and dark-field image formation in
the conventional microscope has been presented pre-
viously for weak phase objects under tilted beam illumi-
nation for both elastic and inelastic scattering [12, 16].
Only a brief outline of the important aspects of the theory
(which has been modified for dynamical electron scatter-
ing) is included here.

For an inclined plane wave reaching the specimen, the

complex amplitude of the wave disturbance in the range
plane at some point 7, = (x,, ¥,) can be written as

1 i
o) = 3 [ wopti exp (25 -7

1
—;%ﬂmﬁwwm, )

where ' is the inverse Fourier transformation operation.

The image plane intensity, in the coherent imaging mode,
is the square modulus of this complex amplitude In,l;TIz.
The angular wave distribution emerging from the bottom
of the object ¢, (7}) requires a more detailed discussion,
which is given in the next section. The vector variable 7
is given by the relation

5 =a+ 4, @)
which defines the angular position of the wave with re-
spect to the microscope optic axes and where & is the
scattering angle with respect to the direct beam 8 (see
Fig. 1). In this paper it is assumed that the incident beam
is spatially coherent and that the electrons are mono-
energetic; i.e., there is no energy spread due to the elec-
tron source. The combined effects of spherical aberration
and defocus of the objective lens, as well as the diffraction
limit (objective aperture limit), are contained in the pupil
function term of Eq. (1):

P(nl) = A(ml) exp [—iy(mD]. ©)}

Only that portion of the total wave front which falls
within the objective aperture, which is centered on the
optic axis, is transmitted to the image plane. This condi-
tion is expressed by aperture function A(l%!), contained in
the pupil function, which is defined as
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Figure 1 Ray diagram of the microscope geometry for tilted
beam imaging. 8 is the beam tilt angle, & the scattering angle
with respect to the direct transmitted beam, and 7 the scattering
angle with respect to the optic axis. Here vectors are used to
specify both magnitude and direction. The coordinates in the
back focal plane (&',8',%") are obtained by multiplying the an-
gles (&,8,M) by the focal length of the objective lens.

A(7l) = 1 for 5l < R

0 for Il = R, @

where R is the aperture radius in angular coordinates.
Here a bright-field image is obtained for I3 < R and a
dark-field image for |8/ = R. The pupil function also con-
tains the phase shift y, introduced by the objective lens:

y(gl) = 2‘)‘1(% C il — %Aflﬁl”), )

where C, is the spherical aberration coefficient, Af the de-
focus, and A the electron wavelength.

WILLIAM KRAKOW

The power spectrum of the image intensity is the
square modulus of the Fourier transform of the image
plane intensity. Filtered electron microscope images are
obtained first by a Fourier transformation of the image
intensity, by application of the appropriate filter function,
and then by back-transformation to produce the filtered
image.

& Diffraction in crystals

The form of the scattered wave emerging from the bottom
of the crystal ¢ () shown in Eq. (1) requires further ex-
planation in terms of the mathematical formalism. Essen-
tially, the basic feasibility for multi-slice formalism has
been given by Cowley and Moodie [21] and numerical
evaluation methods have been summarized by Goodman
and Moodie [22]. This formalism has been applied to per-
fect crystalline structures requiring a limited number of
Bragg beams. Preliminary investigations have been ap-
plied to arrays of defects using methods of periodic con-
tinuation and superlattices of these defects [20-22). This
latter method is rather cumbersome and requires match-
ing of boundary conditions at the edges of a real-space
superlattice, which in practice cannot be achieved for
many classes of objects such as amorphous materials, ex-
tended defects, and even point defects with extended
strain fields. Since multi-slice computational procedures
were readily available for perfect crystals, the periodic
continuation method was adapted to introduce an arti-
ficial reciprocal lattice mesh between strong Bragg reflec-
tions. Here, one can sample the deviations in scattering
due to a lack of order in the object. This requires careful
consideration of the fineness of the mesh for the artificial
lattice to include all the Fourier components used to form
an image. In essence, this method is equivalent to sam-
pling an interval of reciprocal space points fine enough to
include the effects of diffuse scattering. Therefore, one
need not extend the object by periodic continuation since
all the information is contained in the original object if the
reciprocal space scattering is sampled in fine enough in-
tervals. This is the basis of the multi-slice formalism used
in this paper. It does not assume any approximations to
the scattering by omitting cross terms [20], but considers
fully the interaction of the Bragg and diffuse scattering in
all regions of reciprocal space (e.g., Huang scattering). It
also allows a number of different defects to be included in
the same field of view, which would be difficult using peri-
odic continuation.

The multi-slice formalism presented here is for a ‘‘gen-
eralized”’ object and is similar to that of a perfect crystal
except that reciprocal lattice vectors g corresponding to
Bragg reflections are now replaced by vectors 7 corre-
sponding to an arbitrary reciprocal space region. These
vectors can include regions between the Bragg reflections
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or, in the case of an amorphous object, any reciprocal
space vector. By considering discrete crystalline layers,
the form of the scattering exiting from the nth layer is
given by the recursion relation

¥, ) = [¥,_,P,_ (] * Q. (), (6

where * specifies a convolution product of these complex
arrays. The Fresnel propagation function P, from the » to
n + 1 layer is specified by the two-dimensional distribu-
tion function

P,(m) = exp (irZ,n’/\N), M

where Z, is the distance between the layers. (The func-
tions here are displayed without their arguments to
shorten the notation.) The scattering distribution of the
object O, on the nth layer is given by the sum of a direct
beam term represented by a delta function and a weak
phase object scattering distribution representing the
atomic potential distribution of the object,

0,(a) = 8@a) — iF (@)sZ,, ®)

where AZ, is the slice or layer thickness and F, is the
scattering distribution of the nth layer, given by

all atoms

)
F@= 3 fle)exp [T’” @- @)J, ®

where f, is the atomic scattering factor for each atom at a
real space position 7,.

For the initial layer n = 1, P in Eq. (6) is replaced by
a delta function &(7) — ), where 8 represents the direct
beam tilt. Beam tilt need only be taken into account in
this initial delta function; all future convolutions using
Eq. (6) will include its effect. Of course, the propagation
distance Z_and slice thickness are also modified for beam
tilt by increasing their respective distances by the recipro-
cal of the cosine of the beam tilt angle.

Computational procedures

The calculation of atomic images involves the use of a
series of computer programs to input atomic position data
and obtain a numerical solution to Eq. (1). Before the im-
age can be obtained, however, the recursion relation of
Eq. (6) is evaluated to obtain the electron wave front
emerging from the object of interest.

The procedures used to calculate electron micrographs
are as follows:

1. Input data on atom type and coordinates are stored on
files for each unique slice of atomic positions; i.e.,
each small but finite thickness slice is considered to lie
in a single plane.
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2. The scattering distribution of each unique layer is cal-
culated using the WPO approximation of Eq. (9),
where the atomic scattering factors are calculated
from analytical functions. These complex scattered
wave distributions are then permanently stored for fu-
ture use in the multi-slice diffraction computations.

3. The delta function representing the direct beam incli-
nation is calculated and archived for future use.

4. For a specified object distribution, a menu of scatter-
ing distribution types is created which consists of a
finite number of weak phase object slices, the separa-
tion between slices Z,, and the slice thickness AZ, .

5. The propagating function of Eq. (7) is calculated for
unity thickness and stored for future use.

6. The solution of the nth recursion relation in Eq. (6) is
then obtained. Here, the menu of scattering distribu-
tions must begin with the direct beam intensity distri-
bution function and successive scattering distributions
from succeeding slices are called by the menu. The
scattering distribution need not be acquired again if it
is identical to that of the preceding layer. The same is
true of the propagation function if the distance be-
tween layers is constant. In addition to these time-sav-
ing features, all convolutions are performed using fast
Fourier transform (FFT) algorithms. The emerging
wave function can then be used to calculate the dif-
fraction intensity at the bottom of the crystal by ob-
taining its square modulus.

7. Image intensity computations are then performed us-
ing the various microscope input parameters (C,, Af,
A, R, -+ )in Eq. (1).

8. Image intensities are then stored in an array where the
contrast is stretched to the maximum available de-
pending on the particular display mode used. Typical
hard copy is obtained on plain paper using font charac-
ters resolving 140 distinct grey levels of intensity.

For most of the work presented here a total of 256 x
256 picture elements were used at picture element resolu-
tions of 0.5 or 0.25 A, which are well beyond the resolu-
tion limits achieved in practice in any conventional micro-
scope at 100 kV. In fact, the maximum resolution in any
computed image, which will soon be demonstrated, is
2 A. This condition is sufficient to include enough image
points to avoid biasing effects in computed images.

The computation times for the multi-slice diffraction
computations are =13 s of CPU time per slice on an IBM/
370 processor for the 256 X ‘256 complex arrays. It is
therefore possible to compute diffraction intensities of an
object several hundred angstroms thick at a slice thick-
ness of a few angstroms in perhaps ten minutes. This rep-
resents an increase of approximately 400 to 500 times in
computational speed over previous numerical evaluation
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procedures and computer systems in [14, 19, 20], where
numbers are stated explicitly. It is believed that these dif-
ferences are due partially to the use of two-dimensional
FFT techniques now being incorporated into several
computer systems or minicomputers that are compatible
with IBM software. It has now been recognized that Ish-
izuka and Uyeda [23] have made use of the FFT routines
for up to 8192 Bragg beams. This number of beams is nec-
essary for accurate diffraction intensities for a complex
structure like chlorinated Cu-phthalocyanine. However,
their method considers only Bragg beams for a perfect-
crystal structure and does not consider deviations from
periodic structure that produce diffuse scattering between
the Bragg reflections. Also, no timing data is given for
their multi-slice calculations; therefore, it is difficult to
compare their results with the examples given in this pa-
per or to compare their computational times with those
presented here.

It is also important to point out that most multi-slice
computations using a large number of beams consider the
scattering distributions for each slice to be identical, thus
reducing or eliminating I/O operations on the computer.
The point of this paper is that this approach cannot be
used for generalized objects, since the layers or slices are
often nonrepeating. As specified in the calculation proce-
dure item (4), a menu of different scattering distributions
are created that are not unique.

It must also be pointed out that if one wishes to con-
sider a ‘‘generalized’” object, one must make a com-
promise between the number of Bragg reflections and the
total number of reciprocal space points evaluated. For ex-
ample, there are 169 Bragg beams but 256 x 256 recipro-
cal space points evaluated for the [111] split Crowdion in
tungsten. However, including these regions of reciprocal
space away from the Bragg reflections permits diffraction
calculations dealing with crystal size and shape effects,
grain boundary diffraction effects, etc.

Image computational speeds are also typically very fast
and use FFT techniques. Depending on the size of the
objective aperture, the total CPU time varies between 15
and 60 s, including display CPU time. Image filtration and
calculation of the power spectrum of an image are com-
parable to the image computational time. It is not unreal-
istic to perform 20 or 30 image computations per day; this
is comparable to the output expected from experimental
high-resolution electron microscope experiments.

At present, the image computations presented here do
not include the effects of incident-beam divergence (par-
tial coherence) and thermal diffuse scattering, and assume
only elastic scattering processes. It should be emphasized

WILLIAM KRAKOW

that the increased time required to do a realistic simula-
tion with multiple scattering, compared with the WPO
method, involves not only a factor corresponding to the
number of slices but also a factor corresponding to the
number of plane-wave components required to represent
the actual incident beam’s spatial coherence. This is usu-
ally very simply incorporated in the image intensity calcu-
lation for a weak phase object by modifying the micro-
scope transfer function (e.g., see Krakow and Siegel
[24]. For dynamical scattering, this would require that
separate image computations be performed for each beam
direction, and image intensities would then be summed.
This is, at present, an intractable problem involving a sev-
eral-hundred-fold increase in computer power or CPU
time, and would tax the limits of the largest computer
mainframe.

Image computation results

The intent of these computer modeling experiments is to
match images of real electron micrographs and predict the
types of images one might expect under specific micro-
scope conditions where single scattering is not valid.
Here, a widely diverse class of objects ranging from crys-
talline to amorphous demonstrate the versatility of the
computer program system.

o Crystalline (001) Au films and surface structure
The surface structure of (001) Au films has been under
investigation using high-resolution imaging by this author

-during the past few years [18, 25] and it is apparent that,

in addition to the bulk lattice periodicity of 2.03 A corre-
sponding to {200} bulk reflections, larger periodicities ex-
ist from a surface lattice of partially filled unit cells. The
surface period is 2.86 A and corresponds to mixed Miller
indices of {110} refiections, which are forbidden in the
bulk structure.

Here, a model of the (001) surface of Au was con-
structed with the aid of the computer by using a primitive
two-dimensional lattice periodicity of 2.86 A. A frac-
tional occupancy criterion was chosen arbitrarily such
that of all atomic sites available in a perfect face-cen-
tered-cubic (fcc) lattice only 75% could be filled. The first
layer was filled using a random number generator to as-
sign either occupied or empty sites for the atom positions.
The next layer was somewhat more difficult to construct
since the stacking sequence along the [001] direction is of
the ABABAB- - - type, where the B layers are shifted by
an amount q,/2 in the [100] and [010] directions. Here
again, a fractional occupancy of 75% was assumed with
the additional criterion applied that each one of these
atoms must be supported by four atoms from the layer
below it. If this criterion was not met, the atom was as-
sumed to sit in an unstable position and hence was not
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included in the model. The same procedure was repeated
for successive layers until the number of atoms which
could exist in a stable configuration was exhausted, i.e.,
the surface terminated.

The above procedure can be applied to either top or
bottom surfaces of a thin film where a change in the ran-
dom number generator will produce a different atomic ar-
rangement of surface atoms. The bulk lattice is generated
simply by filling all sites in a 40 X 40-atom array (114 X
114-A area) and shifting the next layer by a,/2 along the
[100] and [010] directions to form a layer of a perfect fcc
lattice one unit cell thick with a lattice constant of 4.06 A.

Displayed in Fig. 2 is a model of the top surface of Au,
which consists of three partially filled monolayers dis-
played in projection. The layers contain 1189, 337, and 22
atoms, corresponding respectively to 74, 22, and 1.5 per-
cent of the possible atomic sites. Figure 3(a) is the com-
puted diffraction pattern intensity using Eq. (9) from the
layer containing 337 atoms, while Fig. 3(b) shows the dif-
fraction pattern of the perfect fcc lattice. It is interesting
to note that the 337-atom-lattice diffraction pattern con-
tains both the unmixed indexed reflections characteristic
of the bulk lattice and mixed indexed reflections, as well
as a considerable amount of scattered intensity away
from the Bragg spots. This indicates considerable dis-
order in the surface arrangement, i.e., missing atoms. The
perfect crystal pattern in Fig. 3(b) shows neither these
forbidden reflections nor diffuse scattering.

Using the recursion relation of Eq. (6), a number of dif-
ferent diffraction patterns have been obtained using top
surface layers, bulk crystals, and bottom surface layers.
Film thicknesses up to 300 A have been considered, of
which the top 6 A and bottom 6 A were the surface layers
described above. For a wide range of thicknesses, the dif-
fraction patterns are similar to those of Fig, 3(b) and there
are additional weak reflections located at the centers of
the squares defined by the matrix or bulk lattice reflec-
tions. These reflections can be seen if the image display of
the diffraction data is properly scaled; however, Fresnel
and Fraunhoffer diffraction effects from the edges of the
model are also visible if too many decades of intensity are
included. This problem could be alleviated by construct-
ing a model which has a circular boundary instead of the
square shape currently employed.

Examples of computer-generated images of the (001)
Au film with one rough surface are shown in Fig. 4. Fig-
ure 4(a) shows the effect of using tilted beam illumination
such that the (200) bulk reflection and the direct beam are
equally inclined to the optic axes of the microscope. The
microscope parameters used were 8 = 0.0091 radians, R
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Figure 2 Au atom position model for one (001) surface using a
75% occupancy criterion. Here three layers of 1189, 337 and 22
atoms are superimposed. The primitive unit cell of the surface is
indicated by the letter P, while the bulk fcc lattice is indicated by
the letter F.

(a) (b)

Figure 3 Computed (001) diffraction pattern intensities (a) from
a 337-atom layer of the surface; (b) from a layer containing the
perfect fce unit cell structure. Note that the forbidden reflections
of mixed indices in (a) are not present in (b). The reciprocal
space display is =2 A side.

= 0.015 radians, Af = 850 A, A = 27.02 A™". Here the
2.03-A lattice fringes characteristic of the bulk structure
are visible and the power spectrum of this image, which is
characteristic of a tilted beam image, is displayed in Fig.
4(b). Since the (200) bulk lattice fringes occur at angular
distance in the power spectrum of 0.018 radians, a circu-
lar filter function can be applied to image (a) which allows
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(a) (b)

Figure 4 Computer-generated tilted beam bright-field images of one Au surface and the bulk lattice: (a) image including the (002) bulk

64

lattice reflection and two {110} surface reflections; (b) power spectrum of image (a); (c) surface lattice image showing 2.86-A periodicities

by removing the bulk lattice image of (a).

(c)

Figure 5 Experimental micrographs of (a) (200) bulk lattice fringes, (b) power spectrum of image (a), (c) surface lattice image from the

{110} reflections.

only the {110} reflections to be imaged. For an angular
radius of R = 0.015 radians, the corresponding filtered
image is displayed in Fig. 4(c) and clearly shows the 2.86-
A lattice periodicity. The filtered image is equivalent to

obtaining an image where the microscope objective aper- .

ture is smaller than the diffraction limit necessary to re-
solve the (200) bulk lattice periodicity. A large objective
aperture can be employed if the sample is appropriately
tilted to eliminate the bulk lattice {200} periodicities (.e.,
say a tilt about a [220] axis).

In order to show the exactness of the computer mod-
eling calculations, real experimental micrographs of a
(001) Au film are displayed in Fig. 5. Figure 5(a) shows
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the (200) bulk lattice periodicity and Fig. 5(b) is its corre-
sponding power spectrum. Figure 5(c) is an image of the
(001) surface lattice obtained by filtering out the bulk lat-
tice periodicities. It can be seen that excellent agreement
between experimental micrographs and the computer-cal-
culated images has been achieved for both bulk and sur-
face lattice structures.

® Point defects—[111] split Crowdion interstitial in
tungsten

In order to demonstrate that electron microscope images
of localized disorder in bulk crystals can be computed for
dynamical electron scattering, the [111] split Crowdion
interstitial will be considered here. A unit cell model of
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this defect is shown in Fig. 6. Up to this time all the prior
dynamical computational procedures (e.g., Ref. [20])
considered a weak phase object approximation by taking
the atom to lie in a single scattering plane. This implies
that the three-dimensional effect of the strain field was
totally negated.

Here examples will be shown of propagation of elec-
tron wavefronts through several slices of crystalline ma-
terial where differing strain-field distribution and hence
diffuse elastic scattering distributions are obtained de-
pending on the distance from the defect core. It is impor-
tant to emphasize that in a real experimental situation the
visualization of point defects is still somewhat tentative,
since no one has worked with a system where the strain-
field distribution is well known. Here, the intent is to
show that, given a model of the atomic displacements of a
point defect, one can calculate using dynamical theory
the image intensity produced by the scattering from a de-
fect in a crystal. Furthermore, one can predict the in-
tensity and image features expected in real electron mi-
crographs.

The lattice model for the [111] split Crowdion inter-
stitial was obtained by first constructing via the computer
a perfect body-centered-cubic (bcc) crystalline lattice.
Here, each lattice layer consisted of a planar arrangement
of atoms with a square primitive two-dimensional lattice
with a d-spacing of 3.16 A. Thus adjacent layers could be
constructed by shifting the lattice by 1/2 the d-spacing
along the three (100) directions simultaneously. The lat-
eral extent of the model corresponded to 15 X 15 atoms
per layer, which is equivalent to a crystal dimension of
~50 A on a side.

The defect strain field can be included in the perfect
lattice by using the tabulated values of Benedek and Ho
[26]. In this case the number of atoms considered for this
strain field consisted of 182 atoms where each atom was
assigned an ideal lattice position site in terms of integer
numbers representing half unit cell parameters (a,b,c). If
these integer numbers matched the perfect bece lattice in-
tegers, the strain-field displacement was added to the
atom positions vectorially. Different heights of the defect
were assigned different position designations or negative
integer numbers ¢, so that different slices through the
crystals contained different strain-field contributions de-
pending on the level of the defect sampled. Figure 7 is a
projected strain-field map of the split Crowdion with di-
rections of the displacements from the ideal lattice posi-
tions. Here the correct magnitudes of the displacement
vectors are not shown because they are at most a few
hundredths of an angstrom, except for the core atoms
(see Ref. [27]). Furthermore, the strain field is displayed
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Figure 6 Schematic diagram of the unit cell containing a [111]
split Crowdion interstitial in tungsten. The black dots show the
location of the interstitial and displaced W atoms where the latter
occupied the lattice site at the center of the cell in a perfect crys-
tal.
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Figure 7 Map of the atom displacements (strain field) for a
[111] split Crowdion interstitial in tungsten (182 atoms) when
projected onto the microscope image plane. Here the crystal is
tilted by 10° about a [100] direction to allow atoms at different
depths to be visible.

with a 10° tilt to allow atoms at different depths to be
clearly displayed. This is a rotation about the abscissa of
10° or in terms of Eulers angles 6 = 10°, ¢ = ¢ = 0° (see
Ref. [28]).
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(a)

(c)

Figure 8 Diffraction patterns of the [111] split Crowdion defect in tungsten for a (001) orientation. (a) and (b) are weak phase object
patterns from single layers containing strain-field distributions unique to each layer. Note the diffuse scattering and the primitive lattice
periodicity. (c) is the multi-slice diffraction pattern of 22 layers containing the whole Crowdion defect. Note that the reciprocal lattice
pattern here is fcc, which is the reciprocal space representation of a bee crystal. The display distance of the images is 4 A~ Yside.

(2) (b)

Figure 9 Dynamical diffraction dark-field images of the [111]
split Crowdion in tungsten, (a) from a (002) matrix reflection, (b)
from the diffuse scattering region near the (002) reflection. See
Fig. 8(c) for the location and size of the objective aperture.

The computed diffraction patterns using Eq. 9 for weak
phase object layers of the bcc crystal containing the
Crowdion defect are shown in Figs. 8(a) and (b). Images
(a) and (b) were derived, respectively, from atoms with
position designations (a,b,1) and (a,b,0). The latter corre-
sponds to the layer through the center of the defect and
includes the (0,0,0) position atom (see Fig. 6). Here Fig.
8(b) was constructed from one more atom than the 15 X
15 = 225 required for the other layers to allow accommo-
dation of the extra interstitial atom. In Figs. 8(a) and (b),
the images are displayed with eight decades of intensity to
show the Bragg scattering and the background diffuse
elastic scattering due to the strain field. The ringing along
the line connecting the diffraction spots is due to edge
diffraction effects, which unfortunately occur because the
original bcc model has its boundaries perpendicular to

WILLIAM KRAKOW

these directions. These edge effects can be discounted in
images and are of no concern except that they somewhat
mask the Bragg scattering. Note that both diffraction pat-
terns show a primitive square lattice consisting of a 13 X
13 array of Bragg spots. This is expected since each layer
has a spacing of 3.16 A in a primitive square lattice. It is
not until multi-slicing occurs that the bce nature of the
diffraction pattern is apparent from the cumulative scat-
tering effect of two or more adjacent layers.

The results for dynamical electron diffraction from a
crystal containing the Crowdion defect for a film thick-
ness of approximately 50 A were obtained from the kine-
matic scattering distributions. Here the sequencing of lay-
ers was five layers of perfect bcc lattice one unit cell thick
(i.e., two monolayers), followed by 12 layers each a
monolayer thick and containing unique strain-field distri-
butions. This was then followed by five layers of a perfect
bec lattice one unit cell thick. The diffraction pattern for
multi-slicing is shown in Fig. 8(c). Here it can be seen that
the reciprocal space (001) projection is an fcc unit cell,
which is to be expected when a bcc real lattice is trans-
formed to reciprocal space. A reciprocal lattice unit cell
has been boxed in to make observation easier. Note that
the diffuse scattering is not visible because too few dec-
ades of intensity were included. The curvature of the
Ewald sphere is apparent for this pattern where the in-
cident beam intensity is along the [001] zone.

The results of image computations from the dynamical
diffraction pattern are displayed in Fig. 9 for two cases of
dark-field imaging. Here a small objective aperture was
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used to avoid a lattice imaging mode. It demonstrates that
images can be visualized even when the objective aper-
ture is diffraction-limited by an angular radius of R =
0.005 radians, which corresponds to a real-space resolu-
tion of ~3.7 A. Figure 9(a) represents imaging from a
(002) matrix reflection, while Fig. 9(b) represents an im-
age formed from the diffuse elastic scattering from a re-
gion adjacent to this reflection. The exact diffraction con-
ditions from images 9(a) and (b) are displayed by small
circles labeled respectively a and b in Fig. 8(c) to show
the reciprocal space regions sampled. It must be reiter-
ated that the dotted diffraction lines around each Bragg
spot are of no consequence since they are produced by
edge diffraction and hence do not contribute to the image
in the region of the defect as evidenced by Fig. 9.

& Amorphous materials

To demonstrate the multi-slice diffraction computation of
an amorphous material, a model consisting of 5390 atoms
was provided from a portion of the Finney model [29],
which is composed of 7928 atoms. This model has been
used extensively by Graczyk and Chaudhari [6] and
Chaudhari [30] to investigate the scattering properties of
dense random packings of atoms and to determine
whether dislocation-like defects could be supported in
amorphous metallic solids. In the experiments described
here the model was scaled to the nearest neighbor dis-
tance in Fe of 2.55 A and all diffraction computations
were based upon the scattering factors for this atomic
species. The 5390-atom model geometry is in the form of
a cylinder which is 48 A deep and 45 A in diameter. A
view along the cylinder axis of all the atoms in projection
is shown in Fig. 10. This is the orientation of the model
used for electron microscope imaging and diffraction cal-
culations where the incident beam is approximately paral-
lel to the cylinder axis.

For the multi-slice calculation the model was divided
into slices 4 A thick along the cylinder axis. The atomic
population of each slice varied in number between 420
and 455 atoms. An example of the diffraction pattern and
images obtained from one of these thin slices is shown in
Fig. 11. Here image (a) is the computed diffraction pattern
and images (b) and (c) are images with a contrast transfer
function (CTF) of unity for microscope resolutions of 1.5
and 2.5 A, respectively. These resolutions correspond to
objective aperture sizes of 0.025 and 0.015 radians, re-
spectively, for 100-kV electrons.

The results for multi-slicing through twelve 4-A layers
of Fe are shown in Fig. 12. The diffraction pattern dis-
played in (a) shows an apparent broadening of the second
diffuse halo over the weak phase object pattern of Fig.
11(a). Images in Figs. 12(b) and (c) are bright-field images
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Figure 10 Atomic distribution of atoms for an amorphous solid
seen in projection along the cylinder axis. Here the cylinder con-
tains 5390 atoms and the display represents the projection of
~48 A thickness.

with a CTF of unity for objective aperture sizes of 0.025
and 0.015 radians and can be compared directly to the
weak phase object images of Figs. 11(b) and (c). It is in-
teresting to note in Fig. 12(b) that there is a correspon-
dence between the atom positions of the model and the
white image features; however, here we are well beyond
the point-to-point resolving power of a real 100-kV micro-
scope. The darkened regions in Fig. 12(b) correspond to
regions which are less densely populated in traversing the
full thickness of the cylinder. Here, because the darkened
regions do not allow precise atomic position data to be
determined, only projected density variations can be ob-
tained. This situation is considerably worsened when the
microscope resolution is diminished to 2.5 A in Fig.
12(c). Here there are poorer correlations between bright
image patches and the projected density of atoms. The
situation is not favorable in dark-field imaging with micro-
scope aberrations as shown in Fig. 12(d). Here the bright
fringelike patches are uncorrelated with the number den-
sity of the model. The poor agreement of the dark-field
image is due to sampling of a limited region of reciprocal
space, which enhances image features with spatial sepa-
rations along given directions.

The apparent broadness of the diffraction pattern due
to multi-slicing in the amorphous model is more easily vi-
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(a) (b) (c)

Figure 11 (a) Diffraction pattern of a 4-A-thick slice of the amorphous model which contains 420 atoms. The display is 4 A7 Yside. (b)
Weak phase object bright-field image for a contrast transfer function of unity and a resolution level of 1.5 A. (c) Same as image (b) except
that the resolution is now 2.5 A.

(@) (b) ' © (d)

Figure 12 (a) Multi-slice diffraction pattern from the amorphous model ~48 A thick. The reciprocal space display is =4 A "side. (b)
Bright-field axial illumination image obtained from pattern (a) for a resolution of 1.5 A and a contrast transfer function of unity. (c) Same
as image (b), but the resolution is now 2.5 A. (d) Tilted beam dark-field image from the first diffraction halo as indicated in (a). The

resolution level is =2.1 A. In images (b) to (d) the display size is 64

sualized by taking line scans of the intensity in the dif-
fraction pattern for successive layers; see Fig. 13. Here
approximately the first three decades of intensity were
plotted. It is apparent that the intensity of the subsidiary
maxima increases in progressing to further layers, but
most important is the degradation of the sharpness of the
subsidiary diffraction maxima even for a relatively thin
sample. These effects will be more prominent for thicker
films, which implies that obtaining radial distribution
functions by electron diffraction in amorphous solids is
questionable since the single scattering distributions upon
which they are based are no longer valid. In view of this
finding, a more critical check of the significance of mul-
tiple scattering effects in an amorphous sample is needed.
The interpretation of diffraction pattern line traces at dif-
ferent thicknesses is somewhat confused by speckle ef-
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side.

fects. What is needed is a comparison of the same total
thickness of the diffraction patterns and images, comput-
ed by multi-slice and a single large-slice equivalent to the
total thickness. This comparison, however, may not have
meaningful information since a single large slice would
soon violate the criterion of the WPO approximation re-
quiring that the scattering be small compared to the in-
cident beam intensity. This problem will certainly be sig-
nificant in Fe films and of greater importance in higher-
atomic-number amorphous materials.

Discussion and conclusion

For any detailed interpretation of electron microscope
images and diffraction patterns, computer calculations of
model structures are invaluable when atoms are in close
proximity. In the last section a number of examples of
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materials with three-dimensional distributions of atoms
were used to demonstrate the necessity of being able to
calculate the wave distributions from different layers pro-
gressively to simulate the scattering processes occurring
in a real electron microscope. In this manner one is able
to investigate a priori many different classes of materials
and optimize the requirements of the specific material,
such as thickness and orientation, as well as optimizing
the appropriate electron microscope parameters.

The examples chosen for the image computations using
multi-slice theory comprise objects where localized dis-
order occurs. In particular, the cases of crystalline sur-
faces, which can be rough on an atomic scale, can be
dealt with for both the top and bottom surfaces. Here it
was possible to show that surface structure can be visual-
ized and its detail separated from the bulk lattice periodic-
ities. A second area which was considered involved point
defects which have an accompanying three-dimensional
strain field extending a few tens of angstroms from the
defect core. This class of objects can be expanded with
the present computational procedures to include ex-
tended defects existing over larger dimensions in the
crystal both laterally and along the direction of propaga-
tion of the electron wave fronts. The important point to
emphasize is that any defect in a crystalline material can
be treated regardless of its location in depth and the ex-
tent of its strain field. Of course, an amorphous material
can be regarded as a special case of a crystalline material
with defects. Here the disordering applies to all the atoms
in the model opposed to specific atoms, as in the case of
point defects. For an amorphous material each layer will
be unique, whereas the strain field of a crystalline defect
will have periodic components and be bounded in depth
by perfect crystalline layers.

~ For different objects one must therefore create a menu
of slices and propagate through the specified layers. The
simplest case to treat is that of a perfect crystal where
each slice has the same weak phase object scattering dis-
tribution. Provided the perfect crystal has a reasonably
large lateral extent, only Bragg scattering occurs. In this
case there should be no diffuse scattering due to short-
range order; hence in practice it is only necessary to eval-
uate the regions of reciprocal space corresponding to the
Bragg reflections. In other words, for perfect crystalline
structures the system of programs which has been de-
scribed can be simplified and the requirement of 256 X 256
reciprocal lattice points can be reduced considerably for
this special case. As soon as any nonperiodic component
is introduced, this criterion will be violated. In other
words, any deviation from a perfect periodic structure re-
quires a full reciprocal space evaluation. Even the in-
troduction of free atoms on surfaces requires the evalua-
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Figure 13 Line scans of the diffraction data of the amorphous
model after slicing through (a) 1 layer, (b) 6 layers and (c) 12
layers. Each layer is 4 A thick.

tion of the full range of reciprocal space. This latter topic
will be considered in the numerical analysis of electron
micrographs of crystalline Si containing defects and sur-
face contaminant atoms in another publication [27].

Some further discussion of the system of computer pro-
grams is worthwhile to emphasize the computational ca-
pability of the system of computer programs for multi-
slicing and imaging. Here, diffraction patterns are com-
puted either for axial illumination or the tilted-beam case.
In this manner it is possible to obtain bright-field images if
the beam tilt is less than the objective aperture angle, or
tilted dark-field images if the tilt is greater than the aper-
ture diameter. It is also possible to include effects of astig-
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matism during the image calculation and approximate the
effect of partial coherence in a similar manner. Of course
it is possible to consider different electron wavelengths,
which demands that the weak phase object scattering be
reevaluated as well as the multi-slice computations.
The system of programs can compute most forms of
images and diffraction patterns which one can achieve
in a conventional transmission microscope. Furthermore,
this system applies to a generalized object containing any
atomic arrangement of atoms and is not as restrictive as
earlier methods of dynamical electron diffraction.
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