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Coupled Lossy Transmission  Line  Characterization  and 
Simulation 

It has  been  shown  that  the  frequency  domain  solution  of  the  coupled  lossy  transmission line dzrerential  equations  has  a 
similar appearance  to  that of the  single  line. The frequency-dependent n x n characteristic  admittance  matrix Yo and 
propagation  matrix r can  be  obtained  from network analyzer insertion loss data  treating the coupled  transmission lines 
as  a  2n-port  network. This paper  develops  a transient simulation  technique for  coupled  lossy  transmission  lines  based on 
frequency-dependent Yo and r data.  Simulation results agree  very well  with  transient measurements. 

Introduction 
Transmission  lines are used for signal propagation be- 
tween digital circuits in computers. They may appear  as 
metal lines on IC (integrated circuit) chips, printed  wires 
on PC (printed circuit)  boards, flat or coaxial  cables be- 
tween boards,  frames,  etc. They may also  appear  as tele- 
phone  cables between a computer  and  its peripheral  de- 
vices. All  of these  conductors  have finite losses.  In  the 
above  applications, we are mainly interested in signal 
transient  responses. Occasionally, we also  have a need to 
investigate frequency domain  responses for stability  stud- 
ies. Note  that  the driving and receiving circuits involved 
may be passive or active, linear or nonlinear. The  trans- 
mission lines are usually  surrounded by inhomogeneous 
dielectric  media. For long-distance connections between 
a computer  and  its peripheral devices, we have low data 
rates and slow signal voltage transitions. On the  other 
hand,  the  interconnections  on IC chips or PC boards will 
carry high data  rates with fast signal voltage  transitions. 
The close  spacing between adjacent  lines requires careful 
attention  to signal crosstalk. Sometimes we may have  to 
ensure  that  the receiving  circuit switches  on  the first in- 
cidence of signals. Sometimes it may take  the signal volt- 
age several  trips back  and forth on  the transmission lines 
to switch the receiving circuit.  In  short,  we need  a  versa- 
tile coupled  lossy  transmission line model capable of sim- 
ulating all possible conditions. Of course, we are still lim- 
ited to quasi-TEM waves. This requires  that  the  cross 

section  be independent of position  along the lines  and that 
separations  between signal wires and  the  reference  con- 
ductor be small with respect  to  the wavelength of the sig- 
nal. 

The equivalent  circuit  associated with the method of 
characteristics  has been  used for  transient analysis of a 
single lossless line [I], coupled  lossless  lines [2-51, and 
coupled  resistive lines [6, 71. These simulation  techniques 
satisfy the  above  requirements  except  that  the frequency- 
dependent  losses  have been  neglected. In this paper  we 
shall extend the  method of characteristics  to transient 
simulations of coupled  lossy lines  having  frequency-de- 
pendent line parameters, including skin  effect,  proximity 
effect,  dielectric loss, etc. 

The frequency dependencies of transmission line char- 
acteristics  due  to skin effect [8] and proximity effect [9] 
are well-known phenomena. Experimental data  are avail- 
able  for many two-conductor cables [lo, 111.  Recently, a 
frequency domain characterization  technique  for multi- 
conductor transmission  lines  was presented [12]. The 
short-circuit input  admittance  and open-circuit  input im- 
pedance  data  were  required.  The  data  analysis  was based 
on  the complex matrix solution of the coupled  transmis- 
sion line differential equations [ 13-16]. In addition to the 
short-circuit  input admittance  and open-circuit  input im- 
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pedance  data,  we  also include the  transimpedance  data 
from the  network  analyzer insertion loss measurements. 
The  frequency-dependent  characteristic  admittance,  at- 
tenuation,  and  related line parameters  can  then  be ob- 
tained.  Note  that  this measurement and  data analysis 
technique is applicable to  the general (n + 1)-conductor 
transmission line system. 

With frequency-dependent line parameters,  the tran- 
sient simulation has  two difficulties. First,  the  character- 
istic admittance matrix is frequency-dependent, causing 
frequency-dependent reflection coefficients at both  send- 
ing and receiving ends.  Second,  the  propagation matrix is 
also frequency-dependent, causing signal waveform at- 
tenuation  and  dispersion.  In  the  overhead multiphase 
power transmission system,  the  frequency-dependent 
earth  resistance  is  an  important  parameter [17]. Many pa- 
pers  have been  published  investigating  power-on  tran- 
sients and line-fault transients [18-231. The 2n-port  net- 
work parameters  for  the ( n  + 1)-conductor  transmission 
lines [13] were used in the studies  with the  inverse Fou- 
rier integral [ 181 or the convolution  integral [ 191. In  order 
to  save  computer time in their convolution  integral  meth- 
ods,  two investigators [20, 211 used the  method of charac- 
teristics  but  neglected the  frequency  dependence of the 
characteristic  admittance matrix. In  other  words,  the fre- 
quency-dependent reflection coefficients were not  in- 
cluded.  A recent  paper used a finite Fourier  cosine  trans- 
formation of the  spatial independent  variable  (instead of 
time) to  derive a lumped model [22]. It supplemented the 
conventional ladder  network  approach [23]. 

Instead of using the  inverse  Fourier integral or the  con- 
volution  integral technique, a wave  shaping network [24] 
was synthesized to account  for  the  frequency-dependent 
attenuation  for a single  line. S. P. Madyiwa [25] and F. 
Briglez [26] developed a rigorous technique in synthesiz- 
ing the  wave  shaping  network. A ratio of two polynomials 
in the complex  s-plane was derived such  that  the magni- 
tude of the  ratio  evaluated  on  the imaginary axis approxi- 
mated the  attenuation of the transmission line of given 
length throughout the  frequency range of interest. A cas- 
cade of constant-resistance bridged-T networks  was then 
synthesized for this polynomial  ratio. In  both  papers,  the 
frequency dependence of the  characteristic impedance 
was neglected. Therefore,  the technique is limited to  the 
high-frequency  application of the single lossy line. 

In this paper we combine  the following techniques: 1) 
the decoupled mode  transformation, 2) the method of 
characteristics,  and 3) the  wave shaping  polynomial  ratios 
together with state variable  solution instead of network 
synthesis.  They  are integrated together  for  transient sim- 

26 ulation of the  general  case of (n + 1)-conductor  coupled 

lossy  transmission  lines. All the information  needed is de- 
rived from  the  frequency-dependent line parameters ( i . e . ,  
R, L,  G, and C matrices), which can be  measured or cal- 
culated. The simulation  technique takes  into  account  the 
frequency-dependent attenuation and dispersion of trans- 
mitted and  coupled signals. It  also includes the fre- 
quency-dependent reflection coefficients, which may be 
nonlinear if nonlinear  terminations are  used. 

In  order  to verify the simulation method,  subroutines 
compatible with ASTAP [27] were  written to perform 
transient simulations. The input data were the frequency- 
dependent line parameters obtained  from  two-  and  three- 
conductor cable measurements.  The simulation results 
presented  later  are in excellent  agreement with actual 
transient  measurements. This paper  describes  the devel- 
opment and  implementation of a  simulation  method for 
coupled  lossy transmission lines that satisfies all require- 
ments  for  computer applications  mentioned above. 

Frequency  domain  formula  for  coupled  lossy 
transmission  lines 
For  the (n + 1)-conductor  coupled lines,  the differential 
equations in the  frequency  domain  can  be  expressed  as 
follows: 

d -v = -ZI, (1) 
dx 

d 
"I = -w, (2) 
dx 

where V is the n X 1 vector  for line voltage  with  respect to 
the reference conductor. I is the n X 1 vector  for line 
current. Z = R + j w L ,  Y = G + jwC.  R, L, G, and C are n 
X n real symmetric  matrices, which may be  functions of 
frequency, but independent of x .  

The solution of the  above differential equations  has 
been  presented in several publications [ 13-  161, with some 
assumptions  being implicitly or explicitly expressed. We 
shall first quote  the solution and follow with assumptions 
made. When these  assumptions  cannot  be  met,  the simu- 
lation methods  and  characterization  techniques  presented 
in this paper will fail. The solution is 

V = exp ( - r x ) A  + exp (rx)B, (3) 

Yi'I = exp ( - r x ) A  - exp (rx)B, (4) 

where 

r = (ZY)"~ = P ~ P - ' ,  (5) 

y = z-lr = yr-l . (6) 

P is the eigenvector  matrix of r. It  is also the eigenvector 
matrix of the ZY product. y is the diagonal  eigenvalue 
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matrix of r. From  the properties of functions of matrices 
[28], we have 

exp ( -rx) = P exp (- y x ) ~ "  . (7) 

In  the solution the  existence of the  complex matrix 
square root (ZY)'" is assumed. And it is implied that Yo is 
a complex symmetrical matrix. We state  the general as- 
sumptions in Appendix  A. 

The (n + 1)-conductor transmission  lines of length d 
can be treated  as a  2n-port network, having n ports on  the 
sending end  and n ports  on  the receiving end.  It  can be 
proved [29] that 

[;] = [ -Yo csch r d  Yo coth r d  1 [V,]' (8) 

In  other  words,  we  have  the short-circuit admittance ma- 
trix of the 2n-port network  as follows: 

Yo coth I'd -Yo csch r d  V, 

yzn = [Y,  Y,) 
'A 'B 

where 

Y, = Yo coth r d ,  

Y, = -Yo csch r d .  

From  the definition of function of matrices [28], one  has 

coth r d  = P(coth  yd)P-', 

csch r d  = P(csch yd)P-' . 
P is the eigenvector of I', also of ZY. And the open-circuit 
impedance  matrix is 

where 

Z, = (coth Td)Y,', 

Z, = (csch Td)Y,'. 

Frequency  domain  characterization 
After establishing Y,, and Z,, matrices from  the insertion 
loss measurements described in Appendix B, we can  then 
use Eq. (9) and/or  Eq. (10) to  derive Yo and r matrices. Of 
several methods  considered by us, the following two  data 
analysis methods  appear  to give the  best  accuracy. 

Data analysis method 1 
This  method was  used in Ref. [12]. It is to be  used  when 
the  transmission line attenuation is small.  Since  this 
method involves only measured data  at  one end of the 
coupled  lines, the  accuracy  decreases  when  the reflected 
signal is highly attenuated. This consideration is impor- 
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tant in the calculation of attenuation.  From  Eqs. (9) and 
(lo), we have 

Z,Y, = (coth rd)' , 
(tanh Td2 = (Z,Y,)-' = PAi:yAP-l , 
tanh r d  = PA-$AP-l, (1 1) 

Td = P[tanh-' Ai::A]P-'. (12) 

Note  that P is the eigenvector  matrix of Z,Y, (and also of 
r matrix). From  Eqs. (A2) and (12), we  have 

yd = tanh" Ai:;: . (13) 

Note  that  each diagonal element of the matrix has 
two roots, which are 180' out of phase.  The  proper  one  to 
use is the  one with the positive real  part, which will pro- 
duce a positive real  part  for yd  in Eq. (13). This can be 
proved  through  algebraic  manipulation of tanh yd with 
complex argument yd .  Each diagonal element in the diag- 
onal  matrix yd of Eq. (13) gives a propagation  eigenvalue 
(attenuation and  phase shift) for  each decoupled  mode. 
From Eqs. (9) and ( 1  l),  we have 

Yo = Y, tanh r d  = Y,PAi$AP-'. (14) 

Data analysis method 2 
This  method is to be  used for transmission  lines  with high 
attenuation. This may happen either  because  the line is 
sufficiently  long, or because  the  frequency of interest is so 
high that  losses  due  to skin effect and proximity effect are 
significant. It  involves  the  measurements  at  both sending 
and  receiving ends of the  coupled lines. From  Eq. (9), we 
have 

"YB'Y, = cash r d ,  

r d  = P[cosh"  A-yilyA]P-' , (15) 

where P is the  eigenvector matrix of -Y,'Y,. It is also 
the eigenvector matrix of r d .  

From Eqs. (A2) and (15), we  have 

yd  = cosh-' (16) 

From Eqs. (9) and (15), we have 

Yo = -Y, sinh Td 

= -YBP[sinh (cosh" A-yilyA)]P-'. ( 17) 

From  Eq. (13) or (161, we can  obtain  for  each de- 
coupled  mode the  attenuation  constant  and  the delay per 
unit length by dividing the  real  and  the imaginary parts by 
d and a d ,  respectively. 

Having derived r d  [Eq. (12) or (IS)], and Yo [Eq. (14) 
or (17)],  we can  use  Eq. (6) for  the following: 

Z = R + j o L  = rY;', (18) 

Y = G + joC = Yor .  ( 19) 27 
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Figure 1 Coupled transmission line equivalent circuit. 

Transient  simulation  technique 
Before getting into  the method  used for  lossy line tran- 
sient  simulation, we shall show  that  the equivalent  circuit 
of Fig. 1 is applicable not only for simulation of ideal lines 
[2-51 but  also  for  lossy lines if the following  two  condi- 
tions can be  met: 

1. The  frequency-dependent  characteristic  admittance 

2. The  proper  relationship  to  express  the E sources in 
matrix Yo can  be simulated in time domain. 

terms of time and  the terminal  voltage  exists. 

The first of these conditions will be demonstrated  later. 
We shall first show  that  the  second  condition  can be  met. 
Note  that  Eqs. (3) and (4) can  be  rewritten  as follows: 

V(x) = V+(X) + v-(x) ,  (20) 

Y,'I(x) = V+(X) - v-(x) ,  (2 1) 

where V'(x) = exp (-rx)A is the  forward propagating 
wave and V-(x) = exp (rx)B is the  backward propagating 
wave. 

Evaluating Eqs. (20) and (21) at  the sending  end (x = 01, 
we have 

E, = V(X = 0)  - Y,'I(x = 0) = 2V-(X = 0) .  (22) 

Similarly, at the receiving end, 

E, = V(x = d) + Y,'I(x = 6) = 2v+(X = d). (23) 

From the definition V-(x) = exp ( W B ,  we have 

V-(x = 0) = B = exp (- l?d)V-(x = d). (24) 

Substituting  this equality into Eq. (221, we have 

E, = 2 exp (-rd)V-(x = d ) .  (25) 

Evaluating Eq. (20) at  the receiving end (x = d) and using 
Eq. (23), we  have 

1 
V-(X = d) = V(X = d) - V'(X = d) = V, - E,, (26) 

where V, = V(x = d). 28 
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Combining Eqs. (25),  (26), and (7) we  have 

E, = P[exp (-yd)]P-'[2VR - E,]. (27) 

By symmetry, we have 

E, = P[exp (-yd)]P"[2VS - E,], (28) 

where V, = V(x = 0). 

This confirms the validity of the  equivalent circuit of 
Fig. 1 for  use with  coupled  lossy  lines, as long as  the oper- 
ator P[exp (- yd)]P-', which in general is frequency-de- 
pendent,  can be  implemented  in the time  domain. 

Equations (27) and (28) are  true  at  any  frequency.  For 
the general case of lossy lines,  elements of P, P-', and 
exp (-74 matrices  are  functions of frequency. We can 
approximate each element in the P and P-' matrices as a 
ratio of two polynomials in the  complex s-plane. The 
poles and  zeros of this ratio are placed on  the real axis. 
The ratio is to  be evaluated on  the imaginary  axis. The 
locations of poles and  zeros  are  adjusted  to give a good 
approximation to  this ratio in both magnitude  and  phase 
throughout the  frequency range of interest. 

Note  that  exp (- yd) is a diagonal  matrix. We shall first 
factor  out  for  each diagonal element the corresponding 
constant delay operator. This is 

exp (--y,d) = A ,  exp (--jP,d). (29) 

Note  that p, is the high-frequency asymptote of the imagi- 
nary part of y, .  

Taking the  absolute value of both  sides of the  above 
equation, we have 

That is,  the magnitude of A,  represents  the attenuation of 
kth  decoupled mode. 

A,  in Eq. (29) can  then be approximated by a  ratio of 
two polynomials in the complex  s-plane as is an element 
in the P matrix discussed  before.  In  the complex  s-plane 
exp (-jp,d) can  be rewritten as  exp ( -ST&. Then,  Eq. 
(19) becomes 

exp (--y,d) = A,(s) exp (-s~,d). (3 1) 

Note  that 7, is the high-frequency limit of the kth-mode 
delay time. 

We can now treat  Eqs. (27) and (28) as  the  Laplace 
transforms relating E&) and E,(s) to V,(s) and V,(s). The 
triple-matrix product P[exp (- yd)]P-' can be treated  as 
three  operators in cascade. 
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The physical  meaning of Eq. (28) can be expressed  as 
follows: 

1 .  The incident wave (1/2)[2V, - E,] is broken up  into n 
decoupled modes  as  determined by the  product 
(1/2)P"[2VS - E,]. This  product  produces a vector 
M. Its  kth  component, M,, represents  the kth  com- 
ponent of the decoupled wave. 

2. Each  component of the decoupled mode, M,, is  then 
operated  on by the  appropriate  operator  exp (--yd), 
which is shown in Eq. (31). This resu!ts in a signal 
delay of Tkd, plus attenuation  and dispersion repre- 
sented by A,(s). 

3. These modified mode  magnitudes,  properly lined up in 
time represented by the  exp  ST,^) operator,  form a 
new vector, which is then multiplied by P to yield the 
resultant voltage vector E,. From  Eq. (23), we  note 
that (1/2)E, represents  the incident voltage vector  ar- 
riving at  the receiving end. 

Similar physical  meaning also applies to E, in Eq. (27). 
Here (1/2)[2V, - E,] represents  the reflected voltage 
vector  at  the receiving end.  From  Eq. (22), we note  that 
(1/2)E, represents  the reflected voltage vector returning 
back  to  the sending end. 

The implementation of the equivalent  circuit in Fig. 1 in 
a circuit simulation program  can  be  accomplished using 
the voltage-dependent current  sources of Fig. 2. The  La- 
place transforms of these  current  sources J, and J, and 
the  terminal  voltages V, and V, are related by the follow- 
ing equations: 

J, = Yo[V, - E,], (32) 

J, = y,[v, - E,], (33) 

where 

E, = P A[exp (-s~d)]P-'[2V, - E,], (34) 

E, = P A[exp (-s~d)]P-'[2V, - E,]. (35) 

(The E, and E, vectors  represent intermediate state vari- 
ables.) 
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Figure 2 Current source  representation for coupled  transmis- 
sion lines. 

A(s) in Eq. (36) can be treated  as a transfer function 
relating E&) to Etl(s). It is well known that a transfer 
function  having the  number of poles  equal to  or  greater 
than  the number of zeros  can  be simulated  by means of 
state  variables, using numerical  integration [30, 311. The 
only assumption  that is needed is that the  analytic ex- 
pression  represents a stable  network. By restricting the 
poles to the left-half plane  in the routine that  produces a 
ratio of two polynomials to  approximate A(s) ,  this prob- 
lem is avoided.  From many  simulation exercises we had 
done, it was found that  those  poles and zeros resulting in 
good approximation  to  the magnitude of A(s),  which was 
equal to  exp (-ad) as  shown in Eq. (30), would also give 
a  good  approximation to  the  phase of A(s). 

From  Eq. (36), we have 

where 

Note  that Eu,(s) is an  intermediate  state in Eqs. (38) and 
(39). Taking the inverse Laplace transform of Eq. (38), we 
have 



I _" 

Figure 3 Transfer function implementation using state vari- 
ables. The triangular box represents a  time integrator. 

I I :  

Figure 4 Derivation of decoupled mode voltage vector M. 

Next,  we  have  to  express e,,(t) and  its  derivatives in 
terms of e,,(t), which is available from  Eq. (37). From  Eq. 
(39), we have 

S"E, , (S)  = E&) - (bn-lsn-l + * . . + b,s + bo)E,,(s), 

e(:i(t) = e,,(t) - bn-le'",l)(t) - . . - b,e,,(t) 

- boe,,(t). (4  1) 

Once  the highest derivative e':i(t) is known,  the re- 
maining lower-order derivatives of e,,(t) may be obtained 
by successive integrations. Equation (41) looks like a 
feedback loop with e,,(t) as  its  input, and e$i(t), e(";Tl)(t), 

back coefficients are b,-,, . . ., b,, and bo. Equation (40) is 
then used  to  obtain e,(t). This  is illustrated in Fig. 3 for rn 
= n [32]. When implemented in a program the in- 

. . .  , e,,(t), and e,,(t) as  the  outputs.  The negative feed- 

30 tegrations are performed  numerically. 

Note  that Y,(s) in Eq. (32) can  be regarded as a transfer 
function  relating J,(s) to [V,(s) - E,(s)]. We shall approx- 
imate Y,(s) by a ratio of two polynomials having poles  on 
the negative  real axis. Having  obtained a good approxi- 
mation for Yo(s), we can  apply  the numeric technique 
shown in Fig. 3 .  This time,  the input is [v,(t) - e,(t)], and 
the  output is j s ( t ) .  Similar procedure also  applies to  Eq. 
(33) to  obtain j R ( t ) .  

Coupled line transient simulation 
For  the general case of coupled  lossy line transient simu- 
lation, four different operators, PPI, A ,  P, and Yo, are in- 
volved in the implementation of the equivalent  circuit de- 
scribed in Fig. 2 and  Eqs. (32) to (35). P-', P, and Yo are n 
X n matrices, A is an n X n diagonal  matrix  having n 
nonzero  entries.  The first operation  to be  performed is the 
breakup of the incident  waves into  the decoupled modes. 
This  involves the  operator P" on  the vector [2V, - E,]. 
We treat  each  entry of the P" matrix as a transfer func- 
tion.  That  is, 

Here,  each of the  entries, PI,,, will be approximated by 
a ratio of two polynomials,  similar to A(s) and Y,(s) in the 
previous section of single line transient simulation. The 
product P"[2VS - E,] is illustrated in Fig. 4. 

Note  that  the Pljk(s)  transfer functions do not represent 
a physical system in the  same  manner  as A(s) and Yo(s) do 
for  the single line case.  It  is,  therefore, possible that  for a 
good  polynomial  approximation to Pljk(s) ,  magnitude and 
phase,  poles in the right-half plane may be required.  Since 
this would result in an  unstable  network, it is not  permit- 
ted. An accurate broad-band  model for  such  structure  is 
not possible. We have  to limit the applicable frequency 
range such  that  the poles on  the right-half plane can  be 
neglected. We have analyzed  many structures which have 
been used in the  laboratories, including up to a five-con- 
ductor configuration. The  poles  for P" and P have  always 
been on  the left-half plane. For  the  case of two symmetri- 
cal lines,  the eigenvectors are independent of frequency. 

Once  the decoupled  mode  voltage vector M (M = 

P"[2VS - E,]) is established at each time step,  each com- 
ponent of the M vector  is  stored in a table  for all time 
steps of interest.  The  data  can  then be extracted  after a 
period of time  equal to  the delay for the  corresponding 
decoupled mode. This  procedure  is identical to  that used 
for  delay simulation of coupled ideal lines [4]. Now we 
have a new  voltage vector N = exp (-snf)P" [2V, - E,]. 
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Figure 5 Block  diagram  indicating the operations involved in solution of voltage  source vector E,. 

Each  component of the N vector  is then operated  on by 
the corresponding  component of the transfer  function 
A($), representing attenuation  and dispersion for  that  par- 
ticular  decoupled  mode. The resultant voltage vector is 
exp (-7d)P-l [2V, - E,], representing  twice the incident 
decoupled mode  voltages at  the receiving end. This  volt- 
age vector is then operated on by the operator P. The 
result is the E, vector of Eq. (35). The overall operation is 
illustrated in Fig. 5. The E, vector of Eq. (34) can  be  ob- 
tained in a similar procedure.  Note  the effect of the delay 
operator  exp ( - - s ~ d )  in Eqs. (34) and (35). The E, and E, 
vectors  on  the left-hand side are  constructed from earlier 
values of those on the right-hand  side. 

The Y, matrix in Eqs. (32) and (33) has n X n entries. It 
has  been shown  to be  symmetrical. If we implement Eq. 
(32) as  shown, we have  to perform all n2 operations with- 
out  taking  advantage of the  symmetry of Yo. Note  that  the 
kth component of the J, vector of Eq. (32) can be  ex- 
pressed  as follows: 

There  are (n - 1) terms  represented by the summation 
on  the right-hand  side of Eq. (42); the kj-term in this equa- 
tion is the negative of thejk-term of the (J,)j component. 
We can  take  advantage of this  relation  and  implement Eq. 
(42) with n(n + 1)/2 operations.  Here, we shall treat 
~ ~ = , ( Y o ) k j  and (-YJkj as  the  transfer  functions, relating 
the  kth  component of J, to  the  vector (V, - E,). Each of 
the  transfer functions is to  be approximated by a ratio of 
two polynomials, having poles  on  the negative real axis. 
The  inverse  Laplace transform of Eq. (42) will result in 
[i,(t)],. Extending this operation  to all components in J, 
and J, of Eqs. (32) and (33), we derive  the 2n current 
sources shown in Fig. 2. Each of these 2n current  sources 
depends  on  the 2n terminal  voltages  shown as  the V, and 
V, vectors. 

Experimental  results 
In  the  previous two sections, we have explained the  char- 
acterization of lossy transmission  lines to  derive  the  char- 
acteristic admittance  matrix Y, and  the propagation ma- 
trix r. We have  also explained transient simulation  rou- 
tines.  In this section, we shall exercise the  measurement 
technique  presented in this paper  and  demonstrate  the va- 
lidity of the  transient simulation  method. We shall confine 
the  experiments  to  the low-frequency  range  (say  below 
1 MHz)  to minimize the effect of discontinuities due  to 
line connections.  For this reason, we use  a  commercial 
telecommunication  cable. It  consists of four AWG22 con- 31 
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Figure 6 Input waveform and simulated transient  response  for 
8.98-km cable. 

Table 1 Insertion loss data  for 1344-meter cable. 

wires as signal-carrying conductors.  The orange  pair and 
the shield  were tied together  for  the return current  con- 
ductor. 

Single line comparisons 
The insertion loss measurements were  made on  the blue 
pair of the 1344-meter cable  using the HP3042A network 
analyzer  from 100 Hz  to 500 kHz.  The measured data  are 
shown in Table 1. Using the  frequency domain character- 
ization technique discussed in this paper, we derived  the 
transmission line parameters  shown in Table 2. The 1344- 
meter  cable  represents  one wavelength at  about 135 kHz. 
The  accuracy of the derived phase shift and delay  time at 
f <  5 kHz is questionable. Note  that OL = R at 25 kHz; 
therefore,  the  accuracy of the derived line resistance 
value at f > 400 kHz  is  also questionable. These  parame- 
ters  have been  blocked out in Table 2. Note  that  the  shunt 
conductance  is not  shown  in Table 2 because it was negli- 
gibly small so that  the derived  values  were in the noise 
range. 

In establishing the ratios of polynomials for A(s) and 
Y,(s), we  have  concentrated  on their  magnitudes. The  re- 
sultant polynomial ratio  approximates  the  phase angle 
quite well too.  Note  that Y,(s) is independent of line 
length.  But A(s) is an exponential  function of line length, 
as  shown in Eq. (30). Subroutines  to establish the poly- 
nomial ratios  and  to  convert them for numerical  in- 
tegration, shown in Fig. 3,  have been  written. They  are 
compatible with ASTAP [27]. 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
200 
500 

-7.72 -0.29 -7.22 
-7.71 -0.35 -7.56 
-7.72 -0.61 -7.68 
-7.72 -1.01 -7.7 
-7.74 -1.87 -7.7 
-7.9 -4.41 -7.71 
-8.47 -7.78 -7.74 

-10.58 -6.71 -7.76 
-5.99 23.89 -6.99 
-9.12 10.14 -8.99 
-6.1 3.47 -12.09 
-6.54 0.93 -20.1 

-7.43 
-4.86 
-3.24 
-3.7 
-5.89 
- 13.62 
-26.65 
-52.25 
- 134.2 

87.91 
- 170.5 

155.7 

-47.24 
-42.95 
-34.75 
-28.64 
-22.66 
- 14.66 

-9.16 
-5.15 
-8.22 
-5.49 
-7.74 
-6.78 

88.36 
89.58 
88.51 
86.87 
83.71 
73.99 
58.48 
30.63 

- 10.79 
1.43 
2.33 
1.66 

An ASTAP run [32] has been set  up  to simulate an 8.96- 
km line with 155 ohms plus  0.02 pF shunt  capacitance 
load.  The line is driven  by a 19.2-kb/s biphase, pre- 
distorted signal with 370 mV peak-to-peak  amplitude [7]. 
The simulated  ASTAP  plot is shown in Fig. 6. Note  that 
the  output signal waveform is drastically distorted  and  at- 
tenuated  to 16 mV peak-to-peak voltage. which repre- 
sents a factor of  23 attenuation. 

ductors in two color-coded  twisted  pairs. They  are 
wrapped  around by aluminum-coated  mylar and a  braided 
shield. For  the single line measurements,  we  use  the blue 
pair  to  carry  the signal and  return  current.  The  orange 
pair is tied together with the shield and left floating. For 
the  two coupled  lines  (3-conductor configuration) mea- 

32 surements, we used the solid blue and the blue stripe 

Additional ASTAP  runs [32] were  arranged to  produce 
the  “eye  patterns” [33] for  two different line lengths, 
6.45 km and 8.96 km,  for  comparison with the  transient 
measurements,  as shown in Fig. 7. The simulated eye  pat- 
terns  have a peak-to-peak  magnitude of 33  mV for 6.45- 
km line and 16  mV for 8.96-km line. They  are  somewhat 
higher than  the measured values of 31  mV and 13.5 mV, 
respectively.  These  discrepancies  are within the measure- 
ment accuracy of the line length,  the insertion loss, the 
oscilloscope,  etc.  Note  that  the  shapes of the  eye  pat- 
terns, including the detailed bends and corners,  agree 
very well with the  measured  results. 
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Table 2 Cable parameters derived from measurements. 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
200 
500 

-0.0003069 
-0.0004201 
-0.0007062 
-0.001009 
-0.001405 
-0.0021  15 
-0.002711 
-0.003229 
-0.003964 
-0.004997 
-0.007870 
-0.01384 

1815.44 
1416.86 
884.50 
621.95 
440.88 
278.73 
204.02 
160.44 
135.98 
128.83 
121.28 
115.31 

-44.06 
-44.70 
-44.26 
-43.64 
-42.38 
-38.61 
-33.00 
-24.68 
-13.49 
-9.28 
-5.41 
-2.41 

0.07  9.743 
0.10 7.653 
0.17 6.505 
0.40  5.942 
0.77 5.731 
1.48 5.512 
3.57 5.31 1 

0.1005 
0.1044 
0.1060 
0.1062 
0.1062 
0.1063 
0.1068 
0.1090 
0.11% 
0.1480 
0.1885 

Table 3 Four-port network insertion loss data: (a) short-circuit (above), (b) open-circuit (below). 

33 
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840.3 
773.7 
757.6 
750.2 
739.6 
709.7 
657.2 
609.4 

48.70 
41.41 
43.17 
43.77 
43.68 
44.67 
44.72 
44.54 
44.98 
45.05 
45.80 
46.20 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
200 
500 

lo00 

(dB) 

-5.26 
-5.27 
-5.26 
-5.27 
-5.29 
-5.41 
-5.92 
-7.73 
-3.94 
-6.35 
-4.19 
-4.42 
-4.40 

(deg.1 

-0.20 
-0.26 
-0.51 
-0.90 
- 1.65 
-3.91 
-6.90 
-5.66 
17.75 
7.79 
3.22 
1.67 
0.34 

(dB) 

-22.34 
-22.35 
-22.34 
-22.31 
-22.25 
-21.84 
-21.07 
-21.46 
- 19.23 
-22.28 
- 19.72 
-21.05 
-21.02 

(deg.) 

0.22 
0.35 
0.79 
1.39 
2.58 
4.98 
3.92 

11.56 
13.07 

-4.13 

-6.19 
-6.43 

0.60 

(dB) 

-5.26 
-5.27 
-5.25 
-5.26 
-5.25 
-5.26 
-5.29 
-5.36 
-5.67 
-7.55 

-11.01 
- 19.22 
-28.34 

(deg.1 

-0.76 
-0.81 
- 1.54 
-2.91 
-5.69 

-14.11 
-28.01 
-55.44 
- 139.70 

86.90 
-166.11 

173.86 
78.05 

(dB) 

-22.40 
-22.39 
-22.36 
-22.33 
-22.26 
-21.76 
-20.57 
- 18.77 
- 18.81 
- 19.67 
-23.25 
-28.90 
-32.70 

(deg.) 

- 172.68 
- 177.32 
- 178.99 
- 1.24 
178.83 
176.02 
166.38 
136.33 
32.73 

-98.61 
- 10.37 
-50.81 
- 146.04 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
200 
500 

1000 

-43.05 
-38.69 
-30.53 
-24.47 
- 18.44 
- 10.79 
-5.97 
-3.32 
-5.86 
-3.90 
-5.39 
-4.70 
-4.50 

88.39 
89.31 
87.84 
85.58 
81.13 
68.03 
49.25 
22.66 
-7.48 

2.08 x; 
0.35 

-56.66 
-52.66 
-44.65 
-38.59 
-32.51 
-24.72 
- 19.88 
- 18.34 
-21.30 
- 18.93 
-22.37 
-21.45 
-21.00 

88.54 
89.11 
87.85 
85.47 
80.67 
66.53 
44.31 
12.33 

- 14.87 
-8.38 

8.33 
1.25 

-1.15 

-5.36 
-5.36 
-5.36 
-5.36 
-5.36 
-5.38 
-5.42 
-5.51 
-5.81 
-7.74 
- 11.20 
- 19.37 
-28.81 

-0.84 
-0.85 
- 1.55 
-2.93 
-5.71 
- 14.17 
-28.09 
-55.47 
- 139.31 

87.56 
- 163.95 
- 144.93 

88.81 

-57.10 
-52.64 
-44.65 
-38.57 
-32.46 
-24.43 
- 18.69 
- 14.73 
-22.53 
-21.22 
-27.60 
-30.75 
-34.49 

89.34 
88.% 
87.11 
84.11 
77.94 
59.34 
27.86 

-35.63 
- 168.78 

86.15 
- 128.44 
- 114.64 

154.48 

Coupled line comparisons loss measurement results  are  shown in Tables  3(a) and 
When the  two blue-colored conductors in the 1344-meter (b). The coupled line characteristic  admittance  matrix Yo 
cable  were treated  as  two coupled  lines, we had a four- has  been derived  from these  data. Table 4(a) shows  the 
port network.  The short-circuit and open-circuit insertion frequency-dependent Ylo, Yzo, and - Y12. Here we have 



Figure 7 Comparison of simulated  and  measured eye patterns. 
(a) Measured  input  waveform (also used as simulation  input). (b) 
Measured response of 6.45-km cable. (c) Predicted  response of 
6.45-km cable. (d) Measured  response of 8.96-km cable. (e) Pre- 
dicted  response of 8.%-km cable. Note that for all cases line is 
terminated  in 155 II 0.02 wF. 

defined Ylo = (YJ,, + (Yo),,, and Y,, = Cy,),, + (Yo)zl. In 
Table 4(b), we  show  the  derived  exp (-rd) in an  indirect 
way,  as explained below. 

1. The eigenvector  matrix P for  the propagation matrix r 
for  the  two symmetrical  coupled  lines is 

1 
at all frequencies. 

2 .  Attenuation = (20 loglo lexp (-yd)l)/line  length. 
3. Delay = - Imaginary part of exp ( -yd) /w X line 

4. Mode 1 is  the difference mode, and  Mode 2 is the com- 
length. 

mon mode as defined by the P matrix above. 

The  frequency-dependent R, L, and C matrices  were 
34 derived from  the Yo and r matrices. They  are  shown in 

Frequency (kHz) 

Figure 8 Twisted pair  line  parameters: 0-single twisted  pair; 
x-the difference  mode of two coupled lines. 

Table 5. Several  entries in Tables 4(b) and 5 have been 
blocked out for the  same  reasons  as applied to Table 2 .  
Note  that  the difference mode of the two  coupled  lines is 
equivalent to  the single twisted pair  discussed  earlier  in 
this section.  The R,, L,, and C, parameters' of the dif- 
ference mode can  be proved to be 

R,  = 2 X (Rll - R J ,  

L ,  = 2 x (Lll - L,,), 

C, = 0.5 X (C,, - CJ. 

The comparisons of these  parameters with the R ,  L ,  
and C parameters of the single twisted  pair are  shown in 
Fig. 8. The line capacitance  is independent of frequency. 
The line inductance  decreases  at high frequencies,  as is 
expected  due  to  the  decrease of the internal inductance 
contribution.  The differences between C and L of the dif- 
ference mode of two  coupled  lines  and those of the single 
twisted  pair are within the measurement accuracy.  The 
difference for  the line series  resistance  at f 5 50 kHz  is 
negligible. At f = 1 0 0  kHz  and 200 kHz,  the differences 
are 5% and 6%, respectively, which could be  due  to mea- 
surement  errors.  Further investigation is necessary.  The 
comparison of the magnitude of the attenuation is shown 
in Fig. 9. The differences are very small. Also shown in 
Fig. 9 is  the comparison of the magnitudes of the  charac- 
teristic impedances. For  the difference mode, we have 
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Table 4 Coupled transmission line characteristics: (a) admittances (above), (b) attenuation and delay (below). 

Admittance y, ,  YZ, YIZ 

Freq. (kHz) 
Mag (mS) Phase (deg.) Mag (mS) Phase (deg.) Mag (mS) Phase (deg.) 

0.1 0.77 44.13  0.77 44.13  0.17 - 135.58 
0.2 0.99 44.67 0.99 44.67  0.21 - 135.17 

1  2.25 43.33  2.25 43.33  0.48 - 135.61 
2  3.18 41.86  3.18 41.86  0.69 - 136.28 
5 4.98 37.43  4.98 37.43  1.10 - 138.55 

10  6.68 3  1.46  6.68 3  1.46  1.57 - 143.25 
20 8.27 23.84  8.27 23.84  2.11 - 153.53 

100 10.42 10.31  10.42 10.31  2.57 - 171.64 
200  11.30 6.16 11.30 6.16 2.52 - 174.80 
500  12.11 5.06 12.11 5.06 2.58 - 178.97 

lo00 12.45 0.85  12.45 0.85 2.75 - 179.66 

0.5 1.59  44.10  1.59  44.10  0.34 - 135.26 

50 10.02 14.70 10.02  14.70  2.33 - 168.86 

Freq.  Attenuation (dB/km) Delay (pskrn) 
(kHz) 

Mode 1 Mode 2 Mode 1 Mode 2 

0.1 0.35 0.36 
0.2  0.45 0.46 
0.5 0.71 0.73 
1 0.99 1.03 
2 1.38 1.43 
5 2.03 2.12  9.61 9.69 

10  2.59 2.71  7.74 7.65 
20 3.24 3.28  6.65  6.50 
50 4.02 4.32 5.93 5.93 

100 5.33 5.88 5.75 5.67 
200 8.01 8.59 5.55 5.44 
500  13.60 14.29 5.25 5.14 

lo00 19.44 21.94  5.08  4.97 

From  Table 4(b) we note  that  the high-frequency limit 
of the delay  time of the common  mode  (Mode 2) is smaller 
than that of the difference mode (Mode 1). It can  be ex- 
plained as follows: Note  that  the difference mode energy 
travels in the dielectric between  the  two  conductors of the 
blue twisted  pair. The common  mode  energy travels in 
the dielectric  between the blue  pair as  one  conductor,  and 
the  orange  pair plus  shield  combination as  the  other con- 
ductor.  The dielectric  medium for the common mode  has 
a higher  fraction of air and less polyethylene  than that  for 
the  difference  mode. Also note  that the  delay  times of 
these  two modes at high frequencies  are different by 
0.11 ns/m out of a nominal value of 5 ns/m. It is difficult to 
ensure  that we have  obtained accurate  data  on this small 

value taken  as  the difference between two large numbers. 
However,  the far-end  coupled  noise is extremely  sensi- 
tive to this  propagation  delay  difference. Therefore,  the 
following experiment  was performed  to arrive at a more 
accurate value. 

One end of a 123-meter cable had  the solid blue  wire 
connected  to a pulse generator with a fast transition  time 
(less than 2 ns). The orange pair plus shield combination 
was  used as  the ground return  reference.  The blue stripe 
wire  was connected with 50 ohms  to the reference con- 
ductor.  The signal was observed  on  the  far  end of both  the 
driven  and coupled  lines, both terminated with 50 ohms 
to  the  reference.  The results are shown in Fig. 10, where 
the  output voltages on the  driven line and the coupled line 
are plotted as a  function of time. The  drastic rise  time 
deterioration  observed  at  the  far  ends is due  to  the resis- 
tive and skin effect losses.  Note  that the signal on  both 
lines initially rises together.  This indicates that  the com- 35 
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Figure 9 Measured twisted pair attenuation constant and char- 
acteristic impedance magnitude as compared to the results de- 
rived from difference mode measurements of coupled lines: 0- 
single twisted pair; X -difference mode of coupled lines. 

0 

20.5 ns - 
Figure 10 Fast pulse response to determine propagation delay 
difference for the two decoupled modes. Time T, is start of com- 
mon mode; time T,, is start of differential mode. 

mon mode  is  the  fast one, consistent with Table 4(b). The 
difference mode  arrives 20.5 ns later, when the signal on 
the  driven line rises  again, and  that on the coupled line 
starts  to fall. Therefore, the delay time difference be- 
tween the  fast common mode and the slow difference 
mode  is 0.167 ns/m. It is 50% higher than  the 0.11 ns/m 
shown in Table 4(b). But the  error is only 1.1% of the 5- 
ns/m nominal value, well within measurement accuracy. 

On the basis of the information in Table 4, plus the 
0.167-ns/m fine adjustment to  the high-frequency limit of 

36 the common mode and difference mode delay time, we 

Table 5 Coupled transmission line p a  --.-&CIS. 

Resistance (CLikm) 
Freq. (kHz) R l l  R12  R22 

0.1 64.06  12.83  64.06 
0.2  64.11  12.36  64.11 
0.5 63.89 12.12 63.89 
1  63.97  12.13  63.97 
2  64.01  12.19 
5 

64.01 
63.93  12.26  63.93 

10  64.90  12.45  64.90 
20 68.29 13.25  68.29 
50 77 * 93  17.36  77.93 

100 101.47  23.59  101.47 
200  125.72  26.09  125.72 

Capacitance (pFikm) 
Freq. (kHz) Cll  c12  c22 

0.1 
0.2 
0.5 
1 
2 
5 

10 
20 
50 

100 
200 
500 

lo00 

0.0862 
0.0713 
0.0726 
0.0732 
0.0740 
0.0745 
0.0750 
0.0752 
0.0756 
0.0754 
0.0768 
0.0768 
0.0766 

-0.0140 
-0.0116 
-0.0118 
-0.0119 
-0.0121 
-0.0127 
-0.0141 
-0.0159 
-0.0140 
-0.0153 
-0.0147 
-0.0142 
-0.0146 

0.0862 
0.0713 
0.0726 
0.0732 
0.0740 
0.0745 
0.0750 
0.0752 
0.0756 
0.0754 
0.0768 
0.0768 
0.0766 

Inductance (pH/km) 
Freq. (kHz) L l l  L12 u 2  

2 
5 

10 
20 
50 

100 
200 
500 

lo00 

510.5 
498.0 
492.0 
477.7 
451.1 
435.4 
402.2 
360.1 
340.9 

99.5 
98.3 
%.4 
94.3 
81.8 
81.8 
68.8 
58.8 
58.0 

510.5 
498.0 
492.0 
477.7 
451.1 
435.4 
402.2 
360.1 
340.9 

established all ratios of polynomials needed using AS- 
TAP-compatible  routines. The low-frequency limits of 
R,,, R,,, and R,, were  needed only for  ASTAP dc initial 
conditions. From then on, we  were  ready to perform any 
dc,  transient, and  frequency  domain simulation of these 
coupled  lines  connected with any nonlinear circuits ac- 
ceptable to ASTAP. 

Transient  measurements of the 123-meter cable with 
the  same  set-up  as used to obtain Fig. 10 were repeated, 
with input signal rise time increased to about 200 ns. The 
signals at all four nodes  (both near and far  ends of both 
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Figure 11 (a) Drive  signal  from a 5 0 4  generator with a 50-il load, and measured  cable response  to  the same  drive  signal  when the 
50-fl load is replaced by the  coupled  lines.  Curve A, drive  signal;  curve B, input to driven  line;  curve C, output; curve D,  near-end 
coupled  noise,  and  curve E, far-end coupled noise. (b) Predicted  coupled  line  response for the same conditions  as (a). 

driven and coupled  lines)  were  monitored using a high- 
impedance probe.  The  results  are shown in Fig. ll(a). 
The  same circuit  was simulated, and the  results  are 
shown in Fig. ll(b). Also shown in Figs. ll(a)  and (b) is 
the  drive signal when a 50-ohm load instead of the  cable  is 
connected  to  the pulse generator.  The difference between 
measurements and  simulation is extremely small. Note 
that  the frequency-dependent  input admittance,  together 
with the  attenuated reflection from  the  far  end,  has sub- 
stantially  distorted the  driven line near-end  waveform, 
which is  quite different from that expected for  lossless 
coupled  lines. 

In  the  above ASTAP  simulation of two  symmetrical 
coupled lossy lines, we used  seven poles  and five zeros 
for  both  mode 1 and  mode 2 attenuation curves; 10 poles 
and 10 zeros  for  entries in the characteristic admittance 
matrices. The total  simulation time over  the 7-ms dura- 
tion was 35 s CPU time using an IBM Systed370 Model 
168 computer. 

Note  that  for  this simple  example of two symmetrical 
lines, the eigenvector  matrix turns  out  to  be independent 
of frequency. This,  however, is not a restriction of the 
method  discussed  in  this paper. An analysis of three 
coupled  lines  (four conductors) was performed based on a 
calculated capacitance matrix [34] and a calculated com- 
plex impedance matrix [35]. The  latter  was a function of 
frequency. The 3 x 3  eigenvector  matrix P, as defined in 
Eq. ( 9 ,  had five distinct entries which were functions of 
frequency.  Each  entry  can  be  approximated by a ratio of 

two polynomials. We also  observed  that  the decoupled 
modes came  out of the numerical  calculation in a different 
order  at different frequencies in the range of interest. 

For  the simulation  technique  described  in the  paper  to 
work  properly, we had  to  keep track of each of the de- 
coupled  modes throughout  the  frequency range of inter- 
est.  It was  found that  the  inner product of the  two normal- 
ized  eigenvectors associated with the  same decoupled 
mode at  two  frequencies within one  decade had a magni- 
tude very  close to  unity. On the  other  hand,  the  inner 
product of the  two normalized eigenvectors associated 
with different decoupled modes  had  a  magnitude much 
less  than  unity.  Using the  inner  product of eigenvectors at 
adjacent  frequencies  for  the tracking of different de- 
coupled  modes  along the  frequency  axis  proved  to work 
quite well for this exercise involving the  four  conductor 
configurations. It  is  expected  that this  tracking  technique 
will work  for coupled  lines having more conductors. If it 
is necessary, we can  progress  on  the  frequency axis in 
smaller frequency  increments  to  guarantee  proper track- 
ing. 

The  above  exercise  on  the  four  conductor configura- 
tions  pointed out  that it was possible to  have  accurate 
simulation of the  transient behavior of coupled  transmis- 
sion  lines that had  not been built yet. 

To  show  the validity of the polynomial  approximations 
used for  transient  analysis, we implemented Eq. (8) in the 
frequency domain analysis portion of ASTAP. The input 37 
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Figure 12 Comparison of measured and calculated Y,,  magni- Figure 12 Comparison of measured and calculated Y,,  magni- 
tude and phase. 
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Figure 13 Comparison of measured and calculated Y,, magni- 
tude and phase. 

to  the  subroutines  that solve Eq. (8) is  the  same  set of 
polynomial approximations used to  obtain  the transient 
simulation model. The short-circuit admittance matrix of 
the 2n-port network obtained from  ASTAP simulation 
was compared to  that obtained from  the insertion  loss 
measurements. 

The Y,,  comparison  shown in Fig. 12 showed very good 
agreement in magnitude and phase. The Y14 entry, which 
was  the  transadmittance  from  the  near  end of line one to 
the  far  end of line two,  turned  out  to  be  the  one with the 
worst  agreement between simulated and  measured values 
of the eight different Y,, and Z,, parameters.  The Y14 com- 

38 parison is shown in Fig. 13. Note  that (a) the input data 

used to  generate  the Yo and r matrices  were the averages 
of both  the open- and short-circuit  insertion loss measure- 
ments for all possible l-port  and 2-port configurations; (b) 
the polynomials  representing Yo and exp (-rx) are ap- 
proximations to  the actual curves. The magnitude of Y,, is ’ 

about 10 dB  lower  than  that of Y,,. Therefore,  the Y14 
comparison was  more  prone  to measurement and approx- 
imation errors. 

Conclusions 
The (n + 1)-conductor  coupled  transmission  lines  can  be 
characterized as a 2pport network using insertion  loss 
measurements in the low-frequency  range. The 2n-port 
network  parameters, Y,,, and Z,, matrices,  can be  used to 
derive  the coupled line characteristic  admittance matrix 
Yo and propagation  matrix r, both being n X n matrices. 
The  frequency-dependent transmission line parameters, 
the R, L, G ,  and C matrices, can  then be calculated  from 
the Yo and r matrices throughout the  frequency range of 
interest.  The good agreement of R, L, and C values be- 
tween the single twisted pair measurements  and the dif- 
ference mode data  from  the  two coupled line measure- 
ments  demonstrates  the validity of this  characterization 
technique. 

Taking every  entry in the frequency-dependent Yo, P, 
exp ( -yd) ,  and P” matrices of the coupled  lines as an 
operator  on  the line  voltage state variable, a transient 
simulation technique  has been  developed. It  is applicable 
to  the general case of uniform cross-section, multiple- 
conductor transmission  lines. They may be imbedded in 
either homogeneous or inhomogeneous  media. They  can 
be connected  with linear  andlor nonlinear  circuits. The 
simulation results  have  been compared  with the  transient 
measurements of the AWG22 twisted pair  and a  cable 
having two coupled lines. The excellent agreement of sig- 
nal  attenuation and waveform  distortion substantiates 
this transient simulation  technique. The  same input data 
on transmission line characteristics used for  the transient 
simulation can  also  be used for  the  frequency domain sim- 
ulation. 
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Appendix A: Assumptions  related  to  transmission 
line  matrices 
These assumptions apply to Z and Y matrices  and  other 
related  matrices associated with the coupled  transmission 
lines. 

A. J. GRUODIS AND C. S .  CHANG IBM J.  RES.  DEVELOP. VOL. 25 NO. 1 JANUARY 1981 



1. Any complex  symmetrical matrix A, encountered in 
the transmission line studies, is assumed  to be diago- 
nalizable. That  is, 

A = SAAASA’ , 

where A A  is a diagonal  matrix. SA is the eigenvector 
matrix [28]. Note  that  each diagonal element, (AA)k,  

has two square  roots. We shall take  the  root  such  that 
Re {(Ad”),} 2 0. Then define 

A’” = SAAAI/’SA1 . 

It  can be proved  that A”’ is also symmetrical. 
2. Define C = AB, where A and B are  complex symmetri- 

cal  matrices encountered in the transmission line stud- 
ies. We have  assumed  that C is diagonalizable. That 
is, 

C = ScAcSG1. 

Then 

C’” = ScA;”SG1 exists. 

Note  that  Re 2 0 is the root being taken. 

Since we are primarily  interested in numerical solu- 
tions, we shall make small perturbations  to  the main diag- 
onal  elements of A and C matrices in assumptions (1) and 
(2) to remove the degeneracy in the eigenvalues A A  and 
Ac. Variations  by a set of random numbers  around of 
the magnitude of the main diagonal elements  are reason- 
able  perturbations  to make with negligible errors in the 
eigenvalues. With the distinct  eigenvalues, the diagonal- 
ization of A and C matrices can be ensured. 

The  existence of r in Eq. (5 )  is implied by  assumption 
(2). We shall prove  that Yo in Eq. (6) is symmetrical. 
From assumption  (2), we have 

ZY = Py2P” , (A 1) 

r = PYP-’ = (zy)lI2 , (A21 

where P is  the  eigenvector matrix of ZY, and y is a diago- 
nal  matrix  having  positive  real parts. 

Note  that  for matrix X = ABA, where A and B are com- 
plex  symmetrical matrices,  one can prove  that XT = X. 
That  is, X is symmetrical. On the basis of assumption (l), 
we know that 2”’ exists  and is symmetrical. Therefore, 
Z’/2YZ1’2 is symmetrical. From Eq. (A3), we  have 
(Z’nyZ’/2)l/2 = (,-l/zp)r(z-”2p)-l = z-l”(pyp-l)zl/2~ 

Measurement 
channel B 

Figure B1 Insertion loss measurement  block-diagram. 

From  the  above  equation  and Eq. (A2), we  have 
r = pyp-1 = ~ 1 / 2 ~ ~ 1 / 2 y ~ 1 / 2 ) 1 I Z ~ - 1 / 2  

From  the  above  equation  and  Eq. (6),  we have 
yo = z-lr = ~ - 1 / 2 ~ ~ 1 / 2 y ~ 1 / 2 ~ 1 / 2 ~ - 1 / 2  (A41 

Note  that 2’’’ and (Z1’2YZ1/2)1’2 are symmetrical  matrices. 
Therefore, Yo is symmetrical, which we set  out  to  prove. 

Appendix B: Y,” and 2,” from  insertion loss 
measurements 
A 2n-port network  can  be described by its short-circuit 
admittance matrix as follows: 

Yzn,lVl + Yzn,zVz + . . . + Y2n,znVzn = I zn  . (B 1) 

If we short-circuit all 2n ports  except  port p ,  the 2n-port 
network becomes a one-port  network, having Ypp as its 
input  admittance. It  can be measured using the HP3042 
network analyzer, which has a  block  diagram  shown in 
Fig. B1. Channel  A is connected with a short  cable  for 
reference  purposes, while a one-port network having in- 
put  admittance of Y,, is inserted in the  connection  to 
channel B. We then  have  the situation  illustrated in Fig. 
B2. Therefore, 

(Vz/Vo)A = 0.5, 
V 
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Channel A 

Figure B2 One-port insertion loss measurement set-up. 
Channel A 

Channel B 

r”r 
voL 7-77 : 

or I 

Figure B3 Two-port insertion loss measurement set-up: 

A. J. GRUODIS AND C. S. CHANG 

therefore, 

Ypp 7 G0/2(a - 1).  (B2) 

We may repeat  the  above measurement for all 2n ports  to 
derive Ykk, k = 1 ,  . . ., 2n. 

If we short-circuit all 2n ports  except  port-p  and  port-q, 
Eq. (Bl) becomes 

y p p v p  + vpqvq = I p  9 

YpqVp + YqqVq = zq . 033) 

We may treat this  2n-port network  as a two-port network. 
When it is inserted in the connection to Channel  B of the 
network  analyzer,  the insertion loss  shown in Fig. B3 can 
be proved to  be 

therefore, 

We may repeat  the  above measurement to exhaust all 
two-port  combinations. Then  the  complete Y,, matrix can 
be established.  Similarly, we may describe  the 2n-port 
network by its open-circuit  impedance matrix, and  per- 
form  the open-circuit one-port and  two-port  insertion loss 
measurements. It can’ be shown that  the two-port in- 
sertion loss can  be  expressed  as a function of the open- 
circuit  impedance  matrix  elements as follows: 

therefore, 

zpq = “c + d c2 + (Ro + Zpp)(Ro + Z,) , (B5) 

where Zpp, p = 1 ,  . . -, 2n, can be  obtained from  the  one- 
port open-circuit insertion loss measurements. By repeat- 
ing all combinations of one-port and two-port  measure- 
ments,  we can establish  the complete Z,, matrix. 

Note  that  for  passive  networks like transmission  lines, 
the Y,, and Z,, matrices  are symmetrical.  Because of 
measurement accuracy limitations, we may obtain small 
deviations from  symmetry.  We  take the arithmetic average 
as follows to ensure symmetry: 
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