Coupled Lossy Transmission Line Characterization and

Simulation

It has been shown that the frequency domain solution of the coupled lossy transmission line differential equations has a
similar appearance to that of the single line. The frequency-dependent n X n characteristic admittance matrix Y and
propagation matrix T can be obtained from network analyzer insertion loss data treating the coupled transmission lines
as a 2n-port network. This paper develops a transient simulation technique for coupled lossy transmission lines based on
Srequency-dependent Y and T data. Simulation results agree very well with transient measurements.

introduction

Transmission lines are used for signal propagation be-
tween digital circuits in computers. They may appear as
metal lines on IC (integrated circuit) chips, printed wires
on PC (printed circuit) boards, flat or coaxial cables be-
tween boards, frames, etc. They may also appear as tele-
phone cables between a computer and its peripheral de-
vices. All of these conductors have finite losses. In the
above applications, we are mainly interested in signal
transient responses. Occasionally, we also have a need to
investigate frequency domain responses for stability stud-
ies. Note that the driving and receiving circuits involved
may be passive or active, linear or nonlinear. The trans-
mission lines are usually surrounded by inhomogeneous
dielectric media. For long-distance connections between
a computer and its peripheral devices, we have low data
rates and slow signal voltage transitions. On the other
hand, the interconnections on IC chips or PC boards will
carry high data rates with fast signal voltage transitions.
The close spacing between adjacent lines requires careful
attention to signal crosstalk. Sometimes we may have to
ensure that the receiving circuit switches on the first in-
cidence of signals. Sometimes it may take the signal volt-
age several trips back and forth on the transmission lines
to switch the receiving circuit. In short, we need a versa-
tile coupled lossy transmission line model capable of sim-
ulating all possible conditions. Of course, we are still lim-
ited to quasi-TEM waves. This requires that the cross

section be independent of position along the lines and that
separations between signal wires and the reference con-
ductor be small with respect to the wavelength of the sig-
nal.

The equivalent circuit associated with the method of
characteristics has been used for transient analysis of a
single lossless line [1], coupled lossless lines [2-5], and
coupled resistive lines [6, 7]. These simulation techniques
satisfy the above requirements except that the frequency-
dependent losses have been neglected. In this paper we
shall extend the method of characteristics to transient
simulations of coupled lossy lines having frequency-de-
pendent line parameters, including skin effect, proximity
effect, dielectric loss, etc.

The frequency dependencies of transmission line char-
acteristics due to skin effect [8] and proximity effect [9]
are well-known phenomena. Experimental data are avail-
able for many two-conductor cables [10, 11]. Recently, a
frequency domain characterization technique for multi-
conductor transmission lines was presented [12]. The
short-circuit input admittance and open-circuit input im-
pedance data were required. The data analysis was based
on the complex matrix solution of the coupled transmis-
sion line differential equations [13-16]. In addition to the
short-circuit input admittance and open-circuit input im-

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. ¢ VOL. 25 9NO. 1 ¢qJANUARY 1981

A. J. GRUODIS AND C. S. CHANG




26

pedance data, we also include the transimpedance data
from the network analyzer insertion loss measurements.
The frequency-dependent characteristic admittance, at-
tenuation, and related line parameters can then be ob-
tained. Note that this measurement and data analysis
technique is applicable to the general (n + 1)-conductor
transmission line system.

With frequency-dependent line parameters, the tran-
sient simulation has two difficulties. First, the character-
istic admittance matrix is frequency-dependent, causing
frequency-dependent reflection coefficients at both send-
ing and receiving ends. Second, the propagation matrix is
also frequency-dependent, causing signal waveform at-
tenuation and dispersion. In the overhead multiphase
power transmission system, the frequency-dependent
earth resistance is an important parameter [17]. Many pa-
pers have been published investigating power-on tran-
sients and line-fault transients [18-23]. The 2n-port net-
work parameters for the (n + 1)-conductor transmission
lines [13] were used in the studies with the inverse Fou-
rier integral [18] or the convolution integral [19]. In order
to save computer time in their convolution integral meth-
ods, two investigators [20, 21} used the method of charac-
teristics but neglected the frequency dependence of the
characteristic admittance matrix. In other words, the fre-
quency-dependent reflection coefficients were not in-
cluded. A recent paper used a finite Fourier cosine trans-
formation of the spatial independent variable (instead of
time) to derive a lumped model [22]. It supplemented the
conventional ladder network approach [23].

Instead of using the inverse Fourier integral or the con-
volution integral technique, a wave shaping network [24]
was synthesized to account for the frequency-dependent
attenuation for a single line. S. P. Madyiwa [25] and F.
Briglez [26] developed a rigorous technique in synthesiz-
ing the wave shaping network. A ratio of two polynomials
in the complex s-plane was derived such that the magni-
tude of the ratio evaluated on the imaginary axis approxi-
mated the attenuation of the transmission line of given
length throughout the frequency range of interest. A cas-
cade of constant-resistance bridged-T networks was then
synthesized for this polynomial ratio. In both papers, the
frequency dependence of the characteristic impedance
was neglected. Therefore, the technique is limited to the
high-frequency application of the single lossy line.

In this paper we combine the following techniques: 1)
the decoupled mode transformation, 2) the method of
characteristics, and 3) the wave shaping polynomial ratios
together with state variable solution instead of network
synthesis. They are integrated together for transient sim-
ulation of the general case of (n + 1)-conductor coupled
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lossy transmission lines. All the information needed is de-
rived from the frequency-dependent line parameters (.e.,
R, L, G, and C matrices), which can be measured or cal-
culated. The simulation technique takes into account the
frequency-dependent attenuation and dispersion of trans-
mitted and coupled signals. It also includes the fre-
quency-dependent reflection coefficients, which may be
nonlinear if nonlinear terminations are used.

In order to verify the simulation method, subroutines
compatible with ASTAP [27] were written to perform
transient simulations. The input data were the frequency-
dependent line parameters obtained from two- and three-
conductor cable measurements. The simulation results
presented later are in excellent agreement with actual
transient measurements. This paper describes the devel-
opment and implementation of a simulation method for
coupled lossy transmission lines that satisfies all require-
ments for computer applications mentioned above.

Frequency domain formula for coupled lossy
transmission lines

For the (n + 1)-conductor coupled lines, the differential
equations in the frequency domain can be expressed as
follows:

d

—V = -17I, 1)
dx (
d

—1=-YV, 2
e 2

where V is the n X 1 vector for line voltage with respect to
the reference conductor. I is the n X 1 vector for line
current. Z=R + jwL,Y =G + joC.R,L,G,and Care n
X n real symmetric matrices, which may be functions of
frequency, but independent of x.

The solution of the above differential equations has
been presented in several publications [13-16], with some
assumptions being implicitly or explicitly expressed. We
shall first quote the solution and follow with assumptions
made. When these assumptions cannot be met, the simu-
lation methods and characterization techniques presented
in this paper will fail. The solution is

V = exp (-T'x)A + exp T'x)B, 3)
Y,'I = exp (-T'x)A — exp (T'x)B, “@
where

I = (ZY)? = PyP', 5)
Y,=ZT =Y. (©

P is the eigenvector matrix of I'. It is also the eigenvector
matrix of the ZY product. v is the diagonal eigenvalue
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matrix of I'. From the properties of functions of matrices
[28], we have

exp (-Tx) = Pexp (—yx)P™". )

In the solution the existence of the complex matrix
square root (ZY)'* is assumed. And it is implied that Y, is
a complex symmetrical matrix. We state the general as-

sumptions in Appendix A.

The (n + 1)-conductor transmission lines of length d
can be treated as a 2n-port network, having #n ports on the
sending end and n ports on the receiving end. It can be
proved [29] that

I;| _| Yycothl'd -Y cschTd| | Vg ®
I, ~Y,cschI'd Y cothTd ||V, |

In other words, we have the short-circuit admittance ma-
trix of the 2n-port network as follows:

el ) X
where

Y, =Y, cothI'd,

Y; = Y, csch I'd.

From the definition of function of matrices [28], one has
coth I'd = P(coth yd)P™*,
csch T'd = P(csch yd)P ™' .

P is the eigenvector of I', also of ZY. And the open-circuit
impedance matrix is

— 2EA 25B

where
Z, = (coth T)Y ',
Z,= (csch Ty, .

Frequency domain characterization

After establishing Y,, and Z,, matrices from the insertion
loss measurements described in Appendix B, we can then
use Eq. (9) and/or Eq. (10) to derive Y, and I' matrices. Of
several methods considered by us, the following two data
analysis methods appear to give the best accuracy.

& Data analysis method 1

This method was used in Ref. [12]. It is to be used when
the transmission line attenuation is small. Since this
method involves only measured data at one end of the
coupled lines, the accuracy decreases when the reflected
signal is highly attenuated. This consideration is impor-
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tant in the calculation of attenuation. From Egs. (9) and
(10), we have

Z,Y, = (coth I'd® ,
(tanh T'd)® = (Z,Y,)' = PA;!, P7",

ZaYa
tanh Td = PA,} P, an
Id = Pltanh™ A7}y P (12

Note that P is the eigenvector matrix of Z,Y, (and also of
I" matrix). From Egs. (A2) and (12), we have

yd = tanh™ A (13)

Note that each diagonal element of the A_z,ivA matrix has
two roots, which are 180° out of phase. The proper one to
use is the one with the positive real part, which will pro-
duce a positive real part for yd in Eq. (13). This can be
proved through algebraic manipulation of tanh yd with
complex argument yd. Each diagonal element in the diag-
onal matrix yd of Eq. (13) gives a propagation eigenvalue
(attenuation and phase shift) for each decoupled mode.
From Egs. (9) and (11), we have

Y,=Y,tanh I'd = Y,PA, (P, (14)

& Data analysis method 2

This method is to be used for transmission lines with high
attenuation. This may happen either because the line is
sufficiently long, or because the frequency of interest is so
high that losses due to skin effect and proximity effect are
significant. It involves the measurements at both sending
and receiving ends of the coupled lines. From Eq. (9), we
have

-Y,'Y, = cosh I'd,
I'd = Plcosh™ A P, (15)

where P is the eigenvector matrix of ~Y,'Y,. It is also
the eigenvector matrix of I'd.

~Y5'Y,

From Eqs. (A2) and (15), we have
yd = cosh™" (A_y-y)- (16)
From Egs. (9) and (15), we have
Y,= —Y,sinh I'd

= —YgP[sinh (cosh™ A_,iy )IP™". an

From Eq. (13) or (16), we can obtain for each de-
coupled mode the attenuation constant and the delay per
unit length by dividing the real and the imaginary parts by
d and wd, respectively.

Having derived I'd [Eq. (12) or (15)], and Y, [Eq. (14)
or (17)], we can use Eq. (6) for the following:
Z=R+joL =TY], (18)
Y =G + joC = Y,I. (19)
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Figure 1 Coupled transmission line equivalent circuit.

Transient simulation technique

Before getting into the method used for lossy line tran-
sient simulation, we shall show that the equivalent circuit
of Fig. 1 is applicable not only for simulation of ideal lines
[2-5] but also for lossy lines if the following two condi-
tions can be met:

1. The frequency-dependent characteristic admittance
matrix Y, can be simulated in time domain.

2. The proper relationship to express the E sources in
terms of time and the terminal voltage exists.

The first of these conditions will be demonstrated later.
We shall first show that the second condition can be met.
Note that Eqs. (3) and (4) can be rewritten as follows:

Vix) = Vi{x) + V (1), (20)
Y, Ix) = Vi(x) = V(x), #3))

where V'(x) = exp (—~Tx)A is the forward propagating
wave and V™ (x) = exp (I'x)B is the backward propagating
wave.

Evaluating Eqgs. (20) and (21) at the sending end (x = 0),
we have
E;=V(x =0~ Y, I(x=0) =2V (x = 0). (22)
Similarly, at the receiving end,
E;=Vx=d) + Y Ix =d) = 2V'(x = d). (23)
From the definition V™ (x) = exp (I'x)B, we have
Vix=0 =B =exp (—-TdV (x = d). 24
Substituting this equality into Eq. (22), we have
E,=2exp (-Td)V (x = d). 25

Evaluating Eq. {20) at the receiving end (x = d) and using
Eq. (23), we have

1
Vix=d =Vix=4d —V+(x=d)=VR—EER, (26)
where V, = V(x = d).
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Combining Egs. (25), (26), and (7) we have

E, = Plexp (—yd)P7'[2V, — E.]. 7
By symmetry, we have ‘

E, = Plexp (—yd)]PT'[2V, - E], (28)
where Vg, = V(x = 0).

This confirms the validity of the equivalent circuit of
Fig. 1 for use with coupled lossy lines, as long as the oper-
ator Plexp (—yd)]JP™’, which in general is frequency-de-
pendent, can be implemented in the time domain.

Equations (27) and (28) are true at any frequency. For
the general case of lossy lines, elements of P, P', and
exp (—+vyd) matrices are functions of frequency. We can
approximate each element in the P and P~ matrices as a
ratio of two polynomials in the complex s-plane. The
poles and zeros of this ratio are placed on the real axis.
The ratio is to be evaluated on the imaginary axis. The
locations of poles and zeros are adjusted to give a good
approximation to this ratio in both magnitude and phase
throughout the frequency range of interest.

Note that exp (—vd) is a diagonal matrix. We shall first
factor out for each diagonal element the corresponding
constant delay operator. This is

exp (—y,d) = A, exp (—jB,4). (29

Note that 8, is the high-frequency asymptote of the imagi-
nary part of y,.

Taking the absolute value of both sides of the above
equation, we have

exp (—a,d) = A,]. (30)

That is, the magnitude of A, represents the attenuation of
kth decoupled mode.

A, in Eq. (29) can then be approximated by a ratio of
two polynomials in the complex s-plane as is an element
in the P matrix discussed before. In the complex s-plane
exp (—jB,d) can be rewritten as exp (—s7,d). Then, Eq.
(19) becomes

exp (—y,d) = A,(s) exp (—s7,d). a1

Note that 7, is the high-frequency limit of the kth-mode
delay time.

We can now treat Eqgs. (27) and (28) as the Laplace
transforms relating E (s) and E_(s) to V(s) and V_(s). The
triple-matrix product Plexp (—yd)]JP™! can be treated as
three operators in cascade.
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The physical meaning of Eq. (28) can be expressed as
follows:

1. The incident wave (1/2)[2V, — E.]is broken up into n
decoupled modes as determined by the product
(1/2P7'[2V — Eg]. This product produces a vector
M. Its kth component, M,, represents the kth com-
ponent of the decoupled wave.

2. Each component of the decoupled mode, M,, is then
operated on by the appropriate operator exp (—vyd),
which is shown in Eq. (31). This results in a signal
delay of r,d, plus attenuation and dispersion repre-
sented by A, (s).

3. These modified mode magnitudes, properly lined up in
time represented by the exp (—sr,d) operator, form a
new vector, which is then multiplied by P to yield the
resultant voltage vector E,. From Eq. (23), we note
that (1/2)E, represents the incident voltage vector ar-
riving at the receiving end.

Similar physical meaning also applies to E in Eq. (27).
Here (1/2)[2V, — E.] represents the reflected voltage
vector at the receiving end. From Eq. (22), we note that
(1/2)E represents the reflected voltage vector returning
back to the sending end.

The implementation of the equivalent circuit in Fig. 1 in
a circuit simulation program can be accomplished using
the voltage-dependent current sources of Fig. 2. The La-
place transforms of these current sources J; and J, and
the terminal voltages V and V, are related by the follow-
ing equations:

Js =Y [V, — Eg, (32)
Jo = Y [Vy — Egl, (33)
where

E,=P Alexp (—s7d)P'[2V, — E_], (34)
E, =P Alexp (-s7d)[P'[2V, — E]. (35)

(The E; and E, vectors represent intermediate state vari-
ables.)

e Single line transient simulation

For a single transmission line, P and P™" in Egs. (34) and
(35) are scalars of unit magnitude. Therefore, Eq. (34) be-
comes

Eg(s) = A(s)[exp (=std)][2V(s) — Egls)]

= A(5)E,(s), (36
where
E,\(5) =[exp (—s1d)[[2Ve(s) — Ex(s)],
or
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Figure 2 Current source representation for coupled transmis-
sion lines.

e, () = f"l[Etl(s)] = 204(t — 7d) — eg(t — d). (37

A(s) in Eq. (36) can be treated as a transfer function
relating E (s) to E, (s). It is well known that a transfer
function having the number of poles equal to or greater
than the number of zeros can be simulated by means of
state variables, using numerical integration [30, 31]. The
only assumption that is needed is that the analytic ex-
pression represents a stable network. By restricting the
poles to the left-half plane in the routine that produces a
ratio of two polynomials to approximate A(s), this prob-
lem is avoided. From many simulation exercises we had
done, it was found that those poles and zeros resulting in
good approximation to the magnitude of A(s), which was
equal to exp (—ad) as shown in Eq. (30), would also give
a good approximation to the phase of A(s).

From Eq. (36), we have

m—1

Es(s) _ Als) = a,s"ta, "+ - -t+as+a
E, (s) s"+ b, "+ -+ b+ b, ’
m=n,
Efs)=(a,s" + a,_s"" + -+ as +a)E,(s), (38)
where
E, (s) 1 E,(s)
s) = — s),
o b, T+ bs+ b,
or

E(s)=("+b,_ """+ -+ bs+b)E,(s). (39

Note that E (s) is an intermediate state in Egs. (38) and
(39). Taking the inverse Laplace transform of Eq. (38), we
have
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Figure 3 Transfer function implementation using state vari-
ables. The triangular box represents a time integrator.
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Figure 4 Derivation of decoupled mode voltage vector M.
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e(=a, ey + am_le(m_”

ut

0+ +ae,®

+ ae (B, (40

0" u1

where ¢%*(1) is the kth derivative of e_ (7).
ul ul

Next, we have to express e, (#) and its derivatives in
terms of e, (f), which is available from Eq. (37). From Eq.
(39), we have

S"E,(s) = Ey(s) — (b,_ "™ + -+ + bs + b)E,(s),

e(":i(t) = e,(f) - bn_le("_”(t) — = bléul(t)

ul

= bee, (). G2
Once the highest derivative e‘ﬁ;(t) is known, the re-
maining lower-order derivatives of e (¢) may be obtained
by successive integrations. Equation (41) looks like a
feedback loop with e, (z) as its input, and eh), e 1),
-+, e,,(t), and e ,(¢) as the outputs. The negative feed-
back coefficientsare b, _, - - -, b , and b,. Equation (40) is
then used to obtain eg(¢). This is illustrated in Fig. 3 for m
= n [32]. When implemented in a program the in-
tegrations are performed numerically.
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Note that Y (s) in Eq. (32) can be regarded as a transfer
function relating J(s) to [V (s) — Eg(s)]. We shall approx-
imate Y (s) by a ratio of two polynomials having poles on
the negative real axis. Having obtained a good approxi-
mation for Y (s), we can apply the numeric technique
shown in Fig. 3. This time, the input is [v (¢) — e4 ()], and
the output is j (7). Similar procedure also applies to Eq.
(33) to obtain j(¢).

e Coupled line transient simulation

For the general case of coupled lossy line transient simu-
lation, four different operators, P, A, P, and Y,, are in-
volved in the implementation of the equivalent circuit de-
scribed in Fig. 2 and Egs. (32) to (35). P, P, and Y, aren
X n matrices, A is an n X n diagonal matrix having n
nonzero entries. The first operation to be performed is the
breakup of the incident waves into the decoupled modes.
This involves the operator P™* on the vector [2V — E].
We treat each entry of the P! matrix as a transfer func-
tion. That is,

®n,, @D, @D,
I R .
D, (D, - (PD,,

Here, each of the entries, PI,,, will be approximated by
aratio of two polynomials, similar to A(s) and Y,(s) in the
previous section of single line transient simulation. The
product P72V — E.] is illustrated in Fig. 4.

Note that the PI jk(s) transfer functions do not represent
a physical system in the same manner as A(s) and Y (s) do
for the single line case. It is, therefore, possible that for a
good polynomial approximation to PI;,(s), magnitude and
phase, poles in the right-half plane may be required. Since
this would result in an unstable network, it is not permit-
ted. An accurate broad-band model for such structure is
not possible. We have to limit the applicable frequency
range such that the poles on the right-half plane can be
neglected. We have analyzed many structures which have
been used in the laboratories, including up to a five-con-
ductor configuration. The poles for P™" and P have always
been on the left-half plane. For the case of two symmetri-
cal lines, the eigenvectors are independent of frequency.

Once the decoupled mode voltage vector M (M =
P7'[2V, — E{]) is established at each time step, each com-
ponent of the M vector is stored in a table for all time
steps of interest. The data can then be extracted after a
period of time equal to the delay for the corresponding
decoupled mode. This procedure is identical to that used
for delay simulation of coupled ideal lines [4]. Now we
have a new voltage vector N = exp (—std)P™" 2V, - Eg].
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Figure 5 Block diagram indicating the operations involved in solution of voltage source vector Eg.

Each component of the N vector is then operated on by
the corresponding component of the transfer function
A(s), representing attenuation and dispersion for that par-
ticular decoupled mode. The resultant voltage vector is
exp (—yd)P~' [2V, — E.], representing twice the incident
decoupled mode voltages at the receiving end. This volt-
age vector is then operated on by the operator P. The
result is the E, vector of Eq. (35). The overall operation is
illustrated in Fig. 5. The E vector of Eq. (34) can be ob-
tained in a similar procedure. Note the effect of the delay
operator exp (—s7d) in Eqgs. (34) and (35). The Eg and E,
vectors on the left-hand side are constructed from earlier
values of those on the right-hand side.

The Y, matrix in Egs. (32) and (33) has n X n entries. It
has been shown to be symmetrical. If we implement Eq.
(32) as shown, we have to perform all n* operations with-
out taking advantage of the symmetry of Y . Note that the
kth component of the J; vector of Eq. (32) can be ex-
pressed as follows:

U = (Yo)a(Vs = Eg), + - - + (Y (Vs — Eg),
o+ (Y)n(Vs — By

n

= I:Z (Yo)k;} (Vs — Ey),

+ z (_Yo)kj[(vs - ES)k - (Vg =

i#k

E)]. (42
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There are (n — 1) terms represented by the summation
on the right-hand side of Eq. (42); the kj-term in this equa-
tion is the negative of the jk-term of the (J), component.
We can take advantage of this relation and implement Eq.
(42) with n(n + 1)/2 operations. Here, we shall treat
ZLI(YO),‘ ;and (-Y,), . as the transfer functions, relating
the kth component of J; to the vector (V, — E). Each of
the transfer functions is to be approximated by a ratio of
two polynomials, having poles on the negative real axis.
The inverse Laplace transform of Eq. (42) will result in
[is(1)],. Extending this operation to all components in Jg
and J; of Egs. (32) and (33), we derive the 2n current
sources shown in Fig. 2. Each of these 2n current sources
depends on the 2n terminal voltages shown as the V¢ and
V,, vectors.

Experimental results

In the previous two sections, we have explained the char-
acterization of lossy transmission lines to derive the char-
acteristic admittance matrix Y, and the propagation ma-
trix I'. We have also explained transient simulation rou-
tines. In this section, we shall exercise the measurement
technique presented in this paper and demonstrate the va-
lidity of the transient simulation method. We shall confine
the experiments to the low-frequency range (say below
1 MHz) to minimize the effect of discontinuities due to
line connections. For this reason, we use a commercial
telecommunication cable. It consists of four AWG22 con-
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Figure 6 Input waveform and simulated transient response for
8.98-km cable.

Table 1 Insertion loss data for 1344-meter cable.

Freq. Y, connection 2-port connection Z,, connection
(kHz)

(dB) (deg.) (dB) (deg.) (dB) (deg.)

01 -772 -029 -7.22 -7.43 —47.24 88.36
02 -771 -035 -7.56 —-4.86 —42.95 89.58.
0.5 =772 -0.61 -7.68 —-3.24 -34.75 88.51
1 -7.72 -101 -7.7 -3.7 -28.64 86.87
2 =774 -187 -7.7 -5.89 -22.66 83.71
5 -79 -441 771 -13.62 -—14.66 73.99
10 -847 -778 -7.74 -26.65 —9.16 58.48
20 -10.58 -6.71 -7.76 -5225 -5.15 30.63
50 —-5.99 2389 -699 -134.2 ~8.22 -10.79
100 -9.12 10.14 —-8.99 87.91 -5.49 1.43
200 —6.1 3.47 -12.09 -170.5 ~7.74 2.33
500 —6.54 093 -20.1 155.7 ~6.78 1.66

ductors in two color-coded twisted pairs. They are
wrapped around by aluminum-coated mylar and a braided
shield. For the single line measurements, we use the blue
pair to carry the signal and return current. The orange
pair is tied together with the shield and left floating. For
the two coupled lines (3-conductor configuration) mea-
surements, we used the solid blue and the blue stripe
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wires as signal-carrying conductors. The orange pair and
the shield were tied together for the return current con-
ductor.

® Single line comparisons

The insertion loss measurements were made on the blue
pair of the 1344-meter cable using the HP3042A network
analyzer from 100 Hz to 500 kHz. The measured data are
shown in Table 1. Using the frequency domain character-
ization technique discussed in this paper, we derived the
transmission line parameters shown in Table 2. The 1344-
meter cable represents one wavelength at about 135 kHz.
The accuracy of the derived phase shift and delay time at
f < 5 kHz is questionable. Note that oL = R at 25 kHz;
therefore, the accuracy of the derived line resistance
value at f > 400 kHz is also questionable. These parame-
ters have been blocked out in Table 2. Note that the shunt
conductance is not shown in Table 2 because it was negli-
gibly small so that the derived values were in the noise
range.

In establishing the ratios of polynomials for A(s) and
Y,(s), we have concentrated on their magnitudes. The re-
sultant polynomial ratio approximates the phase angle
quite well too. Note that Y (s) is independent of line
length. But A(s) is an exponential function of line length,
as shown in Eq. (30). Subroutines to establish the poly-
nomial ratios and to convert them for numerical in-
tegration, shown in Fig. 3, have been written. They are
compatible with ASTAP [27].

An ASTAP run [32] has been set up to simulate an 8.96-
km line with 155 ohms plus 0.02 wF shunt capacitance
load. The line is driven by a 19.2-kb/s biphase, pre-
distorted signal with 370 mV peak-to-peak amplitude [7].
The simulated ASTAP plot is shown in Fig. 6. Note that
the output signal waveform is drastically distorted and at-
tenuated to 16 mV peak-to-peak voltage, which repre-
sents a factor of 23 attenuation.

Additional ASTAP runs [32] were arranged to produce
the ‘‘eye patterns’’ [33] for two different line lengths,
6.45 km and 8.96 km, for comparison with the transient
measurements, as shown in Fig. 7. The simulated eye pat-
terns have a peak-to-peak magnitude of 33 mV for 6.45-
km line and 16 mV for 8.96-km line. They are somewhat
higher than the measured values of 31 mV and 13.5 mV,
respectively. These discrepancies are within the measure-
ment accuracy of the line length, the insertion loss, the
oscilloscope, etc. Note that the shapes of the eye pat-
terns, including the detailed bends and corners, agree
very well with the measured results.
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Table 2 Cable parameters derived from measurements.

Freq. Z,
(kHz)
(dB/m) ((9)) (deg.) (Lambda) (ns/m) (¥/m) (nH/m) (pF/m)
0.1 —0.0003069 1815.44 —44.06 0.1005 48.70
0.2 —0.0004201 1416.86 —-44.70 0.1044 41.41
0.5 —0.0007062 884.50 —44.26 0.1060 43.17
1 —0.001009 621.95 —43.64 0.1062 43.77
2 -0.001405 440.88 —-42.38 0.1062 840.3 43.68
5 —-0.002115 278.73 —38.61 0.07 9.743 0.1063 773.7 44.67
10 —0.002711 204.02 -33.00 0.10 7.653 0.1068 757.6 44.72
20 -0.003229 160.44 —-24.68 0.17 6.505 0.1090 750.2 44.54
50 —0.003964 135.98 —-13.49 0.40 5.942 0.1196 739.6 44,98
100 —0.004997 128.83 -9.28 0.77 5.731 0.1480 709.7 45.05
200 —0.007870 121.28 —5.41 1.48 5.512 0.1885 657.2 45.80
500 -0.01384 115.31 -2.41 3.57 5.311 609.4 46.20
Table 3 Four-port network insertion loss data: (a) short-circuit (above), (b) open-circuit (below).
o % & s
(dB) (deg.) (dB) (deg.) (dB) (deg.) (dB) (deg.)
0.1 -5.26 -0.20 ~22.34 0.22 -5.26 -0.76 —-22.40 —172.68
0.2 -5.27 -0.26 -22.35 0.35 -5.27 —-0.81 -22.39 —-177.32
0.5 —5.26 -0.51 —22.34 0.79 -5.25 —1.54 —22.36 —178.99
1 -5.27 -0.90 —22.31 1.39 -~5.26 -2.91 -22.33 —1.24
2 -5.29 —1.65 -22.25 2.58 —5.25 —5.69 -22.26 178.83
5 —5.41 -3.91 —21.84 4.98 -5.26 -14.11 -21.76 176.02
10 -5.92 —-6.90 -21.07 3.92 -5.29 ~-28.01 -20.57 166.38
20 -7.73 —5.66 —21.46 -4.13 —5.36 —55.44 -18.77 136.33
50 —-3.94 17.75 —19.23 11.56 -5.67 —139.70 -18.81 32.73
100 —6.35 7.79 -22.28 13.07 -7.55 86.90 -19.67 —98.61
200 -4.19 3.22 -19.72 —6.19 -11.01 —-166.11 -23.25 -10.37
500 —4.42 1.67 -21.05 —6.43 -19.22 173.86 —-28.90 —50.81
1000 -4.40 0.34 -21.02 0.60 —28.34 78.05 -32.70 —146.04
Frea s as a2 as
zZ
(dB) (deg.) (dB) (deg.) (dB) (deg.) (dB) (deg.)
0.1 —43.05 88.39 —56.66 88.54 —-5.36 —0.84 —-57.10 89.34
0.2 —38.69 89.31 —52.66 89.11 —5.36 -0.85 —52.64 88.96
0.5 —30.53 87.84 —44.65 87.85 —-5.36 —-1.55 —44.65 87.11
1 -24.47 85.58 —38.59 85.47 -5.36 -2.93 -38.57 84.11
2 —18.44 81.13 —32.51 80.67 —-5.36 -5.71 —32.46 77.94
S -10.79 68.03 -24.72 66.53 —5.38 -14.17 —24.43 59.34
10 —-5.97 49.25 —19.88 44.31 —-5.42 —28.09 —18.69 27.86
20 -3.32 22.66 —18.34 12.33 -5.51 -55.47 —-14.73 —35.63
50 —5.86 —7.48 —-21.30 —14.87 —-5.81 —139.31 —-22.53 —168.78
100 -3.90 2.08 -18.93 —8.38 -7.74 87.56 -21.22 86.15
200 -5.39 %5 —-22.37 8.33 —-11.20 -163.95 —27.60 —128.44
500 —4.70 1.88 —21.45 1.25 —-19.37 —144.93 -30.75 -114.64
1000 —4.50 0.35 —21.00 -1.15 —28.81 88.81 —34.49 154.48

® Coupled line comparisons

When the two blue-colored conductors in the 1344-meter
cable were treated as two coupled lines, we had a four-
port network. The short-circuit and open-circuit insertion
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loss measurement results are shown in Tables 3(a) and
(b). The coupled line characteristic admittance matrix Y,
has been derived from these data. Table 4(a) shows the

frequency-dependent Y, ¥, , and —Y,,. Here we have
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Figure 7 Comparison of simulated and measured eye patterns.
(a) Measured input waveform (also used as simulation input). (b)
Measured response of 6.45-km cable. (c) Predicted response of
6.45-km cable. (d) Measured response of 8.96-km cable. (e) Pre-
dicted response of 8.96-km cable. Note that for all cases line is
terminated in 155 € 11 0.02 uF.

defined Y, = (Y),, + (Y,),,- and Y, = (Y),, + (Y,),,. In
Table 4(b), we show the derived exp (—I'd) in an indirect
way, as explained below.

1. The eigenvector matrix P for the propagation matrix I’
for the two symmetrical coupled lines is

1 1 1 .
P= \/7 ‘_ 11 at all frequencies.
2. Attenuation = (20 log,, [exp (—yd)|)/line length.
3. Delay = — Imaginary part of exp (—yd)/w X line
length.

4. Mode 1is the difference mode, and Mode 2 is the com-
mon mode as defined by the P matrix above.

The frequency-dependent R, L, and C matrices were
derived from the Y, and I' matrices. They are shown in
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Figure 8 Twisted pair line parameters: O—single twisted pair;
x —the difference mode of two coupled lines.

Table 5. Several entries in Tables 4(b) and 5 have been
blocked out for the same reasons as applied to Table 2.
Note that the difference mode of the two coupled lines is
equivalent to the single twisted pair discussed earlier in
this section. The R, L, and C, parameters of the dif-
ference mode can be proved to be

R,=2X (R11 — R12)’
L,=2x (Lu - le)’

Cp = 0.5 % (C,, — C,).

The comparisons of these parameters with the R, L,
and C parameters of the single twisted pair are shown in
Fig. 8. The line capacitance is independent of frequency.
The line inductance decreases at high frequencies, as is
expected due to the decrease of the internal inductance
contribution. The differences between C and L of the dif-
ference mode of two coupled lines and those of the single
twisted pair are within the measurement accuracy. The
difference for the line series resistance at f = 50 kHz is
negligible. At f = 100 kHz and 200 kHz, the differences
are 5% and 6%, respectively, which could be due to mea-
surement errors. Further investigation is necessary. The
comparison of the magnitude of the attenuation is shown
in Fig. 9. The differences are very small. Also shown in
Fig. 9 is the comparison of the magnitudes of the charac-
teristic impedances. For the difference mode, we have
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Table 4 Coupled transmission line characteristics: (a) admittances (above), (b) attenuation and delay (below).

Admittance Yo Y, Y
Freq. (kHz)
Mag (mS) Phase (deg.) Mag (mS) Phase (deg.) Mag (mS) Phase (deg.)
0.1 0.77 44.13 0.77 44.13 0.17 —135.58
0.2 0.99 44.67 0.99 44.67 0.21 -135.17
0.5 1.59 44,10 1.59 44.10 0.34 —135.26
1 2.25 43.33 2.25 43.33 0.48 —135.61
2 3.18 41.86 3.18 41.86 0.69 —136.28
5 4.98 37.43 4.98 37.43 1.10 —-138.55
10 6.68 31.46 6.68 31.46 1.57 -143.25
20 8.27 23.84 8.27 23.84 2.11 —153.53
50 10.02 14.70 10.02 14.70 2.33 —168.86
100 10.42 10.31 10.42 10.31 2.57 -171.64
200 11.30 6.16 11.30 6.16 2.52 —174.80
500 12.11 5.06 12.11 5.06 2.58 -178.97
1000 12.45 0.85 12.45 0.85 2.75 ~179.66
Freq. Attenuation (dB/km) Delay (us/km)
(kHz)
Mode 1 Mode 2 Mode 1 Mode 2
0.1 0.35 0.36
0.2 0.45 0.46
0.5 0.71 0.73
1 0.99 1.03
2 1.38 1.43
5 2.03 2.12 9.61 9.69
10 2.59 2.71 7.74 7.65
20 3.24 3.28 6.65 6.50
50 4.02 4.32 5.93 5.93
100 5.33 5.88 5.75 5.67
200 8.01 8.59 5.55 5.44
500 13.60 14.29 5.25 5.14
1000 19.44 21.94 5.08 4,97

Z)p = 1/(Y)p,
(Yy)p = 0.5 X [(Yo)u - (Y0)12] =0.5x (YO)IO -

Here we have an excellent agreement.

(Y0)12'

From Table 4(b) we note that the high-frequency limit
of the delay time of the common mode (Mode 2) is smaller
than that of the difference mode (Mode 1). It can be ex-
plained as follows: Note that the difference mode energy
travels in the dielectric between the two conductors of the
blue twisted pair. The common mode energy travels in
the dielectric between the blue pair as one conductor, and
the orange pair plus shield combination as the other con-
ductor. The dielectric medium for the common mode has
a higher fraction of air and less polyethylene than that for
the difference mode. Also note that the delay times of
these two modes at high frequencies are different by
0.11 ns/m out of a nominal value of 5 ns/m. It is difficult to
ensure that we have obtained accurate data on this small

IBM J. RES. DEVELOP. & VOL. 25 & NO. 1 & JANUARY 1981

value taken as the difference between two large numbers.
However, the far-end coupled noise is extremely sensi-
tive to this propagation delay difference. Therefore, the
following experiment was performed to arrive at a more
accurate value.

One end of a 123-meter cable had the solid blue wire
connected to a pulse generator with a fast transition time
(Iess than 2 ns). The orange pair plus shield combination
was used as the ground return reference. The blue stripe
wire was connected with 50 ohms to the reference con-
ductor. The signal was observed on the far end of both the
driven and coupled lines, both terminated with 50 ohms
to the reference. The results are shown in Fig. 10, where
the output voltages on the driven line and the coupled line
are plotted as a function of time. The drastic rise time
deterioration observed at the far ends is due to the resis-
tive and skin effect losses. Note that the signal on both
lines initially rises together. This indicates that the com-
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Figure 9 Measured twisted pair attenuation constant and char-
acteristic impedance magnitude as compared to the results de-
rived from difference mode measurements of coupled lines: O—
single twisted pair; x —difference mode of coupled lines.
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Figure 10 Fast pulse response to determine propagation delay
difference for the two decoupled modes. Time T, is start of com-
mon mode; time T is start of differential mode.

mon mode is the fast one, consistent with Table 4(b). The
difference mode arrives 20.5 ns later, when the signal on
the driven line rises again, and that on the coupled line
starts to fall. Therefore, the delay time difference be-
tween the fast common mode and the slow difference
mode is 0.167 ns/m. It is 50% higher than the 0.11 ns/m
shown in Table 4(b). But the error is only 1.1% of the 5-
ns/m nominal value, well within measurement accuracy.

On the basis of the information in Table 4, plus the
0.167-ns/m fine adjustment to the high-frequency limit of
the common mode and difference mode delay time, we
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Table § Coupled transmission line pai ....icrs.

Resistance (Q/km)

Freq. (kHz) RI11 RI2 R22
0.1 64.06 12.83 64.06
0.2 64.11 12.36 64.11
0.5 63.89 12.12 63.89
1 63.97 12.13 63.97
2 64.01 12.19 64.01
5 63.93 12.26 63.93

10 64.90 12.45 64.90

20 68.29 13.25 68.29

50 77.93 17.36 77.93

100 101.47 23.59 101.47

200 125.72 26.09 125.72
Capacitance (uF/km)

Freq. (kHz) cll CcI2 Cc22
0.1 0.0862 -0.0140 0.0862
0.2 0.0713 —-0.0116 0.0713
0.5 0.0726 -0.0118 0.0726
1 0.0732 -0.0119 0.0732
2 0.0740 -0.0121 0.0740
5 0.0745 -0.0127 0.0745

10 0.0750 -0.0141 0.0750
20 0.0752 —-0.0159 0.0752
50 0.0756 —0.0140 0.0756
100 0.0754 —0.0153 0.0754
200 0.0768 -0.0147 0.0768
500 0.0768 —0.0142 0.0768
1000 0.0766 —0.0146 0.0766

Inductance (WH/km)

Freq. (kHz) L1 Li2 L22
2 510.5 9.5 510.5
5 498.0 98.3 498.0
10 492.0 96.4 492.0
20 471.7 94.3 471.7
50 451.1 81.8 451.1

100 435.4 81.8 435.4
200 402.2 68.8 402.2
500 360.1 58.8 360.1
1000 340.9 58.0 340.9

established all ratios of polynomials needed using AS-
TAP-compatible routines. The low-frequency limits of
R,,, R,,, and R,, were needed only for ASTAP dc initial
conditions. From then on, we were ready to perform any
dc, transient, and frequency domain simulation of these
coupled lines connected with any nonlinear circuits ac-

ceptable to ASTAP.

Transient measurements of the 123-meter cable with
the same set-up as used to obtain Fig. 10 were repeated,
with input signal rise time increased to about 200 ns. The
signals at all four nodes (both near and far ends of both
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Figure 11 (a) Drive signal from a 50-Q generator with a 50-(2 load, and measured cable response to the same drive signal when the
50-Q load is replaced by the coupled lines. Curve A, drive signal; curve B, input to driven line; curve C, output; curve D, near-end
coupled noise, and curve E, far-end coupled noise. (b) Predicted coupled line response for the same conditions as (a).

driven and coupled lines) were monitored using a high-
impedance probe. The results are shown in Fig. 11(a).
The same circuit was simulated, and the results are
shown in Fig. 11(b). Also shown in Figs. 11(a) and (b) is
the drive signal when a 50-ohm load instead of the cable is
connected to the pulse generator. The difference between
measurements and simulation is extremely small. Note
that the frequency-dependent input admittance, together
with the attenuated reflection from the far end, has sub-
stantially distorted the driven line near-end waveform,
which is quite different from that expected for lossless
coupled lines.

In the above ASTAP simulation of two symmetrical
coupled lossy lines, we used seven poles and five zeros
for both mode 1 and mode 2 attenuation curves; 10 poles
and 10 zeros for entries in the characteristic admittance
matrices. The total simulation time over the 7-ms dura-
tion was 35 s CPU time using an IBM System/370 Model
168 computer.

Note that for this simple example of two symmetrical
lines, the eigenvector matrix turns out to be independent
of frequency. This, however, is not a restriction of the
method discussed in this paper. An analysis of three
coupled lines (four conductors) was performed based on a
calculated capacitance matrix [34] and a calculated com-
plex impedance matrix [35]. The latter was a function of
frequency. The 3 X 3 eigenvector matrix P, as defined in
Eq. (5), had five distinct entries which were functions of
frequency. Each entry can be approximated by a ratio of
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two polynomials. We also observed that the decoupled
modes came out of the numerical calculation in a different
order at different frequencies in the range of interest.

For the simulation technique described in the paper to
work properly, we had to keep track of each of the de-
coupled modes throughout the frequency range of inter-
est. It was found that the inner product of the two normal-
ized eigenvectors associated with the same decoupled
mode at two frequencies within one decade had a magni-
tude very close to unity. On the other hand, the inner
product of the two normalized eigenvectors associated
with different decoupled modes had a magnitude much
less than unity. Using the inner product of eigenvectors at
adjacent frequencies for the tracking of different de-
coupled modes along the frequency axis proved to work
quite well for this exercise involving the four conductor
configurations. It is expected that this tracking technique
will work for coupled lines having more conductors. If it
is necessary, we can progress on the frequency axis in
smaller frequency increments to guarantee proper track-
ing.

The above exercise on the four conductor configura-
tions pointed out that it was possible to have accurate
simulation of the transient behavior of coupled transmis-
sion lines that had not been built yet.

To show the validity of the polynomial approximations
used for transient analysis, we implemented Eq. (8) in the
frequency domain analysis portion of ASTAP. The input
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Figure 12 Comparison of measured and calculated Y,, magni-
tude and phase.
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Figure 13 Comparison of measured and calculated Y,, magni-
tude and phase.

to the subroutines that solve Eq. (8) is the same set of
polynomial approximations used to obtain the transient
simulation model. The short-circuit admittance matrix of
the 2n-port network obtained from ASTAP simulation
was compared to that obtained from the insertion loss
measurements.

The Y,, comparison shown in Fig. 12 showed very good
agreement in magnitude and phase. The Y, entry, which
was the transadmittance from the near end of line one to
the far end of line two, turned out to be the one with the
worst agreement between simulated and measured values
of the eight different ¥, and Z, parameters. The Y, com-
parison is shown in Fig. 13. Note that (a) the input data

A. ]. GRUODIS AND C. S. CHANG

used to generate the Y and I' matrices were the averages
of both the open- and short-circuit insertion loss measure-
ments for all possible 1-port and 2-port configurations; (b)
the polynomials representing Y, and exp (—I'x) are ap-
proximations to the actual curves. The magnitude of Y, is
about 10 dB lower than that of Y,,. Therefore, the Y,
comparison was more prone to measurement and approx-
imation errors.

Conclusions

The (n + 1)-conductor coupled transmission lines can be
characterized as a 2n-port network using insertion loss
measurements in the low-frequency range. The 2n-port
network parameters, Y, and Z, matrices, can be used to
derive the coupled line characteristic admittance matrix
Y, and propagation matrix I, both being n X n matrices.
The frequency-dependent transmission line parameters,
the R, L, G, and C matrices, can then be calculated from
the Y and I matrices throughout the frequency range of
interest. The good agreement of R, L, and C values be-
tween the single twisted pair measurements and the dif-
ference mode data from the two coupled line measure-
ments demonstrates the validity of this characterization
technique.

Taking every entry in the frequency-dependent Y, P,
exp (~yd), and P! matrices of the coupled lines as an
operator on the line voltage state variable, a transient
simulation technique has been developed. It is applicable
to the general case of uniform cross-section, multiple-
conductor transmission lines. They may be imbedded in
either homogeneous or inhomogeneous media. They can
be connected with linear and/or nonlinear circuits. The
simulation results have been compared with the transient
measurements of the AWG22 twisted pair and a cable
having two coupled lines. The excellent agreement of sig-
nal attenuation and waveform distortion substantiates
this transient simulation technique. The same input data
on transmission line characteristics used for the transient
simulation can also be used for the frequency domain sim-
ulation.
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Appendix A: Assumptions related to transmission
line matrices

These assumptions apply to Z and Y matrices and other
related matrices associated with the coupled transmission
lines.
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1. Any complex symmetrical matrix A, encountered in
the transmission line studies, is assumed to be diago-
nalizable. That is,

A= SAAASZI s

where A, is a diagonal matrix. S, is the eigenvector
matrix [28]. Note that each diagonal element, (A,),.
has two square roots. We shall take the root such that
Re {(A4"),} = 0. Then define

A1/2 = SAXAWSXI .

It can be proved that A'? is also symmetrical.

2. Define C = AB, where A and B are complex symmetri-
cal matrices encountered in the transmission line stud-
ies. We have assumed that C is diagonalizable. That
is,

C = ScAcSc' .
Then
C"2 =S A\:?S¢! exists.

Note that Re {(A¢"?),} = 0 is the root being taken.

Since we are primarily interested in numerical solu-
tions, we shall make small perturbations to the main diag-
onal elements of A and C matrices in assumptions (1) and
(2) to remove the degeneracy in the eigenvalues A, and
Ac. Variations by a set of random numbers around 10™ of
the magnitude of the main diagonal elements are reason-
able perturbations to make with negligible errors in the
eigenvalues. With the distinct eigenvalues, the diagonal-
ization of A and C matrices can be ensured.

The existence of I in Eq. (5) is implied by assumption
(2). We shall prove that Y, in Eq. (6) is symmetrical.
From assumption (2), we have

ZY = Py’P}, (A1)
I =PyP ' = (ZY)'?, (A2)
where P is the eigenvector matrix of ZY, and v is a diago-
nal matrix having positive real parts.

From Eq. (Al), we have
72 = P—I(ZY)P = P—lzllZ(ZIIZYZIIZ)Z—IIZP’

— (Z—1/2P)—l(ZIIZYZ1/2)(Z—l/2P)' (A3)

Note that for matrix X = ABA, where A and B are com-
plex symmetrical matrices, one can prove that X" = X.
That is, X is symmetrical. On the basis of assumption (1),

we know that Z'* exists and is symmetrical. Therefore,
Z'*YZ'* is symmetrical. From Eq. (A3), we have

(lezYleZ)l/2 = (Z—II2P)7(Z—II2P)—1 = Z—IIZ(P'}'P_I)ZUZ.
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Figure B1 Insertion loss measurement block-diagram.

From the above equation and Eq. (A2), we have
F - P'}'P_l — Zl/Z(ZIIZYZIIZ)IIZZ—IIZ .
From the above equation and Eq. (6), we have
_ iy _ =12 e 1{2x ey 1124 1/27y —1/2
Y, =Z T=2Z""Z"YZ"Y"Z". (A4)

Note that Z'? and (Z'*YZ'?)"* are symmetrical matrices.
Therefore, Y, is symmetrical, which we set out to prove.

Appendix B: an and 22n from insertion loss
measurements

A 2n-port network can be described by its short-circuit
admittance matrix as follows:

Y \V,+Y,v,+---+7Y,V, =1

1.2n° 2n 1’

Y V+Y V. +---4+Y V. =] (B1)

2n,1° 1 m,2 " 2 2n,2n " 2n 2n

If we short-circuit all 2n ports except port p, the 2n-port
network becomes a one-port network, having Y, as its
input admittance. It can be measured using the HP3042
network analyzer, which has a block diagram shown in
Fig. B1. Channel A is connected with a short cable for
reference purposes, while a one-port network having in-
put admittance of Y, is inserted in the connection to
channel B. We then have the situation illustrated in Fig.
B2. Therefore,

(V,/Vy, = 0.5,

Y
VY =374,
pp 0
Then the insertion loss is
(Vz/Vo)B - 2YPP = l .
(Vo/V), 2Y, +G, a’ 39
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therefore,
Y, = G,/2a - 1). (B2)

We may repeat the above measurement for all 2n ports to
derive Y,,, k=1,- - -, 2n. i

If we short-circuit all 2n ports except port-p and port-g,
Eq. (B1) becomes
Y v,+v,v.=1L,

pp p

Y,V + YV, =1, (B3)

We may treat this 2n-port network as a two-port network.
When it is inserted in the connection to Channel B of the
network analyzer, the insertion loss shown in Fig. B3 can
be proved to be

Vo/ Vs - —2Y, = 1,

Vo/V)y G+ V)G + Y=Y, b~
therefore,

Y,,=b- Vb + (G +Y)G,+7,) . (B4)

We may repeat the above measurement to exhaust all
two-port combinations. Then the complete Y, matrix can
be established. Similarly, we may describe the 2n-port
network by its open-circuit impedance matrix, and per-
form the open-circuit one-port and two-port insertion loss
measurements. It can” be shown that the two-port in-
sertion loss can be expressed as a function of the open-
circuit impedance matrix elements as follows:

Vo/ Vs _ 2Z,, 1.
(Vz/ VO)A (RO + Zmz) (RO + qu) - Zzzw ¢
therefore,
2
Z,=-c+V+R+Z)R +Z) , (BS)
where Z .p=1,: -, 2n,can be obtained from the one-

port open-circuit insertion loss measurements. By repeat-
ing all combinations of one-port and two-port measure-
ments, we can establish the complete Z,, matrix.

Note that for passive networks like transmission lines,
the Y,, and Z, matrices are symmetrical. Because of
measurement accuracy limitations, we may obtain small
deviations from symmetry. We take the arithmetic average
as follows to ensure symmetry:

1 meas meas, T
Y, )+ (Y. )

Y2n = 2
1 meas meas
z, = 5[(22,, ) + @59
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