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A Data Definition Facility Based on A Value-Oriented
Storage Model

A data definition facility is presented that provides a consistent description of both primitive and user data. It is based on
a value-oriented storage model which carefully distinguishes between values and objects. It is values that are typed in this
model, and operations of the type work explicitly on the values. Objects are accessible only via reference values. Objects
are described via descriptors called templates, which ultimately yield reference type values. Operations, both primitive
and user-defined, are part of a **machine interface,”’ and all executable language constructs can ultimately be defined as
explicit operations of the interface. Importantly, these operations must respect the typing constraints imposed by both
the primitive types and the user extensions. The interactions of definition facility, storage model, and execution model are

illustrated via a series of examples in which commonly used data constructs are defined.

1. Introduction

Several recent languages with data definitional facilities
[1-5] have been described in terms of an object-oriented
storage model. In this model, all data are treated as storage
objects, and these objects are directly accessible to oper-
ations. Values do not exist separately from objects. This
object-oriented view is a recent development. Conven-
tional programming languages, ¢.g., ALGOL 60, PL/I, CO-
BOL, FORTRAN, while frequently lacking explicitly stated
models, nonetheless share an underlying intuitive model
that is quite different from the object-oriented view. In
this ‘‘value-oriented’’ view, values and objects are truly
distinct and operations manipulate only values. Where
reference (pointer) values exist in the language, objects
become accessible via the manipulation of these values.
Even without explicit reference values, parameter pass-
ing is frequently described as ‘‘call by reference’” to in-
dicate that a reference value is being passed to a subrou-
tine so that the referenced object can be manipulated.

We intend to make explicit this intuitive, value-ori-
ented storage model, but, in addition, to describe a data
definition facility which permits users to define their own
data in a way consistent with this model. This is the re-
verse of what has happened, in our opinion, with the ob-
ject-oriented languages. There, a model understood in
terms of the data definition facility was extended into the

realm of the primitive data of the base language. The re-
sult, we believe, is an unfamiliar storage model and an
unnatural programming language.

Our goal here is not to describe some specific program-
ming language. Rather, it is to provide a framework in
which most procedural languages can be described. This
framework integrates three facets of programming lan-
guages that have resisted previous attempts at unifica-
tion. They are:

Storage model

The value-oriented model, which carefully distinguishes
values from objects, builds on our previous work [6, 7.
This model differs from our prior work in its treatment of
values as being typed. It is, we believe, an explicit char-
acterization of the intuitive storage model behind most
procedural languages.

Execution model

It is important that user-defined operations be structurally
consistent with primitive operations. For this reason, we
put forward an execution model in which all computation
is the result of the execution of explicit operations at a
“‘machine interface.”” Operations have external con-
straints that include the specification of their argument
and return types. User-detined extensions, ¢.g., proce-
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dures, have the same forms of constraints and can be
used interchangeably with primitives.

Data definition facility

This facility, which is the main subject of the paper, per-
mits users to define data that are describable in terms of
the storage model used for the primitive data of the base
language. Moreover, these definitions are in terms of
operations consistent with our execution model, the
primitives of which define the base language. This uni-
formity of primitives and user extensions is assurance
that our underlying models, both storage and execution,
have indeed captured the essence of the primitive con-
structs. In particular, we believe that the data definition
facility captures the essence of the term ‘*data type.”’

The remaining sections of the paper pursue, in consid-
erable detail, the way that these three facets interact. The
next section provides an overview of the three areas,
while the remaining sections explore the data definition
facility and its integration with storage and execution
models. Examples are extensively used so as to provide
convincing evidence as to the success of the approach.

2. Framework

o Storage model

In the object-oriented view, an object typically possesses
three attributes: a location, a value, and a type. All data
are modeled as instances of objects. Values are not di-
rectly accessible to operations. Rather, a value is solely
state information associated with an object. One never
‘‘sees’’ a naked value. Because objects have locations, all
objects can be defined with update operations and hence
are, at least conceptually, amenable to being changed.
Constants (values) in this view are immutable objects,
i.e., objects without update operations.

The value-oriented view turns most of this around. In
this view, objects and values are truly distinct. Objects,
which may contain values, are described by means of de-
scriptors that we call templates. Objects can only be ma-
nipulated via their reference values. It is values that are
typed and that are directly accessible to operations.
Types describe values in that they specify the representa-
tion of values of the type and the operations permitted on
these values. A type is not merely a tag associated with an
object (cell) that restricts the values that can be stored in
the object to some subset of a universal domain of values.
Rather, the type associated with a cell now identifies the
unique type of the values that can be stored. This dis-
tinction between types as sets of values versus typed val-
ues is most clearly illustrated in the case of unions. Type
as a set specification associated with a cell suggests that
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there are not values of a union type but rather that a cell
can contain values from more than one type. Our new
view requires that there be union type values and further
that a value drawn from one of the alternative types of the
union be explicitly converted to a union type prior to this
value being stored in the cell.

Example  int U char does not define a set union of in-
teger and character types; rather it specifies a completely
new type that happens to be able to represent values
drawn from both alternative types, but, in fact, does not
support the operations of either type.

An object, in our view, has a fixed set of components,
i.e., parts to which a reference value can refer. Unlike
types, templates do not take part in unions. Thus, it is not
possible for an object to have a varying number of com-
ponents, the number and form of which change depending
on the current value(s) contained by the object. Objects
with varying component structure have been called **flex-
ible.”” In ALGOL 68, [1:0 flex] int is such a flexible object.
ALGOL 68 precludes references to components of such
flexible objects, but only by means of an ad hoc rule. The
object/value distinction, in which objects have a fixed
structure and templates do not take part in unions, sup-
plies a unifying rationale for such a rule. At the same
time, a great deal of flexibility can be provided by the type
system, ¢.g., in the form of unions of aggregate values,
because this unioning applies to types but not templates.

Note that to model most existing languages, one must
provide aggregate objects whose components are truly
part of the aggregate, i.¢., whose existence depends on
the existence of the containing aggregate. These aggre-
gates do not refer to their components. Rather, the com-
ponents are included as a part of the object. The updating
of a component does not change the identity of the com-
ponent so that it now becomes a different referenced ob-
ject. An update merely changes the state of the com-
ponent. While physical contiguity of representation is not
required to sustain this notion, the clear distinction be-
tween what exactly comprises the object versus what is
merely referenced via the object must be maintained.

A duality between objects and values can be usefully
exploited, and we shall do this. This duality permits us to
use a template to describe both an object and an analo-
gous value. Not only is an economy of description
achieved by this, but the process of generating aggregates
can be much simplified. This will introduce some extra
complexity into the template but appears to avoid the
even greater complexity of providing dual forms of opera-
tions for constructing both objects and values. The tem-
plate definition, which with objects distinguishes between
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Table 1 Properties of values and objects.

Property Discussion

Values atomic Referencing components is not pos-

sible.

immutable Values may be replaced by other val-
ues, but it is meaningless to talk of
changing values. If 1 is added to 3, the
effect is not to change 3 to 4 but to re-

place 3 by 4.

Values can become the contents of
(parts of) storage objects.

storable

accessible Operators take values as arguments
and may produce values as results.
Further, any result returned is always a

value.

typed Each value has a unique type that de-
termines the operations which can ac-
cess its representation.

Objects constructable Whereas operators may return only
values, a side effect of certain oper-
ators is the creation of storage objects
that persist over time.

referable Reference values are used to specify
the storage objects or their com-

ponents that are to be manipulated.

changeable Storage objects contain the state of the
computation. If an object is changed,
subsequent operations involving refer-

ences to it reflect the change.

deletable Some languages permit storage objects
to be deleted. Subsequent references

to the deleted object are erroneous.

what is part of an object and what may be referenced by
the object, serves here to separate that which is in the
representation of the value, and hence cannot be altered,
from that which may merely be referenced, and hence
continues to exist as an independent object that can be
updated.

The properties of objects and values are summarized in
Table 1, which is a modification of a similar table in [7].
The most notable change is the inclusion of the “‘typed”’
property for values.

® Machine interface

One long range goal of this work is to provide a complete
machine interface in the same sense that, ¢.g., the IBM
System/370 interface is complete. Current high level lan-
guages do not do this. Thus, e.g., ALGOL or PL/I requires a
linkage editor and a system command language. It is not
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possible with these languages to specify that programs are
to be compiled, linked, loaded, and executed. A complete
machine interface provides the only way of dealing with a
computer and hence must make all of these currently ex-
cluded functions possible.

Our intent is for this interface to be low level in all its
aspects except for the procedure and data definition ex-
tension mechanisms. The low level nature of the primitive
operations avoids the primary problem with high level
machines, i.e., the large granularity of the operations,
which makes it difficult to efficiently support other high
level operations that differ only modestly from those pro-
vided as primitives. The extension mechanisms provide a
means of specifying efficiently the forms of high level data
and high level operations that each user may require.

Like a conventional machine, all computation is per-
formed by some explicit operation. Thus, every type con-
version, every address computation, every update, every
control structure is realized by an explicit operation,
whose arguments and results must be values supported
by the interface. Note that most object-oriented ap-
proaches are not compatible with this requirement.

An operation is characterized, in its interactions with
surrounding operations, by its argument types and its re-
turn type, if any. These type specifications are precise.
That is, the exact type of the argument or return type is
prescribed. Thus, within an operation there need be no
type checking of parameter/argument matching. Further,
only operations specified with a parameter’s type defini-
tion can be used to manipulate the argument. In this ma-
chine, all type checking is done during the program con-
struction process, via program construction operations.
This construction process requires that, during the com-
bining of operation with arguments in the resulting pro-
gram, each argument exactly match its corresponding pa-
rameter. Where such a requirement is burdensome, a pro-
gram translator, which takes character strings and creates
programs, must supply the missing operations that are im-
plicit in the character string form of the program. The in-
terface itself does not provide this service. Likewise, the
interface does not provide polymorphic operations, i.e.,
those whose argument or result types depend on other
argument types. Thus, polymorphism as well is treated as
an issue for the translator. When examined closely, most
languages or language proposals treat polymorphism this
way [1,2,5,8,9].

Why belabor this point concerning explicit operations
and exact type matching? Because machine interfaces re-
quire the explicitness and because current languages,
with the exception of Lisp [10], which is a typeless lan-
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guage, are not amenable to such a view. For example, the
array element denoted by **A[i]”” in ALGOL 60 [11] denotes
the ith element of array A, where i is specified at the time
the element is needed. Explicit operations, in our view,
would treat this as an expression containing operations
for computing the ith element given i and a reference to
array A. In ALGOL 60, neither the reference values nor the
selection operations for computing the location of the ith
element are included in the language. ALGOL 60 is not
unique in this. We are not aware of any typed languages
which lend themselves to an interpretation as a sugared
form for such a machine interface.

Why might such a machine interface be of interest?
There are at least two reasons:

1. Such an interface can be construed as the lowest level
“‘machine-independent’’ target for a compiler. Com-
piling to this level provides two advantages. One is
that efficiency can be achieved in the resultant code
because all the operations can be low level ones with
small granularity. The operations are all exposed, and
thus common forms of optimization can be profitably
applied to the program in this form. Two, the interface
remains type secure, and hence the type system can-
not be compromised by errors in compilers, which
tend to be large programs that are rarely error free.

2. It should be possible to implement secure systems on
top of this interface in a manner that is cost com-
petitive with existing, nonsecure systems. Capability
machines/systems, which traditionally have been the
base on which secure systems are built, have cost/per-
formance problems stemming basically from the re-
quirement to protect pointers and the complexity and
cost of the domain switching operations. In our inter-
face, the type checking inherent in program construc-
tion guards pointers, indeed all data, from the danger
of being misinterpreted. Further, the interaction of
type checking with procedures forms a natural basis
for restricting addressability. An oft repeated truism is
that if only everyone had access to the machine solely
through a high level language, then most protection
problems could be solved. Our type checked machine
interface permits us to solve protection problems in a
similar way.

& Data definition facility

Our goal with the data definition facility is to provide a
uniform way of regarding both primitive and user-defined
data. The facility should be sufficiently flexible so that the
forms of data in most existing languages can be described.
Given our value-oriented view, both values and objects
need to be capable of definition. The requirements for our
data definition facility are
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1. A new type of value must be definable in terms of an
existing type. We believe this should be accomplished
without introducing a new intermediate object, which
would result in an extra level of indirection for every
level of definition. So far as we have been able to de-
termine, both cLU [2, 12] and Alphard [5] require such
levels of indirection, though it is sometimes possible
for an optimization to remove them. Thus, values of
type "‘int”’ should merely re-interpret the values of
the primitive type ‘‘bit_32,”’ not add a layer of indi-
rection as well. How this is accomplished is described
in the next section.

2. New types of values should be able to play the same
role as the old types. Thus, because cells can be de-
fined that contain ‘*bit 32"’ type values, it must be
possible to also define cells that can contain values of
type ‘‘int.”’ Further, to insure that we have omitted no
capability of the primitives in providing our extension
mechanism, we require that it be possible to redefine
the primitive types using the definition facility.

3. Templates that describe new forms of objects must
similarly be part of the definition facility. Require-
ments similar to those for the type definition mecha-
nism apply also to the template definition mechanism.
Thus, user-defined templates must be usable in the
same contexts as primitive templates. Further, the
primitive templates must be replaceable with user-de-
fined versions that are indistinguishable in effects from
the primitives.

4. A means must be provided for conveniently support-
ing aggregate values, e.g., array values in which the
array components have values but not locations. With
our approach, aggregate value types can be generated
from the primitive templates. For consistency, it is re-
quired that new templates be capable of maintaining
this object/value duality. This means that template
definitions must be flexible enough to contain the type
specifications not only of reference types but also of
the aggregate value types as well.

5. Type definitions must be specified in terms acceptable
to our machine interface. Thus, all operations of a
type must be explicitly given. These operations must
be described so as to form compatible extensions to
the primitive operations. Hence, they must be charac-
terized by their argument types and their return type.
These user-defined operations will then be susceptible
to the same program construction process as was used
with the primitive operations.

The remainder of the paper elaborates the data defini-
tion facility and its consistency with both the value-ori-
ented storage model and the machine interface execution
model. Many of the common forms of data in the widely
used procedural languages are treated in the examples.
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Both primitive data and the user-defined extensions are
presented so as to emphasize the commonality of treat-
ment. Our success can be assessed by how satisfactorily
these common data forms are handled.

3. Types and values

A type not only specifies a set of values (of that type) but
also the operations permitted on those values. The values
of each type form disjoint sets, in contrast to the purely
set view in which a value can be a member of more than
one type. A type definition requires the specification of

1. The representation for the values of the type being de-
fined. This representation is specified in terms of an
existing type, called the representation type. Each
value of the type being defined has a representing
value that is a value of the representation type.

Note: Both the instances of the defined type and the
instances of the representation type are values, not
objects. There need be no explicit storage associated
with instances of a type.

2. A set of (name:operation) pairs. The operations are
associated with the type being defined and are the only
operations that are permitted to directly manipulate
values of the type. These operations are able to do this
by gaining access to and manipulating the correspond-
ing values of the representation type. The ‘‘name’
component identifies the operation that a user of the
type desires.

We have not discussed three important features of
types.

Operation specification

How do we specify which operation we intend to use
from among the several given with the type? We are not
particularly concerned with syntax here. What we wish to
determine is what operation is used to acquire an opera-
tion from a type. What we suggest is that a type also be
considered as a function. When used as a function, it
takes operation names as arguments and returns the cor-
responding operations as results. (This view is not essen-
tial, but is convenient.)

Example Let “*XYZ"’ be the name of a type and **qrs”
be the name of an operation of that type. Then, evaluating
XYz (qrs)”’ will yield the qrs operation of that type.

The operations are derived from the type and are not
regarded as components of an instance of the type. This is
similar to the view taken by CLU where, when a stack is
defined, ‘‘stack$push’’ denotes the push operation. Thus,
the operations are available as soon as the type is speci-
fied. This implies, of course, that the operations are not
specific to any instance of the type as they are in SIMULA
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[13]. Any value to be operated upon must therefore be
passed to the operation explicitly as an argument.

Accessing the representation

How do the operations in the type definition gain access
to the representing value (instance) of the defined type?
This is accomplished by means of a function called rep
that is automatically provided by the type definition
mechanism. The function rep takes an argument of the
defined type and returns a result of the representation
type. This result is the representation of the argument val-
ue of the rep function.

Instantiating type values

How are instances of the defined types generated? Anoth-
er function provided automatically by the type definition
mechanism is abs. The abs function takes an argument of
the representation type and returns a value of the defined
type. This result is the ‘“abstract’” value of the defined
type that has the argument value as its representation.

Both rep and abs are made available only to the named
operations of the type definition. Their operational effects
are available outside the type definition only if the type
definition includes operations that supply them. Thus, as
much protection or flexibility as is desired can be pro-
vided. One more point is that no operations are local to
the type definition aside from rep and abs, nor can a type
definer specify them. If such operations are desired, one
must augment the representation type so that these opera-
tions become part of it.

It should be noted that aside from abs, no special con-
struction operations that allocate and initialize storage are
provided. This being the case, it is necessary for named
operations to exist in the type definition that yield values
of the defined type without requiring arguments of the de-
fined type. These operations are not treated specially,
however, and there is no restriction as to the number of
such operations. Note that this is not the view taken al-
most everywhere else [2, 5, 9]. This places an additional
requirement on declarations. Since no special construc-
tion specification is given, declarations must include the
means of generating the values that are identified with the
symbols of the concrete language. This can be accom-
plished in much the same ways as in ALGOL 68 [ 14, 15]. An
expression must be present in the declaration. Its result is
identified (see the ALGOL 68 identity declaration) with the
declared symbol.

When it is intended that a type definition specify a set
of references to storage objects, the representing value of
each such reference must itself reference some storage
object. We describe the primitive types and type gener-
ators that initialize this process. They too have type defi-
nitions that are of the same form as described above.
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Before proceeding to the examples, we present some
notation that will be used in the type definitions.

Notation 1  The interface of an operation is described in
terms of its argument types, result type, and character-
istics as follows:

A((list of parameters)) {proc | funct} ((result type))

Thus A([(identifier):Jint,[{identifier):]char)funct(int) de-
notes an interface for an operation having two arguments,
the first being an integer, the second a character, and
which returns an integer result. The use of funct indicates
that no side effects are performed by the operation. If
proc had been used, side effects would be expected. The
(identifier)’s can be optionally specified to assist in speci-
fying either the result or the body of the operation.

Notation 2 A type definition is described syntactically
as follows:

(identifier): type
representation:(type);
operations:
{(identifier) = {operation interface)
[{operation body )]}
end

For types that are primitive, the representation type is
omitted, as are the bodies of the operations.

Note: Strictly speaking, identifiers are artifacts present
in the character string form of the program that do not
exist at the machine interface. Rather, operations are
“‘named’’ by one of the primitive types, ¢.g., bit_32,
present at the interface. But, as in the use of assembly
language where symbolic forms are used instead of bit
patterns, we use identifiers instead of these primitive data
values, with the understanding that the identifiers are re-
placed by the bit_ 32 values when the program is ‘‘assem-
bled.”

Notation 3 When we wish to denote the result of exe-
cuting an operation, as opposed to the expression that
generates the result, a dot(.) notation is used. Thus,
plus(3,4) yields a result plus.(3,4) that happens to be iden-
tical to (i.e., it denotes) 7.

We now introduce the examples. We begin with the
definition of a primitive type expressed in the same form
as a user-defined extension. Then, the extension mecha-
nism is used to define an integer type, a type that is usual-
ly provided by the system. Finally, the primitive type
constructor union is used to construct new types. Once
again, the new type, though it cannot be user-defined, is
nonetheless described in exactly the same form as a user
definition.
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bit___32: type

representation: . . . primitive;

operations:

fixed__add = A(bit__32,bit _.32)funct(bit__32);

fixed_sub = .. .;fixed_mult = ... fixed_div=...;...
float_add = A(bit_32,bit__32)funct(bit__32);

float_sub = .. .;float_mult = .. .;float_div=...;...
equal = A(bit__32,bit _32)funct(bit);

gtr__than = .. .;less_than = .. .;less_eq = ...;...
shift__right = A(bit__32,bit__32)funct(bit__32);

shift__left = ..., ...

and = A(bit__32,bit__32)funct(bit__32);
or=...;X_or=..., ...

complement = A(bit...32)funct(bit__32);
zeros = funct(bit __32);
one = funct(bit__32);

end bit_ 32

Figure 1 The type definition for 32 bit values.

o FExample I: a primitive type

Our example is the "*bit__32"" type, specifying a **string”’
of 32 bits, but it is not the only primitive type of our ma-
chine interface. Perhaps other sizes of bits are also
needed as types. Further, not all primitive types or aggre-
gates will have their mappings to bits exposed at the inter-
face. Indeed, it does not appear to be possible to expose
all these mappings without opening the interface to poten-
tial compromise. This is particularly true for reference
types, whose values must be scrupulously protected from
arbitrary data processing operations.

In existing machines, of course, all data are ultimately
expressible in bits. In realizing our machine interface, this
mapping to bits is also made. However, users will not
have access to, nor need they have knowledge of, this
mapping except in the most general terms, ¢.g., how ex-
pensive are various values and their operations in space
and time. As a conventional machine does not expose its
logic gates at its interface, some primitive data represen-
tations are not exposed in our type machine. However,
by and large, all “ordinary’’ data are reducible to some
form of bits.

The operations on "'bit _32"" values are those computa-
tional operations of the underlying hardware. The defini-
tion in Fig. 1 is meant to be indicative of this set of opera-
tions, but the list should not be considered to be the only
possible one. Only the interface specifications for these
operations are given as the operators are all primitives.
This is the case for all the types with primitive operations.
Note that both fixed- and floating-point arithmetic opera-
tions work on *'bit . 32" values. These are subsequently
separately used to define integers and reals. The under-
lying machine does not, however, distinguish between
these types. All its arithmetic operations work indiscrimi-
nately on bits.
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int: type
representation: bit__32;
operations:
add = A(x:int,y:int)funct(int);
on fixed__overflow then call integer__error(x,y);
return(abs(bit __32.(fixed _add)(rep(x),rep(y))));
end add;
sub= ... ;mult=...;div=......
equal = A(x:int,y:int)funct(bit); .
return(bit _32.(equal)(rep(x),rep(y)));
end equal;
gtr _than = . . ;less__than=...;...
bits__to_int = A(x:bit__32)funct(int);
return(abs(x));
end bits _to__int;
int__to__bits = A(x:int)funct(bit __32);
return(rep(x));
end int__to__bits;
end int;

Figure 2 The type definition for integer values.

As with all types, an initial source of values is needed.
Here we suggest two sources, “‘zeros’’ which provides
32 zero bit values, and “‘one’” which provides 31 zeros
followed by a one bit. With these initial sources and the
operations given, all 2*° bit patterns can be generated.
These bit_32 values are merely bit patterns that are
moved around and manipulated. They can be copied into
several locations, etc., but do not themselves consume
storage, and no storage allocation has been specified.
That is to say, they are values, not objects.

There are some forms of operations that are not in-
cluded in the definition of bit__32 even though the under-
lying machine clearly possesses them.

1. No branching or program control operations are in-
cluded. At our interface, program control operations
are buried in the primitive operations and do not ap-
pear as data processing operations.

2. No I/O operations are present, again because these are
not to be regarded as data processing operations.
Some form of I/O capability, however, must be pres-
ent. For on-line memory, it may be possible to conceal
the I/O under a one-level store interface to the storage
hierarchy. For so-called source/sink I/O for communi-
cating outside of the system, explicit operations of
some form are required. These are not discussed here.

® Example 2: a user-defined type

What we describe in this example are integer values and
not storage objects (cells) that can contain integer values.
Thus, the operations that must be provided with integers
are the usual arithmetic and comparison operations and
two type conversion operations. Operations for updating
and taking the contents of integer cells are not appropri-
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ate operations for integer values. They are appropriate for
cells, which are described in the next section. The type
definition for integer values is given in Fig. 2.

Only the body of one computational operation is
shown, i.e., that for “‘add.”” The other arithmetic opera-
tions are all similar. In “*add,” *‘fixed _add”’ is the primi-
tive operation of the bit__32 type. It produces a bit_32
result if it returns normally. Otherwise, it calls the ex-
ception handler “‘fixed overflow.”” This exception han-
dler is defined in the ‘*add’’ routine to invoke another ex-
ception handler for the integer type called ‘‘in-
teger__error.”” This is a free variable that must be bound
to some appropriate routine. We do not discuss this fur-
ther here but see [16, 17]. If no exception occurs, the
*‘add’’ operation returns the result of “‘fixed__add,”’ con-
verted by abs to an integer from a bit__32. The operation
abs merely takes the same bit pattern and asserts that it is
now to be regarded as an integer.

None of the arithmetic operations provides an initial
source of integers. This source is provided by the
“bits__to_int”’ operation which, given a bit_ 32, returns
an integer. It is possible to be more restrictive. For ex-
ample, perhaps only a source for the integer “‘one’’ might
be given, all other integers being derived from it. This is
needlessly primitive, however, and our goal is not mini-
mality but convenience. No special construction method
has been provided by the definition mechanism. Logic re-
quires something analogous to ‘‘bits_to_int’’ but this
operation is not treated specially. Several sources for in-
tegers could have been provided.

An operation, 'int_to_bits,”’ that converts integers to
bit__32 values is also provided. This is analogous to the
PL/I UNSPEC operation [18] and is not dangerous to the
type system. Users must be cautioned that using it may
make their programs representation-dependent, however.
This operation is particularly useful for us when defining
arrays. Primitive aggregates have bit_32 ‘‘selectors’ so
that, if we wish to use integer selectors instead, it is pos-
sible to easily convert the integers to these bit values.

No storage has been associated with integers. The in-
tegers are merely re-interpretations of the bit__32 values.
Note that abs does not assert that the storage in which its
argument value resides is to be treated as an integer.
Rather, it returns a value completely unconnected with
any implementation-required storage for its argument and
asserts that this value (bit pattern) is an integer.

o Example 3: unions and general variables
Intuitively, one would like to treat union types as if they
specified the set union of values of their constituent types
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and indeed, this is the view we took in [7]. That view,
however, creates a problem when we attempt to fit unions
into the framework discussed in Section 2. Type con-
versions between union types and their constituent types
are needed. We wish all computation, including such
changes in representation as these trivial conversions, to
be accomplished by explicit operations, and we need a
source from which to acquire these operations, without
exposing the representation of the union. The need for
such conversions is particularly clear when it is remem-
bered that we insist on an exact match between procedure
parameter declarations and the arguments passed to
them.

It is the union type that must provide these conversion
operations, and aside from one testing operation, unions
provide only conversion operations. Any computational
operations are drawn from the constituent types. Since
unions can contain a great, potentially unbounded, set of
alternatives, we must provide a framework for coping
with these possibilities. We present an example first and
then discuss the way in which it is used. The operation
union takes two existing types and produces the ‘‘union”’
type and hence is a type generator. We give an example in
Fig. 3. Only operation interfaces are given as the opera-
tions are primitive.

Note that unions are examples of types that do not pos-
sess explicit construction operations, though by using
“‘widen,’’ it is possible to produce ‘‘union’’ values. To
convert from some specific alternative type value to the
corresponding union value, one must

1. Obtain the ‘““widen’’ operation from the union as the
result, e.g., of

union.(int,char)(widen).
2. Using the “*widen’’ operation, which is of the form

A(type = T)funct(funct-type
= MT)funct(union.(int,char)))

when type argument T is set to int produces a specific
“*widening’’ conversion operation with interface

A(int)funct(union.(int,char)).

3. It is this specific widening function that can thus be
used to convert from, e¢.g., an int to the union.

A similar sequence is followed in order to convert from
the union to a specific alternative type, only ‘‘narrow’’ is
used instead of “*widen.”’

This discussion of union types provides a natural con-

text in which to discuss strong typing and type checking.
Our view is that all type checking must be done at pro-
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union (int,char):type
representation: . . . primitive
operations:
narrow = A(type=T)funct(funct-type = A(union(int,char))funct(T));
widen = A(type=T)funct(funct-type = A(T)funct(union.(int,char)));
alternative = A(union.(int,char))funct(type);
end union.(int,char);

Figure 3 The type definition for union of integer and character
values.

gram construction time. It is important to point out that
program construction can encompass more than com-
pilation. It can include link editing as well, and in our ma-
chine interface, can even be performed during the execu-
tion of ordinary, user-written programs. It is the kind of
checking which, e.g., ensures that there is a type match
between parameters and arguments, and between identi-
fier usage and declaration. This view requires that types
be known in order for a program to be constructed. This
is our understanding of what strong typing means and im-
plies that all type checking is ‘‘strong.”’

What happens with the *‘narrowing’’ of a union value is
not type checking but type conversion. In this case, the
success of the conversion depends on the value given it.
Whether the value is appropriate is related to its ‘‘basic’’
type, but it could just as easily depend on some other
property. For example, one might define a subrange of
the integers as a type. Conversion from integers to the
subrange type would depend on whether the integer value
is within the desired subrange. This is not unlike a great
many operations which return results only conditionally.
The *‘add” operation of the integer type is one such oper-
ation.

The operation *‘alternative’’ yields the basic type of the
value of the union. Exactly what constitutes a ‘‘basic”
type is a troublesome notion. The simplest view is to con-
sider any nonunion type as basic. This permits
union{A ,union{B,C)) and union(B,union(A,C)) to generate
the same type. The result of ‘‘alternative’’ can be tested
to provide alternative dependent computations, as in

if alternative(x) = char then call char_ procedure(x);

No computational operations are provided with unions.
The values of union type must be converted to their basic
(nonunioned) types before such computations can be
done. Neither updating nor contents operations are pro-
vided, since union types do not describe storage objects,
but rather describe values. Of course, as we shall see,
references can be generated to cells that can contain
union values, but these belong to a different, distinct

type.
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cell.(int):template

representation: . . . primitive

ref operations:
create = proc(ref.[int]);
free = A(ref.[int])proc;
null = funct(ref.[int]);
equal = A(ref.[int],ref.[int])funct(bit);
val = A(ref.[int]funct(int);
upd = A(ref.[int],int)proc;
end cell.(int);

Figure 4 The template definition for integer cells (reference op-
erations only).

Discriminated unions might have been provided in-
stead. To define them, all type arguments and results in
the operations of the union type of Fig. 3 are replaced
with tag field arguments and results. This is an advantage
in languages in which types themselves are not values. In
addition, the type generator union would require tag field
values associated with each alternative of the union.

The union type generator can only produce finite
unions of types. It is frequently useful to be able to spec-
ify infinite unions, i.e., unions in which the number of
basic types is unbounded. Such infinite unions may need
to be supplied by means of primitives. However, we have
no difficulty expressing the resultant type in terms of the
operations upon it. A type general, which is a ‘‘union”’
over all possible types, can thus be described in the same
way as more limited unions. The general type is useful for
coping with so-called typeless languages. Of course, its
operations ‘‘widen,”” ‘‘narrow,’” and ‘‘alternative’’ have
a broader range of argument and return types, but the
form of its type definition is otherwise like other unions.
It should be emphasized that we are not introducing flex-
ible objects. Rather, general values ‘‘include’” any value
that the type system will ever be able to produce.

4. Objects and templates

The purpose of objects in a high level language is to main-
tain state information over periods of a computation so
that examination of this information can influence the
subsequent course of the computation. The simplest ob-
jects we call cells. Cells permit values to be retained, via
an update operation, then subsequently recalled. An ag-
gregate object supports a restricted form of address com-
putation, i.e., that computation that yields a reference to
one of its components. By carefully distinguishing values
from objects, we avoid having update operations interfere
with or affect this address computation. Specifically, flex-
ible objects are not supported.

Objects are not directly accessible to operations of the
machine interface. As in ALGOL 68, operations, indeed all
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routines, manipulate objects, e.g., to change their state,
by manipulating their references. All operations for data
definitions then are associated with types. The operations
that affect objects are associated with their reference
types. This is what is meant by a value-oriented data defi-
nition facility. To our knowledge, this value-oriented ap-
proach is unique.

Templates are used to describe objects. Roughly speak-
ing, templates describe the layout of storage. When we
wish to deal with references to this storage, we apply the
ref operator to a template, yielding a reference type
whose operations manipulate storage of the form de-
scribed by the template. As will become clear in the next
section, templates can also be used to describe values
that are structurally similar to the objects discussed here.

Templates are complicated by their subsequent use in
deriving value types that are analogs of the objects. To
cope with this, our syntactic form for a template provides
not only for the specification of reference values but also
for the specification of the derived values. Only the refer-
ence types are discussed in this section. The full syntactic
form for templates is as follows.

Notation 4
(identifier): template
representation:(template );
ref operations:
{(identifier) = (operation interface)
[{operation body)]}*
value operations:
{(identifier) = {operation interface)
[{operation body)]}*
end (identifier);

The following examples present no single primitive
storage object. Rather, what is primitive are operations
that generate templates for storage objects when they are
supplied arguments. For example, there is no primitive
cell. Rather, cell is a primitive operator that, when given a
type, generates a template for a cell that holds exactly the
values of the type. Instead of primitive templates, the in-
terface provides primitive template constructors.

o Example 4: cell objects

We illustrate integer cells to expose the differences be-
tween the integers of Example 2 and the cells that can
contain them. Thus cell(int) is an expression that yields a
template specifying cells that contain integers. To gener-
ate the associated reference type, one must then execute
the ref operation with this template as its argument. The
template for integer cells has its description given in Fig.
4. While cell.(int) could be used to denote templates for
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cells of integers, we generally use a sugared form for cells
in which square brackets enclose the cell’s type. Thus

Notation 5 [(type)] denotes a cell capable of containing
values of type (type). Further, ref is a unary operation
with a template argument that is usually delimited by
these square brackets. Because of this, the parentheses
around its argument are frequently elided.

The representation template for cell.(int) is not pre-
sented since all objects generated using cell templates are
primitive. There is no test that can be made by the user of
the type which will reveal this representation.

The first four of the operations of the reference type for
integer cells are operations that are common to all refer-
ence types. These operations permit the creation of the
object (*‘create’’), the destruction of the object (*‘free’’),
the generation of null reference values, i.e., those refer-
ence values that do not refer to an object (‘‘null’’), and
the testing of references for equality (‘‘equal’’). While
every reference type has corresponding operations, these
operations are always specific to the particular reference
type. Thus, e.g., the *‘create’” operation above makes
only integer cells. The *‘create’’ and ‘‘free’” operations
are procedures rather than functions, because they cause
a ‘‘side effect” of altering the set of objects that are in
existence. The “‘null”” and “*equal’’ operations are pure
functions and are so designated.

The **val’’ and ‘“‘upd’’ operations are specific to cell
objects. That is, they perform the characteristic opera-
tions on cells of storing a value in a cell (“‘upd’’) and re-
trieving it (**val’’). Storing a value produces a side effect,
and hence “‘upd” is a procedure while ‘‘val’’ merely re-
trieves part of the state without altering it, and is a func-
tion. These are the basic operations involving the integer
cell as a storage object. Note again that no arithmetic op-
erations are given with integer cells. These operations be-
long to the type integer whose values can be contained in
the ceil. All cells, it should be noted, have analogous sets
of operations, each having interfaces specific to the type
of values that they contain.

No clue has been given as to how these primitive refer-
ence values are represented, e.g., in bits. However, while
we have not shown it, an operation *‘ref _to__bits’’ could
be provided to convert reference values into the bit
strings that represent them in the implementation. This
operation might be useful for ordering references or for
displaying them in some form. Such an operation does not
violate the integrity of the typed interface, but it does in-
troduce implementation dependency.
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If instead of cells being primitive, a user were required
to define them in terms of an underlying bit space object,
then **val’’ and “‘upd’™ would be required to explicitly
convert between integers and bit _32's. In ‘‘val,”” one
could use the operation “'bits__to__integer’” to change a
“‘bit _32"" value into an **int’" value. In “‘upd,’’ the opera-
tion “‘int_ to_bits”’ would be used to store the integer
value’s representation in the bit _32 cell. A serious diffi-
culty with this alternative approach is the conversion
from bits to a higher level type. This causes no problem
for *‘int’’ and, indeed, for many types of values. But ref-
erence values present a special problem. If a conversion
operation from bits to references is provided which sim-
ply asserts that some bit pattern is a reference, then no
storage object is secure from inadvertent or malicious
reinterpretation as some other object. Potentially, even
free storage might be compromised. One way out, with-
out going as far as to make cell primitive, as suggested in
the example, is to make both cells for bits and cells for
references primitive. That would at least make the stor-

age system secure.

The advantage of cell being a primitive template gener-
ator is that the representation of types can remain com-
pletely concealed, and, in addition, the definition of refer-
ences to cells of type T does not depend on the operations
provided with type T. That is, there is no obligation on
the part of the definer of type T to provide operations that
enable its values (by being convertible to and from bits) to
be stored in cells. They may always be so stored.

o Example 5: structure objects

Structures are storage objects possessing several named
components, each of which is itself an object. Again, we
emphasize that objects and values must be carefully dis-
tinguished. Here we only specify the operations associ-
ated with references to structured objects. Structured val-
ues which can be derived from the same template are also
permitted and are treated in the next section.

We first introduce the following syntax for describing
structures.

Notation 6
(template )::=[(identifier):(template)
{i(identifier):(template)}*]

Note here that the square brackets are not meta-language
symbols but symbols of the language being described.
They are used in the same way here as they are with
cells. The example we will use is the following two-level
structure:

Z = [x:[int];y:[a:[char]:b:[int]]]
Then Z is defined in Fig. 5.
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Z:template

representation: . . . primitive

ref operations:
create = proc(ref.Z);
free = \(ref.Z)proc;
null = funct(ref.Z);
equal = A(ref.Z,ref.Z)funct(bit);
x = Mref.Z)funct(ref.[int]);
y = A(ref.Z)funct(ref.[a:[char];b:[int]]);
end Z;

Figure 5 The template definition for structures described by Z
(reference values only).

The role of a storage structure (aggregate) is to provide
a controlled form of address arithmetic. In most lan-
guages the syntax at least implies that an object be in exis-
tence prior to any address computation. Thus, constructs
such as “*A[i]” or ““Q.R.S.”’ require the presence of the
objects named ‘“A” and “*Q,” respectively. Further, in
SIMULA [13], the procedures of a class are part of an in-
stance of the class, not part of the class definition. Hence,
conceptually, all address computation is put off until run
time, since only then do objects exist. Our approach splits
the address computation into two parts. The “‘offset”
computation depends only on the type and can be done at
program construction time, while the conversion from
“offset’” to ‘‘pointer’’ must be deferred until the storage
object exists, i.e., at run time. The offset computation in-
volves selecting from the type, the ‘‘offset function.”
Thus

ref.Z(y) — ref.Z(y)

oy,

where ref.Z.(y) is the function 'y’ in the definition of
Fig. 5, takes a ref.(Z) value as an argument, and returns a
ref.[a:[char];b:[int]] result.

For multi-level selection, one must compose functions.
Consider

MP){ref.[a:{char];b:[int]].(a) (ref.Z.(y)(P))}

where P is a symbol denoting a ref.Z value. Here,
ref.[a:[char];b:[int]].(a) denotes the function that takes a
ref.[a:[char];b:[int]] argument and returns a ref.[char] re-
suit. When composed with the previous offset function,
as occurs above, the resulting function denotes an offset
function that takes a ref.Z argument and returns a
ref.[char] result, a reference to component *‘a’’ in com-
ponent ‘‘y’’ of the structure. Thus, selection operations,
like any other operations, are extracted from the type def-
inition. This requires, of course, that an instance (value)
of the type be passed to each operation explicitly rather
than there being an implicit association by means of the
operator being a part of the value.
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There are problems with competing forms of address
computation. We consider two alternatives.

1. A general purpose select operation, i.e.,

select (ref to object, name of component) — ref to
component

What is the interface specification for select? Since se-
lect must work on any reference and for any com-
ponent, only imprecise type information can be put in
its interface constraints. Thus, the type of its result is
not such that an expression involving ‘‘select’” can be
readily incorporated into a larger expression unless it
becomes an argument that is itself only very impre-
cisely stated. Further, no part of the address computa-
tion can be precomputed without the precomputation
having access to an underlying machine and hence vi-
olating the interface. Why? Because a reference to the
object must exist when select is executed.

2. Reynolds [19] has suggested treating the object itself
as the selection function which, when given a com-
ponent name, returns a reference to this component.
Thus, if Q is a symbol denoting a reference to a struc-
ture, then **Q(A)” yields a reference to the “*A’’ com-
ponent of Q. However, this still leaves the result type
imprecisely specified. Again, of course, Q is not avail-
able until run time.

A structure template, like a cell template, has the stan-
dard object related operations of ‘‘create,”” ‘‘free,”’
“null,”” and ‘‘equal.”” Also, structure templates are primi-
tive and have no revealed template representation.

o FExample 6: row objects

A row template describes a storage object consisting of
identical object components. This template is produced
using the row operation which requires the row size and
component template as arguments. We treat selection in
rows somewhat differently from selection in structures
for two reasons.

1. The components of a row are identical, and hence we
wish to make information concerning the form of the
components available as soon as possible.

2. ‘*Address computation” is frequently performed at
run time, i.e., the desired component of a row is com-
puted dynamically.

It is because of (1) that it is possible to conveniently
handle the dynamic computation of components (2).
Thus, in Fig. 6, we describe a template for a row con-
sisting of 10 integer cells. As before, a notation is in-
troduced for these templates so as to make the specifica-
tion more readable.
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Notation 7
[((size)){template)] shall denote a row of a given ‘‘size”
whose components are described by the (template).

With structures, the component names appear explic-
itly as the names of ‘‘offset’” functions in the reference
type for the structure. With rows, a ‘“‘select’’ function is
provided that can compute the ‘‘offset’’ function at run
time. Why? Because of the following:

1. The “‘select’ function can be extracted from the type
and provides explicit information as to the form of the
components, i.e., it returns an ‘‘offset’’ function that
produces a ref.[int] when given a ref.([(10)[int]]); i.e.,
its return type is

Aref.([(10)[int]])funct(ref.[int])

Thus we are given detailed type information con-
cerning the component’s type from the start.

2. The result of a bit_ 32 computation at run time may be
used to determine the desired element. Using the se-
lect function itself at run time does not result in a loss
of required type information. If the component names
were in the “‘row’’ type directly, then we would lose
information concerning the types of the components
since we would then be required to use the row type as
a function to obtain the offset function.

If we are presented with “"A[i+j]”’ as an address com-
putation, then at program construction time, the select
function for A’s type is extracted and the following code
generated:

{ref.[(10)[int]].(select)}i+])(A)

where the braced part of the computation is done during
program construction and yields the ‘“‘select’” function.
Applying it to (i+j) produces the offset function, which
can then be applied to the specific row A.

This organization permits the isolation and identifica-
tion of common expressions. For example,

“Ali+j] < B[i+j]”

could be represented by

(a) f « ref.[(10)[int]].(select)(i+));

(b) f (A} « f(B);

where < represents the ‘‘upd’’ operation. Step (a) has
computed the offset function for both the arrays. The ac-
tual assignment of a component of B to a component of A

at (b) does not require the computation of this offset func-
tion to be done twice.

If the subscript for an array reference is constant, then
the offset function can be generated at compile time and
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row.(10,cell.(int)):template

representation: . . . primitive

ref operations:
create = proc(ref.[(10)[int]]);
free = A(ref.(row.[(10)[int]])proc;
null = funct(ref.[(10)[int]]);
equal = A(ref.[(10)[int]],ref.[(10)[int]Dfunct(bit);
select = A(bit_32)funct(A(ref.[(10)[int]])funct(ref.[int]));
end row.(10,cell.(int));

Figure 6 The template definition for rows of ten integer cells
(reference operations only).

embedded directly in the code. Thus “*A[S]”’ could be
represented by

{ref.[(10)[int]].(select).(HHA)

where the ‘‘offset’” function itself is generated at compile
time by the braced computation, leaving only the compu-
tation of the component reference from the aggregate ref-
erence.

As in previous examples, the representation for a row
is primitive. Further, the operations ‘‘create,”’ ‘‘free,”’
“null,”” and ‘‘equal’’ are as for other references to ob-
jects.

o Example 7: dynamic row objects

The rows of Example 6 are all such that their size must be
known at program construction time. This is similar to the
Pascal restriction [20] which has been the subject of some
controversy. Most languages, starting with ALGOL 60, pro-
vide more dynamic sizes. There are three generalizations
that we can imagine with respect to the size variability of
rows.

1. A parameter may have a type such that it is compatible
with rows of a given component type but with an un-
specified (or incompletely specified) size. Thus, any
reference to a fixed size row could be converted to this
form of reference to rows of unknown size. This ex-
tension does not require any new template at all but
merely a new type construction capability for infinite
unions of existing types, in this case involving refer-
ences to various size rows. No new template is needed
because all storage allocation is still being done using
row templates specifying a fixed size. The operations
of such a union are exactly those we have seen in Ex-
ample 3.

2. Every instance of a row is still of fixed size, but this
fixed size need not be specified until the time that an
instance of the row is to be created. Then, the size is
given as an argument to the ‘‘create’” operation. This
kind of row of settable size is supported by a diversity
of languages, including ALGOL 60 and pL/1. This form
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d__row.(cell.(int)):template

representation: . . . primitive

ref operations:
create = Mbit__32)proc(ref.[(*)[int]]);
free = A(ref.[(*)[int]])proc;
null = funct(ref.[(*)[int]]);
equal = A(ref.[(*)[int]],ref.[(*)[int]])funct(bit);
select = A(bit__32)funct(r(ref.[(*)[int]])funct(ref.[int}));
narrow = A(type=T) funct (funct-type = A([(+)[int]]funct(T));
widen = A(type=T) funct (funct-type = A(T)funct([(*)[int]]));
size = A([(*)[int]]funct(bit __32);
end d__row.(cell.(int));

Figure 7 The template definition for a dynamic size row of in-
teger cells (reference operations only).

does require a new template constructor in which the
resulting create operation is parameterized with re-
spect to the desired size of the row. This is the case we
treat here.

3. Row size is completely dynamic such that operations
subsequent to object creation can alter its size. A
number of subcases might be considered under this,
such as (a) the number of components is permitted
only to grow; (b) components can disappear but once
gone cannot reappear; (c) components can freely
come and go. The last case is a version of our nemesis
‘‘flexible objects.”” This is the form of object that we
have been trying hard to avoid and hence is not sup-
ported.

The definition of a dynamic size row [case (2)] then is
given in Fig. 7. Syntactically, dynamic size rows are de-
noted by an ‘‘x’’ in the size position of the denotation for
other rows. The d__row operator constructs the template
given the component template as argument.

LEReY 5w

The operations ‘‘create,”” “*free,”” *‘null,”’ and “‘equal”’
are the basic ones associated with all reference types.
Note that here the ‘‘create’’ operation takes an argument
which specifies the size of the dynamic row. The ‘‘select’”’
operation has the same interface as its counterpart with
fixed size rows and is used the same way. Importantly,
however, the subscript range checking previously per-
formed by the ‘*select’ operation must now be performed
by its resulting offset function at run time.

The operations of ‘“‘widen’’ and ‘‘narrow’’ are analo-
gous to their like-named counterparts in the definition of
unions. This reflects the fact that references to dynamic
rows can also refer to fixed size rows. Thus, references to
dynamic rows can provide the function mentioned in case
(1) above, that of specifying as parameters rows whose
sizes are unknown. Because we wish this to be the case,
some care must be taken in how references to dynamic
rows are represented. At the interface, the representation
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is concealed, but one must be selected for the implemen-
tation. In order to cope with the union-like attributes of
dynamic rows, this representation must involve an in-
direction: i.e., dynamic rows cannot have a contiguous
representation where the size is stored adjacent to the ele-
ments of the row. Such a representation would make the
implementation of the ‘*widen’’ operation impossible. Its
representation might then consist of a pair, (size of row,
address of its storage). This is what has traditionally been
called a ‘*dope vector.”

The operation ‘‘size’’ replaces the analogous operation
‘alternative’” in unions. Instead of yielding a type value
that can be tested, as done by ‘‘alternative,”” ‘‘size”’
yields a bit__32 value that indicates the number of ele-
ments of the dynamic row. Thus, this operation need
merely access the dope vector. The size information is
more useful because it can be passed directly to a sub-
sequent ‘‘create’’ operation, thus enabling more like-
sized rows to be created.

5. Values derived from objects

Section 1 mentioned a duality between objects and val-
ues, but we have not seen this as yet. In this section, we
illustrate how templates can be used not just to describe
objects, and hence their references, but also values which
share a common description with the objects. The moti-
vation for this is to obtain aggregate values. Three ques-
tions come to mind.

Why are aggregate values of interest?

Pure value semantics is desirable for both theoretical and
practical reasons. Knowing when side effects can occur
and, more importantly, when they cannot, is a great aid in
analyzing and understanding the program. Read-only ref-
erences do not have that desirable property, since they
merely ensure that the user of the reference cannot modi-
fy an object by means of the reference, not that there is no
way of modifying the object. The *‘immutable objects’’ of
object-oriented storage models, though adequate, give
the wrong connotation, implying separate storage even
for the smallest immutable object (though optimization
can sometimes eliminate it).

Related to value semantics is the desirability of provid-
ing an atomic update operation for aggregates in their en-
tirety. With aggregate values, this becomes simply an or-
dinary scalar update, perhaps handled via hidden in-
directions, but which can readily be assured of atomicity,
since no operation can change a value.

Finally, unions of types whose values are aggregates
yield ‘‘flexible” aggregates without introducing flexible
objects. Cells whose values are such unions are freely
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permitted. Since references to components of these ag-
gregate values are not possible, the disappearance and re-
appearance of various aggregate components have no
pernicious effects.

Why make these aggregate values via templates?

If aggregate values are desirable, then their types must be
formed in some way. Making them via templates empha-
sizes their structural correspondence with the object form
of aggregate. Of course, having the same template de-
scribe both provides a certain economy at the interface.

Perhaps most important is that aggregate objects pro-
vide a convenient way of generating aggregate values.
Rather than have an entire other set of operations for con-
structing aggregate values, one component at a time, we
envisage the existence of one additional operation with
aggregate values, the "‘enclose’ operation. This opera-
tion takes a reference to an object as an argument and
produces the value form of the object. Thus, producing
aggregate values is accomplished by allocating an aggre-
gate object, initializing its components, and then ‘*enclos-
ing’’ the resuiting object to yield the value. There is a
potentially large computational economy here. Value
transformers must conceptually make new copies for
each transformed value, rather than do the modification
in place. While it may frequently be possible to avoid
these copies, extra implementation complexity is needed
in order to do so. Enclosing of the object form of aggre-
gate after it has been updated in place provides explicitly
the best that can be achieved.

While this view is quite useful, it is not essential. It is
possible to conceive of primitive type generators that pro-
duce types describing aggregate values and providing op-
erations to constnict these values. Thus, it should be kept
in mind that how aggregate values or their types are gen-
erated is independent of the desirability of having them.

Why not handle all values this way?
There are values that currently have no analogous object
form. These fall into three categories.

1. The structure of the template definition provides no
way of representing a reference. The template de-
scribes the storage object, not its reference, whose
representation is entirely concealed. It is essential, of
course, that references be very tightly controlled so as
to protect the type system’s integrity.

2. To complete the machine interface, values for program
material, e.g., procedure and function values, need to
be included. It is unclear how these can be regarded as
storage objects.

3. Some values simply do not warrant an object form.
Integers are such values, and it is useful to be able to
describe them without recourse to storage objects.
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cell.(int):template
representation: . . . primitive
value operations:
val = A(value.[int])funct(int);
enclose = A(ref.[int]funct(value.[int]);
end cell.(int);

Figure 8 The template definition for integer cells (value opera-
tions only).

The liability of the approach is the complexity in-
troduced so as to permit value forms for aggregate objects
when they may have no such useful form. While there is
no requirement to provide value operators, one is still left
with a template definition structure that is more com-
plicated than that required solely for objects. We return
to the subject of templates, their formation, and their fea-
tures, in Sections 6 and 7.

We now proceed to the examples. These object-derived
values complete the definitions of the template of the last
section. That is, the value examples are for integer cells,
structures, etc. In all the examples, the operations of the
reference values are omitted in the same way that in the
previous section the value operations were omitted.

o Example 8: cell values

This simplest example reveals much that is universal for
all the primitive template generators. The object-oriented
operations of the template,/.¢., those involved in creating
and destroying objects and those peculiar to references
such as “‘null”’ and equality of references, are not opera-
tions of the type that describes object-derived values.
Those involved in modifying objects or which permit the
subsequent modification of objects are either not present
or are transformed so as to rule out in-place modification.

The value form of integer cells is given in Fig. 8. This
completes the specification of the cell template. The only
operations are “‘val,”’ the contents-accessing function,
transformed now so as to work on the value form of cell,
and “‘enclose,” the operation that converts the object
form of cell to the value form. An "‘enclose’ operation is
present in all definitions of values derived from templates.
Indeed, it is the reason why this approach has been pur-
sued. It is an operation of the template that in some sense
belongs to both the value and the reference types. We
place it in the value specification here and in the sub-
sequent examples because it is the existence of the value
forms that requires its presence. More is said about “‘en-
close’” in Section 7.

‘e
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Z:template
representation: . . . primitive
value operations:
x = A(value.Z)funct(value.[int]);
y = A(value.Z)funct(value.[a:[char]; b:[int]]);
enclose = A(ref.Z)funct(value.Z);
end Z;

Figure 9 The template definition for the structure Z (value op-
erations only).

d . row.(cell.(int)):template

representation: . . . primitive

value operations:

select = A(bit_ 32)funct(A(value.[(x)(int]])funct(value.[int])):
narrow = A(type=T) funct (funct-type = A(value.[(*)[int]])funct(T));
widen = A(type=T) funct (funct-type = A(T)funct (value.[(*)[int]]):
size = A([(*)[int]Dfunct(bit._32):

enclose = A(ref.[(*)[int]]funct(value.[(*)[int]]):

end d__row.(cell .(int));

Figure 10 The template definition for dynamic size rows of in-
teger cells (value operations only).

® Example 9: structure values

As with cells, we complete the specification of the struc-
ture template whose reference operations were given in a
previous example. Thus, we use the structure of Example
5,i.e., Z = [x:{int];y:[a:[char];b:[int]]]. The value opera-
tions for template Z are given in Fig. 9. As with cells, the
operations ‘‘create,”’ ‘‘free,”” “‘equal,”” and ‘‘null’’ do not
appear as value operations. The selector operations have
been modified so as to work on values of form Z and to
return the vaiue form of the components as results. Thus,
because references are not returned, no subsequent oper-
ations result in the modification of the value. The imple-
mentation may, for values requiring large amounts of
storage, use indirect addressing, thus sharing this storage
among all cells containing the same value. On the other
hand, for small values, copying the entire representation
is both feasible and frequently desirable. No operation is
present that can distinguish between these approaches.

LRI

As with cells, an ‘‘enclose’” operation is present to pro-
vide convenient initialization of the object-derived val-
ues. With aggregates, this is particularly important. While
value forms of cells are included only for completeness,
easy creation of aggregate values is the purpose of the
separate value and reference types with their ‘‘enclose’’
operation. Flexible types specifying many aggregate
forms are achieved by taking a union of types that de-
scribe aggregate values. Fiexible locations cannot be pro-
duced.

& Example 10: row values
In Section 4, two kinds of rows were treated, those whose
type determined the size of the objects and those whose
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size was specified at creation time, which we called dy-
namic rows or d_rows. Both have value forms. Here,
only d _rows are treated. Fixed size rows are a restricted
case of d_rows with only two of the operations sup-
ported.

The specification for the value form of d _rows of in-
tegers is given in Fig. 10. Notice again that no object-
oriented operations appear in its definition. The opera-
tions remaining are simply the *‘union’’-oriented ones for
providing conversions to and from fixed rows and for
identifying the current row’s type (size), plus the selec-
tion operation. These have all been modified to operate
ond _row values. For fixed rows, only the “‘select’” oper-
ation among these would remain. In both cases, an ‘‘en-
close’’ operation is included to permit initialization of row
values.

A cell containing d_row values provides the analog of
the ALGOL 68 flexible rows, which in ALGOL 68 result in
flexible objects whose components can appear and disap-
pear based on the currently assigned row. With d_row
values, however, it is clear that references to components
are not permitted since the d_rows are not objects but
are values whose components cannot be referenced. The
selection of a component of a value produces the com-
ponent’s value as a result, not a reference. These d_row
values then provide a justification for the ALGOL 68 re-
striction that references to components of flexible rows
are not permitted. Rather than simply being an ad hoc
restriction due to implementation problems, however, the
restriction can be seen as an intrinsic requirement of the
object/value distinction that we have been making.

6. User-defined templates

The examples of the last two sections dealt only with the
templates produced by the primitive template-generating
operations. In this section, we define a template using the
extension mechanism provided to the users. The example
is that of strings. While it is not remarkable in its sophisti-
cation, it illustrates the fiexibility and uniformity of the
extension mechanism.

o Example 11: strings

Using strings as an example is interesting for a number of
reasons. It is not normally chosen to demonstrate a data
definition mechanism. Strings are frequently provided as
primitives, and hence have not been user-defined. Fur-
ther, there is some confusion about whether strings are
objects or values. For instance, IBM pL/1 [18] does not
permit aggregates (objects) to be returned by procedures,
but strings may be returned, hence treating strings as val-
ues. In addition, however, part of a string may be modi-
fied in place by means of the ‘‘SUBSTR’’ pseudovariable,
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which treats the strings as objects. Using a template defi-
nition, strings are defined here in both object and value
form. Unlike PL/1, however, our definition results in the
value and object forms being distinct. Thus, updating in
place is appropriate for string objects but not string val-
ues, while returning strings is appropriate for string val-
ues but not for string objects. Figure 11 contains the defi-
nition of character strings. Part (a) defines the operations
on references to character string objects, while part (b)
defines the operations on character string values.

A char__string object has the normal operations for ob-
jects,i.e., “‘create,” ‘‘“free,” “‘null,”” and ‘‘equal.”” Here,
however, they must all be user-specified. This is very
simply done using the corresponding ref.[(*)[char]] opera-
tions and making the appropriate rep and abs con-
versions. The body of the *‘create’’ operation shows how
this is done. Only the interface specifications are given for
the rest of these operations.

LRSS
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The only new operation is ‘‘substr,” which permits
multiple components of a string to be updated with a
single operation. The body of “‘substr’’ reveals how this
is accomplished by updating each component character
cell in turn. A select operation is also provided to permit
access to the values contained in the char_ string object.

The char_string values are more interesting. No ob-
ject-oriented operations are associated with them. How-
ever, those operations normally considered to be string
operations are all supplied. These include the string value
comparisons of ‘‘equal,”” *‘less,”” and '‘greater,”’ and the
string manipulation operations of ‘‘substr’’ and ‘‘con-
catenate,’” as well as provision for empty strings with the
operator ‘‘empty.”’ The body of ‘‘concatenate’ illus-
trates how new string values are constructed via the allo-
cation and enclosing of objects. The method used by the
“‘substr’’ operation is similar so we show only its inter-
face.

What we have succeeded in doing is to provide the
function of PL/ strings via the value and object forms of
strings defined here. Importantly, these functions have
not been provided through a single type but rather by
means of the two types of strings. Values and objects
have been strictly distinguished, avoiding both confusion
and flexible objects.

7. More about templates

A separate syntax for templates was provided in Section
4, which showed templates as consisting of three parts: a
representation template, a set of reference operations,
and a set of value operations. We emphasize this three-
part form because templates themselves will, in our ma-
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char _ string:template
representation: d__row.(cell.(char));
ref operations:
create = A(x:int)proc(ref.char__string);
bit__32:t = bit_32.(int__to__bits}(x);
return(abs(ref.[(*)[char]].(create)(1)));
end create;
free = A(ref.char__string)proc;
null = funct(ref.char _string);
equal = A(ref.char__string,ref.char_string)funct(bit);
substr = A(target:ref.char__string,start:int,len:int,
source:ref.char __string)proc;
ref.[(*)[char]]:t = rep(target);
ref.[(*)[char]]:s = rep(source);
bit__32:first = bit__32.(int__to__bits)(start);
bit__32:number = bit__32.(int__to__bits)(len);
bit_32:i;
A(bit _32)funct(ref.[char]):f;
A(bit _ 32)funct(ref.[char]):g;
do i < first to bit__32.(fixed__add)(first,number)-1;
f « [(®)[char]].(select)(i);
g < [(*)}[char]].(select)(i+ 1-first);
f(t) < g(s);
end;
end substr;
select = A(int)funct(\(ref.char _ string)funct(ref.[char]));
end char _string;
(a)

char__string:template
representation: d__row.(cell.(char));
value operations:
equal = A(value.char _string,value.char__ string)funct(bit);
less = .. .; greater = . . .;
substr = A(target:value.char__string,start:int,len:int)
funct(value.char _ string);
concatenate = A(a:value.char __string,b:value.char _ string)funct
(value.char__string);
value.[(*)[char]]:x = rep(a);
value.[(x)[char]]:y = rep(b);
ref.[(*)[char]]:z = ref.[(*)[char]].(create)(size(x)+size(y));
do i < 1 to value.[(*)[char]].size(x);
2[i] < x[i];
end;
do i < 1 to value.[(*)[char]].size(y);
z[i+size(x)] « y[ik;
end;
return(abs(enclose(z)));
end concatenate;
empty = funct(value.char__string);
enclose = A(ref.char__string)funct(value.char __string);
end char__string;

(b)

Figure 11 The template definition for character strings: (a) ref-
erence operations only and (b) value operations only.

chine interface, have to be generated by explicit opera-
tions. Here, we suggest that the formation of a template
requires an operation that takes two arguments, a type
definition for reference values and a type definition for the
corresponding enclosed values. The representation tem-
plate can be deduced from the representations used for
the reference and value type definitions. Thus, for the ref-
erence type, the representing type must be a reference
type that refers to an object described by a template. This
can be regarded as the representation template. Similarly,

779

DAVID B. LOMET




780

the value type has a representation derived from a tem-
plate, and these two representing templates must be the
same. With this view, we have reduced the number of
ways that types can be defined by users to one, i.e., via a
type definition. Templates act as repositories for these
two type definitions.

Let us reconsider the role of templates. They do more
than just bring together the two constituents above. Their
fundamental role is to prescribe exactly the limits of the
objects they describe. That is, a template specifies pre-
cisely what is to be considered as part of an object versus
what is merely referenced by it. Templates play the same
role with the corresponding object-derived values. Thus,
when an object is enclosed via an ‘‘enclose’’ operation,
yielding the value form of the object, the template deter-
mines what is considered as part of the value versus what
is referenced by it. Only that which is part of the obiject
becomes part of the corresponding value.

Templates can, of course, be included in larger tem-
plates. This permits objects to contain components that
are themselves objects, where these components are part
of the larger object, not referenced by it. It is this form of
composite object that, e.g., the CLU object-oriented
model does not provide. It is also this form of composite
object that, in order to avoid flexible objects, necessitates
the distinction between templates and types. Unions of
types are permitted, but not unions of templates. If all
components were merely referenced by an aggregate,
then referencing an object’s component would yield a ref-
erence to a separate object. Changing the characteristics
of this component would not affect the references to this
free standing (former) component that has now been re-
placed by a component of a different form. With the com-
ponent directly included in the major aggregate, however,
a change in a flexible component affects previous refer-
ences that continue to refer to the component in its
changed form.

Another role for templates is that of specifying proper-
ties for the data they describe when those data are com-
ponents of larger aggregates. These properties are initial-
ization and enclosing. Since they are associated with the
template, the reference and value types remain the same.

® [nitialization

Since there is no convention requiring specific operations
and, in particular, no ‘‘create’’ operation need be speci-
fied in either reference or value types, the initialization of
a component object becomes a problem. How this initial-
ization is accomplished should not be considered as help-
ing determine the types, either reference or value, but is
solely an attribute of the template.
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How then does a ‘‘create’’ operation for the larger tem-
plate specify the initialization for its components when
those components require particular initial states? Either
(1) it must be able to “‘see’” the uninitialized states so as
to perform the initialization itself, or (2) it must, by some
convention, be able to invoke appropriate operators of
the components to be initialized. In case (1), it has ex-
plicit access to the uninitialized state and may be able to
subvert the intention of the definer of the component. In
case (2), additional requirements must be placed on tem-
plate definitions so as to provide this capability while pre-
venting the use of the type operations prior to initial-
ization. It is this second approach, with its assurance of
type integrity, that is pursued. What is needed then is a
general method by which the definer of the template can
associate initialization with a template no matter how it is
used.

Any template 7 can be augmented with an initialization
specification. This is in the form of a procedure with an
argument of type ref.(7) which, by means of side effects
on its argument, performs the initialization. This initial-
ization specification is associated with a template by
means of the init function with the following interface.

init =A(7:template-type,g:proc-type)proc(7 initialized by
g = A(ref.7)proc))

Thus, initialization need not be built into the template
(nor into the operations of “‘ref’”” and *‘value’’ types) as a
“‘primitive’’ operation but can be varied to suit the user’s
purposes. And no special naming convention for initial-
ization operations is required, since the initialization op-
erations are not part of either ref or value types. What is
required of the types, of course, are primitives that permit
the initialization procedures to be written. In the absence
of explicit initialization, a template is initialized as speci-
fied by its representation template, if any, or by the ini-
tialization specified for its various components sepa-
rately.

While the initialization associated with a template does
not play a role in the associated type definitions, the ini-
tialization associated with the templates of the represen-
tations for reference and value types does. Thus, e.g., a
reference type is determined not only by its operations
but also by the initialization of its representing type’s
template.

When providing initialization for aggregates con-
structed using the built-in template generators, it seems
reasonable to provide it in two forms. Initialization for the
entire aggregate can be provided as before. Alternatively,
if the aggregate template was generated using component
templates that already had initialization specifications,
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then, in the absence of explicit initialization for the entire
aggregate, these component initializations can be used.
Let us illustrate this initialization with our three built-in
template forms.

1. Cells 1In the absence of initialization, a cell template,
e.g., for int, produces, when the cell is formed, an un-
initialized cell, perhaps with an undefined value, per-
haps with a default value, or perhaps with no value, in
which case an exception would be raised if its contents
were requested. We can provide for the initialization
of a cell via the primitives defined for ref.[int]. Thus

7 = init([int], A(x:ref.(int))proc; x < 25; end;)

yields a template which, when used in specifying a
larger aggregate, describes an integer cell component
that is initialized to the value of 25. This is true for
both storage objects and enclosed (aggregate) values.
2. Rows  Without initialization, a row template, e.g.,
for [(10)(7]], produces a row in which each element is
initialized using whatever initialization is associated
with 7. If, for example, the = of (1) above were used as
the [int] template for such a row, then all ten elements
of the row would be integer cells initialized to the
same value, i.e., 25.
When explicit initialization is provided, it overrides
any component initialization. Thus

init([(10)[int]],A(x:ref.[(10)[int]])proc
do i < 1to 10; x[i] < i; end:)

produces a row in which the first element contains
one, the second element contains two, - - -, and the
tenth element contains ten. Again, this is the case both
for storage objects and enclosed (aggregate) values.

3. Structures  The situation with structures is similar to
that for rows, but each component may have a sepa-
rate initialization. Thus, we might have

Z = [x:init.([int],A(x:ref.[int])proc; x < 25; end;),
y:init.(
[a:init.([char],A(x:ref.[char])proc; x < 'q’; end);
b:[int]],
A(x:ref.[a:[char],b:[int]])proc;
X.a<'r’; X.b<4; end;)]

Here Z has no initialization and so inherits, by default,
the initialization of its components. Component X, an in-
teger cell, is initialized to 25. Component y is itself a
structure with explicit initialization. While y.a has explic-

it initialization (y.b does not), it is overridden by the ini-
tialization for y which sets y.a to ‘r’ and y.b to 4.
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o Enclosing

The other capability provided by the template is the abil-
ity to enclose an object form so as to yield its value form.
Notice, since the ‘“enclose’’ operation relates reference
values to the value form of the object referenced, that
when types are defined independently, there is no way for
a user to provide this operation in the reference and value
types he defines. Such an enclose operation would, in or-
der to be programmed, need an operation in the reference
type that exposes the representing type so that the *‘en-
close’ operation of the representing type can be used to
obtain the value form of the representation. Then, the abs
function can be applied to produce the user-defined value.
But the exposure of the representation should be dis-
couraged. Indeed, the intent of the user-defined types is
to hide this representation.

Our solution to providing an “‘enclose’’ operation is to
associate it with the template, rather than with either of
the types. This has the virtue, in addition, of not changing
the constituent types of the template. Thus, an enclose
operation is defined that has a template argument and that
returns an ‘‘enclose’’ operation that is specific to the
types of the template. Thus, no type checking information
is lost when using this specific “‘enclose’’ operation. In
the examples, the ‘‘enclose’’ operation was always asso-
ciated with the value type. This was an expedient so as to
simplify the presentation. Our real intent is that the refer-
ence and value types be unaffected by their being in-
cluded in a template, and the solution just presented has
this desirable propérty.

8. Discussion

The value-oriented view presented here is yet another of
our efforts to define a storage model for programming lan-
guages and to integrate such a model into our operation-
oriented machine interface. It is a considerable advance
over our last such effort [7]. While the object/value dis-
tinction has been retained, the new view of type pre-
sented here smoothly integrates the storage model with a
type definition facility. Clearly, our operation-oriented
view has also been furthered, as can be seen readily from
the operational nature of the type definitions presented.

The new value-oriented type definition mechanism pro-
vides a unifying framework. Unlike, ¢.g., the new DOD
language ADA [1], it has not been necessary to complicate
the picture with new notions such as *‘sub-type’’ when
sub-ranges are desired. Rather, a sub-range, ¢.g., the in-
tegers from one to ten, is merely another type. Like a
union type, it need only provide conversion operations
between it and the integers. All computational operations
can continue to be performed on integers. At a syntactic
level, it may be desirable to provide a way of implicitly
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specifying these conversions. We are convinced that this
is a useful way of viewing subranges.

While progress has been made, the complete definition
of the machine interface that is our goal requires much
additional effort. The construction and manipulation of
types and program material have barely been touched on.
The operations required in this area should enable pro-
grams and types to be incrementally constructed in small
pieces. Thus, fragments of these values must also be val-
ues. In particular, type and program r‘naterial with free
symbols must be manipulatable values. Operations to
bind and resolve symbols must be provided. This is an
effort that has never really been carried very far before.
We have previously worked toward this [16, 17], and
while many of the notions presented there are worth pur-
suing, those efforts were incomplete and did not avail
themselves fully of the value-oriented view presented
here. Probably the largest stumbling block is that fixpoint
operations are needed in this area to construct both recur-
sive programs and recursive data structures.

Polymorphic operations and parameterized types can
both be provided by using these program and type con-
struction operations. Polymorphic operations are realized
using a program construction program. Such a program is
given one or more type arguments and produces a result
which is a program. The resultant program has arguments
and result types taken from the types supplied as argu-
ments. Parameterized types can be handled by type con-
struction programs in a similar way.
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