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A Data  Definition Facilitl 
Storage  Model 

Based  on A Value-Oriented 

A data  definition  facility  is  presented  that  provides  a  consistent  description of both  primitive  and  user  datu.  It  is  based  on 
a  value-oriented  storage  model  which  carefully  distinguishes  between  values  and  objects.  It  is  values  that are typed in this 
model,  and  operations  ofthe  type work explicitly on  the  values.  Objects  are  accessible  only via reference  values.  Objects 
are  described via descriptors  culled  templates,  which  ultimately  yield  reference  type  values.  Operations,  both  primitive 
and  user-defined, are part of a  “machine  interjuce,”  and all executable  language  constructs  can  ultimately  be  defined  us 
explicit operations of the  intetface.  Importantly,  these  operations  must  respect  the  typing  constraints  imposed  by  both 
the  primitive  types  and  the  user  extensions.  The  interactions  of  definition  facility,  storage  model,  und  execution  model  are 
illustrated via a series of  examples in  which commonly  used  data  constructs  are  dejined. 

1. Introduction 
Several  recent languages  with data definitional facilities 
[I-51 have been described in terms of an object-oriented 
storage model. In this model, all data  are  treated  as storage 
objects, and these  objects  are directly  accessible to  oper- 
ations. Values do not exist  separately from objects. This 
object-oriented view is a recent development. Conven- 
tional programming languages, e g . ,  ALGOL 60, PUI, CO- 

BOL, FORTRAN, while frequently lacking explicitly stated 
models,  nonetheless share  an underlying  intuitive model 
that is quite different from the object-oriented view. In 
this “value-oriented’’ view, values  and objects  are truly 
distinct and  operations manipulate  only  values.  Where 
reference  (pointer)  values exist in the language, objects 
become  accessible via the manipulation of these  values. 
Even without  explicit reference  values,  parameter pass- 
ing is frequently described  as “call by reference”  to in- 
dicate  that a reference value is being passed  to a subrou- 
tine so that  the  referenced  object can  be  manipulated. 

We intend to make explicit  this  intuitive,  value-ori- 
ented storage  model, but, in addition,  to  describe a data 
definition facility which permits  users  to define their own 
data in a way consistent with  this model. This is the  re- 
verse of what has  happened, in our opinion, with the  ob- 
ject-oriented languages. There, a model understood in 
terms of the  data definition facility was  extended  into  the 

realm of the primitive data of the base  language. The re- 
sult, we believe, is an unfamiliar storage model and an 
unnatural programming language. 

Our goal here is not  to  describe some specific program- 
ming language. Rather, it  is to provide  a  framework in 
which most  procedural  languages can be described. This 
framework integrates three  facets of programming lan- 
guages that have resisted previous attempts  at unifica- 
tion. They  are: 

Storage  model 
The value-oriented  model, which carefully  distinguishes 
values from  objects, builds on our previous work [6, 71. 
This model differs from our prior  work in its treatment of 
values as being typed.  It  is,  we believe, an explicit char- 
acterization of the intuitive storage model behind  most 
procedural languages. 

Execution  model 
It is important  that user-defined operations be structurally 
consistent with primitive operations.  For this reason, we 
put forward an execution model in which all computation 
is the result of the  execution of explicit operations  at a 
“machine interface.” Operations have external con- 
straints  that include the specification of their  argument 
and return  types. User-defined extensions, e . g . ,  proce- 
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dures, have  the same  forms of constraints  and  can be 
used  interchangeably  with  primitives. 

Data  drjinition  facility 
This  facility, which is the main subject of the paper, per- 
mits users  to define data  that  are describable in terms of 
the storage model used for  the primitive data of the  base 
language. Moreover,  these definitions are in terms of 
operations  consistent with our execution  model,  the 
primitives of which define the base  language.  This uni- 
formity of primitives  and user extensions is assurance 
that our underlying  models, both storage  and execution, 
have indeed  captured the essence of the primitive  con- 
structs.  In  particular, we believe  that the  data definition 
facility captures  the  essence of the  term  “data  type.” 

The remaining sections of the  paper  pursue, in consid- 
erable  detail, the way that  these  three  facets  interact.  The 
next  section  provides an overview of the three  areas, 
while the remaining sections  explore  the  data definition 
facility and its integration with storage  and  execution 
models.  Examples are extensively  used so as  to provide 
convincing  evidence as  to  the  success of the  approach. 

2. Framework 

Storagr  model 
In  the object-oriented view,  an  object typically possesses 
three  attributes: a location, a value,  and a type. All data 
are modeled as  instances of objects. Values are not di- 
rectly  accessible to  operations.  Rather, a value is solely 
state information associated with an object.  One  never 
“sees” a  naked  value. Because  objects  have  locations, all 
objects  can be defined with update operations  and  hence 
are,  at  least  conceptually, amenable to being changed. 
Constants (values) in this view are immutable objects, 
i . e . ,  objects without update  operations. 

The value-oriented view turns most of this around. In 
this view,  objects  and  values  are truly  distinct. Objects, 
which may contain values,  are described by means of de- 
scriptors  that we call templates. Objects can only  be ma- 
nipulated via their reference values. It is values that  are 
typed and  that  are directly  accessible to  operations. 
Types  describe values in that they specify the representa- 
tion of values of the  type  and  the operations  permitted on 
these values.  A  type is not merely a tag  associated with an 
object (cell) that  restricts  the values that  can be stored in 
the  object  to some subset of a universal  domain of values. 
Rather,  the  type  associated with a cell now identifies the 
unique type of the values that  can be stored. This  dis- 
tinction between  types  as  sets of values versus typed val- 
ues is most  clearly  illustrated in the  case of unions. Type 
as a set specification associated with a cell suggests that 

there  are not values of a union type but rather  that a cell 
can contain values from  more  than one  type.  Our new 
view requires  that  there be  union  type  values and  further 
that a value drawn from one of the alternative types of the 
union be explicitly converted  to a union type  prior to this 
value being stored in the  cell. 

Elrumple int U char does not define a set union of  in- 
teger  and character  types;  rather it specifies a  completely 
new type  that  happens to be able to  represent values 
drawn from both  alternative  types,  but, in fact,  does not 
support  the operations of either  type. 

An object, in our  view,  has a fixed set of components, 
i . r . ,  parts  to which a reference value can refer. Unlike 
types, templates do not take part in unions. Thus, it is not 
possible for an object to  have a  varying  number of com- 
ponents,  the number and  form of which change  depending 
on  the  current value(s) contained by the object. Objects 
with varying component  structure have been called “flex- 
ible.” In ALGOL 68, [1:0 flex] int is such a flexible object. 
ALGOL 68 precludes references  to  components of such 
flexible objects, but only by means of an ad hoc. rule. The 
objecthahe distinction, in which objects have a fixed 
structure  and templates do not  take  part in unions,  sup- 
plies a unifying rationale for  such a rule. At the  same 
time, a great deal of flexibility can be provided by the  type 
system, (’.X., in the form of unions of aggregate values, 
because  this unioning applies to types but  not templates. 

Note  that  to model most  existing languages, one must 
provide aggregate objects whose components  are truly 
part of the  aggregate, i . e . ,  whose  existence depends  on 
the existence of the containing  aggregate. These aggre- 
gates do not refer to  their  components.  Rather,  the  com- 
ponents  are included as a  part of the object. The updating 
of a component  does not  change  the identity of the  com- 
ponent so that it now becomes a different referenced ob- 
ject. An update merely changes the state of the  com- 
ponent. While physical contiguity of representation is not 
required to sustain  this notion,  the clear  distinction be- 
tween  what  exactly comprises  the object versus what is 
merely referenced via the  object must be maintained. 

A  duality  between objects and values can be usefully 
exploited,  and we shall do  this. This duality permits us to 
use a template to  describe both an object and  an analo- 
gous  value.  Not  only is an economy of description 
achieved by this, but the  process of generating  aggregates 
can be much simplified. This will introduce  some extra 
complexity into the  template but appears  to avoid the 
even  greater complexity of providing dual forms of opera- 
tions for constructing  both objects and  values. The  tem- 
plate  definition, which with objects distinguishes between 
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Table 1 Properties of values and objects. 

Property Discussion 

Values atomic 

immutable 

storable 

accessible 

typed 

Objects constructable 

referable 

changeable 

deletable 

Referencing  components is not pos- 
sible. 

Values may be  replaced by other  val- 
ues, but it is meaningless to talk of 
changing  values.  If 1 is added to 3, the 
effect is not to change 3 to 4 but to re- 
place 3 by 4. 

Values can become the contents of 
(parts of) storage objects. 

Operators take values as arguments 
and may produce  values as results. 
Further, any result returned is always a 
value. 

Each value has a unique type that de- 
termines the operations  which  can ac- 
cess its representation. 
Whereas  operators may return only 
values, a side effect of certain oper- 
ators is the creation of storage objects 
that persist over time. 

Reference values are  used to specify 
the storage  objects  or  their com- 
ponents that  are to be manipulated. 

Storage objects contain  the state of the 
computation. If an object  is  changed, 
subsequent operations  involving  refer- 
ences to it reflect the change. 
Some languages  permit  storage objects 
to be deleted.  Subsequent  references 
to the deleted object are erroneous. 

possible with these languages to specify that programs are 
to  be  compiled, linked, loaded,  and  executed. A complete 
machine  interface provides  the only way of dealing  with a 
computer and  hence  must  make all of these  currently ex- 
cluded  functions  possible. 

Our intent is for this  interface to be low level in all its 
aspects  except  for  the  procedure  and  data definition ex- 
tension mechanisms. The low level nature of the primitive 
operations  avoids  the primary  problem with high level 
machines, i .e . ,  the large  granularity of the  operations, 
which makes it difficult to efficiently support  other high 
level operations  that differ only  modestly  from those  pro- 
vided as primitives. The  extension mechanisms provide a 
means of specifying efficiently the forms of  high level data 
and high level operations  that  each  user may require. 

Like  a  conventional  machine, all computation is per- 
formed by some  explicit operation.  Thus,  every  type con- 
version,  every  address  computation,  every  update,  every 
control  structure is realized by an explicit operation, 
whose  arguments and  results must  be  values supported 
by the interface. Note  that  most object-oriented ap- 
proaches  are not compatible  with  this  requirement. 

An operation is characterized, in its interactions with 
surrounding operations, by its argument types  and its  re- 
turn  type, if any.  These  type specifications are precise. 
That  is,  the  exact  type of the argument or return  type  is 
prescribed.  Thus, within an  operation  there need be  no 
type checking of parametedargument matching. Further, 
only operations specified with a parameter’s type defini- 
tion can be  used to manipulate the argument. In this ma- 
chine, all type checking is done during the program  con- 
struction process, via program construction operations. 
This construction  process  requires  that, during the com- 
bining of operation with arguments in the resulting  pro- 
gram,  each argument exactly  match its corresponding pa- 
rameter. Where such a requirement is burdensome, a pro- 
gram translator, which takes  character strings and  creates 
programs, must supply the missing operations that  are im- 
plicit in the  character string form of the program. The in- 
terface itself does not provide  this service. Likewise,  the 
interface does not provide polymorphic operations, ; .e . ,  
those whose  argument or result  types depend on  other 
argument types.  Thus, polymorphism as well is treated  as 
an issue for  the  translator.  When examined closely, most 
languages or language proposals  treat polymorphism  this 
way [ I ,  2 ,  5 ,  8, 91. 

what is part of an  object  and  what may be  referenced by 
the  object,  serves  here  to  separate  that which is in the 
representation of the value,  and hence cannot be altered, 
from that which may merely be referenced, and  hence 
continues  to  exist  as  an  independent object that  can be 
updated. 

The  properties of objects  and values are summarized in 
Table 1, which is a modification of a similar table in [7]. 
The most  notable  change is the inclusion of the  “typed” 
property for values. 

Machine interface 
One long range goal of this  work is to provide  a complete 
machine  interface in the  same  sense  that, e.g., the  IBM 
Systed370 interface is complete.  Current high level lan- 
guages do not do this. Thus, e .g . ,  ALGOL or PUI requires a 

766 linkage editor and a system command language. It is not 

Why belabor  this  point concerning explicit operations 
and  exact  type matching? Because machine interfaces re- 
quire  the explicitness and  because  current languages, 
with the exception of LISP [lo], which is a typeless lan- 
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guage, are not  amenable to such a view. For  example,  the 
array  element  denoted by “A[i]”  in ALGOL 60 [ 1 I ]  denotes 
the ith element of array A, where i is specified at  the time 
the  element is needed.  Explicit operations, in our view, 
would treat this as  an  expression containing operations 
for  computing the ith element given  i and a reference  to 
array A. In ALGOL 6 0 ,  neither  the  reference  values  nor  the 
selection operations for computing the location of the ith 
element are included in the language. ALGOL 60 is not 
unique in this. We are not aware of any  typed  languages 
which lend themselves to  an  interpretation  as a  sugared 
form for  such a  machine  interface. 

Why might such a machine  interface be of interest? 
There  are  at least two  reasons: 

1. Such an interface can be construed  as  the  lowest level 
“machine-independent”  target  for a compiler.  Com- 
piling to this  level  provides two advantages. One is 
that efficiency can be achieved in the  resultant  code 
because all the  operations  can be low level ones with 
small granularity. The  operations  are all exposed,  and 
thus common forms of optimization  can be profitably 
applied to  the program in this form.  Two,  the interface 
remains  type secure, and hence  the type system  can- 
not be compromised  by errors in compilers,  which 
tend to be large programs that  are rarely error  free. 

2. It  should be possible to implement secure  systems  on 
top of this interface in a manner  that is cost com- 
petitive with existing, nonsecure  systems. Capability 
machineshystems, which traditionally  have  been the 
base  on which secure  systems  are built, have  cost/per- 
formance problems  stemming basically from the re- 
quirement  to  protect pointers and  the complexity and 
cost of the  domain  switching operations. In our inter- 
face,  the type  checking inherent in program construc- 
tion guards  pointers, indeed all data, from the  danger 
of being misinterpreted. Further,  the  interaction of 
type checking with procedures  forms a  natural  basis 
for restricting addressability. An oft  repeated  truism is 
that if only everyone had access  to  the machine solely 
through a high level  language, then most  protection 
problems could be solved. Our type  checked machine 
interface  permits us to  solve protection  problems in a 
similar  way. 

Data definition facility 
Our goal with the data definition facility is to provide  a 
uniform way of regarding both primitive and user-defined 
data.  The facility should be sufficiently flexible so that  the 
forms of data in most  existing  languages can be described. 
Given our value-oriented  view,  both  values and  objects 
need to be  capable of definition. The requirements for our 
data definition facility are 

1. A new type of value  must be definable in terms of an 
existing type. We believe  this  should  be  accomplished 
without  introducing  a new intermediate object, which 
would result in an  extra level of indirection for every 
level of definition. So far  as we have been able  to de- 
termine, both CLU [2, 121 and Alphard [5] require such 
levels of indirection,  though it is sometimes  possible 
for  an optimization to  remove them. Thus, values of 
type  “int” should  merely  re-interpret the  values of 
the primitive type “bit-32,” not add a layer of indi- 
rection  as well. How this is accomplished is described 
in the  next  section. 

2.  New types of values  should  be  able to play the  same 
role as  the old types.  Thus, because  cells can be de- 
fined that contain  “bit-32” type  values, it must  be 
possible to also define cells that  can contain values of 
type  “int.”  Further,  to  insure  that we have  omitted  no 
capability of the primitives  in providing our extension 
mechanism, we require  that it be  possible to redefine 
the primitive types using the definition facility. 

3. Templates  that  describe new forms of objects must 
similarly be part of the definition facility. Require- 
ments similar to  those  for  the  type definition mecha- 
nism apply also  to  the  template definition mechanism. 
Thus, user-defined templates must be usable in the 
same  contexts  as primitive templates.  Further,  the 
primitive templates must  be  replaceable with user-de- 
fined versions that  are indistinguishable in effects  from 
the primitives. 

4. A means must  be  provided for conveniently support- 
ing aggregate values,  e.g.,  array values in which the 
array  components  have values  but  not locations. With 
our approach, aggregate  value types  can be generated 
from  the primitive templates. For consistency, it is re- 
quired that new templates be  capable of maintaining 
this objectkalue duality. This means that template 
definitions must  be flexible enough to  contain  the  type 
specifications  not  only of reference  types but also of 
the aggregate  value types  as well. 

5 .  Type definitions must  be specified in terms  acceptable 
to  our machine interface.  Thus, all operations of a 
type must  be  explicitly  given. These  operations must 
be  described so as  to form  compatible extensions  to 
the primitive operations.  Hence, they  must  be charac- 
terized by their argument types and their  return  type. 
These user-defined operations will then be  susceptible 
to  the  same program construction  process  as  was used 
with the primitive operations. 

The remainder of the  paper  elaborates  the  data defini- 
tion facility and  its consistency with both the value-ori- 
ented storage model and  the machine  interface execution 
model. Many of the  common  forms of data in the widely 
used  procedural  languages are  treated in the examples. 767 
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Both  primitive data  and  the user-defined extensions  are 
presented so as  to  emphasize  the commonality of treat- 
ment. Our  success  can  be  assessed by how satisfactorily 
these common data  forms  are handled. 

3. Types and values 
A type  not only  specifies  a set of values (of that  type) but 
also  the  operations  permitted  on  those values. The values 
of each  type form  disjoint sets, in contrast  to  the purely 
set view in which a  value can be  a  member of more than 
one  type. A type definition requires  the specification of 

1. The  representation  for  the  values of the  type being de- 
fined. This  representation is specified in terms of an 
existing type, called the  representation  type.  Each 
value of the  type being defined has a representing 
value that is a  value of the representation type. 

Note: Both the  instances of the defined type  and  the 
instances of the  representation  type  are  values, not 
objects.  There need be  no explicit  storage associated 
with instances of a type. 

2. A set of (name:operation) pairs. The  operations  are 
associated with the  type being defined and  are  the only 
operations  that  are permitted to directly  manipulate 
values of the  type.  These  operations  are  able  to  do this 
by gaining access  to  and manipulating the  correspond- 
ing values of the  representation  type.  The  “name” 
component identifies the  operation  that a user of the 
type  desires. 

We have  not discussed  three important features of 
types. 

Operation  specijication 
How  do we specify which operation we intend to use 
from  among the  several given  with the  type? We are not 
particularly concerned with syntax  here. What we wish to 
determine is what operation is used to acquire an  opera- 
tion from a type. What we suggest is that a type  also be 
considered as a function. When  used as a function, it 
takes  operation  names  as  arguments  and  returns  the  cor- 
responding operations  as  results. (This view is not essen- 
tial, but is convenient.) 

Example Let “XYZ” be the name of a type and  “qrs” 
be the name of an  operation of that  type.  Then, evaluating 
“XYZ (qrs)” will yield the  qrs  operation of that  type. 

The  operations  are derived  from the type and  are not 
regarded as  components of an  instance of the type.  This is 
similar to  the view taken by CLU where, when a stack is 
defined, “stack$push”  denotes  the push operation.  Thus, 
the  operations  are available as soon as  the  type is speci- 
fied. This implies, of course,  that  the  operations  are not 

768 specific to  any instance of the  type  as they are in SIMULA 

[13]. Any value to be operated upon  must therefore be 
passed  to  the  operation explicitly as  an argument. 

Accessing the  reprcJsentation 
How  do  the  operations in the  type definition gain access 
to  the representing  value (instance) of the defined type? 
This is accomplished by means of a function  called rep 
that is automatically  provided by the  type definition 
mechanism. The  function rep takes  an argument of the 
defined type and  returns a  result of the  representation 
type.  This result is the  representation of the argument val- 
ue of the rep function. 

Instantiating  type  values 
How are instances of the defined types  generated? Anoth- 
er  function provided  automatically by the  type definition 
mechanism is abs. The abs function  takes  an  argument of 
the representation  type  and  returns a value of the defined 
type. This  result is the  “abstract” value of the defined 
type  that  has  the  argument value as its representation. 

Both rep and abs are made  available  only to  the named 
operations of the  type definition. Their  operational  effects 
are available  outside the  type definition only if the type 
definition includes operations  that supply them.  Thus,  as 
much protection or flexibility as is desired can be pro- 
vided. One more  point is that no operations  are local to 
the  type definition aside from rep and abs, nor  can a type 
definer specify them. If such  operations are desired,  one 
must  augment the  representation  type so that these  opera- 
tions become part of it. 

It  should be noted that  aside  from abs, no special con- 
struction  operations  that allocate and initialize storage  are 
provided. This being the  case, it is necessary for named 
operations  to exist in the  type definition that yield values 
of the defined type  without requiring arguments of the de- 
fined type.  These  operations  are not treated specially, 
however,  and  there is no restriction as  to  the  number of 
such  operations.  Note  that this is not the view taken al- 
most everywhere  else [ 2 ,  5 ,  91. This places an additional 
requirement on declarations. Since no special construc- 
tion specification is given,  declarations must  include the 
means of generating the values that  are identified with the 
symbols of the  concrete language.  This  can be accom- 
plished in much the  same ways as in ALGOL68 [ 14, 151. An 
expression must  be present in the declaration. Its result is 
identified (see  the ALGOL 68 identity  declaration) with the 
declared symbol. 

When it  is intended that a type definition specify a set 
of references  to  storage  objects,  the representing  value of 
each  such reference  must itself reference  some  storage 
object. We describe the primitive  types  and type gener- 
ators  that initialize this process.  They  too  have  type defi- 
nitions that  are of the  same  form  as described above. 
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Before  proceeding to  the  examples, we present some 
notation that will  be used in the type  definitions. 

Notation I The interface of an operation is described in 
terms of its  argument types, result type,  and  character- 
istics as follows: 

A((1ist of parameters)) {proc I funct} ((result type)) 

Thus A([(identifier):]int,[(identifier):]char)funct(int) de- 
notes  an interface for  an  operation having two arguments, 
the first being an  integer,  the  second a character, and 
which returns  an integer result.  The use of funct  indicates 
that  no side effects are performed by the operation. If 
proc  had  been used, side  effects would be expected.  The 
(identifier)’s can be optionally specified to  assist in speci- 
fying either the  result or the  body of the operation. 

Notation 2 A type definition is described  syntactically 
as follows: 

(identifier): type 
representation:(type); 
operations: 

{(identifier) = (operation  interface) 
[(operation body)]}* 

end 

For  types that are primitive, the representation  type is 
omitted,  as  are  the bodies of the operations. 

Note: Strictly  speaking, identifiers are artifacts present 
in the  character string form of the program that  do not 
exist  at  the machine interface. Rather,  operations  are 
“named” by one of the primitive types, c.g. ,  bit-32, 
present  at  the interface.  But, as in the use of assembly 
language where  symbolic forms  are used instead of bit 
patterns, we use identifiers instead of these primitive data 
values, with the understanding  that the identifiers are re- 
placed by the bit-32 values when the program is “assem- 
bled.” 

Notution 3 When we wish to  denote the  result of exe- 
cuting an  operation,  as  opposed  to  the  expression that 
generates  the  result, a dot(.) notation is used.  Thus, 
plus(3,4) yields a  result  plus.(3,4) that happens to be iden- 
tical to ( i . ~ .  , it denotes) 7 .  

We now introduce the  examples. We begin with the 
definition of a primitive type  expressed in the same form 
as a user-defined extension.  Then,  the extension  mecha- 
nism is used to define an integer type, a  type that is usual- 
ly provided by the  system. Finally,  the primitive type 
constructor union is used to  construct new types. Once 
again, the new type, though it cannot be user-defined, is 
nonetheless  described in exactly  the  same form as a  user 
definition. 

bit -. 32: type 
representation: . . . primitive; 
operations: 
fixed-add = h(bitL32,bit-  32)funct(bit-32); 
fixed-sub = . . .: fixed-mult = . . .; fixed-div = . . .; . . . 
float-add = A(bit-32,bit-32)funct(bit-32); 
float-sub = . . .; float-mult = . . .; float-div = . . .; . . . 
equal = h(bitL32,bit  -32)funct(bit); 
gtr-than = . . .; less-than = . . .; less-eq = . . .; . . . 
shift-right = h(bit-32,bitL32)funct(bit-32); 
shift-left = . . .; . . . 
and = A(bit-32,bit-32)funct(bit-32); 
or = . . .; x-or = . . .; . . . 
complement = X(bit ..32)funct(bitP32); 
zeros = funct(bit”32); 
one = funct(bit-32); 

end bit-32; 
. . .  

Figure 1 The type definition for 32  bit values. 

Exrrmple I :  rr prirnitivr type 
Our example is the  “bit -32” type, specifying a “string” 
of 32 bits, but it  is not the only primitive type of our ma- 
chine  interface. Perhaps  other sizes of bits are  also 
needed as  types.  Further, not all primitive types  or aggre- 
gates will have  their  mappings to bits exposed at the inter- 
face.  Indeed, it does not appear  to be possible to  expose 
all these mappings without  opening the interface to poten- 
tial compromise.  This is particularly true  for reference 
types, whose  values  must be scrupulously  protected  from 
arbitrary data processing operations. 

In existing machines, of course, all data  are ultimately 
expressible in bits. In realizing our machine interface, this 
mapping to bits is also made.  However, users will not 
have access  to, nor  need they have knowledge of, this 
mapping except in the most  general terms, r . g . ,  how ex- 
pensive are various  values and their operations in space 
and  time. As a  conventional  machine does not expose its 
logic gates  at  its interface, some primitive data  represen- 
tations are not exposed in our type  machine. However, 
by and large, all “ordinary”  data  are reducible to some 
form of bits. 

The operations on .‘bit “32”  values are  those  computa- 
tional operations of the underlying  hardware. The defini- 
tion in Fig. 1 is meant to be indicative of this set of opera- 
tions, but the list should not be considered to be the  only 
possible one. Only the interface specifications for these 
operations are given as the  operators  are all primitives. 
This is the case for all the  types with primitive operations. 
Note that both fixed- and floating-point arithmetic opera- 
tions work on  “bit 32” values. These  are subsequently 
separately used to define integers  and  reals. The under- 
lying machine does  not,  however, distinguish between 
these  types. All its arithmetic operations work indiscrimi- 
nately on bits. 769 
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int:  type 
representation: bit-32; 
operations: 
add = h(x:int,y:int)funct(int); 

on fixed-overflow then call integer-error(x,y); 
return(abs(bitL32.(fixedLadd)(rep(x),rep(y)))); 
end add; 

equal = A(x:int,y:int)funct(bit); 
sub = . . .; mult = . . . ; div = . . .; . . . 

return(bitL32.(equal)(rep(x),rep(y))); 
end equal; 

gtr-  than = . . .; less- than = . . .; . . . 
bits-to-int = h(x:bitP32)funct(int); 

return(abs(x)); 
end bits-to-int; 

return(rep(x)); 
end int-to-bits; 

int-to-bits = h(x:int)funct(bit-32); 

end int; 

Figure 2 The type definition for integer values. 

As with all types,  an initial source of values is needed. 
Here we suggest two  sources,  “zeros” which  provides 
32 zero bit  values, and  “one” which provides 31 zeros 
followed by a one bit. With these initial sources  and  the 
operations given, all 232 bit patterns  can be generated. 
These bit-32 values are merely bit patterns  that  are 
moved around and  manipulated.  They  can  be copied  into 
several  locations,  etc.,  but  do not  themselves consume 
storage, and no storage  allocation has been specified. 
That is to  say, they are  values, not  objects. 

There  are some forms of operations  that  are  not in- 
cluded in the definition of bit-32 even though the  under- 
lying machine clearly possesses them. 

1. No branching or program  control operations  are in- 
cluded. At our  interface, program control  operations 
are buried in the primitive operations  and  do not  ap- 
pear  as  data processing operations. 

2. No I/O operations  are  present, again because  these  are 
not to be  regarded as  data processing operations. 
Some form of I/O capability, however,  must be pres- 
ent.  For on-line memory, it may be possible to  conceal 
the I/O under a one-level store interface to  the storage 
hierarchy. For so-called sourcehink VO for communi- 
cating outside of the  system, explicit operations of 
some  form are required. These  are not  discussed here. 

0 Example 2: a  user-dejined  type 
What we describe in this example  are integer  values and 
not  storage objects (cells) that  can contain  integer  values. 
Thus,  the  operations  that must  be  provided  with  integers 
are  the usual  arithmetic and comparison operations  and 
two  type  conversion  operations.  Operations  for updating 

770 and taking the  contents of integer  cells are not  appropri- 

ate  operations  for integer  values. They  are  appropriate  for 
cells, which are  described in the  next section. The  type 
definition for integer values is given in Fig. 2. 

Only the body of one computational operation is 
shown, i.r., that  for  “add.”  The  other arithmetic opera- 
tions are all similar. In  “add,” “fixed-add” is the primi- 
tive operation of the bit-32 type. It produces a bit-32 
result if it returns normally. Otherwise, it calls the ex- 
ception  handler  “fixed-overflow.”  This exception han- 
dler is defined in the  “add”  routine  to invoke another ex- 
ception  handler for  the integer type called “in- 
teger-error.” This is a free variable that must be bound 
to some  appropriate  routine. We do not discuss this fur- 
ther  here  but  see [16, 171. If no exception occurs,  the 
“add”  operation  returns  the  result of “fixed-add,” con- 
verted by abs to  an integer from a bit-32. The  operation 
abs merely takes  the  same bit pattern and asserts  that it is 
now to be regarded as  an integer. 

None of the  arithmetic  operations provides an initial 
source of integers. This  source is provided by the 
“bits-to-int”  operation  which, given  a bit-32, returns 
an integer. It is possible to be  more  restrictive. For  ex- 
ample,  perhaps only a source  for  the integer “one” might 
be given, all other  integers being derived  from  it. This is 
needlessly  primitive, however, and our goal is not mini- 
mality but convenience.  No special construction method 
has  been  provided by the definition mechanism.  Logic re- 
quires something  analogous to “bits-to-int”  but this 
operation is not treated specially.  Several sources  for in- 
tegers  could  have  been provided. 

An operation,  ”int-to-bits,”  that  converts integers to 
bit-32 values is also  provided.  This is analogous to  the 
PL/I UNSPEC operation [18] and is not dangerous to  the 
type  system.  Users must  be cautioned  that using it may 
make their programs representation-dependent,  however. 
This operation is particularly useful for us when defining 
arrays. Primitive aggregates have bit-32 “selectors” so 
that, if we wish to use  integer selectors  instead, it is pos- 
sible to easily convert  the integers to  these bit values. 

No  storage  has been associated with  integers. The in- 
tegers are merely re-interpretations of the bit-32 values. 
Note  that abs does not assert  that  the storage in which its 
argument  value resides is to  be  treated  as  an integer. 
Rather, it returns a value completely unconnected with 
any implementation-required storage  for its argument  and 
asserts  that this  value  (bit pattern) is an integer. 

0 Example 3: unions  and  general variables 
Intuitively, one would like to  treat union types  as if they 
specified the  set union of values of their constituent  types 
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and indeed, this is the view we took in [7]. That view, 
however,  creates a problem  when we attempt  to fit unions 
into the framework discussed in Section 2. Type  con- 
versions between union types  and their constituent  types 
are  needed. We wish all computation, including such 
changes in representation  as  these trivial conversions,  to 
be accomplished by explicit operations, and we need  a 
source  from which to  acquire  these  operations, without 
exposing the  representation of the union. The need for 
such conversions is particularly clear when it is remem- 
bered  that we insist on  an  exact match  between procedure 
parameter declarations and  the arguments passed  to 
them. 

It is the union type  that must  provide these  conversion 
operations, and  aside from  one testing operation, unions 
provide  only conversion  operations. Any computational 
operations  are  drawn  from the constituent  types.  Since 
unions can contain  a great, potentially unbounded,  set of 
alternatives, we must provide a  framework for coping 
with these possibilities. We present an example first and 
then discuss  the way in which it is used. The  operation 

union (int,char):type 
representation: . , . prmltive 
operations: 
narrow = h(type=T)funct(funct-type = A(union(int,char))funct(T)); 
widen = h(type=T)funct(funct-type = A(T)funct(union.(int,char))); 
alternative = h(union.(int,char))funct(type); 
end union.(int,char); 

Figure 3 The type definition for union of integer and character 
values. 

gram construction time. It is important  to point out  that 
program construction  can  encompass more than  com- 
pilation. It  can include link editing as well, and in our ma- 
chine  interface,  can even be  performed  during the  execu- 
tion of ordinary, user-written  programs. It is the kind of 
checking  which, e.g. ,  ensures  that there is a type  match 
between  parameters  and  arguments,  and  between identi- 
fier usage and  declaration. This view requires  that  types 
be  known in order  for a program to be constructed.  This 
is our understanding of what  strong typing means and im- 
plies that all type  checking is “strong.” 

union takes  two existing types  and produces the  “union” 
type  and  hence is a type  generator. We give an example in 
Fig. 3.  Only operation interfaces are given as  the  opera- 
tions are primitive. 

What happens with the  “narrowing” of a union  value is 
not type checking but  type  conversion.  In this case,  the 
success of the  conversion  depends  on  the value  given it. 
Whether the value is appropriate is related to  its  “basic” 

Note  that unions are  examples of types  that  do not  pos- 
type,  but it could just  as easily depend  on some other 

sess explicit construction  operations, though by using 
property. For example,  one might define a subrange of 

“widen,” it is possible to  produce  “union” values. To 
the integers as a type.  Conversion from integers to the 

convert  from some specific alternative  type  value to  the 
subrange type would depend  on  whether  the integer  value 

corresponding union value,  one must 
is within the  desired  subrange.  This is not unlike a great 
many operations which return  results only  conditionally. 

1. Obtain the  “widen”  operation from the union as  the  The  “add”  operation of the integer type is one  such  oper- 
result, e . ~ .  , of ation. 

union.(int,char)(widen). The  operation  “alternative” yields the basic type of the 
2. Using the  “widen” oDeration, which is of the form  value of the union. Exactly  what  constitutes a “basic” - 

h(type = T)funct(funct-type 
type is a troublesome notion. The simplest view is to con- 
sider any  nonunion type  as basic. This permits 
union(A,union(B,C)) and union(B,union(A,C)) to generate = A(T)funct(union.(int,char))) 

when  type  argument T is set  to int produces a specific the same type.  The result of “alternative”  can be tested 
“widening” conversion operation with interface to provide  alternative dependent  computations,  as in 

h(int)funct(union.(int,char)). 

3. It is this specific widening function  that can  thus be 
used to  convert  from, r . g . ,  an int to the union. 

A  similar sequence is followed in order  to  convert from 
the union to a specific alternative type, only “narrow” is 
used  instead of “widen.” 

This discussion of union types provides  a  natural con- 
text in which to  discuss  strong typing  and  type  checking. 
Our view is that all type  checking must be done  at pro- 

if alternative(x) = char then call char-procedure(x); 

No computational  operations  are provided  with  unions. 
The values of union type must be  converted  to  their  basic 
(nonunioned) types before such  computations  can  be 
done.  Neither updating nor  contents  operations  are pro- 
vided, since union types  do not describe  storage  objects, 
but rather  describe  values. Of course,  as we shall see, 
references  can be generated  to cells that  can  contain 
union values, but these belong to a  different,  distinct 
type. 771 
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cell.(int):template 
representation: . . . primitive 
ref operations: 

create = proc(ref.[int]); 
free = h(ref.[int])proc; 
null = funct(ref.[int]); 
equal = A(ref.[int],ref.[int])funct(bit); 
Val = h(ref.[int])funct(int); 
upd = A(re€.[int],int)proc; 
end cell.(int); 

Figure 4 The  template  definition  for  integer  cells  (reference  op- 
erations  only). 

Discriminated  unions might have been provided in- 
stead.  To define them, all type arguments  and results in 
the  operations of the union type of Fig. 3 are replaced 
with tag field arguments and  results. This is an  advantage 
in languages in which types  themselves  are not values. In 
addition,  the  type  generator union would require  tag field 
values associated with each alternative of the  union. 

The union type  generator can only produce finite 
unions of types. It is frequently useful to be able  to  spec- 
ify infinite unions, i .e . ,  unions in which the number of 
basic types is unbounded.  Such infinite unions may need 
to be  supplied by means of primitives. However, we have 
no difficulty expressing the  resultant  type in terms of the 
operations upon  it.  A type general, which is a “union” 
over all possible types,  can  thus be  described in the  same 
way as more limited unions.  The general type is useful for 
coping with so-called typeless languages. Of course, its 
operations  “widen,”  “narrow,”  and  “alternative”  have 
a broader range of argument  and  return  types,  but  the 
form of its type definition is otherwise like other unions. 
It should  be  emphasized that we are not introducing flex- 
ible objects.  Rather, general  values  “include”  any  value 
that  the  type system will ever be able to  produce. 

4. Objects and templates 
The  purpose of objects in a high level language is to main- 
tain state information over periods of a computation so 
that examination of this  information can influence the 
subsequent  course of the  computation.  The simplest  ob- 
jects we call cells.  Cells  permit  values to be retained, via 
an  update  operation,  then  subsequently recalled. An ag- 
gregate object  supports a  restricted  form of address  com- 
putation, i.e., that computation  that yields a reference to 
one of its components. By carefully distinguishing values 
from  objects, we avoid having update  operations interfere 
with or affect this address  computation. Specifically, flex- 
ible objects  are not supported. 

Objects  are not  directly  accessible to  operations of the 
772 machine  interface. As in ALGOL 68, operations, indeed all 

routines, manipulate objects, e.g. ,  to change their  state, 
by manipulating their references. All operations  for  data 
definitions then are  associated with types.  The  operations 
that affect objects  are  associated with their reference 
types. This is what is meant by a  value-oriented data defi- 
nition facility. To our knowledge,  this  value-oriented  ap- 
proach is unique. 

Templates are used to  describe  objects. Roughly speak- 
ing, templates  describe  the  layout of storage. When we 
wish to deal with references  to this storage, we apply  the 
ref operator  to a template, yielding a reference type 
whose operations manipulate  storage of the  form de- 
scribed by the  template. As  will become  clear in the next 
section,  templates  can  also be  used to  describe values 
that  are structurally similar to  the  objects  discussed  here. 

Templates  are complicated by their  subsequent use in 
deriving  value types  that  are analogs of the objects.  To 
cope with this, our  syntactic form for a template  provides 
not  only for  the specification of reference  values  but  also 
for  the specification of the  derived values. Only the refer- 
ence  types  are discussed in this section.  The full syntactic 
form for  templates is as follows. 

Notution 4 
(identifier):  template 

representation:(template); 
ref operations: 

{(identifier) = (operation  interface) 
[(operation body)]}* 

{(identifier) = (operation  interface) 
[(operation body)]}* 

value operations: 

end (identifier); 

The following examples  present no single primitive 
storage object.  Rather, what is primitive are  operations 
that  generate  templates  for  storage objects when they are 
supplied arguments.  For  example, there is no primitive 
cell. Rather, cell  is a primitive operator  that, when given a 
type,  generates a template  for a cell that holds exactly the 
values of the  type.  Instead of primitive templates,  the in- 
terface provides  primitive template  constructors. 

Example 4: cell objects 
We illustrate  integer cells to  expose the  differences be- 
tween the integers of Example 2 and  the cells that can 
contain them.  Thus cell(int) is an expression that yields a 
template specifying cells that contain  integers. To  gener- 
ate  the  associated  reference  type, one must then execute 
the ref operation with this template  as its argument. The 
template  for integer cells has its  description given in Fig. 
4. While cell.(int) could be used to  denote  templates  for 
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cells of integers, we generally use a  sugared form for cells 
in which square  brackets enclose the cell’s type.  Thus 

Notation 5 [(type)] denotes a cell capable of containing 
values of type  (type).  Further, ref  is a unary operation 
with a template argument  that is usually delimited by 
these  square  brackets.  Because of this,  the  parentheses 
around its  argument are frequently  elided. 

The  representation template for cell.(int)  is not pre- 
sented  since all objects  generated using cell templates  are 
primitive. There is no  test that  can be made by the  user of 
the  type which will reveal  this representation. 

The first four of the  operations of the reference type  for 
integer  cells are  operations  that  are common to all refer- 
ence  types.  These  operations permit the creation of the 
object (“create”),  the  destruction of the object (“free”), 
the generation of null reference  values, i .e . ,  those refer- 
ence  values  that  do not  refer to an object (“null”),  and 
the testing of references for equality (“equal”). While 
every  reference type has  corresponding  operations,  these 
operations  are always specific to  the particular  reference 
type.  Thus, e . g . ,  the  “create” operation above makes 
only  integer  cells. The  “create” and “free”  operations 
are  procedures  rather than functions, because  they cause 
a “side effect” of altering the  set of objects that  are in 
existence.  The “null”  and “equal” operations are  pure 
functions  and  are so designated. 

The “Val” and “upd”  operations  are specific to cell 
objects.  That  is, they  perform the  characteristic  opera- 
tions on cells of storing  a  value in a cell (“upd”)  and re- 
trieving it (“val”). Storing a value produces a  side  effect, 
and hence  “upd” is a procedure while “val” merely re- 
trieves  part of the  state without  altering it, and is a  func- 
tion. These  are  the basic operations involving the integer 
cell as a storage  object.  Note again that no arithmetic op- 
erations  are given with integer  cells. These  operations be- 
long to  the  type integer  whose  values  can be contained in 
the cell. All cells, it should be noted, have  analogous sets 
of operations, each having interfaces specific to  the  type 
of values  that they contain. 

No clue  has been given as  to how these primitive refer- 
ence  values  are  represented, e g . ,  in bits. However, while 
we have not  shown it,  an  operation  “refLto-bits” could 
be provided  to  convert  reference values into  the bit 
strings that represent  them in the implementation.  This 
operation might be  useful for ordering  references or  for 
displaying  them in some  form. Such an operation does not 
violate the integrity of the  typed interface, but it does in- 
troduce implementation dependency. 

If instead of cells being primitive,  a  user  were  required 
to define them in terms of an underlying bit space  object, 
then “val” and “upd” would be required to explicitly 
convert between  integers  and  bit-32’s. In “val,” one 
could use  the  operation “bits_-to-integer” to change a 
“bit  -32” value into an “int” value. In “upd,”  the  opera- 
tion “ i n t ~ -  to- bits” would be used to  store  the integer 
value’s  representation in the bit -32 cell. A serious diffi- 
culty with this  alternative approach is the conversion 
from bits to a higher level type. This causes  no problem 
for  “int”  and,  indeed,  for  many  types of values. But ref- 
erence values  present  a  special  problem. If a conversion 
operation from bits to  references is provided which sim- 
ply asserts  that some bit pattern is a reference, then no 
storage  object is secure from  inadvertent or malicious 
reinterpretation  as some other  object. Potentially, even 
free  storage might be compromised. One way out, with- 
out going as  far as to make cell primitive, as suggested in 
the  example, is to make both  cells for bits and  cells for 
references primitive. That would at least make the  stor- 
age system  secure. 

The  advantage of cell being a  primitive  template gener- 
ator is that the  representation of types can remain com- 
pletely concealed,  and, in addition, the definition of refer- 
ences  to cells of type  T does not depend on the  operations 
provided with type T.  That  is, there is no obligation on 
the part of the definer of type T to provide operations  that 
enable  its values (by being convertible  to  and from  bits) to 
be stored in cells. They may always be so stored. 

0 Example 5:  structure objects 
Structures  are  storage  objects possessing  several  named 
components, each of which is itself an object. Again, we 
emphasize  that  objects  and values must be carefully  dis- 
tinguished. Here we only  specify  the  operations  associ- 
ated with references  to  structured objects. Structured val- 
ues which can be derived from  the same  template are also 
permitted  and are  treated in the next section. 

We first introduce  the following syntax for describing 
structures. 

Nofation 6 
(template):: =[(identifier):(template) 

{;(identifier):(template)}*] 

Note  here  that  the  square  brackets  are not meta-language 
symbols  but  symbols of the language being described. 
They are used in the same way here as  they  are with 
cells. The example we will use  is the following two-level 
structure: 

Z = [x:[int];y:[a:[char]:b:[int]]] 

Then Z is defined in Fig. 5. 773 
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Z:template 
representation:. . . primitive 
ref  operations: 

create = proc(ref.Z); 
free = A(ref.Z)proc; 
null = funct(ref.2); 
equal = A(ref.Z,ref.Z)funct(bit); 
x = A(ref.Z)funct(ref.[int]); 
y = A(ref.Z)funct(ref.[a:[char];b:[int]]); 
end Z; 

Figure 5 The template  definition for  structures described by Z 
(reference  values only). 

The  role of a storage  structure (aggregate) is  to  provide 
a  controlled  form of address arithmetic. In most  lan- 
guages the  syntax  at  least implies that an object  be in exis- 
tence  prior  to any address  computation.  Thus,  constructs 
such as “A[i]” or “Q.R.S.”  require  the  presence of the 
objects  named  “A”  and  “Q,” respectively. Further, in 
SIMULA [ 131, the  procedures of a class  are part of an in- 
stance of the  class, not part of the class definition. Hence, 
conceptually, all address computation is put off until run 
time,  since only then do  objects  exist. Our approach splits 
the  address computation into  two  parts.  The  “offset” 
computation  depends only on the  type and  can be done  at 
program construction  time, while the conversion from 
“offset” to  “pointer” must  be  deferred until the  storage 
object  exists, i.e., at  run  time. The offset computation in- 
volves selecting  from the  type,  the “offset function.” 
Thus 

ref.Z(y) + ref.Z(y) 

where ref.Z.(y) is the function “y” in the definition of 
Fig. 5 ,  takes a ref.(Z) value as  an  argument, and returns a 
ref.[a:[char];b:[int]] result. 

For multi-level selection,  one must compose  functions. 
Consider 

h(P){ref.[a:[char];b:[int]].(a) (ref.Z.(y)(P))} 

where  P is a symbol  denoting  a ref.Z value. Here, 
ref.[a:[char];b:[int]].(a) denotes  the function that  takes a 
ref.[a:[char];b:[int]] argument and returns a ref.[char] re- 
sult. When composed with the previous offset function, 
as  occurs  above,  the resulting  function denotes  an offset 
function that  takes a ref.Z argument and  returns a 
ref.[char] result, a reference  to component “a” in com- 
ponent “y” of the  structure.  Thus, selection operations, 
like any  other  operations,  are  extracted from the  type def- 
inition. This  requires, of course, that an instance  (value) 
of the  type be  passed to each operation explicitly rather 
than there being an implicit association by means of the 

I 

774 operator being  a part of the  value. 

There  are problems with competing  forms of address 
computation. We consider  two alternatives. 

1. A  general purpose select operation, i.e., 

select (ref to  object,  name of component) + ref to 
component 

What is the interface  specification for select? Since se- 
lect must  work on any reference  and  for  any  com- 
ponent, only imprecise type information can be put in 
its  interface  constraints.  Thus,  the type of its result is 
not such  that an expression involving “select”  can be 
readily  incorporated into a  larger  expression unless it 
becomes  an argument that is itself only very  impre- 
cisely stated.  Further, no part of the  address  computa- 
tion  can be  precomputed without  the  precomputation 
having access  to an underlying  machine  and hence vi- 
olating the interface.  Why? Because a  reference to  the 
object must  exist  when select is executed. 

2 .  Reynolds [I91 has suggested  treating  the object itself 
as  the selection  function which, when given a com- 
ponent  name,  returns a reference  to this component. 
Thus, if Q is a symbol  denoting  a  reference to a struc- 
ture, then “Q(A)” yields a reference  to  the “A” com- 
ponent of Q. However, this still leaves the result type 
imprecisely specified. Again, of course, Q is  not avail- 
able until run time. 

A structure  template, like a cell template,  has  the  stan- 
dard  object related operations of “create,”  “free,” 
‘‘null,”  and  “equal.” Also, structure templates are primi- 
tive  and have  no revealed template  representation. 

Example 6: row objects 
A row template  describes a storage object  consisting of 
identical  object components.  This template is produced 
using the row operation which requires  the  row size  and 
component  template  as  arguments. We treat selection in 
rows  somewhat differently from selection in structures 
for  two  reasons. 

1 .  The  components of a row are identical,  and hence we 
wish to make  information  concerning the  form of the 
components available as  soon  as possible. 

2 .  “Address  computation”  is  frequently  performed  at 
run time, i . e . ,  the  desired component of a row  is  com- 
puted dynamically. 

It is because of (1) that it is possible to conveniently 
handle the dynamic computation of components (2). 
Thus, in Fig. 6, we describe a template for a row  con- 
sisting of 10 integer  cells. As before, a notation is in- 
troduced  for  these  templates so as  to make the specifica- 
tion more  readable. 
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Notation 7 
[((size))(template)] shall denote a row of a given “size” 
whose components  are  described by the  (template). 

With structures,  the  component names appear explic- 
itly as  the  names of “offset” functions in the  reference 
type for  the  structure. With rows, a “select”  function is 
provided that can compute  the “offset”  function at run 
time. Why? Because of the following: 

1. The  “select” function  can  be extracted  from  the  type 
and  provides  explicit  information as  to  the form of the 
components, i . e . ,  it returns  an “offset”  function that 
produces a ref.[int] when  given  a ref.([(lO)[int]]); i . e . ,  
its  return  type is 

A(ref.([( lO)[int]])funct(ref.[int]) 

Thus we are given  detailed type information con- 
cerning  the component’s type from the  start. 

2 .  The result of a bit-32 computation  at run time may be 
used to determine the desired element. Using the  se- 
lect  function itself at run  time does not result in a loss 
of required type  information. If the  component  names 
were in the  “row”  type  directly, then we would lose 
information  concerning  the types of the components 
since we would then  be  required to use the row type  as 
a function  to obtain the offset function. 

If we  are  presented with “A[i+j]”  as an address  com- 
putation, then at program construction time, the select 
function for A’s type is extracted and the following code 
generated: 

{ref.[(lO)[int]].(select)}(i+j)(A) 

where  the braced  part of the computation is done during 
program construction  and yields the  “select”  function. 
Applying it to  (i+j)  produces  the offset function, which 
can then be applied to  the specific row  A. 

This  organization permits  the isolation and identifica- 
tion of common expressions.  For  example, 

“A[i+j] c B[i+j]” 

could be represented by 

(a) f c ref.[( IO)[int]].(select)(i+j); 
(b) f (A) +“ f(B); 

where c represents  the  “upd” operation. Step (a) has 
computed  the offset function for both the  arrays.  The  ac- 
tual assignment of a component of B to a component of A 
at  (b)  does not require the computation of this offset func- 
tion to be done twice. 

If the subscript for  an array reference is constant, then 
the offset function  can  be generated at compile time  and 

row.(lO,cell.(int)):template 
representation: . . . primitive 
ref  operations: 

create = proc(ref.[(lO)[int]]); 
free = h(ref.(row.[(IO)[int]])proc; 
null = funct(ref.[(  lO)[int]]); 
equal = A(ref.[(IO)[int]],ref.[(IO)[int]])funct(bit); 
select = h(bitL32)funct(A(ref.[(lO)[int]])funct(ref.[int])); 
end row.(lO,cell.(int)); 

Figure 6 The  template  definition for rows of ten  integer  cells 
(reference  operations  only). 

embedded directly in the  code.  Thus “A[5]” could be 
represented by 

{ref.[(IO)[int]].(seIect).(5)}(A) 

where  the “offset”  function itself is generated at compile 
time by the braced computation, leaving only the  compu- 
tation of the  component  reference from the aggregate ref- 
erence. 

As in previous examples,  the representation for a row 
is primitive. Further,  the  operations  “create,”  “free,” 
‘‘null,”  and  “equal”  are  as  for  other  references  to ob- 
jects. 

Example 7: dynamic row objects 
The  rows of Example 6 are all such that their  size must be 
known at program construction time.  This is similar to  the 
Pascal restriction [20] which has been the subject of some 
controversy. Most  languages,  starting with ALGOL60, pro- 
vide  more dynamic sizes. There  are  three generalizations 
that we can imagine with respect  to  the size  variability of 
rows. 

1. A parameter may have a type such that it is compatible 
with rows of a given component type  but with an un- 
specified (or incompletely specified) size.  Thus,  any 
reference  to a fixed size row could be converted  to this 
form of reference to  rows of unknown  size. This ex- 
tension  does not require any new template  at all but 
merely a new type construction capability for infinite 
unions of existing types, in this case involving refer- 
ences  to various  size rows. No new template is needed 
because all storage  allocation is still being done using 
row  templates specifying a fixed size.  The operations 
of such  a  union are  exactly  those  we  have  seen in Ex- 
ample  3. 

2. Every  instance of a row is still of fixed size,  but this 
fixed size need not be specified until the time that  an 
instance of the row is to  be  created.  Then,  the  size is 
given as an argument to  the  “create”  operation.  This 
kind of row of settable  size  is  supported by a  diversity 
of languages, including ALGOL 60 and PWI. This form 775 
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d-row.(cell.(int)):template 
representation: . . . primitive 
ref  operations: 
create = A(bitL32)proc(ref.[(*)[int]]); 
free = A(ref.[(*)[int]])proc; 
null = funct(ref.[(*)[int]]); 
equal = A(ref.[(*)[int]],ref.[(*)[int]])funct(bit); 
select = A(bit_32)funct(A(r~.[(*)[int]])funct(ref.[int])); 
narrow = A(type=T)  funct  (funct-type = A([(*)[int]])funct(T)); 
widen = A(type=T)  funct  (funct-type = A(T)funct([(*)[int]])); 
size = A([(*)[int]])funct(bit-32); 
end dLrow.(cell.(int)); 

Figure 7 The  template  definition  for a dynamic  size  row  of  in- 
teger  cells  (reference  operations  only). 

is concealed, but one must  be selected  for  the implemen- 
tation. In order  to  cope with the union-like attributes of 
dynamic  rows, this representation must involve an in- 
direction: ;.e.,  dynamic rows  cannot have  a  contiguous 
representation where the size is stored adjacent to  the ele- 
ments of the  row. Such  a representation would make  the 
implementation of the  “widen” operation  impossible. Its 
representation might then  consist of a pair,  (size of row, 
address of its storage). This is what has traditionally been 
called a “dope  vector.” 

The  operation  “size”  replaces  the analogous operation 
“alternative” in unions. Instead of yielding a type value 
that  can be tested,  as  done by “alternative,”  “size” 

does  require a new template  constructor in which the 
resulting create  operation is parameterized with re- 
spect  to  the desired  size of the  row. This is the  case we 
treat  here. 

3. Row size is completely dynamic such that  operations 
subsequent  to object creation can alter its size. A 

yields a bit-32 value that indicates  the  number of ele- 
ments of the dynamic  row. Thus, this operation need 
merely access  the  dope  vector.  The size  information is 
more useful because it can be passed  directly to a sub- 
sequent  “create”  operation,  thus enabling more like- 
sized rows  to be created. 

number of subcases might be considered under  this, 
such  as (a) the number of components is permitted 
only to grow; (b) components  can disappear but once 
gone  cannot  reappear;  (c) components  can  freely 
come  and go. The last case is a  version of our nemesis 
“flexible objects.” This is the form of object that we 
have been trying hard to avoid  and  hence is not  sup- 
ported. 

The definition of a dynamic  size row [case (2)] then is 
given in Fig. 7. Syntactically, dynamic  size rows  are de- 
noted by an “*” in the size  position of the  denotation  for 
other  rows.  The d-row operator  constructs  the  template 
given the component template  as argument. 

The  operations  “create,”  “free,”  “null,” and “equal” 
are  the basic ones  associated with all reference types. 
Note  that here the  “create”  operation takes an  argument 
which specifies the size of the  dynamic  row.  The  “select” 
operation  has  the  same interface as its counterpart with 
fixed size rows and is used the  same way. Importantly, 
however,  the subscript  range  checking  previously per- 
formed by the  “select”  operation must now be performed 
by its resulting offset function at run time. 

The  operations of “widen”  and  “narrow”  are  analo- 
gous  to  their like-named counterparts in the definition of 
unions. This reflects the  fact  that references to  dynamic 
rows can also refer to fixed size rows. Thus,  references  to 
dynamic  rows can  provide the function  mentioned in case 
(1) above,  that of specifying as  parameters rows whose 
sizes are unknown. Because we wish this to be the  case, 
some  care must  be taken in how references  to  dynamic 

776 rows  are  represented. At the  interface,  the  representation 

5. Values derived from objects 
Section 1 mentioned  a  duality  between  objects and val- 
ues, but we have not seen this as  yet. In this section, we 
illustrate how templates  can be used not just  to  describe 
objects,  and hence their  references, but also values which 
share a common  description with the objects. The moti- 
vation for this is to obtain  aggregate  values. Three  ques- 
tions come  to mind. 

Why  are  aggregate  vulues of interest? 
Pure value  semantics is desirable for both theoretical  and 
practical reasons. Knowing  when  side effects can occur 
and, more  importantly, when they  cannot, is a  great  aid in 
analyzing  and  understanding the program.  Read-only ref- 
erences  do not have  that desirable property, since  they 
merely ensure that  the user of the reference cannot modi- 
fy an object by means of the reference, not that there is no 
way of modifying the object.  The “immutable objects” of 
object-oriented  storage models, though adequate, give 
the wrong connotation, implying separate  storage  even 
for  the smallest  immutable  object (though optimization 
can sometimes eliminate it). 

Related to value semantics is the desirability of provid- 
ing an  atomic  update  operation  for aggregates in their en- 
tirety. With aggregate values, this  becomes simply an  or- 
dinary  scalar  update,  perhaps handled via hidden in- 
directions, but which can readily be assured of atomicity, 
since no operation  can change a value. 

Finally,  unions of types whose values are aggregates 
yield “flexible”  aggregates  without  introducing flexible 
objects. Cells whose  values are such  unions are freely 
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permitted. Since references  to  components of these ag- 
gregate  values are not possible, the  disappearance and re- 
appearance of various  aggregate components  have  no 
pernicious  effects. 

Why  make  these  aggregute  values via templates? 
If aggregate  values are  desirable, then  their  types  must be 
formed in some  way. Making them via templates empha- 
sizes their  structural  correspondence with the object form 
of aggregate. Of course, having the  same  template de- 
scribe both  provides a certain  economy at the interface. 

Perhaps most  important is that aggregate objects  pro- 
vide  a  convenient way of generating aggregate values. 
Rather  than have an  entire  other  set of operations for  con- 
structing aggregate values,  one component at a time, we 
envisage  the existence of one  additional operation with 
aggregate values,  the  “enclose” operation. This  opera- 
tion takes a reference to an object as an argument and 
produces  the value  form of the  object.  Thus, producing 
aggregate  values is accomplished by allocating an aggre- 
gate  object, initializing its components, and  then “enclos- 
ing” the resulting  object to yield the value. There is a 
potentially  large  computational  economy here. Value 
transformers must conceptually make new copies  for 
each  transformed  value,  rather than do the modification 
in place. While it may frequently be possible to avoid 
these  copies,  extra implementation  complexity is needed 
in order  to  do so. Enclosing of the object  form of aggre- 
gate  after it has  been  updated in place  provides explicitly 
the best that can be achieved. 

While this view is quite useful, it is not essential.  It is 
possible to conceive of primitive type  generators  that  pro- 
duce  types describing  aggregate values and  providing  op- 
erations to construct  these values. Thus, it should  be  kept 
in mind that how aggregate  values or their  types are gen- 
erated is independent of the desirability of having them. 

Why not handle ull vulues  this  way? 
There  are values that  currently have no analogous  object 
form.  These fall into three  categories. 

1 .  The  structure of the  template definition provides no 
way of representing  a reference.  The  template de- 
scribes  the  storage  object, not its reference, whose 
representation is entirely concealed. I t  is essential, of 
course, that references be very tightly controlled so as 
to  protect  the type system’s integrity. 

2. To  complete  the machine interface, values for program 
material, e g . ,  procedure  and function values, need to 
be  included.  It is unclear  how  these can be  regarded as 
storage objects. 

3. Some values simply do not warrant  an object form. 
Integers  are  such  values,  and it is useful to be able  to 
describe them without recourse to storage objects. 

cell.(int):template 
representation: . . . primitive 
value  operations: 

val = h(value.[int])funct(int): 
enclose = h(ref.[int])funct(value.[int]); 
end cell.(int): 

Figure 8 The template  definition for integer cells  (value  opera- 
tions only). 

The liability of the  approach is the complexity in- 
troduced so as  to permit value forms  for aggregate objects 
when they may have no such useful form. While there is 
no requirement  to provide  value operators,  one is still left 
with a template definition structure that is more com- 
plicated  than  that  required solely for objects. We return 
to  the subject of templates,  their  formation, and their fea- 
tures, in Sections 6 and 7. 

We now proceed to  the  examples.  These object-derived 
values complete  the definitions of the  template of the last 
section. That  is, the  value examples  are  for integer cells, 
structures,  etc. In all the  examples, the operations of the 
reference  values  are omitted in the same way that in the 
previous  section  the  value operations were omitted. 

e Example 8: cell vulues 
This simplest  example  reveals much that is universal for 
all the primitive  template generators.  The object-oriented 
operations of the template, ;.e., those involved in creating 
and  destroying  objects and those peculiar to  references 
such as “null”  and  equality of references,  are not opera- 
tions of the  type  that  describes object-derived values. 
Those involved in modifying objects  or which permit  the 
subsequent modification of objects  are  either not present 
or  are transformed so as  to rule out in-place modification. 

The value  form of integer  cells is given in Fig. 8. This 
completes the specification of the cell template. The only 
operations  are “ V a l , ”  the contents-accessing function, 
transformed now so as  to work on the value form of cell, 
and “enclose,” the operation that converts the  object 
form of cell to the  value form. An “enclose”  operation is 
present in all definitions of values derived from templates. 
Indeed, it  is the reason why this  approach has been pur- 
sued. It is an operation of the template that in some sense 
belongs to both the value and the  reference types. We 
place it in the value  specification  here and in the  sub- 
sequent  examples because it is the existence of the value 
forms  that  requires its presence. More is said about “en- 
close” in Section 7 .  777 
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Z:template 
representation: . . . primitive 
value  operations: 

x = h(value.Z)funct(value.[int]); 
y = A(value.Z)funct(value.[a:[char]; b:[int]]); 
enclose = h(ref.Z)funct(value.Z); 
end Z: 

Figure 9 The  template  definition for the structure Z (value  op- 
erations  only). 

d row.(cell.(int)):template 

value  operations: 
representation: . . . primitive 

select = A(bitL 32)funct(A(value.[(*)[int]l)funct(value.[int])): 
narrow = A(type=T) funct  (funct-type = A(value.[(*)[int]])funct(T)): 

size = A([(*)[int]])funct(bit .32): 
widen = A(type=T) funct  (funct-type = h(T)funct (value.[(*)[int]])); 

enclose = h(ref.[(*)[int]])funct(value.[(*)[int]]); 
end dLrow.(cell . ( k t ) ) :  

Figure 10 The  template  definition for dynamic  size rows of in- 
teger  cells (value operations  only). 

Example 9: structure  values 
As with cells, we complete  the specification of the  struc- 
ture  template  whose  reference operations  were  given in a 
previous example.  Thus, we use the  structure of Example 
5 ,  i . e . ,  Z = [x:[int];y:[a:[char];b:[int]]]. The value opera- 
tions for template Z are given in Fig. 9. As with cells,  the 
operations  “create,”  “free,”  “equal,”  and “null” do  not 
appear  as value operations.  The  selector  operations  have 
been modified so as  to work on values of form Z and  to 
return  the value form of the  components  as  results.  Thus, 
because  references  are not returned,  no  subsequent  oper- 
ations result in the modification of the value. The imple- 
mentation may,  for values  requiring large amounts of 
storage, use  indirect addressing,  thus sharing  this storage 
among all cells  containing the  same value. On the  other 
hand,  for small values,  copying the entire representation 
is both feasible  and frequently desirable. No operation is 
present  that can distinguish between  these  approaches. 

As with cells, an “enclose”  operation  is  present  to  pro- 
vide convenient initialization of the object-derived val- 
ues. With aggregates,  this is particularly important. While 
value forms of cells are included  only for  completeness, 
easy  creation of aggregate  values is the  purpose of the 
separate value  and reference  types with their “enclose” 
operation. Flexible types specifying many aggregate 
forms  are achieved by taking a union of types  that de- 
scribe aggregate  values.  Flexible  locations cannot be  pro- 
duced. 
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Example 10: row  values 
In  Section 4, two kinds of rows were treated,  those whose 
type  determined  the size of the objects and  those  whose 

size was specified at creation  time, which we called  dy- 
namic rows  or  d-rows. Both have value forms.  Here, 
only d -rows  are  treated. Fixed  size  rows are a restricted 
case of dLrows with only two of the  operations sup- 
ported. 

The specification for  the  value form of d-rows of in- 
tegers is given in Fig. 10. Notice again that  no object- 
oriented  operations  appear in its definition. The  opera- 
tions  remaining are simply the “union”-oriented ones  for 
providing  conversions to  and  from fixed rows  and  for 
identifying the  current  row’s  type  (size), plus the selec- 
tion operation.  These  have all been modified to  operate 
on d-row values. For fixed rows, only  the “select”  oper- 
ation among  these would remain.  In both cases, an  “en- 
close”  operation is included to permit initialization of row 
values. 

A cell  containing d-row values provides the  analog of 
the ALGOL 68 flexible rows, which in ALGOL 68 result in 
flexible objects whose components can appear  and disap- 
pear based  on  the  currently assigned row. With d-row 
values, however, it is clear  that references to  components 
are not  permitted since  the  dLrows  are  not  objects but 
are values  whose components  cannot be referenced.  The 
selection of a component of a value produces  the com- 
ponent’s value as a result, not  a reference.  These d-row 
values then provide a justification for  the ALGOL 68 re- 
striction that  references  to  components of flexible rows 
are  not permitted. Rather  than simply being an ad hoc 
restriction due  to implementation  problems, however,  the 
restriction  can  be seen  as  an intrinsic requirement of the 
objecthahe distinction that we have  been making. 

6. User-defined  templates 
The  examples of the last two  sections dealt only with the 
templates produced by the primitive  template-generating 
operations.  In this section, we define a template using the 
extension mechanism  provided to  the  users.  The  example 
is that of strings. While it  is not remarkable in its  sophisti- 
cation, it illustrates the flexibility and uniformity of the 
extension mechanism. 

Example 11: strings 
Using strings as an example is interesting for a number of 
reasons. It is not normally chosen  to  demonstrate a data 
definition mechanism.  Strings are frequently provided as 
primitives, and hence have not been user-defined. Fur- 
ther,  there is some  confusion about whether  strings are 
objects or values. For  instance, IBM PUI [18] does not 
permit  aggregates (objects)  to  be  returned by procedures, 
but strings may be returned,  hence treating  strings as val- 
ues.  In  addition,  however,  part of a string may be modi- 
fied in place by means of the “SUBSTR’’ pseudovariable, 
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form. Unlike PL/I, however,  our definition results in the 
value and object forms being distinct. Thus,  updating in 
place is appropriate  for string objects but not string val- 
ues, while returning  strings is appropriate  for  string val- 
ues but  not for string  objects.  Figure 1 I contains the defi- 
nition of character strings. Part  (a) defines the  operations 
on references  to  character string objects, while part (b) 
defines the operations on  character string  values. 

A char-string object has  the normal operations  for ob- 
jects, ;.e., “create,”  “free,”  “null,” and “equal.”  Here, 
however, they  must all be  user-specified.  This is very 
simply done using the  corresponding ref.[(*)[char]] opera- 
tions and making the  appropriate  rep  and abs con- 
versions.  The body of the  “create” operation shows how 
this is done. Only the interface  specifications are given for 
the  rest of these  operations. 

I The  only new operation is “substr,” which permits 
multiple components of a string  to be  updated with a 
single operation.  The body of “substr” reveals  how  this 
is accomplished by updating each component character 
cell in turn. A select operation is also provided to permit 
access  to  the values contained in the char-string object. 

The  char-string values are more  interesting. No ob- 
ject-oriented operations are  associated with them.  How- 
ever,  those operations  normally  considered to be  string 
operations  are all supplied. These include the string  value 
comparisons of “equal,”  “less,” and “greater,”  and  the 
string manipulation operations of “substr” and “con- 
catenate,”  as well as provision for empty  strings with the 
operator  “empty.”  The body of “concatenate” illus- 
trates how new string  values are  constructed via the allo- 
cation and enclosing of objects.  The method used by the 
“substr”  operation is similar so we show  only  its  inter- 
face. 

What we have succeeded in doing is to provide the 
function of PL/I strings via the value and object forms of 
strings defined here.  Importantly,  these  functions  have 
not been provided through a single type but rather by 
means of the  two  types of strings. Values  and objects 
have  been strictly  distinguished, avoiding both confusion 
and flexible objects. 

7. More  about  templates 
A separate  syntax  for  templates was  provided in Section 
4, which showed templates  as consisting of three  parts: a 
representation  template, a set of reference operations, 
and-a  set of value operations. We emphasize  this three- 
part  form  because templates  themselves will, in our ma- 

create = A(x:int)proc(ref.char_string): 
bitL32:t = bitL32.(intLto_bits)(x); 
return(abs(ref.[(*)[char]].(create)(t))); 

free = A(ref.char-string)proc; 
end create; 

null = funct(ref.char-string); 
equal = X(ref.char-string,ref.char-string)funct(bit); 
substr = h(target:ref.char_string,start:int,len:int, 

ref.[(*)[char]l:t = rep(target); 
source:ref.char-string)proc; 

ref.[(*)[char]]:s = rep(source); 
bitL32:first = bitL32.(intLto_bits)(start); 
bitL32:number = bitL32.(intLto-bits)(len); 
bitL32:i; 
h(bitL32)funct(ref.[char]):f; 
h(bitL32)funct(ref.[char]):g; 
do i + first to bitL32.(fixedLadd)(first,number)-I; 

f +- [(*)[char]].(select)(i); 
g e [(*)[char]].(select)(i+ 1-first): 

end; 
f(t) + m :  

select = h(int)funct(h(ref.char~string)funct(ref.[char])); 
end char-string; 

end substr: 

(a) 

char-stringternplate 

value  operations: 
representation: d-row.(cell.(char)); 

equal = h(value.char-string,value.char-string)funct(bi!); 
less = . . .; greater = . . .; 
substr = h(target:value.char-string,start:int,len:int) 

concatenate = h(a:value.char-string,b:value.char-string)funct 
funct(value.char-string): 

value.[(*)[char]l:x = rep(a); 
value.[(*)[char]]:y = rep(b); 
ref.[(*)[char]]:z = ref.[(*)[char]].(create)(size(x)+size(y)); 
do i + 1 to value.[(*)[char]].size(x); 

(value.char- string); 

z[i] + x[i]: 
end; 

z[i+size(x)] y[i]; 
end; 

return(abs(enclose(z))); 
end concatenate: 

enclose = X(ref.char-string)funct(value.char_.string): 
empty = funct(value.char-strink); 

end char _string; 
(b) 

do i 1 to value.[(*)[char]].size(y); 

Figure 11 The  template definition  for  character  strings: (a) ref- 
erence  operations only and (b) value  operations only. 

chine  interface, have to be generated by explicit opera- 
tions.  Here, we suggest that  the formation of a template 
requires  an  operation  that  takes  two  arguments, a type 
definition for reference  values and a type definition for  the 
corresponding enclosed values.  The representation  tem- 
plate  can  be  deduced from  the  representations used for 
the  reference  and value type definitions. Thus,  for  the ref- 
erence  type,  the representing type must be a reference 
type  that  refers  to an object described by a template.  This 
can be regarded as  the  representation template.  Similarly, 779 
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the value type  has a representation derived  from  a tem- 
plate,  and  these  two  representing templates  must  be the 
same. With this  view, we have reduced the number of 
ways that  types  can be defined by users  to  one, i.e., via a 
type definition.  Templates act  as repositories for  these 
two  type definitions. 

Let us reconsider  the role of templates. They  do  more 
than  just bring together the  two  constituents  above.  Their 
fundamental role is  to  prescribe exactly the limits of the 
objects  they  describe.  That  is, a template specifies pre- 
cisely what is to be considered as  part of an object versus 
what is merely  referenced by it. Templates play the  same 
role with the corresponding  object-derived  values. Thus, 
when an  object is enclosed  via an “enclose”  operation, 
yielding the value  form of the  object,  the  template  deter- 
mines  what is considered as  part of the value versus what 
is referenced by it. Only that which is part of the  object 
becomes  part of the  corresponding value. 

Templates  can, of course,  be included in larger  tem- 
plates.  This permits objects  to contain components  that 
are  themselves  objects,  where  these  components  are part 
of the  larger  object, not referenced by  it. It is this form of 
composite  object  that, e.g., the CLU object-oriented 
model does not  provide.  It is also this  form of composite 
object  that, in order  to avoid flexible objects,  necessitates 
the distinction between  templates  and  types.  Unions of 
types  are  permitted,  but not  unions of templates. If all 
components were merely referenced by an aggregate, 
then referencing an object’s component would yield a ref- 
erence to a separate  object. Changing the  characteristics 
of this  component would not affect the  references  to this 
free standing  (former) component  that  has now been  re- 
placed by a component of a different form. With the  com- 
ponent directly  included in the major  aggregate, however, 
a change in a flexible component affects previous  refer- 
ences  that  continue  to refer to  the  component in its 
changed form. 

Another role for  templates is that of specifying proper- 
ties for  the  data they describe when those  data  are  com- 
ponents of larger  aggregates. These  properties  are initial- 
ization and enclosing.  Since they  are associated with the 
template,  the reference and  value  types remain the  same. 

Initialization 
Since  there is no convention  requiring specific operations 
and, in particular,  no  “create” operation  need be speci- 
fied  in either reference or value types, the initialization of 
a component object becomes a problem. How this initial- 
ization is accomplished  should  not  be  considered as help- 
ing determine the types,  either  reference  or  value, but is 
solely an  attribute of the  template. 

LOMET 

How  then  does a “create”  operation  for  the larger  tem- 
plate  specify the initialization for its components when 
those  components require  particular initial states?  Either 
(1) it must be able to  “see”  the uninitialized states so as 
to perform the initialization itself, or ( 2 )  it must, by some 
convention, be able to  invoke  appropriate  operators of 
the  components  to be  initialized. In case (l), it has  ex- 
plicit access  to  the uninitialized state and may be able  to 
subvert  the intention of the definer of the component. In 
case ( 2 ) ,  additional requirements must be placed on tem- 
plate  definitions so as  to provide  this capability while pre- 
venting the use of the type operations prior to initial- 
ization.  It is this  second approach, with its assurance of 
type  integrity,  that is pursued. What is needed  then is a 
general  method by which the definer of the template  can 
associate initialization with a template no matter how it is 
used. 

Any template T can  be  augmented with an initialization 
specification.  This is  in the  form of a procedure with an 
argument of type ref.(T) which, by  means of side  effects 
on  its  argument, performs the initialization. This initial- 
ization specification is associated with a template by 
means of the init function with the following interface. 

init =h(T:template-type,g:proc-type)proc(T initialized by 
g = A(ref.T)proc)) 

Thus, initialization need  not  be built into the  template 
(nor into  the  operations of “ref”  and  “value”  types)  as a 
“primitive” operation but can be varied to suit the user’s 
purposes. And no special naming convention for initial- 
ization operations is required, since the initialization op- 
erations  are not part of either ref or value types. What is 
required of the  types, of course,  are primitives that permit 
the initialization procedures  to be  written. In the  absence 
of explicit  initialization,  a template is initialized as speci- 
fied by  its  representation template, if any,  or by the ini- 
tialization specified for its  various components  sepa- 
rately. 

While the initialization associated with a  template does 
not play  a role in the  associated  type definitions, the ini- 
tialization associated with the  templates of the represen- 
tations for  reference  and value types  does.  Thus, e.g., a 
reference type is determined not only by its operations 
but also by the initialization of its  representing  type’s 
template. 

When  providing initialization for aggregates con- 
structed using the built-in template  generators, it seems 
reasonable  to provide it in two  forms. Initialization for  the 
entire aggregate can be provided as before. Alternatively, 
if the aggregate  template  was generated using component 
templates  that already had initialization specifications, 
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then, in the  absence of explicit initialization for  the  entire 
aggregate,  these component initializations can be used. 
Let us illustrate  this  initialization with our three built-in 
template  forms. 

1. Cells In the absence of initialization,  a cell template, 
e . g . ,  for  int,  produces, when the cell is formed,  an un- 
initialized  cell, perhaps with an undefined value, per- 
haps with a  default value, or perhaps with no value, in 
which case  an  exception would be raised if its contents 
were  requested. We can provide  for  the initialization 
of a cell via the primitives defined for ref.[int]. Thus 

7 = init([int],h(x:ref.(int))proc; x + 25; end;) 

yields  a  template which, when used in specifying  a 
larger  aggregate, describes an integer cell component 
that  is initialized to  the value of 25. This is true  for 
both storage  objects and  enclosed  (aggregate) values. 

2. Rows Without initialization, a row template, e.g., 
for [(lo)[%-]], produces a  row in which each  element is 
initialized using whatever initialization is associated 
with T. If,  for  example,  the 7 of (1) above  were  used as 
the [int] template for such  a row, then all ten elements 
of the row would be  integer  cells initialized to  the 
same  value, i.e., 25. 

When explicit initialization is provided, i t  overrides 
any  component initialization. Thus 

init([( IO)[int]],h(x:ref.[(  lO)[int]])proc 
do i + 1 to 10: x[i] t i ;  end:) 

produces a  row in which the first element contains 
one,  the second  element contains  two, . . ., and  the 
tenth element  contains ten. Again,  this is the  case both 
for  storage  objects and  enclosed  (aggregate) values. 

3. Structures The situation with structures is similar to 
that  for  rows, but each component may have  a sepa- 
rate initialization. Thus, we might have 

Z = [x:init.([int],h(x:ref.[int])proc; x + 25; end;), 

y:init.( 

[a:init.([char],A(x:ref.[char])proc; x ‘q’; end); 

b:[int]], 

X(x:ref.[a:[char],b:[int]])proc; 

x.a t ‘ r ’ ;  x.b+4; end;)] 

Here Z has  no initialization and so inherits, by  default, 
the initialization of its  components. Component x,  an in- 
teger cell, is initialized to 25. Component  y is itself a 
structure with explicit  initialization. While y.a  has explic- 
it initialization (y.b  does  not), it is overridden by the ini- 
tialization for y  which sets  y.a  to ‘r’ and  y.b  to 4. 
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Enclosing 
The other capability  provided by the template is the abil- 
ity to  enclose an object form so as  to yield its  value form. 
Notice,  since  the  “enclose”  operation  relates  reference 
values to the value form of the object referenced,  that 
when types  are defined independently,  there is no way for 
a user  to provide  this operation in the reference and  value 
types he defines. Such an enclose operation  would, in or- 
der  to be  programmed,  need an operation in the reference 
type that  exposes  the  representing type so that  the  “en- 
close”  operation of the representing  type  can be used  to 
obtain the value form of the  representation.  Then,  the abs 
function can be  applied to  produce the user-defined value. 
But the  exposure of the  representation should be dis- 
couraged.  Indeed,  the intent of the user-defined types is 
to hide this  representation. 

Our solution to providing an  “enclose”  operation is to 
associate it with the  template,  rather  than with either of 
the types. This has  the  virtue, in addition, of not  changing 
the constituent  types of the  template.  Thus,  an enclose 
operation is defined that  has a  template  argument and  that 
returns  an  “enclose”  operation that is specific to  the 
types of the template. Thus,  no  type  checking information 
is lost when using this specific “enclose”  operation. In 
the examples,  the  “enclose”  operation was  always asso- 
ciated  with  the  value type.  This was an  expedient so as  to 
simplify the  presentation. Our real  intent is that  the refer- 
ence  and value types be unaffected by their being in- 
cluded in a template,  and  the solution just  presented has 
this desirable  property. 

8. Discussion 
The value-oriented view presented here is yet  another of 
our efforts to define a storage model for programming lan- 
guages and  to integrate such a model into our operation- 
oriented machine interface. It  is a  considerable advance 
over our last such effort [7]. While the  objecthahe dis- 
tinction has been retained,  the new view of type pre- 
sented  here  smoothly integrates the  storage model with  a 
type definition facility. Clearly, our operation-oriented 
view has also  been furthered,  as can  be seen readily from 
the  operational  nature of the  type definitions presented. 

The new value-oriented type definition mechanism  pro- 
vides a unifying framework. Unlike, e . g . ,  the new DOD 

language ADA [I], it has not been necessary to complicate 
the picture with new notions such  as  “sub-type” when 
sub-ranges are  desired.  Rather, a  sub-range, e.g., the in- 
tegers from one to ten, is merely another  type.  Like a 
union type, it need  only provide  conversion  operations 
between it and the integers. All computational operations 
can continue to be performed  on integers. At a syntactic 
level, it may be desirable to provide  a way of implicitly 781 
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specifying  these  conversions.  We are convinced  that  this 
is a useful  way  of  viewing  subranges. 

While  progress  has  been  made,  the  complete  definition 
of the  machine  interface  that  is our goal  requires  much 
additional  effort.  The  construction  and  manipulation of 
types  and  program  material  have  barely  been  touched  on. 
The  operations  required in this  area  should  enable  pro- 
grams  and  types  to  be  incrementally  constructed  in  small 
pieces.  Thus,  fragments  of  these  values  must  also  be  val- 
ues.  In  particular,  type  and  program  Faterial  with  free 
symbols  must  be  manipulatable  values.  Operations  to 
bind  and  resolve  symbols  must  be  provided.  This is an 
effort  that  has  never  really  been  carried  very  far  before. 
We  have  previously  worked  toward  this [16, 171, and 
while  many  of  the  notions  presented  there are worth  pur- 
suing,  those  efforts  were  incomplete  and  did  not  avail 
themselves  fully of the  value-oriented  view  presented 
here.  Probably  the  largest  stumbling  block is that  fixpoint 
operations  are  needed in this  area  to  construct  both  recur- 
sive  programs  and  recursive  data  structures. 

Polymorphic  operations  and  parameterized  types  can 
both  be  provided  by  using  these  program  and  type  con- 
struction  operations.  Polymorphic  operations  are  realized 
using a program  construction  program.  Such a program  is 
given one or more  type  arguments  and  produces a result 
which is a program.  The  resultant  program  has  arguments 
and  result  types  taken  from  the  types  supplied as argu- 
ments.  Parameterized  types  can  be  handled  by  type  con- 
struction  programs in a similar  way. 

Acknowledgments 
This  paper  is a much  revised  form  of  an  earlier  memo 
written  while  the  author  was  on  sabbatical  at  the  Univer- 
sity  of  Newcastle-upon-Tyne.  The  encouragement  and 
support  of  Professor  Brian  Randell is gratefully  acknowl- 
edged.  Dan  Berry  provided  comments  on  an  intermediate 
version  that  resulted  in an improved  organization  for  this 
final paper.  This  work  was  partially  supported  by  Profes- 
sor Randell’s  grant  from  the  Science  Research  Council of 
Great  Britain. 

References 
1. J .  D. Ichbiah, “Preliminary ADA Reference Manual,” Sig- 

ulan Notices 14. Part A (1979). 

3. B. Wegbreit, “The Treatment of DataTypes in ELI,” Com- 
mun. ACM 17, 251-264 (1974). 

4. N. Wirth, “Modula: A Language for Modular Multi- 
programming,” Software  Pract.  Exper. 7, 3-35 (1977). 

5. An Informal DeJinition of Alphard,  A  Preliminary  Report 
CMU-CS-78-105 of Carnegie-Mellon  University, W. A. 
Wulf, Ed., Pittsburgh, PA, 1978. 

6. D. B. Lomet, “A Cellular Storage Model for Programming 
Language,” Research  Report  RC4360, IBM Thomas J .  Wat- 
son Research Center, Yorktown Heights, NY, 1973. 

7. D. B. Lomet, “Objects and Values: The Basis of a Storage 
Model for Procedural Languages,” IBM J .  Res.  Develop. 

8. A. Demers, J. Donahue, and G. Skinner, “Data  Types as 
Values: Polymorphism, Typechecking, Encapsulation,” 
Proceedings ctf the  5th  ACM  Symposium on Principles of 
Programming  Languages, Tucson, AZ, January, 1978, pp. 

9. J .  Mitchell and  B. Wegbreit, “Schemes: A High Level Data 
Structuring Concept,” Current Trends in Programming 
Methodologies, R. Yeh, Ed., Prentice-Hall, Inc., Engle- 
wood  Cliffs, NJ, 1978. 

10. J .  McCarthy et  al., LISP 1.5 Programmer’s  Manual, MIT 
Press, Cambridge, MA, 1966. 

11. “Revised Report on the Algorithmic  Language ALGOL 
60,” P. Naur, Ed., Commun.  ACM 6, 1-17 (1963). 

12. B. Liskov and S. Zilles, “Programming with Abstract Data 
Types,” SZGPLAN Notices 9, 50-59 (1974). 

13. 0.-J. Dahl, B. Myhrhaug, and K. Nygaard, The SZMULA 67 
Common  Base  Language, Publication S-22, Norwegian 
Computing Centre, Oslo, 1970. 

14. C. H .  Lindsey and S. G .  van der Meulen, Informal In- 
troduction  to  ALGOL 68, North-Holland Publishing Co., 
Amsterdam, 1971. 

15. A. Van Wijngaarden, B. J. Mailoux, J. E. L. Peck, and C .  H. 
A. Koster, “Revised Report on the Algorithmic Language 
ALGOL 68,” Acta Znformatica 5, 1-236 (1975). 

16. D. B. Lomet, “An Operator Driven Model  of  Program Exe- 
cution,” Research  Report  RC4444, IBM Thomas J. Watson 
Research Center, Yorktown Heights, NY, 1973. 

17. D. B. Lomet, “Control Structures and the RETURN State- 
ment,” Information  Processing ’74, North-Holland Publish- 
ing Co., Amsterdam, 1974. 

18. OS PLII Checkout and Optimizing  Compilers:  Language 
Reference  Manual, Order No. GC 33-0009-4, available 
through the local IBM branch office. 

19. J .  C. Reynolds, “GEDANKEN-A Simple Typeless Lan- 
guage Based on the Principle of Completeness and the Refer- 
ence Concept,” Commun.  ACM 23, 308-319 (1970). 

20. N. Wirth, “The Programming Language Pascal,” Acta In- 
formatica 1, 35-63 (1971). 

20, 157-167 (1976). 

23-30. 

Received  February 12, 1980;  revised  June 20, 1980 

2. B .  Liskov, A. Snyder, R: Atkinson, and C. SchaEert, “Ab- 
straction ~ ~ ~ h ~ ~ i ~ ~ ~  in CLU,” cornmun. ACM 20, 564- The author  is   located  ut  the IBM T h o m a s   J .   W a t s o n  Re- 
576 (1977). search  Center ,   Yorktown  Heights ,  New York 10598. 

LOMET IBM J.  RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980 


