
J. L. Becerril
J. Bondia
R. Casajuana
F. Valer

Grammar Characterization of Flowgraphs

An extension of the scheme grummar concept given by Urschler is formalized. It is ulso shown that, in the usual hierarchy
of the theory of formal languages, the lunguage generated by the scheme grummar i s regular (type 3). The lust section
gives the description of u system for the automatic structuring of programs, which applies these concepts to the Mills
algorithm with some mod$cations.

Introduction
Several attempts to handle program schemes as mathe-
matical entities have been made in recent years, in an ef-
fort to develop algebraic techniques covering program op-
timization, debugging, verification, and classification [l-
31. The studies in this area tend to follow two different
approaches, according to the two fundamental aspects of
a program, i.e., its control flow [4] and its semantic con-
tents [2].

In this paper, which corresponds to the first approach,
we deal with an extension and formalization of the
scheme grammar concept given by Urschler [5] , obtaining
a series of results applicable to program schemes. In par-
ticular, common modules across the scheme are detected,
and detailed information is obtained about the scheme
structure, the action range of condition nodes, etc. It is
also shown that, in the usual hierarchy of the theory of
formal languages, the language generated by the scheme
grammar is regular.

This paper is divided into four sections. The first one
defines some fundamental concepts, as well as a few
mathematical techniques needed in the rest of the work.
A similar approach can be found in [6]. More concretely,
the postdominance relation is defined, which permits a
program scheme to be given the poset (partially ordered
set) structure, showing the existence and uniqueness of a
minimal element in the set of postdominators called im-
mediate postdominator (ipd).

The second section introduces the two g-chains associ-
ated with a condition node (the ordered chains of nodes of
the graph whose first element is one of the two successors
of n and the rest of which are obtained by iterative appli-
cation of an ipd operation until a node is reached whose
ipd equals the ipd of n) and the main g-chain (similarly
defined for the starting node). Some basic properties of g-
chains are shown.

In the third section, after defining the scheme grammar
based on the g-chains, its consequences are studied; it is
shown that the language generated is regular and coin-
cides with the set of possible paths through the program
scheme.

In order to develop possible applications based on the
concepts of the g-chain, scheme grammar, and language,
some implementation has been carried out for their evalu-
ation. Along these lines a system has been designed and
implemented for the automatic structuring of programs,
which, besides these concepts, applies, with some modifi-
cations, the Mills algorithm [7]. A general description of
this system is given in the last section.

Flowgraphs

Dejinition I
We define a flowgraph as the 2-tuple E = (N , F) with the
following properties:

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

756
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

1. L. BECERRIL ET AL. IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

N = N' U {A}, E N', A B N', where v and A are,
respectively, the entry and exit nodes.
F N ' + P(N - {o}), i .p., F maps N' into the set of all
subsets of N - {o}, where the cardinality of the set
F (n) , denoted by #F(n) , is 1 or 2 . If #F(n) = I , we say
n is an action node. The set of action nodes is denoted
by N,. If #F(n) = 2 , F(n) is reducible to two injective
mappings F (+ , n) , F (- , n) ; in this case we say n is a
condition node. The set of condition nodes is denoted
by N,.

By convention, in this paper F(., n) denotes either
F (+ , n) or F (- , n). The rth power of F is

F'(x) = u F (Y) ,

with F"(x) = {x}. The transitive closure of F in x, defined

Y E F " (S)

by

u F'(x),

is denoted by P(x). The definition of P"(x) is analogous.

Definition 2
A flowgraph is said to be proper if and only if for every
n E N' - {o} both E P"(n) and A E P(n) . In this
paper we consider only proper flowgraphs.

Dejinition 3
A flowgraph path is said to be elementary if and only if it
does not contain repeated nodes.

Dejnit ion 4
We define a program scheme H = (E , S) as the pair con-
sisting of the flowgraph E and the function S. The func-
tion S maps N' - {o} into the set An U Cn with the rules
S(n) E An a n E N , , S (n) E Cn tj n E N,. Both An and
Cn are finite and mutually exclusive sets, called, respec-
tively, action and condition sets.

r

r=o

Since all the work is done only on the control structure,
the definition of a program scheme has very low semantic
contents, in order not to complicate unnecessarily the
process.

0 Postdorninunce in ,flowgraphs

Definition 5
It is said that rn postdominates n (n 5 r n) if for every
elementary path c = (n , A) we have rn E c , n, rn E N.

Lernrnu 6
The pair (E , 5) is a poset (partially ordered set).

The binary relation 5 defines a partial ordering on E ,
since it is

Reflexive. For any n E N a n d any c = (n , A), we have

Antisymmetric. Assume that n # r n ; then, if n I rn, we
have, for every elementary path c = (n , A), rn E c , i.e.,
c = (n , . . ., rn, . . ., A). If c is elementary, the path
e' = (rn, A) is elementary with n E e' (r n 5 n) , which
implies that c is not an elementary path, a con-
tradiction. Hence rn = n.

0 Transitive. If n 5 rn and rn 5 p, then n I p . Consider an
elementary path c = (n , A); if n I rn, we have rn E c ,
i.e., c = (n , . . ., rn, . . ., A). If c is elementary, the
path c' = (rn, A) is elementary. By hypothesis rn 5 p,
which implies that p E e' . Hence p E c for every c =

(n, A), i.e., n I p.

n E e.

Definition 7
A node n' # n is an immediate postdominator (ipd) of the
node n if and only if n 5 n' and, if n I n", then n' 5 n". In
other words, the ipd of a node is the first junction point of
all the elementary paths going from it to the exit node.

The existence and uniqueness of an ipd for every
n E N' are shown by applying Zorn's lemma [8] to the
finite set P(n) = { r n ; rn # n , n I rn}, the ipd being the
minimal element in P(n). From the definition we have that
the ipd of an action node is always its successor.

Gchains

Definition 8
We define the main g-chain as the chain C(v) :-= (p,) with
the properties p1 = F(v) and pi = ipd (r , , I . Obviously
the last element is A.

Dejinition 9
Let us consider a condition node n and the . direction; we
define the g-chain with head n , C(n, .) = (n,), by means of
the following rules:

If F(. , n) = ipd (n) , then C(n, .) is the empty chain.
Otherwise, n, = F (. , n), and ni = ipd (n i - l) .

0 The last element and n have the same ipd.

The consistency of these definitions is guaranteed by
the existence and uniqueness of the ipd for every n E N ' .

0 E.wmple
The g-chains of the flowgraph of Fig. 1 are listed beside it.

Lemmu 10
Let C (n , .) be a g-chain with head n. Then C(n, .) has the
following properties:

1. If rn E C(n, .), then rn E P(n).

Effectively, since I is transitive, n, 5 rn, rn E C(n, .).
Furthermore, n, = F (. , n) ; hence, rn E P(n). 757

1. L. BECERRIL ET AL. IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

I,
A

Figure 1 Flowgraph and its g-chains.

2. If rn E C(n, .), then rn I ipd (n).

C (0) = 1 14 A
C(1, +) = 5
C(1, -) = 8 3
C(2, +) = 6 1
C(2, -) = 7
C(3, +) = 10 4
C(3, -1 = 9 1
C(4, +) = 12
C(4, -) = 11 1
C(5, +) = 2
C(5, -) = 13 7
C(14, +) = 15

Definition I I
The grammar associated with a program scheme H is the
4-tuple G(H) = (Vn, Vt , R , v), where

The set of nonterminal symbols Vn is {v} U N,.
0 The set of terminal symbols Vt is

R is the set of production rules:

0 n E N , n + S(n)[C(n , +)] and

An U Cn U @ U {A}. . v + [C(O)l

n + S(n)[C(n, -)I.

This grammar is context-free in the usual hierarchy of
formal language theory.

C(14, -1 = 17 16 ,rrmma 12
C(15, +) = 17 16
C(15, -) = 0 If there exists a derivation in G(H) of the form 0% A n rn
C(16, +) = 15 X , then rn = ipd (n).
C(16, -) = 0

This can be shown by induction on the number of steps
of the derivation:

0 For k = 1, it is obvious from the main g-chain defini-

Let it be true for an integer k , i . e . , V =$ A n, ni+, X , nifl
= ipd (ni) . To obtain a derivation of the desired form in
the step k + 1, we must apply a substitution like n, + C
nk. The corresponding derivation would be v j A C nk
niCl X . From the g-chain construction rules we have ipd
(n,) = ipd (nJ. From this and the induction hypothesis
n,+l = ipd (nk).

tion.

k+ 1

Let rn E C(n, .). If the last element of C(n, .) is p , since l3
5 is transitive, every rn verifies rn I p . Since p I ipd (p) If there exists a derivation in G(H) of the form 03 A P(p)
= ipd (n), then rn 5 ipd (n).

3. If rn, p E C(n, .), then rn # p . Such a derivation can only be obtained in two cases:

P (q) Y , then q is a successor of p .

~ $ A ~ x + A A P P (~) P (~) Y X
If the ith element were rn and the j t h one (j > i) were 3 A rn x +, A B p(p) p (q) y x.

also rn, then, applying the ipd operationj - i times to rn,
we would obtain rn again, contradicting the ipd definition. In the first One, the used is ” p (p) P(q) y , and we

can consider two possibilities:

0 B is the empty string. By definition of the grammar n =

p and P(q) is the P image of the successor of p in the
considered direction.

4. If n E C(n, .), then C(n, .) = A n.

This stems directly from the g-chain definition.

Scheme grammar and language
A first application of g-chains is the scheme grammar, a
formalized extension of the concept given by Urschler in
[5] . Before the definition, let us introduce a set = {b; b
E Qz}, and a mappings, which associates the symbol 4!
with the condition node n, where b = S(n).

We denote by [n], S(n) if n is an action node or n if it is a
condition node. By convention, [A] = A. This notation is
trivially extended to a g-chain C(n, .) = n, . . . n,, applying
the rule [C(n , .)] = [n,] . . . [nJ. In this section, we denote

758 by P either S o r s .

0 B is not empty. Then, due to the same definition, q =

ipd (p) and p is an action node; hence q is a successor of
P .

In the second case, the rules must be n + B P (p) and m +

P(q) Y . From Lemma 12, rn = ipd (n), and from the gram-
mar definition ipd (n) = ipd (p) and q = rn. Hence, q = ipd
(p) . Since p is an action node, we deduce that q is a suc-
cessor of p .

Corollury
If P(n,) . . . P(n,) A is a word of the language associated
with G(H), then v n, . . . nk A is a path of the considered
flowchart.

I. L. BECERRIL ET AL. IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

This is self-evident if the previous lemma is applied it-
eratively.

Lemma 14
Let us assume n 5 A is a derivation in G(H). For every
condition node m in A , ipd (n) is a postdominator of
rn (m 5 ipd (n)).

This can be shown by induction on the number of steps
of the derivation:

For k = I , it is obvious from the grammar definition.
0 Let it be true for an integer k , i.e., n 3 C p X , p 5 ipd

(n) . In the step k + 1 we have n "I$' C D q Y X with ipd
(p) 5 ipd (n), and from the g-chain definition q 5 ipd
(p) . Since the postdominance relation is transitive, we
have q 5 ipd (n).

Corollury
If m E A , then ipd (m) 5 ipd (n) . If ipd (m) # ipd (n) , it
follows just by considering, instead of m, the ipd (m) that
belongs to A .

Lemma 15
If there exists a derivation n 3 A m X in which ipd (n) =
ipd (m) , then X is the empty string.

It can be shown by induction on the number of steps of
the derivation:

0 For k = 1 it follows from the grammar definition.
Let it be true for an integer k , i.e., if n $ C q Y with
ipd (n) = ipd (q), then Y is empty. Let q a+? rn Z be the
rule applied in the (k + 1)th step. Then n 3 C D m Z Y.
If ipd (m) = ipd (n) , applying the induction hypothesis,
we have ipd (m) = ipd (4) . Then, from the grammar
definition, Z is the empty string.

Lrmmu 16
For every program scheme H , G(H) is not self-embedding
~91.

Since Vn = {v} U N , and we know that a derivation of
the form A 7 X is not possible, it is sufficient to show
that, for every condition node n , there cannot exist deri-
vations n 5 A n X such that A and X are both different
from the empty string.

The only cases leading to such a situation are:

0 There exists a production rule n - A n X , with A and X
different from the empty string. This is not possible
from Lemma 10.
There exists a production rule n - A v X , with A and X
different from the empty string. This is not possible,
since, by definition, there cannot exist paths going from
a node to the entry node.

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

0 There exists a derivation of the type n$ A m X 3 A B n
Y X . In this case, Y and X must be empty. Effectively,
from the corollary of Lemma 14 ipd (m) 5 ipd (N) . If
m 5 B n Y , we have, by Lemma 14, that n 5 ipd (m),
which, together with the ipd definition, leads us to ipd
(n) 5 ipd (m) . Since the postdominance relation is an
antisymmetric one, ipd (n) = ipd (m). Applying Lemma
15, we deduce that X must be the empty word. Having
in mind the derivation m 3 B n Y , by analogous reason-
ing, we conclude that Y must also be the empty word.

Throrrm I7
For every program scheme H , the language generated by
G(H) is regular.

It is immediate from Lemma 16 and a classical result
from the theory of formal languages which states that
every nonself-embedding, context-free grammar gener-
ates a regular language [9].

Structuring schemes using g-chains
Another possible application of the g-chain concept is the
automatic structuring of flowcharts. In this section we de-
scribe the general guidelines of this application, empha-
sizing the simplicity of implementation. Consult [IO] for
more detailed information.

The action node AO (AI) denotes a node in which the
value 0 (1) is assigned to the variable A. Similarly, TA
denotes the condition node in which the test A = 0 is
performed.

D&ition 18
Consider the flowgraph E = (N , F) ; the module associat-
ed with a condition node n is defined as the subgraph of E ,
M n = (N n , Fn) , having the following properties:

0 Fn is the restriction of F to the set Nn.
0 Nn is the closure of the set succession {Un(k) } defined

by

Un(1) = C(n, +) u C (n , -),

The existence and uniqueness of this set is guaranteed
by the fact that the flowgraph is finite and by the g-
chain definition.

In the flowgraph of Fig. 1, there are two modules, M1 =
(N 1 , F1) and MI4 = (N14, F14), where NI = { 1 , 2 , . * .,
13) and N14 = {14, 15, 16, 171. 759

1. L. BECERRIL ET AL

Definition 19
A submodule is a subgraph of a module which is also a
module. A module is said to be minimal if no other mod-
ule is included in it.

In the flowgraph of Fig. 1, the minimal modules are M1
and M14.

Definition 20
Consider a module Mn = (N n , Fn). The minimal element
of N n with respect to the postdominance relation is called
the head of the module.

In the flowgraph of Fig. 1, the head of M1 is the node 1,
and the head of MI4 is the node 14.

Definition 2 I
Let us consider a module with head n; we define the
branch B(n, .) of the module as the closure of the set SUC-
cession {Un(k)} defined by

u~(o) = C(n, .), ~ t z (k) = rn E U c / p (l) ; i p€.V2nUn(k-1)

t 3 r > 0 (F 1) ' (m) = F(. , n) k = 1, 2, . . . ,

The consistency of this definition is self-evident; besides,
B(n, .) c Nn.

In the flowgraph of Fig. 1 , the two branches of module
M1 areB(1, +) = (2, 5, 6, 7, 13}andB(l, -) = {3,4, 8, 9,
10, 11, 12). In the module M14, the branches are B(14, +)
= {lS} and B(14, -) = {16, 17}.

Dejinition 22
A node m is said to be the entry node o f a module Mn if
and only if rn B Nn and F(m) n Nn f El.

The entry node of module MI in Fig. 1 is v.
Dejinition 23
A skeleton S is an ordered set of nodes with their direc-
tions n; A n; . . . K nk such that

e nk = nl.
0 There exists a collection of g-chains C(n,, .) = A n,,

. . ., C(n,-,, .) = K nk.

Given a skeleton S, WS is the set ofnodes belonging to S .

In Fig. 1, the skeletons are

S1 = 1' 5' 2'6 1
S2 = 1 - 8 3 - 9 1
S3 = 1-83+ 104- 11 1

I

I

~ 760 S4 = 16' 15' 17 16

Definition 24
Let us consider a set of skeletons Si (i = 0, . . ., k) , such
that

k

n w s i # a.
i=O

A condition node m is said to be the head of Si if it verifies
k

m E n WSi,
i=O

e m , with respect to the postdominance relation, is the
minimal element of

fI wsi.
k

i = O

Since the flowgraph is proper, there will be at least a con-
dition node in every skeleton.

The existence and unicity of the skeleton head is guar-
anteed by Zorn's lemma.

In the flowgraph of Fig. 1 , the skeleton heads are
H1 = H2 = H3 = 1, H4 = 15.

Dejkition 25
An element n+ [n-] is said to be an exit of a skeleton S if
and only if n E WS and n- [a+] B S.

In Fig. 1, the skeleton exits are El = {I- , 5-, 2-}, E2 =
{l', 3+}, E3 = { I + , 3-, 4'}, E4 = { K , IS-}.

Dejhition 26
An exit n' is said to be real if and only if it does not appear
in any other skeleton having the same head.

In Fig. I , RE1 = { S - , 2- } , RE2 = a, RE3 = {4+}, RE4 =
{16-, 15-}.

Definition 27
A module M n (with head n) is said to have a double cross-
ing among branches if and only if there exists a skeleton S
such that WS verifies N , n WS n B(n , +) # Z3 and N , n
WS n B (n , -) # 0. In Fig. 1, an example of a double
crossing exists in module M14, since, considering skele-
ton S4, N , n WS4 n B(14, +) = {15} and N , n WS4 n
B(14, -) = {16}. A similar procedure would confirm that
there are no double crossings in MI.

Definition 28
We call a crossing point in the branch B(n, .) the minimal
element of the set N , n WS n B(n, .).

In the example considered, node 15 is the crossing
point in the branch B(14, +) and node 16 in B(14, -).

J . L. BECERRIL ET AL IBM I . RES. DEVELOP. VOL. 24 NO. 6 e NOVEMBER 1980

Definition 29
Let us consider the skeleton S with head n,: n ; A n; . . .
n,. We call the additional entry e the condition node
which verifies e # n,, i = I , . . ., k , and C(r , . I n WS # 3.
Additional entries are detected by checking for the ap-
pearance of any element belonging to the set WS in any g-
chain not used in the calculation of the skeleton.

In the example of Fig. 1, this case does not occur; it will
appear when we resolve the double crossing.

Lemma 30
If a skeleton S has only one exit node n, there exists a pair
of g-chains C(n, +) = A n , C(n, -) = d [or C(n, +) = @,
C(n, -) = B n] .

This point is clear since, if there exists only one exit
node, only one g-chain can exist. Then, this chain will be
of the type C(n, +) = A n [or C(n, -) = B n] . In this
situation, the successor of n in the - [or +] direction will
coincide with its ipd; then, C(n, -) = 0 [or C(n, +) = a].

C(v) = 1 14 A
C(1, +) = 5
C(1, -) = 8 3
C(2, +) = 6 1
C(2, -) = 7
C(3 , +) = I O 4
C(3, -) = 9 1
C(4, +) = 12
C(4, -) = 1 1 1
C(5, +) = 2
C(S, -) = 13 7
C(14, +) = 15
C(14, -) = 17 16
C(15, +) = 17 16

C(16, +) = 18
C(16, -) = 0
C(18, +) = 17 16
C(18, -) = 0

C(IS, -) = 0

Lemmu 31 A
Let us consider a skeleton n ; A n; ’ . . nk with head n,
having r + I real exits, namely n;, . . ., r~ ;+~. Let us call Figure 2 Flowgraph and its g-chains after splitting.

GC the set of g-chains associated with the nodes n,, n2,
. . ., nk. There exists a set GC’ associated with the nodes
TA, n,, n2, . . ., nk which contains paths equivalent to the
ones in GC if and only if before entering GC‘ there is a
node AO. (These paths are obtained by derivation from
the scheme grammar production rules associated with
these g-chains).

Let us consider the set GC’, which differs from GC in
the g-chains:

C’(TA, +) = n,TA, C’(TA, -) = 0,
C’(ni+j, .) = A1 C(ni+j, .) wi th j = 0, 1 , . . ., r ,

C(n,, .) = C’(nk , .) n,.

skeletons, skeleton heads, real exits, and possible double
crossings among branches. The double crossings among
branches are immediately eliminated using splitting tech-
niques in the g-chains. In our example, there is a case of
double crossing in the module M14. The only two pos-
sible splitting transformations are repeating nodes 16 and
17 in the branch B(14, +) or repeating node 15 in the
branch B(14, -). The second alternative is chosen be-
cause fewer nodes are repeated. If we assign number 18
to the node split from node 15, this transformation is per-
formed on the g-chains by changing the g-chain C(16, +)

We prove the lemma by considering the differences be-
tween GCand GC‘. With the pair associated with TA, we
have introduced a DO-WHILE; once we have entered its
iterative branch, the paths are identical to the ones in GC,

= I5 to C(16, +) = 18, and by introducing a new pair of g-
chains, associated with node 18, identical to the old ones
of node 15. Note that if we consider a program scheme
instead of a flowgraph, we would have P(15) = P(18).

except for the appearance of nodes A1 in the real exits of
the skeleton. In this way, when performing the main test
of the W-WHILE, only if we come from those real exits

The transformed flowgraph and its corresponding g -
chains are shown in Fig. 2 .

will it be possible to get out of the loop. The suppression
of node n, in the last g-chain is due to the fact that this
node has been introduced in C(TA, +), which is the first
g-chain following the postdominance ordering.

The next point is the classification of the minimal mod-
ules of the flowgraph according to the number of entry
points (one or N) and the number of exits of its corre-
sponding skeleton (one or M).

Algorithm description
The first step of the algorithm is the detection of g-chains, The case of N entry points and any number of skeletons
minimal modules, module heads, entry nodes, branches, with one single exit is immediately solved by calculating 761

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980 J . L. BECERRIL ET AL.

C(1, -) = 8 3
C(2, +) = 6
C(2, -) = A1 7
C(3, +) = 104
C(3, -) = 9
C(4, +) = A1 12
C(4, -) = 1 1
C(5, +) = 2

C(TB, -) = 0
C(15, +) = 17
C(15, -) = 0
C(16, +) = 18
C(16, -) = B1
C(18, +) = 17
C(18, -) = B1

I

3 - + - + IO

I

t
A

Figure 3 Structured flowgraph.

the g-chains, once the ones associated with those skele-
tons must be of the type C(n, +) = A n, C(n, -) = j21 [or
C(n, +) = 0, C(n, -) = A n] (by Lemma 30), where the
elements of A are BLOCK, IF-THEN-ELSE, or DO-WHILE

762 structures. This calculation implies the needed splitting

J . L. BECERRIL ET AL.

for the module to be structured. The equivalence is guar-
anteed by the corollary of Lemma 13, since they have the
same g-chains.

In the case of modules with one entry and any number
of skeletons having M exits, a set of basic transforms is
applied, suggested by Lemma 31, namely:

Replace, in the first g-chain (according to post-
dominance) in which it appears, the skeleton head n,
with the pair of nodes A0 TA. (In A0 the variable A is
set to zero before GC’ is entered, and TA introduces
the skeleton associated with n) .
Introduce a new pair of g-chains C(TA, +) = n TA,

Replace, in the other g-chains, the symbol n with the
empty string if it is at the end of the chain and with the
string A0 TA otherwise.
Introduce, in the g-chains associated with exits not
being entries to skeletons having the same head, a new
first node, Al, in which the control variable A is as-
signed the value 1.

C(TA, -) = 0.

The only case that remains to be solved using the de-
scribed steps is the one with more than one entry point
and more than one skeleton exit, when any of the entry
points possesses a successor in any of the skeletons of the
module. In this case, assume that e is the condition node
which, in the direction ., is an entry point of a skeleton
through node p. The needed replacements in the g-chain
C(e , .) are p by A0 p , where A is the control variable
associated with the considered skeleton; h by TA h,
where h is the first node in the g-chain that does not be-
long to the skeleton. The module will be completely struc-
tured when this process is applied to every “e-type’’
node.

Up to this point we have not considered the additional
entries. Intuitively, this fact implies the need to perform
two actions in the g-chain associated with the entry node,
namely, to set the entry condition to the skeleton (AO),
and to add its associated paths (TA module).

Example
Let us apply this idea to the flowchart in Fig. 2.

We are going to consider the differences from Fig. 1, all
of them in module M14. The skeleton is

S4 = 16’ 18’ 17 16.

The exits (which coincide with the real ones) are

E4 = {16-, 18-}.

IBM 1. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

The entry points for S4 have e = 15 in the + direction, p
= 17, h = 0.

After applying the set of basic transforms, the new g-
chains would be as shown in Fig. 3. Considering the entry
point to the skeleton S4, the g-chain C(15, +) becomes
C(15, +) = BO 17 TB. The flowgraph which corresponds
to these g-chains is also shown in Fig. 3. It is left to the
reader to verify that it is both structured and equivalent
to the flowgraph of Fig. 1.

Summary
We have introduced the concept of the g-chain, a formal-
ization of the grammar scheme given by Urschler, and
have shown that the scheme language is regular and its
words correspond to the possible paths through the flow-
graph.

This regular set (language) can also be obtained by
means of an automaton, a graph of the scheme associated
with each program [113.

The difference between the two approaches lies in the
amount of information contained in the different struc-
tures. The regular grammar that one can relate to the au-
tomaton, although equivalent, is much less condensed
than the context-free grammar we obtain, since the
scheme grammar, in the axiom rule, gives the image of
the whole structure, while the rules associated with the
condition nodes contain information about the range of
action of the nodes.

Another application of storing the flowchart structure
by means of a grammar is the described structuring al-
gorithm, whose relative simplicity relies on the versatility
of the g-chain concept.

References
1 . Y. I. Ianov, “The Logical Schemes of Algorithms,” Prob-

lems of Cybernetics, Vol. 1, Pergamon Press, Inc., Elms-
ford, NY, 1960, pp. 82-140.

2. S . J. Garland and D. C. Luckham, “Program Schemes, Re-
cursive Schemes and Formal Languages,” J . Computer
Syst. Sci. 7, 119-160 (1973).

3. B. K. Rosen, “Program Equivalence and Context-Free
Grammars,” Proceedings of the IEEE 13th Annual Sym-
posium on Switching and Automation Theory, 1972, pp. 7-
18.

4. K. Indermark, “On A Class of Schematic Languages,” Pro-
ceedings of Seminar UAM-IBM, Madrid Scientific Center,

5 . G. Urschler, “Automatic Structuring of Programs,” ZBM J .
Res. Develop. 19, 181-194 (1975).

6. M. Schaeffer, A Mathematical Theory of Global Program
Optimization, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1973.

7. H. Mills, “The New Math of Computer Programming,”
Commun. ACM 18, 43 (1975).

8. K. Kuratowski and A. Mostowski, Set Theory, North-Hol-
land Publishing Co., Amsterdam, 1%8, pp. 263-264.

9. A. Salomaa, Formal Languages, Academic Press, Inc.,
New York, 1973.

10. J. L. Becenil, J. Bondia, R. Casajuana, and F. Valer, “Es-
tructuracion Automatica de Programas,” Technical Report
PLC 03.79, Centro de Investigacion UAM-IBM, Madrid,
1979.

1 1 . R. Kaplan, “Regular Expressions and the Equivalence of
Programs,” J . Computer Syst. Sci. 3, 361-386 (1969).

North-Holland Pub. CO., 1976, pp. 1-13.

Received January 29, 1980; revised June 18, 1980

The authors are located at the IBM Madrid Scientific
Center, Paseo de la Castellanu 4 , Madrid I , Spain.

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

763

1. L. BECERRIL ET AL

