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Grammar  Characterization of Flowgraphs 

An extension of the  scheme grummar concept given by Urschler is formalized. It  is ulso shown that, in the usual hierarchy 
of the  theory of formal  languages, the  lunguage  generated by the  scheme grummar i s  regular (type 3). The  lust  section 
gives the description  of u system  for  the  automatic structuring of programs, which applies these concepts to  the Mills 
algorithm with some  mod$cations. 

Introduction 
Several attempts  to handle  program schemes  as mathe- 
matical entities  have  been made in recent years, in an ef- 
fort  to  develop algebraic techniques covering  program  op- 
timization, debugging, verification,  and  classification [l-  
31. The studies in this area  tend  to follow two different 
approaches, according to  the  two fundamental aspects of 
a program, i.e., its  control flow [4] and  its semantic  con- 
tents [2]. 

In this paper, which corresponds  to  the first approach, 
we deal with an  extension  and formalization of the 
scheme grammar concept given  by Urschler [ 5 ] ,  obtaining 
a  series of results  applicable to program schemes.  In par- 
ticular,  common  modules across  the  scheme  are  detected, 
and  detailed information is obtained about  the  scheme 
structure,  the action  range of condition nodes,  etc.  It is 
also shown  that, in the usual  hierarchy of the  theory of 
formal languages,  the  language  generated  by the  scheme 
grammar is regular. 

This paper is divided into  four sections. The first one 
defines some fundamental concepts,  as well as a few 
mathematical  techniques needed in the  rest of the  work. 
A similar approach can be found in [6]. More concretely, 
the  postdominance  relation is defined, which permits a 
program  scheme to be given the poset (partially ordered 
set)  structure, showing the  existence and  uniqueness of a 
minimal element in the  set of postdominators  called im- 
mediate  postdominator (ipd). 

The second  section introduces the two g-chains  associ- 
ated  with  a  condition  node (the  ordered  chains of nodes of 
the graph whose first element is one of the  two  successors 
of n and  the rest of which are obtained by iterative appli- 
cation of an ipd operation until a  node is reached  whose 
ipd equals the ipd of n) and  the main g-chain (similarly 
defined for the  starting  node). Some basic properties of g- 
chains are shown. 

In the third section,  after defining the  scheme grammar 
based on  the  g-chains, its consequences  are  studied; it is 
shown that the language generated is regular  and  coin- 
cides  with  the set of possible paths through the program 
scheme. 

In order  to  develop possible  applications  based on  the 
concepts of the g-chain,  scheme grammar, and language, 
some  implementation  has been carried out  for  their evalu- 
ation. Along these  lines  a system has  been  designed  and 
implemented for  the  automatic structuring of programs, 
which,  besides these  concepts, applies, with some modifi- 
cations,  the Mills algorithm [7]. A general description of 
this system is given in the  last section. 

Flowgraphs 

Dejinition I 
We define a flowgraph as  the 2-tuple E = ( N ,  F) with the 
following properties: 
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N = N' U {A}, E N', A B N', where v and A are, 
respectively,  the  entry and exit nodes. 
F N '  + P(N - {o}), i .p.,  F maps N' into  the set of  all 
subsets of N - {o}, where the cardinality of the set 
F ( n ) ,  denoted by #F(n) ,  is 1 or 2 .  If #F(n)  = I ,  we say 
n is an action  node. The  set of action  nodes is denoted 
by N,. If #F(n )  = 2 ,  F(n)  is reducible to two  injective 
mappings F ( + ,  n) ,  F ( - ,  n ) ;  in this case we say n is a 
condition node. The set of condition  nodes is denoted 
by N,. 

By convention, in this  paper F(., n)  denotes  either 
F (+ ,  n) or F ( - ,  n). The  rth power of F is 

F'(x) = u F ( Y ) ,  

with F"(x) = {x}. The transitive  closure of F in x, defined 

Y E F " ( S )  

by 

u F'(x),  

is denoted by P(x). The definition of P"(x) is analogous. 

Definition 2 
A flowgraph is said to be proper if and  only if for every 
n E N' - {o} both E P"(n) and A E P(n ) .  In this 
paper we consider  only proper flowgraphs. 

Dejinition 3 
A flowgraph path is said to be elementary if and only if it 
does not  contain  repeated nodes. 

Dejnit ion 4 
We define a program scheme H = (E ,  S) as  the pair con- 
sisting of the flowgraph E and  the function S.  The  func- 
tion S maps  N' - {o} into the  set An U Cn with the rules 
S(n)  E An a n E N , ,  S ( n )  E Cn tj n E N,. Both An and 
Cn are finite and mutually exclusive sets, called, respec- 
tively, action and  condition sets. 

r 

r=o 

Since all the work is done only on the control structure, 
the definition of a program scheme has  very low semantic 
contents, in order not to complicate  unnecessarily  the 
process. 

0 Postdorninunce  in ,flowgraphs 

Definition 5 
It is said that rn postdominates n ( n  5 r n )  if for every 
elementary path c = (n ,  A) we have rn E c ,  n,  rn E N. 

Lernrnu 6 
The pair ( E ,  5)  is a  poset  (partially ordered  set). 

The binary  relation 5 defines  a partial ordering on E ,  
since it is 

Reflexive. For  any n E N a n d  any c = ( n ,  A), we have 

Antisymmetric.  Assume that n # r n ;  then, if n I rn, we 
have,  for every elementary path c = (n ,  A), rn E c ,  i.e., 
c = ( n ,  . . ., rn, . . ., A). If c is elementary,  the path 
e' = (rn, A) is elementary with n E e' ( r n  5 n) ,  which 
implies that c is not an elementary path, a con- 
tradiction. Hence rn = n. 

0 Transitive. If n 5 rn and rn 5 p,  then n I p .  Consider  an 
elementary path c = (n ,  A); if n I rn, we have rn E c ,  
i.e., c = (n ,  . . ., rn, . . ., A). If c is elementary,  the 
path c' = (rn, A) is elementary. By hypothesis rn 5 p, 
which implies that p E e' .  Hence p E c for every c = 

(n, A), i.e., n I p. 

n E e. 

Definition 7 
A  node n' # n is an immediate  postdominator (ipd) of the 
node n if and only if n 5 n' and, if n I n", then n' 5 n". In 
other  words,  the ipd  of a  node is the first junction point of 
all the elementary paths going from it to  the exit  node. 

The  existence and  uniqueness of an ipd for  every 
n E N'  are shown by applying Zorn's lemma [8] to the 
finite set P(n) = { r n ;  rn # n ,  n I rn}, the ipd being the 
minimal element in P(n). From  the definition we have that 
the ipd of an action  node is always its successor. 

Gchains 

Definition 8 
We define the main g-chain as  the chain C(v) :-= (p,) with 
the properties p1 = F(v) and pi = ipd ( r ,  , I .  Obviously 
the  last  element is A. 

Dejinition 9 
Let us consider  a  condition node n and the . direction; we 
define the g-chain with head n ,  C(n, .) = (n,), by means of 
the following rules: 

If F(. ,  n)  = ipd (n ) ,  then C(n, .) is the empty  chain. 
Otherwise, n, = F ( . ,  n), and ni = ipd ( n i - l ) .  

0 The last  element and n have  the same ipd. 

The  consistency of these definitions is guaranteed by 
the existence and uniqueness of the ipd for  every n E N ' .  

0 E.wmple 
The g-chains of the flowgraph of Fig. 1 are listed beside  it. 

Lemmu 10 
Let C ( n ,  .) be a g-chain with head n. Then C(n, .) has the 
following properties: 

1. If rn E C(n, .), then rn E P(n).  

Effectively,  since I is transitive, n, 5 rn, rn E C(n, .). 
Furthermore, n, = F ( . ,  n ) ;  hence, rn E P(n). 757 
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I, 
A 

Figure 1 Flowgraph and its  g-chains. 

2. If rn E C(n, .), then rn I ipd (n). 

C ( 0 )  = 1 14 A 
C(1, +) = 5 
C(1, -) = 8 3 
C(2, +) = 6 1 
C(2, -) = 7 
C(3, +) = 10 4 
C(3, -1 = 9 1 
C(4, +) = 12 
C(4, -) = 11 1 
C(5, +) = 2 
C(5, -) = 13 7 
C(14, +) = 15 

Definition I I 
The grammar  associated with a  program scheme H is the 
4-tuple G(H) = (Vn,   Vt ,  R ,  v), where 

The  set of nonterminal  symbols Vn is {v} U N,.  
0 The  set of terminal  symbols Vt is 

R is the  set of production rules: 

0 n E N ,  n + S(n)[C(n ,  +)] and 

An U Cn U @ U {A}. . v + [C(O)l 

n + S(n)[C(n,  -)I. 

This  grammar is context-free  in the usual hierarchy of 
formal language theory. 

C(14, -1 = 17 16 ,rrmma 12 
C(15, +) = 17 16 
C(15, -) = 0 If there  exists a derivation in G(H) of the form 0% A n rn 
C(16, +) = 15 X ,  then rn = ipd (n). 
C(16, -) = 0 

This can be  shown  by  induction on the  number of steps 
of the  derivation: 

0 For k = 1,  it is obvious from the main g-chain defini- 

Let it be true for an integer k ,  i . e . ,  V =$ A n, ni+, X ,  nifl  
= ipd (ni) .  To  obtain a derivation of the desired form in 
the  step k + 1, we must  apply  a  substitution like n, + C 
nk. The corresponding  derivation would be v j A C nk 
niCl X .  From  the g-chain construction rules we have ipd 
(n,) = ipd (nJ. From this and  the induction  hypothesis 
n,+l = ipd (nk). 

tion. 

k+ 1 

Let rn E C(n, .). If the last  element of C(n, .) is p ,  since l3 
5 is transitive,  every rn verifies rn I p .  Since p I ipd ( p )  If there  exists a  derivation in G(H) of the form 03 A P(p)  
= ipd (n), then rn 5 ipd (n). 

3. If rn, p E C(n,  .), then rn # p .  Such  a  derivation can only be  obtained in two  cases: 

P ( q )  Y ,  then q is a successor of p .  

~ $ A ~ x + A A P P ( ~ ) P ( ~ )  Y X  
If the ith element were rn and  the j t h  one (j > i) were 3 A rn x +, A B p(p)   p (q)  y x. 

also rn, then, applying the ipd operationj - i times to rn, 
we would  obtain rn again,  contradicting  the ipd definition. In  the first One, the  used  is ” p ( p )  P(q) y ,  and we 

can consider  two  possibilities: 

0 B is the empty  string. By definition of the grammar n = 

p and P(q) is the P image of the  successor of p in the 
considered  direction. 

4. If n E C(n, .), then C(n, .) = A n. 

This stems directly  from the g-chain definition. 

Scheme  grammar  and  language 
A first application of g-chains is the scheme grammar, a 
formalized extension of the  concept given by Urschler in 
[ 5 ] .  Before the definition, let us introduce a set = {b; b 
E Qz}, and  a mappings, which associates the symbol 4! 
with the  condition  node n, where b = S(n). 

We denote by [n], S(n)  if n is an action node or n if it is a 
condition  node. By convention, [A] = A. This  notation is 
trivially extended  to a g-chain C(n, .) = n, . . . n,, applying 
the rule [C(n ,  .)] = [n,] . . . [nJ. In this section, we denote 

758 by P either S o r s .  

0 B is not empty.  Then,  due  to  the  same definition, q = 

ipd ( p )  and p is an  action  node; hence q is a successor of 
P .  

In the  second  case,  the rules  must  be n + B P ( p )  and m + 

P(q)  Y .  From  Lemma 12, rn = ipd (n), and  from the gram- 
mar definition ipd (n) = ipd ( p )  and q = rn. Hence, q = ipd 
( p ) .  Since p is an  action  node, we deduce  that q is a suc- 
cessor of p .  

Corollury 
If P(n,) . . . P(n,) A is a word of the language associated 
with G(H), then v n, . . . nk A is a  path of the considered 
flowchart. 
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This is self-evident if the previous lemma is applied it- 
eratively. 

Lemma 14 
Let us assume n 5 A is a derivation in G(H). For  every 
condition node m in A ,  ipd (n) is a postdominator of 
rn ( m  5 ipd (n)).  

This can be shown by induction on the number of steps 
of the derivation: 

For k = I ,  it is obvious from the grammar  definition. 
0 Let it be true for an integer k ,  i.e., n 3 C p X ,  p 5 ipd 

(n ) .  In the  step k + 1 we have n "I$' C D q Y X with ipd 
( p )  5 ipd (n), and from  the g-chain definition q 5 ipd 
( p ) .  Since the  postdominance relation is transitive, we 
have q 5 ipd (n). 

Corollury 
If m E A ,  then ipd ( m )  5 ipd ( n ) .  If ipd (m) # ipd ( n ) ,  it 
follows just by considering,  instead of m, the ipd (m)  that 
belongs to A .  

Lemma 15 
If there exists a  derivation n 3 A m X in which ipd (n )  = 
ipd ( m ) ,  then X is the  empty string. 

It can be  shown by induction on the  number of steps  of 
the derivation: 

0 For k = 1 it follows from  the grammar definition. 
Let it be  true  for an integer k ,  i.e., if n $ C q Y with 
ipd ( n )  = ipd (q), then Y is empty. Let q a+? rn Z be the 
rule applied in the ( k  + 1 )th step.  Then n 3 C D m Z Y. 
If ipd (m)  = ipd (n ) ,  applying the induction hypothesis, 
we have ipd (m) = ipd ( 4 ) .  Then, from the grammar 
definition, Z is the empty string. 

Lrmmu 16 
For  every program scheme H ,  G(H) is not self-embedding 
~91. 

Since Vn = {v} U N ,  and we know  that  a  derivation of 
the form A 7 X is not possible, it  is sufficient to  show 
that, for every condition  node n ,  there  cannot  exist deri- 
vations n 5 A n X such  that A and X are both different 
from the empty string. 

The only cases leading to such  a situation are: 

0 There  exists a  production rule n - A n X ,  with A and X 
different from the  empty string.  This is not possible 
from  Lemma 10. 
There  exists a  production rule n - A v X ,  with A and X 
different  from the  empty string.  This is not possible, 
since, by definition, there  cannot exist  paths going from 
a node to the  entry node. 

IBM J .  RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980 

0 There  exists a  derivation of the  type n$ A m X 3  A B n 
Y X .  In this case, Y and X must be empty.  Effectively, 
from the corollary of Lemma 14 ipd (m)  5 ipd ( N ) .  If 
m 5 B n Y ,  we have, by Lemma 14, that n 5 ipd (m),  
which,  together with the ipd definition, leads us to ipd 
(n)  5 ipd (m) .  Since the postdominance  relation is an 
antisymmetric one, ipd (n )  = ipd (m).  Applying Lemma 
15, we deduce  that X must be  the empty word. Having 
in mind the derivation m 3 B n Y ,  by analogous reason- 
ing, we conclude that Y must  also be the empty word. 

Throrrm I7 
For  every program scheme H ,  the language generated by 
G(H) is regular. 

It is immediate from Lemma 16 and a  classical  result 
from  the theory of formal  languages which states  that 
every nonself-embedding, context-free  grammar  gener- 
ates a regular language [9]. 

Structuring  schemes  using  g-chains 
Another possible application of the g-chain concept is the 
automatic  structuring of flowcharts. In this  section we de- 
scribe  the  general  guidelines of this  application, empha- 
sizing the simplicity of implementation.  Consult [IO] for 
more  detailed  information. 

The action  node AO (AI)  denotes a node in which the 
value 0 ( 1 )  is assigned to the variable A. Similarly, TA 
denotes  the condition node in which the  test  A = 0 is 
performed. 

D&ition 18 
Consider  the flowgraph E = ( N ,  F ) ;  the module associat- 
ed with a  condition  node n is defined as the subgraph of E ,  
M n  = ( N n ,  Fn) ,  having the following properties: 

0 Fn is the  restriction of F to  the  set Nn. 
0 Nn is the closure of the  set succession {Un(k) }  defined 

by 

Un(1) = C(n,  +) u C ( n ,  -), 

The  existence  and  uniqueness of this set is guaranteed 
by the fact  that  the flowgraph is finite and by the g- 
chain definition. 

In the flowgraph of Fig. 1, there  are  two modules, M1 = 
( N 1 ,  F1) and MI4 = (N14, F14), where NI = { 1 ,  2 ,  . * ., 
13) and N14 = {14, 15, 16, 171. 759 
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Definition 19 
A submodule is a subgraph of a module which is also  a 
module. A module is said to be minimal if no other mod- 
ule is included in it. 

In the flowgraph of Fig. 1,  the minimal modules are M1 
and M14. 

Definition 20 
Consider a module Mn = ( N n ,  Fn). The minimal element 
of N n  with respect  to  the postdominance  relation is called 
the head of the module. 

In the flowgraph of Fig. 1, the head of  M1 is the node 1, 
and  the head of MI4  is  the  node 14. 

Definition 2 I 
Let us consider a module  with  head n;  we define the 
branch B(n,  .) of the module as  the closure of the  set SUC- 
cession {Un(k)} defined by 

u~(o )  = C(n, .), ~ t z ( k )  = rn E U c / p ( l ) ;  i p€.V2nUn(k-1) 

t 3 r  > 0 ( F 1 ) ' ( m )  = F( .  , n) k = 1, 2, . . . , 

The consistency of this definition is self-evident;  besides, 
B(n, .) c Nn. 

In  the flowgraph of Fig. 1 ,  the two  branches of module 
M1 areB(1, +) = (2, 5, 6, 7, 13}andB(l, -) = {3,4, 8, 9, 
10, 11, 12). In  the module M14, the branches are B(14, +) 
= {lS} and B(14, -) = {16, 17}. 

Dejinition 22 
A node m is said to be the  entry node o f a  module Mn if 
and only if rn B Nn and F(m) n Nn f El. 

The  entry node of module MI in Fig. 1 is v. 
Dejinition 23 
A skeleton S is an  ordered  set of nodes with their direc- 
tions n; A n; . . . K nk such  that 

e nk = nl.  
0 There  exists a  collection of g-chains C(n,, .) = A n,, 

. . ., C(n,-,, .) = K nk. 

Given  a  skeleton S, WS is the  set  ofnodes belonging to S .  

In Fig. 1,  the  skeletons  are 

S1 = 1' 5' 2'6 1 
S2 = 1 - 8 3 - 9  1 
S3 = 1-83+  104- 11 1 

I 

I 

~ 760 S4 = 16'  15' 17 16 

Definition 24 
Let us consider a set of skeletons Si (i = 0,  . . ., k ) ,  such 
that 

k 

n w s i  # a. 
i=O 

A condition node m is said to be the head of Si if it verifies 
k 

m E n WSi, 
i=O 

e m ,  with respect to  the postdominance  relation, is the 
minimal element of 

fI wsi. 
k 

i = O  

Since the flowgraph is proper,  there will be at  least a con- 
dition node in every skeleton. 

The  existence and  unicity of the skeleton  head is guar- 
anteed by Zorn's lemma. 

In  the flowgraph of Fig. 1 ,  the skeleton heads  are 
H1 = H2 = H3 = 1,  H4 = 15. 

Dejkition 25 
An element n+ [n-] is said to be an  exit of a skeleton S if 
and  only if n E WS and n- [a+] B S. 

In Fig.  1,  the skeleton  exits  are El = {I- ,  5-,  2-}, E2 = 
{l',  3+},  E3 = { I + ,  3-, 4'}, E4 = { K ,  IS-}. 

Dejhition 26 
An exit n' is said to be  real if and only if it does not appear 
in any other skeleton  having the  same head. 

In Fig. I ,  RE1 = { S - ,  2- } ,  RE2 = a, RE3 = {4+}, RE4 = 
{16-, 15-}. 

Definition 27 
A module M n  (with  head n) is said to have a double  cross- 
ing among  branches if and only if there exists a skeleton S 
such that WS verifies N ,  n WS n B(n ,  +) # Z3 and N ,  n 
WS n B ( n ,  -) # 0. In Fig.  1, an example of a  double 
crossing exists in module M14, since, considering  skele- 
ton S4, N ,  n WS4 n B(14, +) = {15} and N ,  n WS4 n 
B( 14, -) = {16}. A similar procedure would confirm that 
there  are no double  crossings in MI. 

Definition 28 
We call a  crossing  point in the  branch B(n, .) the minimal 
element of the  set N ,  n WS n B(n, .). 

In the example considered, node 15 is the crossing 
point in the branch B(14, +) and node 16 in B(14, -). 
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Definition 29 
Let us consider  the  skeleton S with head n,: n ;  A n; . . . 
n,. We call the additional entry e the  condition node 
which verifies e # n,, i = I ,  . . ., k ,  and C(r ,  . I  n WS # 3. 
Additional  entries are  detected by checking for  the ap- 
pearance of any element belonging to the set WS in any g- 
chain  not used in the calculation of the  skeleton. 

In  the example of Fig. 1, this case does not occur; it will 
appear  when we resolve the  double crossing. 

Lemma 30 
If a skeleton S has only one  exit  node n,  there  exists a  pair 
of g-chains C(n, +) = A n ,  C(n, -) = d [or C(n, +) = @, 
C(n, -) = B n ] .  

This point is clear  since, if there exists  only one exit 
node, only one g-chain can  exist.  Then, this  chain will be 
of the  type  C(n, +) = A n [or C(n, -) = B n] .  In this 
situation,  the  successor of n in the - [or +] direction will 
coincide  with  its  ipd; then, C(n,  -) = 0 [or C(n,  +) = a]. 

C(v) = 1 14 A 
C(1, +) = 5 
C(1, -) = 8 3 
C(2, +) = 6 1 
C(2, -) = 7 
C(3 ,  +) = I O  4 
C(3, -) = 9 1 
C(4, +) = 12 
C(4, -) = 1 1  1 
C(5, +) = 2 
C(S, -) = 13 7 
C(14, +) = 15 
C(14, -) = 17 16 
C(15, +) = 17 16 

C(16, +) = 18 
C(16, -) = 0 
C(18, +) = 17 16 
C(18, - )  = 0 

C(IS, -) = 0 

Lemmu 31 A 
Let us consider a skeleton n ;  A n; ’ . . nk with head n, 
having r + I real exits, namely n;, . . ., r~ ;+~.  Let us call Figure 2 Flowgraph and its g-chains after splitting. 

GC  the  set of g-chains associated with the  nodes n,, n2,  
. . ., nk. There  exists a set GC’ associated with the nodes 
TA, n,, n2, . . ., nk which contains  paths equivalent to  the 
ones in GC if and only if before entering GC‘ there is a 
node AO. (These paths  are obtained by derivation from 
the scheme grammar  production  rules associated with 
these g-chains). 

Let us consider  the  set GC’, which differs from GC in 
the  g-chains: 

C’(TA, +) = n,TA, C’(TA, -) = 0, 
C’(ni+j, .) = A1 C(ni+j, .) wi th j  = 0, 1 ,  . . ., r ,  

C(n,, .) = C’(nk ,  .) n,. 

skeletons, skeleton heads, real exits, and  possible  double 
crossings  among branches.  The double  crossings  among 
branches  are immediately  eliminated using splitting tech- 
niques in the g-chains. In our example,  there  is a case of 
double  crossing in the module M14. The only two pos- 
sible splitting transformations  are repeating nodes 16 and 
17 in the branch B(14, +) or repeating  node 15 in the 
branch B(14, -). The  second alternative is chosen be- 
cause  fewer nodes are  repeated. If  we assign number 18 
to  the node split from  node 15, this  transformation is per- 
formed on  the g-chains by changing the g-chain C( 16, +) 

We prove  the lemma by considering the differences be- 
tween GCand GC‘.  With the pair  associated with TA, we 
have introduced  a DO-WHILE; once we have entered its 
iterative branch, the paths  are identical to the ones in GC, 

= I5 to C( 16, +) = 18, and by introducing a new pair of g- 
chains, associated with node 18, identical to  the old ones 
of node 15. Note that if we consider a program scheme 
instead of a  flowgraph, we would have P(15) = P(18). 

except  for  the  appearance of nodes A1  in the real exits of 
the skeleton. In this way, when performing the main test 
of the W-WHILE,  only if we come  from  those real exits 

The transformed flowgraph and its corresponding g -  
chains  are shown in Fig. 2 .  

will it be possible to  get  out of the loop. The  suppression 
of node n, in the last  g-chain is  due to the  fact  that this 
node has been  introduced in C(TA, +), which is the first 
g-chain following the  postdominance ordering. 

The next point is the  classification of the minimal mod- 
ules of the flowgraph according  to  the number of entry 
points  (one or N) and  the number of exits of its corre- 
sponding  skeleton (one  or M). 

Algorithm  description 
The first step of the algorithm is the detection of g-chains,  The  case of N entry points and any  number of skeletons 
minimal modules,  module heads,  entry  nodes,  branches, with one single exit is immediately solved by calculating 761 
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C(1, -) = 8 3  
C(2,  +) = 6 
C(2,  -) = A1 7 
C(3, +) = 104 
C(3, -) = 9 
C(4, +) = A1 12 
C(4, -) = 1 1  
C(5, +) = 2 

C(TB, -) = 0 
C(15, +) = 17 
C(15, -) = 0 
C(16, +) = 18 
C(16, -) = B1 
C(18, +) = 17 
C(18, -) = B1 

I 

3 - +   - +  IO 

I 

t 
A 

Figure 3 Structured flowgraph. 

the  g-chains,  once  the  ones associated with those skele- 
tons must  be of the  type C(n, +) = A n, C(n,  -) = j21 [or 
C(n,  +) = 0, C(n,  -) = A n] (by Lemma 30), where the 
elements of A are BLOCK, IF-THEN-ELSE, or DO-WHILE 

762 structures. This  calculation implies the needed  splitting 
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for the module to be structured.  The equivalence is guar- 
anteed by the  corollary of Lemma 13, since  they have  the 
same g-chains. 

In  the  case of modules with one  entry and  any number 
of skeletons having M exits, a set of basic transforms is 
applied,  suggested by Lemma 31,  namely: 

Replace, in the first g-chain  (according to post- 
dominance) in which it appears,  the skeleton  head n, 
with the pair of nodes A0 TA. (In A0 the variable  A is 
set  to  zero before GC’ is entered, and TA  introduces 
the  skeleton  associated with n ) .  
Introduce a new pair of g-chains C(TA, +) = n TA, 

Replace, in the other g-chains, the symbol n with the 
empty string if it  is at  the  end of the chain and with the 
string A0 TA otherwise. 
Introduce, in the g-chains  associated  with exits not 
being entries to skeletons having  the same  head, a new 
first node, Al,  in which the control  variable  A is as- 
signed the value 1. 

C(TA, -) = 0. 

The  only  case  that  remains  to be solved using the de- 
scribed steps is the  one with more  than  one  entry point 
and more than one skeleton exit, when any of the  entry 
points possesses a successor in any of the  skeletons of the 
module. In this case,  assume  that e is the condition  node 
which, in the  direction ., is an entry  point of a skeleton 
through node p.  The needed replacements in the g-chain 
C(e ,  .) are p by A0 p ,  where A is the  control variable 
associated with the  considered  skeleton; h by TA h, 
where h is the  first node in the g-chain that  does  not be- 
long to  the skeleton. The  module will be completely struc- 
tured when this process is applied to  every “e-type’’ 
node. 

Up  to this point we  have  not considered the additional 
entries. Intuitively,  this fact implies the need to perform 
two actions in the g-chain associated with the  entry  node, 
namely, to  set  the  entry  condition  to  the  skeleton (AO), 
and to  add its associated  paths (TA  module). 

Example 
Let us apply this idea  to  the flowchart in Fig. 2. 

We are going to  consider  the differences from Fig. 1, all 
of them  in  module M14. The  skeleton is 

S4 = 16’ 18’ 17 16. 

The  exits (which  coincide  with the real ones)  are 

E4 = {16-, 18-}. 
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The  entry points for S4 have e = 15 in the + direction, p 
= 17, h = 0. 

After applying the  set of basic  transforms, the new g- 
chains  would be as  shown in Fig. 3. Considering the  entry 
point to  the skeleton S4, the  g-chain C(15, +) becomes 
C(15, +) = BO 17 TB.  The flowgraph which corresponds 
to  these  g-chains is also  shown in Fig. 3. It is left to  the 
reader  to verify that it is both structured and  equivalent 
to the flowgraph of Fig. 1. 

Summary 
We have introduced the  concept of the  g-chain, a formal- 
ization of the grammar scheme given by Urschler, and 
have shown that the  scheme language is regular and its 
words correspond  to  the possible  paths  through the flow- 
graph. 

This  regular set (language) can  also be obtained by 
means of an  automaton, a graph of the  scheme  associated 
with each program [ 113. 

The difference between  the  two  approaches lies in the 
amount of information contained in the different struc- 
tures. The regular grammar that  one  can  relate  to  the au- 
tomaton, although equivalent, is much less  condensed 
than the context-free grammar we obtain,  since  the 
scheme grammar, in the  axiom rule,  gives the image of 
the  whole structure, while the rules associated with  the 
condition  nodes contain information about  the  range of 
action of the nodes. 

Another application of storing  the flowchart structure 
by means of a grammar is the described structuring al- 
gorithm, whose relative simplicity  relies on  the versatility 
of the  g-chain concept. 
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