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A Language for Extended Queuing Network Models

Queuing networks are popular as models of performance of computer systems and communication networks. The
Research Queueing Package, Version 2 (RESQ2), is a system for constructing and solving extended queuing network
models. We refer to the class of RESQ2 networks as ‘‘extended’’ because of characteristics absent from most queuing
models. RESQ?2 incorporates a high-level language to concisely describe the structure of the model and to specify con-
straints on the solution. A main feature of the language is the capability to describe models in a hierarchical fashion,
allowing an analyst to define parametric submodels which are analogous to macros or procedures in programming

languages. RESQ2 thus encourages use of structured models to effectively evaluate complex systems.

introduction

Models are used to estimate the performance of comput-
ing systems when measurement of system performance is
impossible (e.g., because the system is not yet opera-
tional) or impractical (e.g., because of the human and ma-
chine resources required). Traditional, highly imitative
simulation models are often as complex as the modeled
system and thus suffer feasibility and practicality prob-
lems similar to measurement. Queuing networks have be-
come important as performance models of computer sys-
tems because performance of these systems is usually
principally affected by contention for resources. Rela-
tively simple queuing network models can be used from
the early design stages of a system on through system
configuration and even system tuning to estimate system
performance. In the design stages, relatively inacci ate
estimates obtained from very simplistic models may -:ii.
be quite sufficient for weeding out designs with poten-
tially unacceptable performance. More realistic queuing
models can be developed for later stages of system devel-
opment which are sufficiently accurate and much less ex-
pensive than the alternatives of measurement or tradi-
tional simulation. The basic problems in using queuing
network models are to (1) determine the resources and
their characteristics which will most affect performance,
(2) formulate a model representing these resources and

characteristics, and (3) determine (algebraicaily, numeri-
cally, or by simulation) the values for performance mea-
sures (e.g., mean response time) in the model. Recent is-
sues of Computing Surveys (September 1978) and Com-
puter (April 1980) are dedicated to the solution of queuing
networks and the representation of computer and com-
munication systems as queuing networks.

For queuing network models to be used effectively, ap-
propriate software is necessary. A survey of queuing net-
work software and a proposed set of design objectives are
given in [1]. Based on our previous work on the Research
Queueing Package (RESQ) [1-3], we have designed and
implemented a language for construction of queuing net-
work models. This second version of RESQ, RESQ2, in-
corporates results from programming methodology and
hierarchical modeling [4, 5] to encourage users to pro-
duce well-structured models. This, in turn, enables users
to effectively use queuing network models to evaluate the
performance of large and complex systems where models
of such systems would be unmanageable with previous
software.

This paper focuses on the language aspects of RESQ2.
However, we must first say more about queuing network
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models to put the RESQ2 language in the proper context.
We next give a brief discussion of queuing network mod-
els. Following that we describe the extended class of
queuing networks allowed by RESQ. We are then able to
discuss the design and implementation of the RESQ?2 lan-
guage.

Queuing network models

A typical queuing network model consists of a set of
queues (corresponding to resources in the computer sys-
tem) and a set of jobs (which correspond to processes in
the computer system, users at terminals, messages sent
from computer to computer, etc., depending on the sys-
tem). The individual queues are usually described in
terms of types of resources, numbers of units of re-
sources, queuing (scheduling) disciplines, and probabil-
ity distributions for the service times of jobs at the
queues. The jobs are described by their individual charac-
teristics (usually by homogeneous groups), by their rout-
ing from queue to queue (corresponding to the sequence
of resource requirements in the system), and by their ar-
rival processes (and departure procedures).

Much of the research on queuing network models has
focused on methods for obtaining solutions, i.e., perform-
ance estimates, from the models. Efficient numerical al-
gorithms have been developed for networks with a prod-
uct form solution [3, 6-8]. However, there are many sys-
tem characteristics which preclude a product form
solution, e.g., priority scheduling or simultaneous re-
source possession. For models with these characteristics
and more than a few queues and/or jobs, the only solution
methods available are approximate numerical methods

[5, 8, 9] and simulation. Specialized simulation tech-

niques have been developed which apply to simulation of
queuing networks [8, 10]. RESQ incorporates numerical
methods and simulation. (Though RESQ includes simula-
tion components, we do not consider RESQ to be a simu-
lation language. Rather, we consider RESQ to be a mod-
eling language. We make the distinction primarily be-
cause of the higher level of abstraction of RESQ
elements, as compared to popular simulation languages,
and also because of the nonsimulation solution methods
provided in RESQ.)

Since queuing networks can be (and have been) char-
acterized in a variety of ways, we informally define our
characterization. A queuing network consists of (1) a set
of nodes, (2) a set of queues, (3) a set of routing rules, (4)
a set of jobs, and (5) a set of routing chains. The nodes are
points in our network in the sense of nodes of a graph.
The nodes provide places of residence for jobs (perhaps
only instantaneous residence). Visits to a node by a job
usually result in actions affecting the job and other net-
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work elements. A queue is a set of nodes and a set of rules
which define the nature of the residence of jobs at the
nodes. depending on the number and status of jobs at
each of the nodes. The routing rules define the jobs’ paths
from one node to another, including rules for determining
which path to take when there are several possible desti-
nations for a job leaving a given node. A chain consists of
corresponding subsets of the nodes, routing rules, and
jobs of the network. The subsets of the nodes (routing
rules, jobs) defined by the chains are disjoint. (The rout-
ing chains are described as ““open’’ or “*closed’’ depend-
ing on whether or not jobs may enter and leave the
chains. Jobs entering or leaving a chain also enter or leave
the network, respectively.)

Extended queuing networks

In order to facilitate more accurate representation of
computer systems, the queuing networks of RESQ have
been designed to include and naturally build upon the cat-
egory of networks with product form solution. Some of
the elements are obvious generalizations of product form
elements, for example, queues with general (e.g., prior-
ity) scheduling disciplines. Other generalizations of prod-
uct form networks include (1) capabilities for marking
jobs with information (such as message length for a job
representing a message in a communication network) and
(2) routing rules dependent on the current network state
(e.g.. queue lengths) as well as the usual probabilistic
routing rules.

In addition to allowing the above-described character-
istics, which violate product form solution conditions, we
provide in RESQ new network elements and refer to the
resulting category of networks as ‘‘extended’’ queuing
networks [11]. We restrict attention to the most important
of these elements, the “*passive queue.”” We refer to tra-
ditional queues as ‘‘active queues’’ and to the nodes of
active queues as ‘‘classes.”’ One of the limitations of a
network consisting only of active queues is that a job can
only hold one resource at a time. This contradicts actual
systems in which the element modeled by the job requires
several resources simultaneously. For example, a pro-
gram requires memory as well as a CPU before it can be
run, but most traditional queuing models ignore either
memory contention or CPU contention. In extended
queuing networks a job can hold resources at several pas-
sive queues and one active queue simultaneously.

A passive queue consists of a set of ‘‘allocate nodes,”” a
set of ‘‘release nodes,’” a set of ‘‘create nodes,’” a set of
**destroy nodes,”” and a pool of identical ‘‘tokens’” of a
resource. A job joins a passive queue when it arrives at an
allocate node. Upon arrival the job requests one or more
tokens. If sufficient tokens are available, the job receives
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them and moves on to another queue of the network with-
out delay. However, the job belongs to the queue from
which it received the tokens as long as it holds the tokens.
If insufficient tokens are available, the job waits until
enough become available and then immediately moves on
through the network after receiving them. When several
jobs wait for tokens of a passive queue, they are allocated
tokens according to a specified scheduling discipline. A
job gives up tokens, and thus leaves the corresponding
passive queue, when it is routed through a release node of
the queue. The job passes through the release node in-
stantaneously. Create nodes have no effect on the job, but
do have the effect of adding new tokens to the pool. De-
stroy nodes are similar to release nodes but do not return
the tokens to the pool. See Fig. 1.

The terms "‘active queue’’ and ‘‘passive queue’” are in-
tended to indicate the nature of the queue’s effect on a
job’s use of a server or token, respectively, and of the
relative dominance of the modeled resources. With an ac-
tive queue the length of time a job holds a server is en-
tirely determined by the characteristics of that queue and
the jobs at that queue. With a passive queue the length of
time a job holds a token is determined entirely by events
at other queues.

Figure 2 shows a simplistic representation of a widely
used model of interactive computer systems [ 12, 13]. The
resources represented by active queues are the terminals,
CPU, and I/O device(s). A passive queue is used to repre-
sent memory contention. After a think time at the termi-
nal, a user keys in a command. A job representing the
process executing the command requests memory. After
receiving memory, the job alternates CPU and /O activi-
ties until the command is finished. The job then releases
its memory and returns to the terminal’s queue for an-
other thinking and keying time.

RESQ2

One can draw analogies between queuing network ele-
ments in the RESQ?2 language and programming language
elements, especially concurrent languages such as Con-
current Pascal [ 14]. We use identifiers to symbolically ref-
erence nodes, queues, chains, and other elements we
have yet to define. We may think of nodes as elementary
data types. Some kinds of nodes are associated with
queues; thus we may think of queues as aggregate data
types. There are kinds of nodes which are not directly
associated with queues. We can think of the jobs as pro-
cesses in a concurrent language, and we can think of the
routing rules as part of the explicit control structure of
our language. (The mechanisms associated with the vari-
ous types of nodes form an implicit control structure anal-
ogous to semaphores and monitors in concurrent lan-
guages.)
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Figure 1 A passive queue.

Figure 2 Computer system model.

In designing the first version of RESQ our focus was on
the solution methods and the definitions of queuing net-
work elements. With the second version our focus has
been on the design of the language interface and its pro-
cessor. We have designed a modeling language which at-
tempts to incorporate the wisdom gained in the design of
programming languages and structured programming
while providing a gentle transition for users of the first
version of RESQ.

The principal limitation of the first version is the inabil-
ity to characterize relatively homogeneous network com-
ponents (¢.g., queues, routing chains, subnetworks) once
and then characterize their differences. Rather, one must
define the details of each such component individually.
The situation is somewhat analogous to programming in
machine (not assembly) language, though not so ex-
tremely tedious because of the level of abstraction of the
extended queuing network elements. The user is essen-
tially forced to begin each model definition from scratch,
being largely unable to build upon his or her own previous
models or on others’ efforts. (It is possible to retain the
concepts of previous models, but usually not the machine
definition of those concepts.) The situation was tolerable
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QUEUE TYPE: pfcfs /+passive fcfs queue*/
PARAMETERS-
NUMERIC: tkns
NODE: alloc(*) releas(x)
TYPE: passive
TOKENS: tkns
DSPL.: fcfs
ALLOCATE NODE LIST: alloc
AMOUNT(S): 1
RELEASE NODE LIST: releas
END OF QUEUE TYPE PFCFS

Figure 3 Queue type definition.

QUEUE: memq
TYPE: pfcfs
TKNS: nmem
ALLOC : anode(*)
RELEAS: mode(*)

QUEUE: memq
TYPE: pfcfs: nmem ; anode(*) ; rnode(x)

Figure 4 Equivalent queue type invocations.

when we were developing a research prototype and our
typical networks had only a few components; it is not tol-
erable for our own use in research on queuing network
modeling technology, nor is it tolerable for application
users who may have hundreds of queues and nodes in
their models.

Thus our principal problem in designing the RESQ2
language has been to provide new structures to organize,
and simplify the specification of, the data and control
structures already present. The resulting features princi-
pally consist of what we call ‘‘the template facility.”” The
templates allow the user to overcome the above-cited lim-
itation of the first version of RESQ, the inability to simply
characterize homogeneous network components. In addi-
tion, the templates allow for the benefits typically associ-
ated with structured and top-down programming, e.g., a
model can be successively refined by redefining template
definitions, and/or by adding additional nested templates,
a model can be studied at different levels of detail as ap-
propriate to the reader, etc.

We define two kinds of templates: ‘‘queue types’ and
“‘submodels.”” Queue types correspond to data types in
the sense of Pascal. Submodels correspond to macros
and, to a limited extent, procedures. Queue types facili-
tate structuring and specifying the principal ‘*data’’ of a
model, its queues. Submodels facilitate structuring and
specifying both the ‘*data’’ and the “‘control’’ of a model.
In addition to these templates, we provide for arrays of
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some kinds of elements, operations on these arrays, and
some additional specialized data types. We first discuss
templates.

® Queue types

In order to define a queue, many characteristics may need
to be specified. These include (1) whether the queue is
active or passive, (2) the number of servers or tokens, (3)
the scheduling discipline, (4) the identities and types of
nodes associated with the queue, (5) probability distribu-
tions to be associated with the nodes (e.g., for service
times or number of tokens requested), (6) whether the
probability distribution values are to be scaled by the
variables associated with the jobs, and (7) the priorities
associated with each node if the scheduling depends on
priorities. For active queues it is also necessary to specify
detailed characteristics of each server, e.g., service rates
as a function of queue length. In the first version of
RESQ, a number of specialized active queue types are
provided for common cases so that many characteristics
are set by default. However, no corresponding special-
ized passive queue dialogues are provided, and the spe-
cialized active queue types do not allow specification of
characteristics which may be important for a particular
model and may require specification of other character-
istics which are the same for many queues. The RESQ2
queue type allows definition of a parameterized template
and subsequent definition of queues by invocation of the
template with parameters. Figure 3 shows a queue type
for a passive queue which has parameters for (1) the num-
ber of tokens, (2) the associated allocate nodes, and (3)
the associated release nodes. Upper case is used for re-
served words and lower case for other information. (This
is for clarity; the user may freely choose between upper
and lower case.) All other characteristics are specified
with the queue type definition, either explicitly or by
default. Figure 4 shows two equivalent invocations of the
queue type of Fig. 3. (Upper case is used in the first part
of Fig. 4 for the names of formal parameters as well as for
key words.)

® Submodels

The submodel allows parameterized definition of an en-
tire subnetwork. For example, in a model of a computer
communication network, there may be several similar
computer systems. One can define a submodel generally
representing the computer systems, then use copies of the
submodel to represent individual systems. These in-
vocations and their effects may correspond closely to the
invocation and expansion of macros. We assume this is
the case for the time being and defer discussion of an al-
ternate kind of invocation. Submodel definitions and in-
vocations may be nested within submodels. One may
specify arrays of invocations of a submodel.
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A submodel (.e., a subnetwork) can be characterized
by the same four sets which we listed before in defining a
network. However, necessary differences arise as we de-
fine the boundaries between the submodel and the model
which contains the submodel. We would like the elements
of a submodel to be hidden from the model containing the
submodel, so that the person using the submodel needs
little awareness of its internal characteristics.

Most of the nodes of the submodel can be hidden from
the outside. However, those on the boundary, providing
entrances to and exits from the submodel, must be vis-
ible. We provide synonyms for the entrances and exits,
““input’’ and ‘‘output,”” respectively, so that one need not
know the submodel’s names for the entrances and exits.
Usually a submodel will have exactly one entrance and
one exit per ‘‘external’’ routing chain. An externai rout-
ing chain is one with entrances and exits from the sub-
model and may be closed or open, depending on the in-
vocation. An ‘‘internal’’ routing chain is hidden from the
outside and specified closed or open in the submodel defi-
nition. We would like to encourage the one entrance/exit
characteristic, and must enforce it in certain cases, SO we
only allow one “‘input’’ and ‘‘output’ per chain. How-
ever, in some cases we must allow multiple entrances
and/or exits for a chain, so we allow specification of a
submodel’s internal node names in routing rules of an in-
voking (sub)model. This is an error-prone provision, anal-
ogous to a ‘‘goto’’ leading outside of a procedure, and is
designated by a special syntax. (It is also necessary to use
a submodel’s internal node names in requesting perform-
ance estimates for those nodes, but this is not similarly
error prone.) All of the queues of a submodel can be hid-
den from the outside, except that their component nodes
are accessible as just described (and except that their
names must be used in requesting performance esti-
mates). The routing rules of a submodel are completely
hidden from the outside, even though these rules contrib-
ute to the routing chains which cross the submodel
boundaries (the rules of external chains). Jobs in external
chains are defined in the outermost definition of those
chains. Jobs in internal chains are completely hidden
from the outside. (There is an exception to this statement
with regard to initialization of simulations; we shall not
discuss the exception.)

In addition to describing the nodes, queues, routing
rules, and jobs of a submodel, one must define its parame-
ters. The types of the parameters are (1) numeric types as
in programming languages, (2) specialized data types
which we have yet to discuss, and (3) external chains.
Since chains potentially cross the boundaries of many
submodels, we need to have their identities available in
all submodels which refer to them.
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Figure 5 Submodel from Fig. 2.

SUBMODEL: ecsm /*extended computer system model*/
PARAMETERS-
NUMERIC: nmem cyclep
CHAIN : chn
QUEUE: memq
TYPE: pfcfs
TKNS: nmem
ALLOC : anode
RELEAS: rnode
QUEUE: cpuq
TYPE: ps /*Active queue with processor sharing scheduling*/
CLASS: cpu
WORK: .05 /*mean service time in seconds*/
QUEUE: ioq
TYPE: fcfs /*active*/ : io; .04
CHAIN: chn
TYPE: external
INPUT: anode
OUTPUT: rnode
: anode—cpu—io
: io—cpu rnode; cyclep 1-cyclep
/* cyclep is probability of job cycling back to cpu/
END OF SUBMODEL ECSM

Figure 6 Submodel definition.

Figure § illustrates a submodel taken from the model of
Fig. 2. Figure 6 shows a RESQ2 definition of this sub-
model. Syntactically, there are three major sections pres-
ent in Fig. 6, for definition of parameters, queues, and
chains, in that order. It is assumed that queue types pfcfs,
ps, and fcfs have been defined outside of the submodel. In
general submodels, there would be additional sections for
definition of identifiers, for definition of queue types, for
definition of submodels nested within the submodel, for
invocations of submodels, and for definition of other
types of nodes.

Figure 7 shows a complete definition of the network of
Fig. 2, using the two templates we have defined and pre-
suming the previous definition of three other queue types.
(Upper case letters are used in the definition of values of
numeric identifiers as well as for reserved words and for-
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NAME: csmtm /*computer system model with terminals and memory#/
LIBRARY QUEUE TYPES: is pfcfs ps fcfs
LIBRARY SUBMODELS: ecsm
METHOD: simulation
PARAMETERS-

NUMERIC: nmem cyclep
IDENTIFIERS-
NUMERIC: cpop
CPOP: 20
QUEUE: termq
TYPE: is /* *infinite’” server*/
CLASS: terms
WORK: 15
INVOCATION: comsys
TYPE: ecsm: nmem; cyclep; chn
CHAIN: chn
TYPE: closed
: terms—comsys.input
: comsys.output—terms
CHAIN POP: cpop
END OF MODEL CSMTM

Figure 7 Definition of computer system model.

SUBMODEL: ecsm /*extended computer system model*/
PARAMETERS-
NUMERIC: nchn nmem cyclep(nchn)
CHAIN : chn(nchn)
IDENTIFIERS-
NODE ARRAYS: anode(nchn) cpu(nchn) io(nchn) rnode(nchn)
QUEUE: memgq
TYPE: pfcfs
TKNS: nmem
ALLOC ; anode
RELEAS: rnode
QUEUE: cpuq
TYPE: ps /*Active queue with processor sharing schedulings/
CLASS LIST: cpu
WORK DEMAND: .05
QUEUE: ioq
TYPE: fcfs /xactivex/ : io; .04
CHAIN: chn(*)
TYPE: external
INPUT: anode(*)
OUTPUT: rnode(*)
: anode(*)—>cpu(*)—io(*)
1 i0(*)—>cpu(*) rnode(*); cyclep(*) 1-cyclep(*)
END OF SUBMODEL ECSM

Figure 8 Submodel definition with arrays.

mal parameters.) The model has two numeric parameters,
nmem and cyclep, which are to be specified when the
model is solved; thus they may be varied without retrans-
lation of the model. The invocation of the submodel uses
the short syntax corresponding to the bottom part of Fig.
4. Notice that references to the submodel in the routing
are similar to references to nodes. In addition to the sec-
tions shown there could be a rather lengthy but straight-
forward section specifying characteristics of the simula-
tion solution, e.g., limits on the run length, nonstandard
performance measures to be estimated, parameters of the
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regenerative method [8, 10], etc. We ignore that section
and assume that the default simulation characteristics are
appropriate.

e Substitutions

There is a second (semantic) form of invocation of sub-
models, ‘‘substitution,”” which we referred to earlier.
With the first form of invocation, though the model is de-
fined hierarchically, it is treated as a horizontal entity as
far as the solution portions of RESQ are concerned. How-
ever, a solution which recognizes the model hierarchy
may be much more computationally efficient than one
which does not. With a large model this difference in effi-
ciency may determine whether it is practical to solve the
model or not. Hierarchical solutions may be performed
exactly for product form queuing networks [15] and
limiting cases of other networks [16]. (Hierarchical
solutions are the basis for many approximate solutions
[4,5, 8,9, 12, 13].) One of the limiting cases is when sub-
networks interact with each other relatively infrequently
compared to the rate of activity within the subnetworks.
In our example model, as cyclep becomes large, we ap-
proach this limiting case. In simulating that model there
are many events at the CPU and I/O queues for each
event at the terminals. The disparity in event rates may
result in great computational expense in a horizontal solu-
tion, but a hierarchical solution is relatively inexpensive.

With the substitution form of invocation, the hierarch-
ical structure of the model should be chosen with the hier-
archical solution in mind. Yet one should be free of such
considerations in formulating and defining a model, as far
as possible. A simple approach to this paradox is to make
liberal use of submodels in defining a model. Not only
may this greatly improve the clarity of the model, it al-
lows one to postpone decisions about hierarchical solu-
tion until one is ready to have the model solved. One can
then use the substitution form of invocation as appropri-
ate and the ordinary invocation elsewhere.

Syntactically, a substitution is similar to an invocation,
but additional specifications may be included to charac-
terize the (separate) solution of the submodel and the in-
terface between the values obtained by that solution and
the rest of the model. The solution and interface of sub-
stitutions is the case alluded to before where it is imprac-
tical to allow more than one entrance/exit per chain.

e Special data types

We currently provide two special data types, distribu-
tions and strings, which are analogous to data types in
programming languages. In defining different copies of a
model one may wish to vary the form of probability distri-
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butions as well as their defining parameters: e. g., one
may wish to compare hyperexponential and gamma distri-
butions as well as to compare different means and vari-
ances for a hyperexponential distribution. One would like
to symbolically refer to such data elements as well. Iden-
tifiers (including parameters) of type 'distribution’ have
values which are complete definitions of any probability
distribution known to RESQ. Similarly, one may wish to
symbolically refer to scheduling disciplines. Identifiers of
type “string’” have values which are the names of any
scheduling disciplines known to RESQ. (We use the term
“string’’ because we may generalize this type in the fu-
ture.)

& Arrays

We provide arrays in RESQ?2 in the sense of programming
languages. However, there are some subtle issues associ-
ated with arrays in this context with respect to which ele-
ments are appropriate for such aggregate definition and
with respect to how the arrays may be manipulated. Be-
fore trying to discuss these issues, let us consider the mo-
tivation for arrays in RESQ.

The principal motivation, ignoring submodels for the
moment, is to allow multiple parallel routing chains. The
term “‘routing chain’’ is misleading to the extent that it
suggests that the only distinction between chains is in the
routing. Actually, different chains are often used to distin-
guish between groups of jobs which have essentially the
same routing but differ in other ways. For example, one
may wish to distinguish between interactive users doing
“‘trivial”’ and ‘‘nontrivial’® work, ¢.g., those doing text
editing and those running a compiler. The users doing
trivial work typically have shorter think times as well as
smaller computational demands than those doing non-
trivial work. These differences are specified in the defini-
tions of the corresponding nodes of the parallel routing
chains. If the routing chains are completely parallel, then
each queue has one node from each routing chain. (In a
complex but parallel routing structure, a queue may have
more than one node from each routing chain, but a queue
has the same number of nodes from each routing chain.)
Figure 8 shows the generalization of our example sub-
model to allow nchn parallel chains.

We began our RESQ2 design with a very general array
provision. While implementing the translator, we recog-
nized that the generality of our provisions led to quite dif-
ficult problems in providing diagnostics. We then re-
stricted our provisions but believe that we have not signif-
icantly affected the expressiveness of the language.
RESQ?2 allows arrays of numbers, distributions, nodes,
chains, invocations, and substitutions. Only arrays of
numbers may have more than one dimension. The restric-

IBM J. RES. DEVELOP. ¢,VOL. 24 « NO. 6 3, NOVEMBER 1980

QUEUE ARRAYS: iog(nchn)
NODE ARRAYS: ion(nchn;nio) - - -

QUEUE: do i=1 to nio: ioq(i)
TYPE: fcfs
CLASS: ion(x;1)
WORK: .04
CHAIN: do i=1 to nchn: chn(i)
TYPE: external
INPUT: anode(i)
OUTPUT: rnode(i)
: anode(i)—>cpu(i)
- do j=1 to nio: cpu(i)—ion(i;j); prob(i;j)
: do j=1 to nio: ion(i;j)—cpu(i); cyclep(i)
: doj=1 to nio: ion(i;j)—rnode(i); 1-cyclep(i)

Figure 9 Queue array with iterative definition.

SUBMODEL.: io /*i/o subsystem#*/
NUMERIC PARAMETERS: nchn
CHAIN PARAMETERS: chn(nchn)
NODE ARRAYS: ion(nchn)
QUEUE: ioq
TYPE: fcfs: ion; .04
CHAIN: chn(*)

TYPE: external

INPUT: n(x)

OUTPUT: n(*)

/*no routing rules defined within the submodel*/
END OF SUBMODEL IO
INVOCATION: iosys(nio)

TYPE: io: nchn; chn

CHAIN: chn(x*)

TYPE: external

INPUT: anode(*)

OUTPUT: rnode(*)

: anode(*)—>cpu(*)

: cpu(*)—iosys(*).input; prob(*;+)

: iosys(*).output—cpu(*); cyclep(*)

: iosys(*).output—rnode(*); -cyclep(*)

Figure 10 Equivalent submodel with invocation.

tions on our preliminary design include eliminating arrays
of queues, reducing the number of dimensions on non-
numeric arrays, and eliminating iterative expressions ex-
cept in definition of substitutions.

The basic claims in our redefinition of RESQ?2 array fa-
cilities were that the RESQ2 user would use arrays to
characterize relatively homogeneous groups of structured
data, and for that reason any explicit ‘**'DO loop’’ struc-
tures could be more appropriately expressed implicitly.
As an example, suppose we wish to add a parametric
number of I/O queues to our example submodel. Figure 9
shows how this might be done using arrays of queues and
iterative expressions and Fig. 10 shows how with an alter-
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nate approach using an array of invocations of a simple
submodel. We claim that the approach of Fig. 10 is much
clearer, and thus less error-prone, than the approach of
Fig. 9. Since nchn and nio might well be parameters for
the entire model, to be supplied when the model is solved,
we also claim that it is quite difficult for a translator to
give diagnostics for Fig. 9, but it is not so difficult for a
translator to give diagnostics for Fig. 10.

o Implementation

The components of the implementation of the first version
of RESQ may be partitioned into the user interfaces and
the solutions. The solutions are implemented entirely in
PL/I. There are three interface modes, with each inter-
face mode implemented in both PL/I and APL. (We pro-
vide the interfaces in APL as well as PL/I to satisfy users
who are unwilling to deal with environments other than
APL.. The APL interfaces give the user the appearance
that RESQ is implemented in APL only {17].) The original
interface mode in the first version of RESQ is a set of four
interactive dialogues for defining, solving, listing, and
changing a model. Such dialogues are an effective educa-
tional tool. However, the constraints of these dialogues
limit the effectiveness of experienced users. A simple al-
ternative to the interactive mode is to allow users direct
access to procedures which define network character-
istics. Unfortunately, the procedural mode in the first ver-
sion of RESQ requires considerable sophistication and at-
tention to detail on the part of the user. The third inter-
face mode in the initial version of RESQ is the *“dialogue
file.”’ The intent of this mode is to give the user a language
for defining queuing networks and a processor for that
language, alleviating limitations of the other two modes.
A model definition (a “‘program’’) in this language is a
transcript of a dialogue which could have been used to
define the model. (The RESQ?2 language is based upon
this dialogue file mode, with upper case in our examples
corresponding to prompts and lower case corresponding
to responses.) Simple modifications to the interactive
prompter for the model definition dialogue allow its use as
a processor for the dialogue files. However, though this
prompter has excellent error handling characteristics in
interactive mode, these characteristics are useless in the
dialogue file mode (i.e., the prompter may reject an er-
roneous reply in interactive mode and repeat the corre-
sponding prompt; in dialogue file mode there is no reply
for the repeated prompt).

It was our intent that the implementation of RESQ2 use
the solution portions of the previous version with rela-
tively minor modifications. Thus the processing of a
model in the above language should result in a model defi-
nition similar to that produced by the first version of
RESQ. Further, the noninteractive mode, i.e., the dia-
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logue file, is intended to be the principal interface mode.
An interactive prompter is provided for education of new
users; we believe we have eliminated the need for a pro-
cedural interface mode, as discussed below. The language
is designed so that simple parsing techniques, ¢.g., recur-
sive descent, may be used. (Recursive descent parsing
here has the advantage that much of the translator can
also be used for the interactive prompter.) However, two
features of the language prevent the translator from di-
rectly producing the desired model definition. First, the
provision for model parameters prevents even knowledge
of the size of the model (number of nodes, queues,
chains, etc.) before those parameters are defined. Sec-
ond, the provision for hierarchical solutions (sub-
stitutions) means that solution of a model may entail sepa-
rate solution of many submodels.

In addition to the translator and the existing solution
portions, we also implemented what we call the “‘expan-
sion processor,”” which takes the model definition pro-
duced by the translator, obtains the model parameters,
expands the submodel invocations and (repeatedly) calls
upon the solution portions. When the entire model has
been solved, the expansion processor provides the re-
quested performance measures.

It would be convenient for the user who wishes to con-
struct pre- and post-processors for a model to be able to
embed an entire model definition in a language such as
PL/1. This might be a much more convenient approach
than a procedural interface. However, this suggests po-
tentially difficult problems for the translator. It is our be-
lief that relatively little communication is required be-
tween pre- and post-processors and a model definition,
that communication of parameters (numeric, distribution,
and string) to a model and of performance measures from
a model is sufficient. Thus we have provided communica-
tion of such information between PL/I and APL programs
and the expansion processor. This consists of a few
simple procedures and is much more convenient for the
user than a full procedural interface.

Summary

We have described the main features of the RESQ2 lan-
guage for queuing networks. It is too early to characterize
user experiences, but preliminary reactions are quite en-
couraging. We fully expect that RESQ2 will significantly
simplify performance modeling of computing systems and
that it will make feasible models which previously could
only be conceived.
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