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A Language for Extended  Queuing Network Models 

Queuing  networks  are  popular us models of performance of computer  systems  and  communication  networks.  The 
Research  Queueing  Package,  Version 2 (RESQ2),  is  a  system  ,for  constructing  and solving extended  queuing  network 
models. We refer to  the class of RESQ2  networks  as  “extended”  because of characteristics  absent  from  most  queuing 
models,  RESQ2  incorporates  a high-level language  to  concisely  describe  the  structure of the  model  and  to  specify  con- 
straints on the  solution. A main  ,feature of the  language  is  the  capability  to  describe  models  in  a  hierarchical  ,fashion, 
allowing an  analyst  to  define  parumetric  submodels which are  analogous to mucros  or  procedures in programming 
languages.  RESQ2  thus  encourages  use o f  structured  models to effectively  evaluate  complex  systems. 

Introduction 
Models are used to estimate the performance of comput- 
ing systems when measurement of system performance is 
impossible ( e . g . ,  because the  system is not yet  opera- 
tional) or impractical (e.g., because of the human and ma- 
chine resources  required). Traditional, highly imitative 
simulation  models are often as complex as  the modeled 
system  and  thus suffer feasibility and practicality prob- 
lems  similar to measurement. Queuing networks have be- 
come  important  as  performance models of computer  sys- 
tems  because performance of these  systems is usually 
principally affected by contention  for  resources. Rela- 
tively simple  queuing network models  can  be  used from 
the  early design stages of a system on through system 
configuration and even system tuning to estimate system 
performance.  In  the design stages, relatively inaccr - . ~ t t :  

estimates obtained  from  very  simplistic models may  -:i1, 
be  quite sufficient for weeding out designs with poten- 
tially unacceptable performance. More  realistic  queuing 
models can be  developed for  later  stages of system devel- 
opment which are sufficiently accurate and much less ex- 
pensive than the  alternatives of measurement or tradi- 
tional  simulation. The basic  problems in using queuing 
network models are  to (1)  determine the resources  and 
their  characteristics which will most affect performance, 
(2) formulate a model representing  these  resources and 

characteristics, and (3) determine (algebraically,  numeri- 
cally, or by simulation) the  values  for performance mea- 
sures (e.g., mean response time) in the model. Recent is- 
sues of Computing  Surveys (September 1978) and Com- 
puter (April 1980) are dedicated to  the solution of queuing 
networks and the representation of computer and  com- 
munication systems  as queuing networks. 

For queuing  network  models to be used  effectively,  ap- 
propriate  software is necessary. A survey of queuing  net- 
work software and a proposed set of design objectives are 
given in [I]. Based on our previous work on  the  Research 
Queueing  Package (RESQ) [l-31, we have  designed and 
implemented a language for  construction of queuing net- 
work models. This  second  version of RESQ,  RESQ2, in- 
corporates results from  programming  methodology and 
hierarchical modeling [4, 51 to encourage users  to pro- 
duce well-structured  models. This, in turn, enables users 
to effectively use queuing network models to  evaluate  the 
performance of large and  complex  systems where  models 
of such  systems would be  unmanageable with previous 
software. 

This  paper  focuses  on  the language aspects of RESQZ. 
However, we must first say  more  about  queuing network 
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models to put the RESQ2 language in the proper context. 
We next  give a brief discussion of queuing  network  mod- 
els. Following that we describe the  extended class of 
queuing networks allowed by RESQ. We are then able to 
discuss  the design and  implementation of the RESQ2 lan- 
guage. 

Queuing  network  models 
A typical  queuing network model consists of a set of 
queues (corresponding to  resources in the computer  sys- 
tem)  and a set of jobs (which correspond  to  processes in 
the  computer  system,  users  at terminals,  messages sent 
from computer  to  computer,  etc., depending on the  sys- 
tem). The individual queues  are usually described in 
terms of types of resources, numbers of units of re- 
sources, queuing  (scheduling)  disciplines, and probabil- 
ity distributions for  the  service times of jobs  at  the 
queues.  The  jobs  are  described by their individual charac- 
teristics (usually by homogeneous  groups), by their rout- 
ing from queue  to  queue (corresponding to  the  sequence 
of resource  requirements in the  system), and by their  ar- 
rival processes (and departure  procedures). 

Much of the  research on queuing  network  models has 
focused  on methods for obtaining solutions, i .e.,  perform- 
ance  estimates, from the models. Efficient numerical al- 
gorithms have been  developed for networks with a prod- 
uct form solution [3, 6-81. However,  there  are many sys- 
tem  characteristics which preclude  a  product form 
solution, e.g., priority  scheduling or simultaneous re- 
source possession. For models with these characteristics 
and more  than afew queues  andlorjobs,  the only solution 
methods available are  approximate numerical methods 
[5, 8, 91 and simulation.  Specialized simulation tech- 
niques have been  developed which apply to simulation of 
queuing networks [8, IO]. RESQ incorporates  numerical 
methods and  simulation.  (Though RESQ includes simula- 
tion components, we do not consider RESQ to be a simu- 
lation language. Rather, we consider RESQ to  be a mod- 
eling language. We make the distinction primarily be- 
cause of the higher level of abstraction of RESQ 
elements,  as compared to popular simulation languages, 
and also  because of the nonsimulation  solution methods 
provided in RESQ.) 

Since queuing networks can  be (and have been) char- 
acterized in a variety of ways, we informally define our 
characterization. A queuing network  consists of ( 1 )  a set 
of nodes, (2) a set of queues, (3) a set of routing rules, (4) 
a set  ofjobs,  and (5) a set of routing chains.  The nodes are 
points in our network in the  sense of nodes of a graph. 
The  nodes  provide places of residence  for  jobs  (perhaps 
only instantaneous  residence). Visits to a node by a job 
usually  result in actions affecting the  job  and  other net- 

work elements. A queue is a set of nodes and a  set of rules 
which define the  nature of the residence of jobs at  the 
nodes, depending on the  number and status of jobs at 
each of the  nodes.  The routing  rules define the jobs’  paths 
from one node to  another, including rules for  determining 
which path to take when there  are several possible desti- 
nations for a job leaving a given node. A chain consists of 
corresponding  subsets of the nodes, routing rules,  and 
jobs of the  network. The  subsets of the  nodes (routing 
rules,  jobs) defined by the  chains  are disjoint. (The rout- 
ing chains  are described as “open”  or  “closed”  depend- 
ing on whether  or not jobs may enter and leave  the 
chains.  Jobs entering or leaving a chain also enter  or leave 
the network,  respectively.) 

Extended  queuing  networks 
In order to facilitate  more accurate representation of 
computer  systems, the  queuing  networks of RESQ have 
been designed to include and  naturally build upon the cat- 
egory of networks with product  form  solution.  Some of 
the elements  are obvious  generalizations of product form 
elements,  for  example,  queues with general ( e . g . ,  prior- 
ity) scheduling  disciplines. Other generalizations of prod- 
uct form  networks include (1 )  capabilities for marking 
jobs with information (such as message length for a job 
representing  a message in a  communication network) and 
(2) routing  rules dependent on the current  network state 
(e.g. ,  queue lengths) as well as the usual probabilistic 
routing  rules. 

In addition to allowing the above-described character- 
istics, which violate product  form  solution conditions, we 
provide in RESQ new  network elements and  refer to  the 
resulting  category of networks  as  “extended” queuing 
networks [ 1 I]. We restrict attention  to  the most important 
of these  elements,  the  “passive  queue.” We refer to  tra- 
ditional queues  as  “active  queues” and to  the nodes of 
active  queues  as  “classes.” One of the limitations of a 
network consisting only of active  queues i s  that a job can 
only hold one  resource  at a  time.  This contradicts  actual 
systems in which the element modeled by the  job  requires 
several resources simultaneously. For example, a  pro- 
gram requires memory as well as a CPU before it can be 
run, but  most traditional queuing  models  ignore either 
memory  contention or CPU contention. In extended 
queuing  networks  a job can hold resources at  several  pas- 
sive queues and one  active  queue simultaneously. 

A passive  queue consists of a set of “allocate nodes,” a 
set of “release  nodes,” a set of “create  nodes,” a set of 
“destroy  nodes,”  and a pool of identical “tokens” of a 
resource. A job joins  a  passive queue when it arrives  at  an 
allocate  node. Upon arrival the  job requests  one or more 
tokens. If sufficient tokens  are available,  the job receives 
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them and  moves on to  another  queue of the network with- 
out delay.  However,  the  job belongs to the queue from 
which it received  the tokens  as long as it  holds the tokens. 
If insufficient tokens  are available,  the job waits until 
enough become available and  then immediately moves on 
through the network after receiving them. When several 
jobs wait for tokens of a passive queue, they are allocated 
tokens according to a specified scheduling  discipline. A 
job gives up tokens, and thus leaves the corresponding 
passive queue, when it is routed through a release  node of 
the queue.  The  job passes  through  the  release  node in- 
stantaneously. Create  nodes have no effect on the  job, but 
do have the effect of adding new tokens  to the  pool. De- 
stroy  nodes are similar to release  nodes but do not return 
the  tokens  to the pool. See Fig. 1 .  

The  terms "active queue"  and "passive  queue" are in- 
tended to indicate the  nature of the queue's effect on a 
job's use of a  server  or  token, respectively, and of the 
relative  dominance of the modeled resources. With an ac- 
tive queue  the length of time a  job holds a server is en- 
tirely determined by the characteristics of that queue and 
the  jobs at that queue. With a passive  queue the length of 
time a  job holds a token is determined entirely by events 
at other  queues. 

Figure 2 shows a simplistic representation of a widely 
used model of interactive computer  systems [12, 131. The 
resources represented by active  queues  are the terminals, 
CPU, and IiO device(s). A passive  queue is used to repre- 
sent  memory contention. After a think time at  the termi- 
nal,  a  user keys in a  command.  A  job representing the 
process executing the command requests  memory. After 
receiving  memory,  the job  alternates CPU and I/O activi- 
ties until the command is finished. The  job then releases 
its  memory  and returns  to  the terminal's queue  for an- 
other thinking  and keying time. 

RESQS 
One  can  draw  analogies  between queuing network  ele- 
ments in the RESQ2 language and programming language 
elements, especially concurrent languages such as Con- 
current Pascal [ 141. We use identifiers to symbolically ref- 
erence  nodes,  queues,  chains, and other  elements we 
have yet to define. We  may think of nodes as  elementary 
data  types. Some  kinds of nodes  are associated with 
queues:  thus we may think of queues  as aggregate data 
types.  There  are kinds of nodes which are not directly 
associated with queues. We can think of the  jobs  as pro- 
cesses in a  concurrent language, and we can think of the 
routing  rules as part of the  explicit  control structure of 
our language. (The mechanisms  associated with the vari- 
ous types of nodes form an implicit control structure anal- 
ogous to  semaphores and  monitors in concurrent lan- 
guages. ) 

Job 

Creatc 1 
\ 

Debtroy 

Figure 1 A passive  queue. 

MEMQ )-I+ 
"""" , 

0 I 

Figure 2 Computer  system  model. 

In designing the first version of RESQ  our focus was on 
the  solution  methods and the definitions of queuing  net- 
work elements. With the  second version our  focus  has 
been on the design of the language  interface and its  pro- 
cessor. We have designed a modeling language which at- 
tempts  to  incorporate  the wisdom gained in the design of 
programming languages and  structured programming 
while providing a gentle transition for users of the first 
version of RESQ. 

The principal limitation of the first version is the inabil- 
ity to characterize relatively homogeneous  network  com- 
ponents ( e . ~ . ,  queues, routing chains,  subnetworks)  once 
and  then  characterize their  differences. Rather,  one must 
define the  details of each such component  individually. 
The situation is somewhat  analogous to programming in 
muchine (not  assembly) language, though not so ex- 
tremely  tedious  because of the level of abstraction of the 
extended queuing  network elements.  The  user is essen- 
tially forced to begin each  model definition from scratch, 
being largely unable to build upon his or her own previous 
models or on others' efforts. (It is possible to retain the 
concepts of previous models, but usually not the machine 
definition of those  concepts.)  The situation  was tolerable 749 
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QUEUE TYPE: pfcfs /*passive fcfs queue*/ 
PARAMETERS- 

NUMERIC: tkns 
NODE: allot(*) releas(*) 

TYPE: passive 
TOKENS: tkns 
DSPL: fcfs 
ALLOCATE  NODE LIST: alloc 

AMOUNT@): 1 
RELEASE NODE  LIST:  releas 

END  OF  QUEUE TYPE PFCFS 

Figure 3 Queue  type definition. 

QUEUE: memq 
TYPE: pfcfs 
TKNS: nmem 
ALLOC : anode(*) 
RELEAS: mode(*) 

QUEUE: memq 
TYPE: pfcfs: nmem : anode(*) : mode(*) 

Figure 4 Equivalent queue  type  invocations. 

when we were  developing a research  prototype and our 
typical networks had  only  a  few components; it is not  tol- 
erable  for  our own use in research  on queuing network 
modeling technology, nor is it tolerable for application 
users who may have  hundreds of queues and  nodes in 
their  models. 

Thus  our principal problem in designing the RESQ2 
language has been to provide new structures  to  organize, 
and simplify the specification of,  the  data and  control 
structures already present.  The resulting features princi- 
pally consist of what we call “the template  facility.” The 
templates allow the user  to  overcome  the above-cited lim- 
itation of the first version of RESQ, the inability to simply 
characterize homogeneous network  components. In addi- 
tion,  the  templates allow for  the benefits typically  associ- 
ated with structured and  top-down programming, e .g . ,  a 
model can be  successively refined by redefining template 
definitions, and/or by adding  additional  nested templates, 
a model can be studied at different levels of detail as  ap- 
propriate  to  the  reader,  etc. 

We define two kinds of templates:  “queue  types”  and 
“submodels.” Queue types  correspond  to  data  types in 
the  sense of Pascal.  Submodels  correspond to  macros 
and, to a limited extent,  procedures. Queue types facili- 
tate  structuring  and specifying the principal “data” of a 
model,  its queues. Submodels  facilitate  structuring and 
specifying  both  the “data”  and  the  “control” of a  model. 
In addition to  these  templates, we provide for  arrays of 

some  kinds of elements,  operations  on  these  arrays,  and 
some  additional  specialized data  types. We first discuss 
templates. 

Queue types 
In order  to define a queue, many Characteristics may need 
to be specified. These include (1) whether  the  queue is 
active  or  passive, ( 2 )  the number of servers  or  tokens, (3) 
the scheduling  discipline, (4) the identities and  types of 
nodes associated with the  queue, (5) probability distribu- 
tions to be  associated with the nodes (e.g., for  service 
times or number of tokens  requested), (6) whether  the 
probability  distribution  values are  to be scaled by the 
variables  associated with the  jobs, and (7) the priorities 
associated with each node if the scheduling depends  on 
priorities. For active queues it is also necessary to specify 
detailed characteristics of each  server, e.g., service  rates 
as a function of queue length. In  the first version of 
RESQ, a  number of specialized active  queue  types  are 
provided for common cases so that many characteristics 
are  set by default. However,  no corresponding  special- 
ized passive  queue dialogues are provided, and the spe- 
cialized active  queue  types  do not allow specification of 
characteristics which may be  important for a particular 
model and may require specification of other  character- 
istics which are  the  same  for many queues.  The  RESQ2 
queue  type allows definition of a parameterized template 
and subsequent definition of queues by invocation of the 
template with parameters. Figure 3 shows  a queue  type 
for a  passive queue which has  parameters  for (1) the num- 
ber of tokens, (2) the  associated allocate  nodes, and (3) 
the associated release nodes.  Upper  case is used for re- 
served  words and lower case  for  other information.  (This 
is for clarity: the  user may freely choose between upper 
and lower  case.) All other  characteristics  are specified 
with the  queue  type definition, either explicitly or by 
default.  Figure 4 shows two equivalent  invocations of the 
queue  type of Fig. 3. (Upper  case is used in the first part 
of Fig. 4 for  the  names of formal parameters  as well as  for 
key words.) 

0 Submodels 
The submodel  allows parameterized definition of an  en- 
tire subnetwork.  For  example, in a model of a computer 
communication network,  there may be  several  similar 
computer  systems. One  can define a submodel  generally 
representing  the computer  systems, then  use copies of the 
submodel to  represent individual systems.  These in- 
vocations and  their  effects may correspond closely to  the 
invocation and expansion of macros. We assume this is 
the case  for  the time being and  defer discussion of an al- 
ternate kind of invocation.  Submodel definitions and in- 
vocations may be nested within submodels. One may 
specify arrays of invocations of a submodel. 
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A  submodel ( i .e . ,  a subnetwork) can  be characterized 
by the  same four sets which we listed  before in defining a 
network.  However, necessary  differences arise  as we de- 
fine the boundaries  between the submodel and  the model 
which contains  the submodel. We would like the  elements 
of a submodel to be hidden from  the model containing the 
submodel, so that  the  person using the submodel needs 
little awareness of its  internal characteristics. 

Most of the nodes of the submodel  can  be hidden from 
the  outside.  However,  those  on  the  boundary, providing 
entrances  to and exits from the submodel,  must  be vis- 
ible. We provide synonyms  for  the  entrances  and  exits, 
“input”  and  “output,”  respectively, so that  one need not 
know the submodel’s  names for  the  entrances  and  exits. 
Usually a submodel will have exactly one  entrance and 
one  exit  per  “external” routing chain. An external  rout- 
ing chain is one with entrances  and exits  from the sub- 
model and may be  closed or open, depending on  the in- 
vocation. An “internal”  routing  chain is hidden from  the 
outside  and specified closed or  open in the submodel defi- 
nition. We would like to  encourage  the one entrancelexit 
characteristic, and  must  enforce it  in certain cases, so we 
only  allow one  “input” and “output” per chain. How- 
ever, in some cases we must allow multiple entrances 
andlor  exits  for a chain, so we allow specification of a 
submodel’s  internal  node names in routing rules of an in- 
voking (sub)model. This is an error-prone provision,  anal- 
ogous to a “goto” leading outside of a procedure,  and is 
designated by a  special syntax.  (It is also necessary to use 
a submodel’s intemal node names in requesting  perform- 
ance  estimates  for  those  nodes, but this is not similarly 
error  prone.) All  of the  queues of a submodel can be hid- 
den  from  the  outside,  except  that their component  nodes 
are  accessible  as  just described (and except that  their 
names must  be  used in requesting  performance  esti- 
mates). The routing  rules of a  submodel are completely 
hidden from  the  outside,  even though these rules contrib- 
ute  to  the routing chains which cross  the submodel 
boundaries  (the rules of external chains). Jobs in external 
chains  are defined in the  outermost definition of those 
chains. Jobs in internal chains  are completely  hidden 
from the outside.  (There is an exception to this statement 
with regard to initialization of simulations; we shall not 
discuss  the exception.) 

In addition to describing the  nodes,  queues, routing 
rules,  and  jobs of a submodel,  one must define its  parame- 
ters.  The  types of the  parameters  are (1) numeric types  as 
in programming  languages, ( 2 )  specialized data  types 
which we have  yet  to  discuss, and (3) external chains. 
Since  chains potentially cross  the boundaries of many 
submodels, we need to  have  their identities  available in 
all submodels which refer to  them. 
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Figure 5 Submodel  from Fig. 2. 

SUBMODEL:  ecsm  hextended  computer  system model*/ 
PARAMETERS- 

NUMERIC:  nmem  cyclep 
CHAIN : chn 

TYPE:  pfcfs 
TKNS: nmem 
ALLOC : anode 
RELEAS:  mode 

TYPE:  ps/*Active  queue  with  processor  sharing  scheduling*/ 
CLASS:  cpu 
WORK: .05 /*mean  service  time in seconds*/ 

TYPE:  fcfs  /*active*/ : io; .04 

TYPE:  external 
INPUT:  anode 
OUTPUT:  mode 
: anode+cpu+io 
: io-wpu  mode;  cyclep  I-cyclep 
/* cyclep is probability ofjob cycling  back  to  cpu*/ 

QUEUE: memq 

QUEUE:  cpuq 

QUEUE: ioq 

CHAIN:  chn 

END OF SUBMODEL  ECSM 

Figure 6 Submodel definition. 

Figure 5 illustrates  a  submodel  taken  from the model of 
Fig. 2 .  Figure 6 shows a RESQ2 definition of this sub- 
model. Syntactically,  there  are  three major sections pres- 
ent in Fig. 6, for definition of parameters,  queues,  and 
chains, in that  order. It is assumed  that  queue typespfcfs, 
p s ,  and,fcfs have been defined outside of the submodel. In 
general submodels,  there would be additional sections  for 
definition of identifiers, for definition of queue  types,  for 
definition of submodels nested within the submodel, for 
invocations of submodels,  and for definition of other 
types of nodes. 

Figure 7 shows a complete definition of the  network of 
Fig. 2 ,  using the two templates we have defined and pre- 
suming the previous definition of three  other  queue  types. 
(Upper  case  letters  are used in the definition of values of 
numeric identifiers as well as  for reserved  words  and for- 751 
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NAME:  csmtm  /*computer  system model with  terminals  and  memory+/ 
LIBRARY  QUEUE  TYPES: is pfcfs ps fcfs 
LIBRARY  SUBMODELS:  ecsm 

PARAMETERS- 
METHOD:  simulation 

IDENTIFIERS- 
NUMERIC: nmem cyclep 

NUMERIC:  cpop 

QUEUE:  termq 
CPOP: 20 

TYPE:  is/*”infinite”  server*/ 
CLASS:  terms 

INVOCATION:  comsys 
WORK: 15 

CHAIN:  chn 
TYPE:  ecsm:  nmem;  cyclep;  chn 

TYPE:  closed 
: terms-tcomsys.input 
: Comsys.output+terms 
CHAIN  POP:  cpop 

END OF MODEL  CSMTM 

Figure 7 Definition of computer  system  model. 

SUBMODEL:  ecsm  /*extended  computer  system model*/ 
PARAMETERS- 

NUMERIC:  nchn  nmem  cyclep(nchn) 
CHAIN : chn(nchn) 

IDENTIFIERS- 

QUEUE: memq 
NODE  ARRAYS:  anode(nchn)  cpu(nchn1  io(nchn)  rnode(nchn) 

TYPE:  pfcfs 
TKNS:nmem 
ALLOC : anode 
RELEAS:  mode 

OUEUE: CDUO . .  
TYPE: ps /*Active  queue with processor  sharing scheduling*/ 
CLASS  LIST:  cpu 
WORK  DEMAND: .05 

QUEUE: ioq 

CHAIN:  chn(*) 
TYPE:  fcfs/*active*/ : io; .04 

TYPE:  external 
INPUT:  anode(*) 
OUTPUT:  mode(*) 
: anode(*)-tcpu(*)jio(*) 

END  OF  SUBMODEL  ECSM 
: io(*)-+cpu(*) mode(*);  cyclep(*)  I-cyclep(*) 

Figure 8 Submodel  definition with arrays. 

mal parameters.)  The model has two numeric parameters, 
nmem and cyclep, which are  to be specified when the 
model is solved;  thus they may be varied without retrans- 
lation of the model. The invocation of the submodel uses 
the  short  syntax  corresponding  to the  bottom  part of Fig. 
4. Notice  that  references  to  the submodel in the routing 
are similar to  references  to  nodes. In addition to the  sec- 
tions shown  there could  be a rather lengthy but straight- 
forward  section specifying characteristics of the simula- 
tion solution, e .g . ,  limits on  the run length,  nonstandard 

752 performance  measures to be estimated,  parameters of the 

regenerative method [S, IO], etc. We ignore that  section 
and assume that the  default  simulation characteristics  are 
appropriate. 

0 Substitutions 
There is a  second (semantic) form of invocation of sub- 
models, “substitution,” which we referred to  earlier. 
With the first form of invocation, though the model is de- 
fined hierarchically, it is treated  as a  horizontal entity  as 
far  as  the solution  portions of RESQ are  concerned. How- 
ever, a  solution which recognizes the model hierarchy 
may be much more  computationally efficient than  one 
which does not. With a large model this difference in  effi- 
ciency may determine  whether it is practical to solve the 
model or  not. Hierarchical  solutions may be performed 
exactly  for product form queuing  networks [ 151 and 
limiting cases of other  networks [16]. (Hierarchical 
solutions are  the basis for many approximate solutions 
[4, 5, 8, 9, 12, 131.) One of the limiting cases is when  sub- 
networks  interact with each  other relatively infrequently 
compared  to  the rate of activity within the  subnetworks. 
In our example  model, as cyclrp becomes  large, we ap- 
proach  this limiting case. In simulating  that model there 
are many events at the CPU and YO queues for each 
event  at the  terminals. The disparity in event  rates may 
result in great  computational expense in a  horizontal solu- 
tion, but a  hierarchical  solution is relatively inexpensive. 

With the  substitution  form of invocation, the hierarch- 
ical structure of the model should  be chosen with the hier- 
archical  solution in mind. Yet one should be free of such 
considerations in formulating and defining a  model, as  far 
as possible. A simple approach  to this  paradox is to make 
liberal use of submodels in defining a model. Not only 
may this  greatly  improve the clarity of the model, it al- 
lows one  to  postpone decisions about hierarchical solu- 
tion until one is ready to have the model solved. One  can 
then use the substitution  form of invocation as  appropri- 
ate and  the  ordinary  invocation elsewhere. 

Syntactically,  a  substitution is similar to  an invocation, 
but additional  specifications may be included to  charac- 
terize the  (separate) solution of the submodel and  the in- 
terface between the  values  obtained by that solution and 
the  rest of the model. The solution  and  interface of sub- 
stitutions is the  case alluded to before  where it is imprac- 
tical to allow more than  one entranceiexit per chain. 

0 Speciul  duta types 
We currently provide two special data  types, distribu- 
tions  and  strings, which are analogous to  data  types in 
programming languages. In defining different copies of a 
model one may wish to vary thefbrm of probability distri- 
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butions as well as  their defining parameters: e. x . .  one 
may wish to  compare hyperexponential and gamma  distri- 
butions as well as to  compare different means  and vari- 
ances  for a  hyperexponential  distribution.  One would like 
to symbolically refer to  such  data elements  as well. Iden- 
tifiers (including parameters) of type  “distribution”  have 
values which are  complete definitions of any probability 
distribution known to RESQ. Similarly, one may wish to 
symbolically refer to scheduling  disciplines.  Identifiers of 
type  “string” have values which are  the names of any 
scheduling disciplines known to RESQ. (We use the term 
“string” because we may generalize this type in the fu- 
ture.) 

Arroys 
We provide arrays in RESQ2 in the sense of programming 
languages. However,  there  are some  subtle  issues  associ- 
ated with arrays in this context with respect to which ele- 
ments are appropriate for such aggregate definition and 
with respect  to how the  arrays may be manipulated. Be- 
fore  trying to  discuss  these  issues, let us consider the mo- 
tivation for  arrays in RESQ. 

The principal motivation, ignoring submodels for  the 
moment, is to allow multiple parallel routing chains.  The 
term “routing  chain” is misleading to  the  extent  that it 
suggests that  the only  distinction  between chains is  in the 
routing.  Actually, different chains  are often used to distin- 
guish between groups of jobs which have essentially  the 
same  routing but differ in other ways. For  example,  one 
may wish to distinguish between interactive users doing 
“trivial”  and “nontrivial”  work, e.g., those doing text 
editing and those  running  a  compiler. The  users doing 
trivial work typically have shorter think  times as well as 
smaller  computational demands than  those doing non- 
trivial work.  These differences are specified in the defini- 
tions of the corresponding nodes of the parallel routing 
chains. If the routing chains  are completely  parallel,  then 
each  queue has one node  from each routing chain.  (In a 
complex  but parallel routing structure, a queue may have 
more  than one node  from each routing chain, but a queue 
has  the  same  number of nodes from each  routing chain.) 
Figure 8 shows the generalization of our example  sub- 
model to allow nchn parallel chains. 

We began our RESQ2 design with a very general array 
provision. While implementing the  translator, we recog- 
nized that the  generality of our provisions led to quite dif- 
ficult problems in providing diagnostics. We then re- 
stricted  our provisions  but believe that we have not signif- 
icantly affected the  expressiveness of the  language. 
RESQ2 allows arrays of numbers, distributions, nodes, 
chains, invocations, and  substitutions. Only arrays of 
numbers may have  more  than one dimension. The restric- 

QUEUE  ARRAYS: ioq(nchn) 
NODE  ARRAYS: ion(nchn;nio) 

QUEUE: do  i=l  to nio: ioq(i) 
TYPE: fcfs 
CLASS: ion(*;i) 
WORK: .04 

TYPE: external 
INPUT: anode(i) 
OUTPUT: rnode(i) 
: anode(i)+cpu(i) 
: do j =  1 to nio: cpu(i)+ion(i;j); prob(i;j) 
: d o   j =  1 to nio: ion(i;j)+cpu(i);  cyclep(i) 
: d o j = l  to nio: ion(i;j)+rnode(i);  I-cyclep(i) 

CHAIN: do  i=l  to nchn:  chn(i) 

Figure 9 Queue array with iterative  definition. 

SUBMODEL: io i*Uo subsystem*i 
NUMERIC  PARAMETERS: nchn 
CHAIN  PARAMETERS: chn(nchn) 
NODE ARRAYS: ion(nchn) 
QUEUE: ioq 
TYPE: fcfs: ion; .04 
CHAIN: chn(*) 

INPUT: n(*) 
OUTPUT:n(*) 
i*no  routing  rules defined within the  submodel*/ 

END OF SUBMODEL IO 
INVOCATION: iosys(nio) 

CHAIN: chn(*) 

INPUT: anode(*) 
OUTPUT: mode(*) 
: anode(*)+cpu(*) 
: cpu(*)+iosys(*).input; prob(*;*) 
: iosys(*).output+cpu(*);  cyclep(*) 
: iosys(*).output+rnode(*); 1-cyclep(*) 

TYPE: external 

TYPE: io: nchn; chn 

TYPE: external 

. . .  

Figure 10 Equivalent  submodel with invocation. 

tions on  our preliminary design include eliminating arrays 
of queues, reducing the  number of dimensions on non- 
numeric arrays, and  eliminating  iterative expressions ex- 
cept in definition of substitutions. 

The basic claims in our redefinition of RESQ2 array fa- 
cilities were that  the RESQ2 user would use arrays  to 
characterize relatively homogeneous  groups of structured 
data, and  for that reason any explicit “DO loop” struc- 
tures could be more appropriately  expressed implicitly. 
As an example,  suppose we wish to  add a parametric 
number of IiO queues  to  our  example submodel.  Figure 9 
shows how this might be done using arrays of queues and 
iterative expressions  and Fig. 10 shows how with an alter- 753 
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nate approach using an array of invocations of a simple 
submodel. We claim that  the  approach of Fig. 10 is much 
clearer, and thus less error-prone, than the  approach of 
Fig. 9. Since nchn and nio might well be parameters  for 
the  entire model, to be supplied when the model is solved, 
we also claim that it is quite difficult for  a translator  to 
give diagnostics for Fig. 9, but it is not so difficult for a 
translator  to give diagnostics for Fig. 10. 

0 Implemrntcrtion 
The  components of the implementation of the first version 
of RESQ may be partitioned  into the user  interfaces  and 
the  solutions. The solutions are implemented entirely in 
PLiI.  There  are  three interface  modes, with each inter- 
face mode implemented in both PL/I and  APL. (We pro- 
vide the interfaces in APL  as well as PL/I  to satisfy users 
who are unwilling to deal with environments other  than 
APL. The  APL interfaces  give the  user  the  appearance 
that  RESQ is implemented in APL only [ 171.) The original 
interface  mode in the first version of RESQ is a set of four 
interactive dialogues for defining, solving, listing, and 
changing a model. Such  dialogues are an effective educa- 
tional  tool. However,  the  constraints of these dialogues 
limit the effectiveness of experienced  users. A simple al- 
ternative  to the  interactive  mode is to allow users direct 
access  to  procedures which define network character- 
istics.  Unfortunately, the procedural mode in the first ver- 
sion of RESQ  requires  considerable  sophistication  and at- 
tention to detail on  the  part of the user. The third  inter- 
face mode in the initial version of RESQ is the “dialogue 
file.” The intent of this  mode is to give the  user a language 
for defining queuing networks and  a processor  for  that 
language, alleviating limitations of the  other  two modes. 
A model definition (a  “program”) in this language is a 
transcript of a dialogue which could huve been  used to 
define the model. (The  RESQ2 language is based  upon 
this dialogue file mode, with upper  case in our  examples 
corresponding to prompts  and  lower case corresponding 
to responses.) Simple modifications to the  interactive 
prompter  for  the model definition dialogue allow its use  as 
a processor  for  the dialogue files. However, though this 
prompter has  excellent error handling characteristics in 
interactive mode,  these  characteristics  are useless in the 
dialogue file mode (;.e., the  prompter may reject an  er- 
roneous reply in interactive  mode and repeat the  corre- 
sponding prompt; in dialogue file mode  there is no reply 
for  the repeated prompt). 

It was our intent that  the implementation of RESQ2  use 
the solution  portions of the previous  version with rela- 
tively minor modifications. Thus  the processing of a 
model in the above language should  result in a model defi- 
nition similar to that  produced by the first version of 
RESQ. Further,  the noninteractive  mode, i x . ,  the dia- 

logue file, is intended to be the principal interface  mode. 
An interactive prompter is provided for education of new 
users; we believe we have  eliminated the need for a pro- 
cedural  interface mode,  as  discussed below. The language 
is designed so that simple parsing techniques, e . g . ,  recur- 
sive descent, may be used. (Recursive descent parsing 
here  has the  advantage  that  much of the translator  can 
also be used for  the  interactive  prompter.)  However,  two 
features  of  the language prevent  the  translator from di- 
rectly  producing the  desired model definition. First,  the 
provision for model parameters  prevents  even knowledge 
of the size of the model (number of nodes,  queues, 
chains,  etc.) before those  parameters  are defined.  Sec- 
ond,  the provision for hierarchical  solutions  (sub- 
stitutions)  means that solution of a model may entail sepa- 
rate solution of many submodels. 

In addition to  the  translator  and  the existing  solution 
portions, we also  implemented  what we call the  “expan- 
sion processor,” which takes  the model definition pro- 
duced by the  translator,  obtains  the model parameters, 
expands the  submodel invocations  and (repeatedly) calls 
upon the solution portions. When the  entire model has 
been solved,  the  expansion  processor provides the re- 
quested performance measures. 

It would be  convenient for  the  user who wishes to con- 
struct pre-  and post-processors  for a model to be able  to 
embed an  entire model definition in a language such as 
PWI. This might be  a much more  convenient approach 
than a procedural  interface. However, this suggests  po- 
tentially difficult problems for  the  translator.  It is our be- 
lief that relatively little communication is required  be- 
tween  pre-  and post-processors and  a model definition, 
that communication of parameters (numeric, distribution, 
and  string) to a model and of performance measures from 
a model is sufficient. Thus we have provided communica- 
tion of such information between  PL/I and  APL  programs 
and the expansion processor. This consists of a few 
simple procedures  and is much  more convenient  for  the 
user than a full procedural  interface. 

Summary 
We have  described the main features of the RESQ2  lan- 
guage for queuing networks.  It is too  early  to  characterize 
user  experiences, but  preliminary  reactions are  quite  en- 
couraging. We fully expect  that RESQ2 will significantly 
simplify performance modeling of computing systems and 
that it  will make feasible  models  which  previously could 
only be conceived. 
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