
N. J. Denil

A Business Language

The paper describes a language and supporting interactive system for use by the small businessman. To help the busi-
nessman-user understand and apply an application program expressed in the language, he can watch the application run
in a single-step mode. If tailoring of the application program is necessary, the system guides the user by diagnosing
inconsistencies in the modijied program. The user controls production processing from the same user interface. In the
jirst part of the paper, the language is described. Next some example user sessions are outlined. Finally the prototype
implementation and some design issues are discussed.

Introduction
This paper describes a language for expressing business
application programs. This unnamed language, which we
call p in this paper, is intended primarily for expression of
relatively low-volume, transaction-oriented applications
encountered in small businesses. The businessman-the
primary user-is to be furnished with p application pro-
grams that perform complete business functions, such as
billing or accounts receivable.

The system intended for this businessman-user must
provide sufficient capability to express all the application
programs expected to be encountered. It must also be
simple, easy to learn, and easy to operate. To meet these
goals, /3 provides a language in which applications are ex-
pressed and also a computer-based supporting system
through which the user views his application programs.

The programming community has been concerned with
developing languages and techniques for making pro-
grams that are better organized and more readable. Im-
provements in program organization and readability
have, in turn, made it possible to improve program func-
tion and to remove defects.

New high-level programming languages not only allow
improved program organization and readability; they also
provide data and program structures closely suited to
their particular problem sets. Examples of general-pur-
pose languages of this type are Pascal [l], Euclid [2] , Al-
phard [3], and CLU [4]. BDL [5] is an example of a special-
ized high-level language.

However, because the end user is not prepared to read
or to understand the programming languages in which ap-
plication programs are expressed, these programs are still
communicated to the end user by text and diagrams sepa-
rate from the program itself. This separate description
causes a number of problems. First, the description is not
always effective in communicating to the user what the
program does and how he may run it. Second, this docu-
mentation is expensive to produce and to maintain. Fi-
nally, familiarity with the use of the program and with its
documentation does not develop in the user that expertise
which would allow him to modify the application pro-
gram. Instead, he must communicate his needs to a pro-
fessional programmer who can perform the modifica-
tions.

Thus, improvements which have been made in the pro-
gram-production process and in programming languages
for use by professional programmers have not been ef-
fective in improving communications between the pro-
gram and the end user. This lack of communicativeness in
programs is further described by Winograd [6].

In this paper, some of the techniques for organizing and
producing programs within the programming community
are applied to the program-to-end-user interface. In the p
language are structured program and data forms, a set of
simple, user-familiar data objects, and strict data access
control. The language is supported by a computing sys-
tem which the user employs to examine, run, and modify
p application programs.

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

732
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

N. J . DENIL IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

p-the language and the supporting interactive com-
puter system-exists as a design and in a running proto-
type system. However, user experience is still required to
determine the extent to which p meets its objectives.

0 System outline
The end user is to be furnished with some completed, run-
ning application programs. He will want to examine them,
run them, and modify them to suit his own requirements.

A system to support the application end user must do
the following:

1 . Communicate what the application software does,
2. Help the user to modify the programs by calling his

attention to inconsistencies caused by his changes,
and

3 . Handle errors resulting from improper data or program
modifications.

These facilities are provided by:

1. The p language. It consists of a small number of
simple, familiar (to the user) notions. The application
programs are expressed in this language.

2. A machine interface through which the user views his
p application program, modifies it, runs it, and exam-
ines or modifies his data.

3. An error checker, which examines each program
change for consistency with the remainder of the pro-
gram, flagging inconsistent items. This makes it pos-
sible for the user who is unfamiliar with the entire ap-
plication program to modify it.

4. An execution and testing environment, wherein error
effects are localized and within which error recovery
is possible.

p and these supporting facilities build upon many no-
tions and facilities in BDL [SI; p provides for the end user
what BDL furnished the application analyst-programmer.
In particular, p uses similar (but different) primitive no-
tions, a different execution rule (describing when and how
individual programs are executed), and a different split-
ting of graphical and textual expressions.

one time: rather, the user "probes" and "questions"
the program at a terminal.

0 p programs require little or no separate documentation.
What commentary is required is embedded in the p pro-
gram. Changes to the p program thus require no corre-
sponding documentation changes.

0 Both the data that p deals with and the processes that
perform operations on that data are represented in two-
dimensional displays.

This paper is organized as follows: First, the /3 notions
are described. Then some details are given concerning /3
program execution and the conditional and iteration facil-
ities. An example user session is sketched; an application
program is examined and run: then it is modified. After
some remarks about p and its implementation, the paper
concludes with a summary. The /3 built-in operators are
listed and briefly described in Appendix A: this provides
an indication of the level of function in the p primitives.

Fundamental notions
The notions in /3 are described informally, using slips of
paper, files containing slips of paper, and processes that
use and produce files as the physical items.

Data
All data are considered to be written indelibly on slips of
paper. A slip of paper may contain one of the following:

A single number: e . g . , $52.11.
A string of characters; e.g. , John Doe.
A collection of numbers, strings, or other sub-
collections.

A collection of numbers, strings, or other subcollections
is called a "record": each subpart of the record has a
location on the slip of paper. Whenever one views that
record, the subpart is placed in that location.

For example,

......................................

John Doe $52.11

The execution error handling strategy embodies some of
......................................

the ideas described by Goodenough [7].

0 p programs
p programs have the following characteristics:

They are hierarchical in nature; each process is small A kind of data is "defined" by specifying what it is-a
and simple. number, or a string, or a collection-and what its format
They are intended to be "examined" and "modified" is. If it is a collection, the definition also specifies the
by use of an interactive facility. p does not appear in a names of each of its constituents. Different kinds of slips
"program listing" form where one sees all the detail at of paper have different names. A name begins with a capi- 733

is a record that contains a string and a number, each lo-
cated in two dimensions as shown.

IBM I. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980 N. J . DENIL

El register

____)
ADDITIONAI.

Figure 1 A fragment of the “New deposit” process.

Figure 2 Expansion of process “New register.”

tal letter: the rest of the name consists of lower case al-
phanumerics and spaces. For example, an Amount might
be defined to contain one single number expressed in a
certain format, say $52.11. Then all slips named Amount
would hold a single number, expressed with at most two
whole digits, two decimal places, and a leading dollar
sign. A “Customer name” kind might contain one string
of characters, where the example string furnished de-
limits the maximum number of characters. A “Bill” kind
might be a record containing a Name and an Amount, as
illustrated by the example record above.

Files
A file is a holder for either a single slip or a sequence of
slips of paper. One might visualize the sequence of papers
as a stack or pile of slips, where new slips are added only
to the bottom (the last in the sequence) and where pro-
cessing is from the top of the pile (the first in the se-
quence).

I The file is either empty or it holds slips of paper: by
I

looking at the file, one can tell which state it is in. More-
over, if it does hold slips of paper, one may examine each

734 of those slips.

Each file has a name which indicates the kind of slips of
paper it may contain. A file named “Amount,” for ex-
ample, may contain only a slip of paper of the Amount
kind.

A file which may hold a sequence of slips of paper has
an ‘‘ ’s” suffix on its name; one without an “ ’s” may not
hold a sequence. Thus “Register’s’’ is the name of a file
that holds a sequence of Register slips of paper; the file
named Amount may hold only one slip.

Processes
Processes use slips of paper from some files and produce
slips of paper which are placed in other files. Figure 1
shows a part of a process which is named “New de-
posit.” In Fig. l , files named “Amount,” “Balance,” and
“Register’s’’ are shown as boxes containing slips of pa-
per. “New register” is a subprocess that uses those files.
(Note that process names are formed in the same way as
file names-using a leading capital, followed by lower
case alphanumerics and spaces.)

Words such as “TEMPORARY,” “SAVED,” and “READ”

are associated with various objects in Fig. 1. These words
are known as “tags”; each furnishes information about
the item with which it is associated.

The “SAVED” tag on the Balance and the Register’s
files indicates that these are permanent files whose values
are to be saved from one execution of New deposit to the
next. The “TEMPORARY” tag on the Amount file indicates
that it may be emptied at the conclusion of New deposit;
it starts out empty each time New deposit is performed.

Arrows connecting the files to the subprocess describe
in general terms what the subprocess is allowed to do.
The “READ” tag on the arrow pointing from the Amount
file to New register indicates that the subprocess reads
the slip of paper in the file, but does not further affect it.
The arrow direction indicates that Amount is an input to
the subprocess.

The “UPDATE” tag on the double-ended arrow con-
necting Balance to New register indicates that the sub-
process may read the slip of paper in the Balance file,
then may remove that slip of paper and replace it with a
new slip. (Recall that values are written indelibly on the
paper-no erasure is allowed. But processes may create
new slips and throw away old ones, as is done here.) Bal-
ance is both an input to and an output from New register.

The “ADDITIONAL” tag on the arrow connecting New
register to the Register’s file indicates that New register
may add new Register slips to those in the Register’s file.

N. I . DENIL IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Because the arrow is directed from the subprocess, the
Register’s file is considered to be an output from New
register.

Each arrow tag delimits the authority do rded the sub-
process New register. For example, it may do no more to
the Amount file than to read it; it may not remove the slip
of paper in Amount. On the other hand, the subprocess
need not use that authority on every invocation. Thus, a
particular invocation of New register need not update the
Balance file, and it need not produce any new Register
slips in the Register’s file.

0 Inside a subprocess
Figure 2 shows the files and subprocesses making up the
New register process. Inside New register, each file box
connected to the process is tagged as an INPUT or an OUT-

PUT. The Balance file shown as updated in New deposit is
treated as two separate files, one an input, the other an
output. Two built-in subprocesses are used in New regis-
ter. Built-in subprocesses have names that are either a
special character such as the ‘‘ + ,” or two or more capital
letters. The + subprocess adds the values on the slips of
paper in its two input files, and produces a slip of paper as
its output. The arrow tags again specify the effect on the
files. In particular, the REMOVE tag on the arrow from Bal-
ance indicates that the slip of paper is removed from the
file. Hence, the input Balance file is emptied by the +
subprocess.

The arrow from + to the output Balance file is tagged
“NEW.” This indicates that the slip of paper resulting
from + is to be placed into the originally empty Balance
file.

The MAKE subprocess produces a record slip of paper
from slips that are its subparts. (For this to be a legitimate
/3 program, the Register record must be defined to con-
sist of Amount and Balance subparts.) MAKE in this in-
stance has its output arrow tagged “NEW”: hence, the re-
sulting Register slip is placed in the originally empty Reg-
ister file.

Built-in processes are special in that they do precisely
what the arrow label says. For example, a REMOVE on a
built-in process empties the file. (Processes, such as EDIT,
REVIEW, or ENTER, which interact with the user are spe-
cial cases in which user actions determine the precise ef-
fects that occur.)

There is one further kind of input arrow tag-CONTROL.
It specifies only that the file must be nonempty before the
process may be invoked. The file is not referred to in the
process expansion at all. CONTROL is used to synchronize

(Amount)

(SAVED) (Register’s)
(Balance)

Figure 3 A fragment of the “New deposit” process of Fig. 1 as
it is actually expressed in p.

(INPUT 1
(Amount)- F- (OUTPUT)- - F j - y - J ? ~ T ;
(INPUT
(Balance)- -

(Balance)

Figure 4 Expansion of process “New register” of Fig. 2 as it is
actually expressed in p.

processes and is of value primarily when parallel opera-
tion of processes is allowed. (Because parallel operation
is not detailed in this paper, no examples using the CON-

TROL tag are presented.)

Actual process expressions
Figures 1 and 2 show stylized versions of the actual p
representations. In the actual representation (designed to
be within the capabilities of a character display device),
files are shown as names enclosed in parentheses. Tags
on files and processes prefix the name: those on the ar-
rows are encoded as follows:

READ--0 symbol
REMOVE-the “-” symbol on the arrow
CONTROL-the “c” symbol on the arrow
NEW--0 symbol
ADDITIONAL-the “+” symbol on the arrow
UPDATE-double-ended arrow

Figures 3 and 4 show the actual representations corre-
sponding to the stylized versions in Figs. 1 and 2 .

To save space on the diagram the TEMPORARY tag is
elided. A file with no tag is therefore considered TEMPO-

RARY. Likewise, as the above encoding suggests, an ar-
row with no tag is considered to be either READ or NEW,
depending on its use.

In the remaining discussion, the notion that a file may
contain a slip of paper or a sequence of such slips is main-
tained. However, to shorten explanations, the term
“value” is used to refer to what a file holds, instead of “a
slip of paper” or “a sequence of slips of paper.” 735

N. J . DENIL IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

User’s
screen 4 Displayer

Keyboard Controller

proccsscs
& liles

Executor

J
Figure 5 p system configuration.

p language and processor details
The user views, executes, and modifies processes and
files using the p system shown in Fig. 5 . The user gives
commands to the controller: the controller dispatches one
or more of the following processes to service that com-
mand.

1. Editor-modifies values or definitions under control of
the user.

2 . Executor-executes p processes.
3. Error checker-analyzes modifications performed by

the editor. Each modification is checked for con-
sistency with the rest of the process and file defini-
tions. It applies ERROR tags to erroneous items.

4. Displayer-shows process expansions or file values to
the user.

Controller commands allow one to select an item, say a
subprocess, from the screen display and then to enter a
command which is to do something to that item. The run
command, for example, would call on the executor to ex-
ecute the selected subprocess.

Process execution
The effects that processes have on input and output files
were described earlier. We consider now the conditions
under which processes are allowed to be executed.

A process is allowed to be executed when it meets the
following “firing rule.”

1 . All input files have values.
2 . All output files having NEW arrow tags are empty.

This firing rule is similar to that used in Petri nets [8]. p
networks can be modeled using Petri nets, but because

1 . p files may hold at most one value, and
2 . Output file states are examined by the firing rule,

736 the Petri net equivalent must contain more nodes than the

p network does. As Petri nets, p networks resemble the
pipeline control model described in [8].

When a p process is executed, its files are mapped into
the process expansion. Then that expansion is executed.
When execution of the expansion terminates, the files are
mapped back from the expansion. Details of this “execu-
tion sequence,” using the example of invoking New regis-
ter in Fig. 1 , are as follows.

1. Values in the input files (named Amount and Balance
in Fig. 1) are copied to the corresponding files tagged
INPUT in the expansion of New register (as in Fig. 2) .

2 . The firing rule is applied to the subprocesses in the
expansion. Each subprocess is examined in sequence
(“sequence” is described below). When a subprocess
meeting that rule is determined, it is executed.

3 . Step 2 is repeated until no more subprocesses may be
executed.

4. Files inside the subprocess are reflected back to the
corresponding files in the invoking process (to those in
Fig. 1) each according to its arrow tag. The following
actions are taken:
a. READ or CONTROL tag-the file is not modified: no

b. ADDITIONAL tag-the sequence in the subprocess
file is added to the existing sequence in the file in
the invoking process.

c. REMOVE or NEW tag-the value of the correspond-
ing subprocess file is substituted for and replaces
the original value in the invoking process file.

d. UPDATE tag-treated the same as a NEW tag. The
subprocess OUTPUT file is substituted back into the
corresponding file in the invoking process.

action is taken.

Each subprocess in a process expansion has a SE-

QUENCE tag which is accompanied by a number value.
This value is the ordinal position in which subprocesses
are examined in step 2 of the above execution sequence.
The SEQUENCE tag value is not of importance unless two
processes are ready to be executed simultaneously. In
that case, the one with the lower sequence number is exe-
cuted.

The above execution sequence is performed when a
process is “run.” The user.would use “run” in his daily
operation to produce Invoice’s.

To see each subprocess before it is performed, the user
may use the “watch” command. When watching a pro-
cess, the above execution sequence is started, and the
process expansion is displayed to the user. Before exe-
cuting each constituent process (as called for in step 2
above), that subprocess is highlighted on the display, and
the processor waits for instructions from the user. The

N. J. DENlL IBM 1. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

user may examine and modify files, or he may control
execution by one of the following command choices:

1 . “go”-execute the subprocess, continuing the execu-
tion sequence in step 2 . If the subprocess is not built
in, its execution will be shown on the display so that
the user can watch its execution.

2 . ”run”-execute the subprocess in normal execution

3 . ”automatic”-stop displaying the subprocess. Execu-
tion continues as if “run” had been said originally in-
stead of “watch.”

4. “back”-terminate execution of the expanded pro-
cess after performing step 4 of the execution se-
quence, mapping the files back to the invoking pro-
cess.

5. “abort”-terminate execution of the expanded pro-
cess. No files are mapped back to the invoking pro-
cess.

mode.

A watched process terminates normally when step 2 of
the execution sequence finds no more subprocesses ready
to be executed.

e Tugs
READ and REMOVE are examples of tags that are complete
in themselves. Other tags, such as SEQUENCE, require a
value. Some others, such as the ERROR tag, may be ac-
companied by a sequence of values. An ERROR tag is
placed on a file, process, or arrow by the p error-checker
when it has determined that that entity is inconsistent
with the rest of the p program. The value of an error tag is
a sequence of one or more strings, each explaining one
error that the processor has determined.

Tags with values are not represented on the process
expansion diagrams. One may see all the tags on an item
by selecting that item and issuing a “show tags” com-
mand. On the resulting display, each tag is shown, along
with its value.

DeJinitions
I t was stated earlier that data kinds are each defined. The
definition of a data kind specifies the type (NUMBER,

STRING, etc.), the location on the page, and the format
which that kind of data will have. There may be many
files holding any certain kind of data: each has the same
name as the kind, yet each is distinct.

A similar notion holds for processes. A process is de-
fined to consist of some collection of files, subprocesses,
and arrows. Many instances of such a process may occur,
each distinct from the other, and each containing its own
private files.

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER lY80

In Fig. 1, for example, the three files are a part of this
particular instance of New deposit. If we were to have a
different occurrence of New deposit, it would have a sep-
arate, distinct set of files whose values are unrelated to
those in the first occurrence of New deposit.

Adjectives
Adjectives have the same form as names (a capital letter
followed by lower case letters and blanks): they precede
the kind name. Adjectives are required to distinguish be-
tween record subparts of the same kind. In an Invoice, for
example, there may be three different “Amount” sub-
parts labeled “Total Amount,” “Tax Amount,” and
“Current Amount.” Each is of the Amount kind. MAKE

and BREAK processes for the Invoice record would use
“Total Amount,” “Tax Amount,” and “Current
Amount” as inputs and outputs, respectively.

The spatial discrimination apparent on a process ex-
pansion suffices for the p processor to distinguish files.
However, adjectives may be used to help the user to dis-
tinguish lexically and to associate semantics with files. In
Fig. 2 , for example, we might distinguish the Balance files
by calling the leftmost one “Original Balance” and the
rightmost one “New Balance,” using “Original” and
“New” as adjectives. Both files function exactly as be-
fore: the adjectives are not used in the process to expan-
sion file matching.

Matching a process to its expansion
Input files in a process invocation are matched to the files
tagged INPUT in its expansion by matching file kinds. The
same holds true for the output files. But if there are two or
more files of the same kind in the input, an additional cri-
terion must be used.

The input arrows on each process are considered to be
organized into a sequence: the ordinal position of each
arrow is given as the value of its SEQUENCE tag. Likewise
the ordinal position of each input file in the process ex-
pansion is given by the value of the SEQUENCE tag on each
input file. Ambiguity in file kind matching is resolved by
using these ordinal positions: the first of a number of one
file kind in the invoking process is matched to the first of
those of that kind in the expansion, and so on.

Constraints on subprocess arrangements
The execution sequence outlined earlier could cause
some subprocesses, say one with no inputs or outputs, to
be executed repeatedly. To prevent looping of the pro-
cess executor, at least one of the following must hold for
each subprocess:

1 . The subprocess has an input arrow tagged REMOVE.

LizJL+ J
Figure 6 Parallel “Order entry” processes.

2. The subprocess has an output arrow tagged NEW.
3. The subprocess has a SINGLE tag. This tag specifies

that the subprocess may be executed but once per exe-
cution of the containing process.

4. The subprocess is one of the built-in interactive pro-

processes, the user may enter the “nomore” com-
mand. This removes the process from further execu-
tion consideration for the duration of execution of the
containing process.

CeSSeS-DISPLAY, ENTER, EDIT, or REVIEW. In these

The error-checker in the p processor examines each sub-
process for the above criteria: it tags as erroneous any
subprocess that does not meet at least one of them.

Error handling
Errors may occur at execution time. When a subprocess
encounters an error, execution of that subprocess is inter-
rupted. The containing process expansion is displayed on
the screen along with a diagnostic message: then the pro-
cess waits for a user command. Files in the displayed pro-
cess contain the same values as when execution of the
subprocess giving rise to the error began.

The user may modify files, abort, go back to the pro-
cess that invoked the one displayed, or merely run the
subprocess again. (Because saved files in the subprocess
having the error are not restored to their original values,
another execution attempt may be effective.)

An IFERROR tag on a subprocess can specify actions for
the processor to perform after an error occurs. The IFER-

738 ROR tag has a string value which consists of controller

might consist, for example, of a series of N “back” com-
mands, followed by a command to “run” some named
process. This would cause execution of the named pro-
cess in a process “back” N levels.

The guarantees that p seeks to provide are these:

1. All errors can be explained using p terms and notions.
2. No error short of hardware failure may cause the p

file-arrow-process environment to be abandoned.
3. The user may abort a process at any time. In particu-

lar, he may abort after an error has occurred. The only
effect is that modifications made to SAVED files in the
aborted process remain. They cannot be backed out.

0 Parallelism
Subprocesses may be allowed to be executed in parallel.
This is particularly useful in multiple workstation envi-
ronments, where, for example, the situation calls for a
number of distinct Order entry processes to be executed
simultaneously, each communicating with a different dis-
play terminal. Figure 6 shows an example using three
such processes, all contributing Order’s to one file.

The PARALLEL tag applied to a process definition in-
dicates that its subprocesses are to be executed in paral-
lel. (Such a tag would be applied to the process whose
expansion is shown in Fig. 6.) Detailed description of par-
allel operation is beyond the scope of this paper. We note,
however, that the execution sequence must be revised to
preclude simultaneous use of files which are to be modi-
fied.

Calculating expressions
When calculations involving more than a single operation
are to be performed, treating each operator as a separate
subprocess in the process graph (as was done with + in
Fig. 2) causes that graph to expand.

An alternate method for calculations uses the built-in
process “CALC,” tagged by a CALCULATION whose value
is the expression to be evaluated. Suppose, for example,
that we have the process shown in Fig. 7. It produces file
D given the files A, B, and C. File Temp is used to hold the
result of the first operation. Each of these files is defined
to be a NUMBER file.

This same process can be expressed in a tag:

CALCULATION A + B * C GIVES D

This tag applied to a CALC process makes it equivalent to
the process whose expansion is shown in Fig. 7.

N . J . DENlL IBM J . RES. DEVELOP. VOL. 24 0 NO. 6 0 NOVEMBER I980

Some characteristics of the expression used as the
value of the CALCULATION tag are

1 . Expressions are evaluated left-to-right, with no prece-

2. Parentheses may be used to create intermediate files
that are results of subexpressions.

3. The rightmost operator in the expression must be the
built-in GIVES; the file given on its right side specifies
the name of the output file which is to receive the
value generated by its left side.

dence.

(See the Remarks section for a discussion of a possible
alternate way of expressing tag values.)

Figure 8 A sequence of processes.

I I

Conditionals
Much of the program logic normally performed by condi-
tionals is accomplished in p by the process firing logic.
However, the firing logic does not handle the class of con-
ditionals that deals with value comparisons.

The CALC built in and the CALCULATION tag provide a
multi-way conditional. Suppose, for example, that a pro-
cess is to produce a value in file x if A = B , and a value in
file Y otherwise. One may use a CALC process tagged with

CALCULATION
A = B THEN 1 GIVES X,

‘‘yes” THEN 1 GIVES Y

As shown in this example, the CALCULATION tag has a
value which is a sequence of expressions. These ex-
pressions are to be evaluated in sequence; if an ex-
pression produces an output, evaluation stops. Each ex-
pression in the example uses a THEN; the THEN operator
evaluates its right side if and only if its left side has the
value “yes.” Otherwise it produces no value. Thus, in
the example, if the value in file A does equal the value in
file B, file x is assigned the value 1. The CALC process
produces file X as its output. Otherwise Y is produced.

The example above has but two alternatives; any num-
ber may be used. Each is made a member of the CALCU-

LATION value sequence.

Iteration
If one wants to perform a certain process on each member
of a file sequence, he may accomplish it by performing a
sequence of such processes on the entire file. Say, for
example, that one wants to increment each number in a
file of numbers named X’S. The process labeled “ f ’ s ” in
Fig. 8 stands for a sequence of processes labeled “+.”
Figure 8 may be considered to be a shorthand for the
schematic process shown in Fig. 9.

IBM I. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

L - (X i r n j (X 4 ’

Figure 9 Expanded equivalent of Fig. 8.

In Fig. 9, BREAK decomposes the file X’s into member
files x, as many x records as there are in the sequence. A
+ process is performed on each x and on the same 1.
Then the resultant X files are combined into the rightmost
x’s file using the MAKE subprocess. The proper ordering
of constituent x files is preserved in the BREAK and the
MAKE processes.

Sequences of user-defined processes may also be in-
voked. Suppose that a process named Pay bill is defined
to use a Bill as an input and to produce a Register file
output. To do the processing on a file of Bill’s and pro-
duce a file of Register’s, one invokes the sequence of pro-
cesses Pay bill’s.

Precisely which files must be iterated when performing
such a sequence of processes is determined by comparing
the count of the “ ’s” on each file in the process sequence
invocation with those on the corresponding files in the
process definition. Files with matching “ ’s” counts enter
into each of the processes to be performed. The iteration
is driven by the “inner product” of the input files having a
greater ‘‘ ’s” count on the invocation than on the defini-
tion.

Using the above definition-invocation “ ’s” count
matching rule, one might use a sequence of GIVES pro-
cesses to obtain the first member of a sequence. Figure 10
shows the process sequence; Fig. 11 shows the schematic
expansion. Thus only the first GIVES in the expansion in
Fig. 1 1 will ever execute (the remaining ones will not exe-

Figure 10 A process sequence producing the first value in the
X’s file.

Figure 11 Expanded equivalent of Fig. 10.

EDITING definition o f PROCESS Top
Showlngdefinition

{Balenc

MSG

Figure 12 Examining a Top-level process.

attributes or values of some constituent) is being dis-
played. Toward the bottom of the screen is an area
headed “MSG”; this is where the processor places mes-
sages.

Based only on interpretation of the ,8 notation, Fig. 12
may be paraphrased as

“Accounts payable” is a process that updates the
value in the “Balance” file and produces additional
values in the “Register’s’’ file. No other files are af-
fected by Accounts payable.

Highlighting the outlines of the files Balance and Regis-
ter’s in Fig. 12 indicates that these files have values. Simi-
larly, highlighting the outline of the subprocess Accounts
payable indicates that it is ready-to-run. In Fig. 12, high-
lighting is indicated by shading, whereas on a display,
brightening or reverse imaging is used.

As the user types commands, e .g . , “go,” “run,” or
“watch,” at the terminal, command text appears in a
command line which is located below the area labeled
“MSG” in Fig. 12. When the user presses the “enter”
key, the command is executed and the command text dis-
appears. Figure 12 and subsequent figures show only the
displays resulting from command execution. The com-
mands themselves are not shown.

0 Exumining the top level process
Upon seeing Fig. 12, we may require further explanation
as to what the Register’s file is all about or what Accounts
payable is supposed to do. The tell facility is used to find
out.

If we select a file or process and then enter the com-

cute because the output file is not empty). Hence, the out-
put x will always take on the value of the first member of
X’S. (A better way to obtain the first member of a se-
quence is to use the FIRST built-in process. FIRST is de-
scribed in Appendix A along with the other built-in /3 pro-
cesses.)

mand “tell,” textual information associated with that
item is displayed in the screen message area (the one la-
beled “MSG” in Fig. 12). The textual information dis-
played is actually the value of the TELL tag attached to the
item selected. If we were to select the Register’s file, for
example, and enter the command “tell,” the following
text would appear in the message area:

An example user session
Let us examine an example application, viewing it as a
user would see it. We suppose now that the p application
has been handed to us for our perusal and use.

Figure 12 shows the p expression of the top-level pro-
cess in a simple Accounts payable application as it ap-
pears to the user on the display screen. The screen is

740 headed by a line stating that we are editing the definition

This file contains one Register for each Deposit that
has been made and for each Check that has been
written. Register’s are kept in order of their creation.

The facility to attach TELL tags to any file or process in
the definition provides a means for attaching documenta-
tion which is keyed to the particular occurrence of the file
or process in that definition. Because the definition itself
may have a TELL tag, it too may be documented.

N. J . DENIL IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

. ,
DATA ENTERING in Accounts payable
Showing value of Deposit

Date
000000

Amount
$0.00

MSG You may enter :I Dcpos~t Into the hystem:
--Chnnpc the one)(XI hce di\played.
--To enter it into thc cystcm, press PF2.
I f you don’t v.ant to enter a Deposit, press PF3

Figure 16 Invitation to enter a Deposit.

/

DATA ENTERING in Accounts payable
Show,ing value of Deposit

Date
081079

Amount
‘5100.00

MSG You may enter :I Deporlt Into the \).stem:
--Change the one >OLI \ee displayed.
--Toenterit intt, the \ptcm. press PF2.
I f you don’t want to cnter a Dcposit, press PF3

Figure 17 After changing the values on Deposit.

DATA ENTERING in Bill paying
Showing value of Original Bill

000000 $0.00

MSG You may enter Bill’s into the system.
--Change the Bill you see, then press PF2 to enter

--When you have entered all the Bill’s you want
it into the system.

to, press PF 1.
\

742 Figure 18 An invitation to enter a Bill.

N. J . OENIL

If we examine the Register’s file, we find that a new
Register has been created; this Register corresponds to
the Deposit we just made. We also find that the value in
the Balance file has increased by the Deposit amount.

We have been rather blind in this execution: we did not
know what would happen next. Let us try it again, only
this time we will “watch” every step that takes place.

0 Watching the upplication
To watch Accounts payable run, we select that process
on the display and enter the command “watch.” We see
the display in Fig. 19: it shows us the files and sub-
processes making up Accounts payable. The message
says that Deposit entry is about to be run by the pro-
cessor. If we enter the command “go” to the processor, it
allows us to watch the operation of Deposit entry.

In Fig. 19, the Balance file is identified as both an INPUT
and an OUTPUT. Register’s is identified as an OUTPUT.
These identifications agree with uses of those files in Fig.
12. A file named Paid Bill’s that we had not seen before
is shown as the output of Bill paying. If we ask about Paid
Bill’s via “tell,” the description confirms, as its name
suggests, that this is a file of Bill’s that have had checks
issued and hence have been paid.

Paid Bill’s is a file internal to Accounts payable. The
SAVED tag indicates that its value is retained from one
invocation of Accounts payable to another. This file is not
known outside of Accounts payable. If the invoking pro-
cess, Top in Fig. 12, were to require access to Paid Bill’s,
it would be necessary to modify the program so that Paid
Bill’s would appear in the definition of Top as a SAVED file
which is an output from Accounts payable.

When viewing Fig. 19 in the watch mode, we may ex-
amine or change file values. (If the application had speci-
fied a NODISPLAY or a NOMODIFY tag on any file, we would
not be able to perform that respective operation.) The
choices listed earlier in the “Process execution” section,
namely, “go,” “run,” “automatic,” “back,” or “abort”
apply here.

We choose to continue watching by entering the com-
mand “go.” This causes Fig. 20 to appear. It shows us
the detail of Deposit entry; the subprocess ENTER is about
to be run.

If we enter the command “go” to the display of Fig. 20,
Fig. 16 is shown to us. This display is produced by the
ENTER process. ENTER is a built-in p process that invites
the user to enter a new value into its output file; it is
merely performed without further ado. After we enter a

1BM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Deposit as instructed, Fig. 21 is shown to us. Here the
processor is about to run the process “Makereg.”

ENTER is not ready to be executed again because De-
posit is a NEW output file that has a value. But Makereg
now has the necessary Deposit input file, so it is ready.

If we continue by entering the command “go” again,
we see the detail of Makereg, as shown in Fig. 22.

In Fig. 22, we see that the Deposit value is used to
create a new Register. In detail, as we would observe af-
ter entering each of a succession of “go” commands, the
input Deposit is broken into its Date and Amount sub-
parts. Then the Amount is added to the input Balance val-
ue to produce an output Balance. Finally, a Register is
made from the Balance, Amount, Date, Name, and Num-
ber subparts. The Name and Number files are internal to
process Makereg; they are SAVED files. The values in
those files are to be used for each Register produced in
Makereg. If we were to examine the value of Name, we
would find that it contains the string “Deposit,” which
earlier we saw appeared on those Registers resulting from
Deposits.

When execution of subprocess MAKE has been com-
pleted, the message

No more subprocesses are ready-to-run; ready to go
back.

appears. A “go” shows Deposit entry (see Fig. 21) with
the same message. Finally we would see the display as
shown in Fig. 19, only with the Register’s file highlighted
and Bill paying about to be run.

Modifying the application
We can change anything in the application program; fol-
lowing are some samples:

1. Change a file format-say, to increase the number of
significant digits in the Balance file. To do this, we ex-
tend the example number in the Balance definition to
have more digits.

2. Change the message that invites the user to enter a
Deposit. (This is the message shown in Fig. 16.) This
message is the value of the MESSAGE tag on that spe-
cific ENTER subprocess (as shown in Fig. 20); we
merely change the value of that tag to be whatever we
want displayed.

3. Rework the Deposit entry process definition (see Fig.
20) so that the program can accept more than one De-
posit at a time. We would change the Deposit file to
“Deposit’s.’’ To test this sequence of Deposit’s, we
would change “Makereg” to Makereg’s.”

IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

.
WATCHING in Accounts payable
Showing contents of Accounts payable

+“(OUTPUT) +A Register’s)

++Paid)
$Bill‘s 1
&SAVED)

MSG Ready to run subprocess Deposit entry

1

Figure 19 After asking to “watch” Accounts payable.

WATCHING in Deposit entry
Showing contents of Deposit entry

m (D e p o s i z G + (O U T P U T) (Register’s)

(INPUT

MSG Ready to run subprocess ENTER

\ /

Figure 20 Now inside Deposit entry.

(OUTPUT)
(Rcgistcr’s)

(OUTPUT)
(Balance i

MSG Ready to run subprocess Makereg

Figure 21 The ENTER subprocess has produced a Deposit.

F

WATCHING in Makereg
Showing contents of Makereg

(SAVED)

(INPUT) (SAVED ’ OUTPUT 1
[Deposit) (Number)

Amount

MSG Ready to run subprocess BREAK

Figure 22 Having begun Makereg.

EDITING definition of PROCESS Makereg
Showing definition

(SAVED)

(Register)

MSG

Figure 23 The modified Makereg process.

Suppose we want to change the Deposit record defini-
tion to eliminate the Date subpart. (The application will
have to use the date that the Deposit is entered into the
system as the deposit date.) To accomplish this, we select
the name “Deposit” and enter the command “edit-
definition.” On the resulting display of the Deposit defini-
tion, we delete the Date subpart.

The error checker will object; it will tag the BREAK sub-
process in Makereg (shown in Fig. 22) with an ERROR tag
whose value is

This BREAK produces a Date subpart which is not in
Deposit.
Suggest you remove the output Date.

We may eliminate Date as an output of BREAK; then we
744 must produce that file as the output of some process. Sup-

pose we produce the Date file as the output of the built-in
TODAY process; we add the appropriate process and ar-
row to Makereg as shown in Fig. 23. This will satisfy the
error checker; no more error tags will appear.

We may now test our modifications to Makereg by per-
forming any of the following:

1. Watch Accounts payable from Top (Fig. 12), using the
real application data.

2. Watch from the definition of an intermediate process
such as Deposit entry (Fig. 21), which invokes Make-
reg. We would give a value to the Deposit and Balance
files. Then we would select and watch Makereg.

3. Single-step the Makereg definition. To do this, we
would give values to each of the INPUT files in Fig. 23,
and then select and run each process individually.

The latter two methods do not use the application data
files. This is because p recognizes the environment from
which a process is invoked and keeps separate files for
each environment. Suppose, for example, that a sub-
process has a file, F, which has a SAVED tag. If two pro-
cesses, x and Y, each invoke that subprocess, p keeps
separate F files, one associated with the invocation from
X, and the other with the invocation from Y. Thus, if we
execute Makereg from its definition environment or from
the environment of the definition of Deposit entry (both of
which differ from the Top environment), then we may be
assured that nothing in that execution can affect any files
in the normal Top environment.

In summary, when we modified this application, the er-
ror checker led us to produce a consistent program. Then
we outlined some possible tests for our modifications to
see if the programs perform as we expected. The watch
and run that we could invoke on the process definition do
not use or affect the files belonging to Top or to Accounts
payable-j3 allows us to test our modifications indepen-
dently of the real files.

User session summary
In this example user session, we have explored an unfa-
miliar application program. We saw that we could ask
what each of the files was supposed to do and that we
could look at values in the files.

We chose to run Accounts payable to see what it would
do; then, to examine its operation more closely, we
watched it run. The watch showed us each subprocess as
it was about to be invoked. At each step in the execution,
we could inspect the files, modify them, or ask for de-
scriptions of the individual files and processes.

N. J. DENIL IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Then we outlined a modification. The error checker
pointed out that the change we made in the Deposit rec-
ord definition caused an inconsistency with a process def-
inition. We remedied the problem; we were then ready to
test the modification by watching the changed program
run.

Remarks
A /3 prototype was written in L I S P / ~ ~ O [9]; it runs on an
IBM VW370 system. The prototype contains the facilities
shown in Fig. 5-the controller, editor, executor, dis-
player, and error checker.

The complete Accounts payable program, a fragment
of which is shown in Figs. 12 to 2 2 , was produced in its
entirety in the prototype. In addition, parts of some other
applications were produced and demonstrated.

/3 language objects were chosen so that they corre-
spond to physical objects familiar to the user-slips of
paper and processes on those slips. An effort was made in
the language design to let the simplicity of the file and
process relationships be apparent to the user. The tag
mechanism allows specification of all necessary ex-
ceptional detail in a way intended not to interfere with
that simplicity. Single word tags are encoded on the pro-
cess diagrams. Tags with values provide most of the real
detail in their value expressions; they are kept hidden un-
til the user explicitly asks to see them. Then they are pre-
sented in an orderly fashion; the user may see and modify
any or all tags on any one item at a time.

In the original P design, all processes were allowed to
operate in parallel, as is the case with normal “data-flow”
systems [IO]. In using /3 to write applications, however, it
was found that additional files were introduced merely to
provide sequencing. Because (a) many processes are sim-
pler if parallel operation is not allowed, and (b) users did
not appear to be bothered by the sequencing notion, it
was decided to presume sequential execution. Hence SE-

QUENCE tag values are used to decide which of two appar-
ently simultaneous subprocesses is selected for execu-
tion. Parallel operation-indicated by the presence of the
PARALLEL tag-is reserved for only those processes
where it is necessary.

We have not described how new /3 programs are con-
structed. This is important to the professional program-
mer who is to produce the application programs origi-
nally. How subparts are located and how arrows are
routed in definitions are obvious concerns in specifying
new programs. But it turns out that the editor handles
both these concerns already. When a definition is modi-
fied by having a new subprocess or subpart added, the

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

editor places it in an available space; the user may move it
to where he wants. He does this by using commands
”up,” “down,” “left,” or “right” along with the number
of spaces to move. The user constructs a new arrow by
giving the “arrow” command; then he selects in turn the
file or process on the “from” end and the “to” end. The
editor contains a relatively simple arrow routing process
that decides on the vertical and horizontal order in which
to display arrows. Leaders (busses) are constructed as
needed to extend file and process delimiters in the vertical
direction. As files and processes are moved, then, the ar-
rows are reordered and rerouted by the editor.

Tag values form a sublanguage. These values, as shown
in the CALCULATION tag examples given earlier, consist of
expressions which apply /3 built-in processes to P files.
The left-to-right evaluation rule allows /3 networks to be
expressed linearly.

In place of this new sublanguage, BASIC [111 or some
similar existing language could have been substituted.
Using BASIC expressions and BASIC programs as tag val-
ues would have allowed BASIC program fragments and
BASIC programs, respectively, to be invoked as primitive
p processes. The only requirement would have been to
define a clear mapping between P files and BASIC data.

Though it was attractive, the BASIC sublanguage was
not used in the prototype. The P-compatible tag value lan-
guage was chosen for the prototype so that entire appli-
cations could be expressed in P. It was felt that the signifi-
cant challenge was to the capabilities of /3 as a stand-alone
means of application expression, and that a BASIC sub-
language facility could be added later.

Summary
The /3 system consists of a file- and process-oriented lan-
guage plus a processor used to examine, modify, and exe-
cute programs expressed in that language. The system
adapts techniques developed for communication among
professional programmers to the particular problem of
communicating business applications to the end user.

The application end user is to be furnished with appli-
cation programs written in the /3 language. With the /3 pro-
cessor, the user examines the applications and modifies,
tests, and runs them. In all of this, his communication is
always in /3 terms. Even when errors occur in executing,
the user is still able to recover and to proceed without
leaving the /3 environment.

Appendix A: p built-in operators
/3 built-in operators are listed below. These built-in oper-
ators were necessary for the example programs used dur-

ing p development. The list may be extended to include
additional ones of the sort provided in conventional pro-
gramming languages, e . g . , an operator to deliver the max-
imum value in a sequence.

Arithmetic processes: +, - , *, /, REMAINDER, and EX-

Comparison processes: = , <, > , < = , > = , < >. These
produce a STRING “yes” or “no” output file value.
Logical processes: AND, OR, and NOT that operate on
STRING “yes” and “non-yes” values.
Interactive processes: DISPLAY, REVIEW, and EDIT.
Each shows its input file to the user. REVIEW lets the
user select and copy the input file values to the output
file; EDIT lets him copy and change the values before
placing them in the output file.
Interactive process: ENTER. It is a source of file values;
it shows the user a blank datum (where NUMBER sub-
parts have zero values and string subparts have values
which are strings of underlined characters). The user
can EDIT this blank datum and place it in the output file.
SUBFILE and SORT require sequences as input and out-
put files. SUBFILE produces those members on which
the expression value of the WITH tag evaluates to
“yes.” SORT produces a file in which the members are
arranged in ascending order of the expression value of
the BY tag.
MAKE and BREAK processes are used with a RECORD file
to compose it from and decompose it into its subparts.
GIVES is the fundamental value mapping process; it cop-
ies the input file value into the output file.
CALC is used to specify a calculation. See the sections
“Calculating expressions” and “Conditionals.”
COUNT gives the cardinality of the sequence in the input
file.

0 SUM delivers the sum of the values in the input file se-

FIRST and LAST produce the first and last values, respec-

0 TODAY produces the value of the data which are kept in

PONENT.

quence.

tively, of the input file sequence.

a system file.

Acknowledgments
The author acknowledges the assistance afforded by P. R.
Kosinski of the IBM Research Division for his construc-
tive criticism of the design of /3 and, most important, for
his help in producing the prototype system. Others in
IBM Research who contributed through discussions and
support include A. K. Chandra, V. J . Kruskal, and I.
Wladawsky. Support from IBM General Systems Divi-
sion, in particular from H. D. Wyngarden, W. E. Frey,
and B. W. Landeck, made the project possible. The thor-
ough and careful work of the referees is much appreci-
ated.

References
1 . K. Jensen and N. Wirth, PASCAL User Manual and Report,

2nd Ed., Springer-Verlag, New York, 1974.
2. B. W. Lampson, J. J. Homing, R. L. London, J . G. Mitch-

ell, and G. L. Popek, “Report on the Programming Lan-
guage Euclid,” ACM Sigplan Notices 12, 2 (1977).

3. M. Shaw, W. A. Wulf, and R. L. London, “Abstraction and
Verification in Alphard: Defining and Specifying Iteration
and Generators,” Commun. ACM 20, 553-564 (1977).

4. B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, “Ab-

576 (1977).
straction Mechanisms in CLU,” Commun. ACM 20, 564-

5 . M. Hammer, W. G. Howe, V. J . Kruskal, and I. Wla-
dawsky, “A Very High Level Programming Language For
Data Processing Applications,” Commun. ACM 20,832-840
(1977).

6. T. Winograd, “Beyond Programming Languages,” Com-
mun. ACM 22, 391-401 (1979).

7. J . B. Goodenough, “Exception Handling: Issues and a Pro-
posed Notation,” Commun. ACM 18, 683-696 (1975).

8. J . L. Peterson, “Petri Nets,” ACM Comput. Surv. 9, 223-
252 (1977).

9. LISP1370 Program DescriptioniOperations Manual, Order
No. SH20-2076-0, available through the local IBM branch
office.

10. R. E. Bryant and J. B. Dennis, “Concurrent Programming,”
Research Directions in Software Technology, P. Wegner,
Ed., MIT Press, Cambridge, MA, 1979, pp. 584-610.

11. J . G . Kemeny and T. E. Kurtz, BASIC, Sixth Edition,
Dartmouth College Computing Center, Hanover, NH, 1974.

Received Junuury 24, 1980; revised June 18, 1980

The uuthor is located ut the IBM General Systems Divi-
sion Laboratory, P .O. Box2150, Atlanta, Georgiu 30301.

746

1 N. J. DENIL 1BM I. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

