716

J. M. Lafuente

Some Techniques for Compile-Time Analysis of User-

Computer Interactions

Compile-time techniques for analyzing user-computer interactions and the relationships and dependencies among items

of data that exist during the execution of interactive application programs are presented. These techniques are useful in
constructing efficient compilers for lunguages in which such interactions and data item relationships and dependencies
are described by nonprocedural statements. The practical value of using nonprocedural descriptions is that they ease the

task of the application programmer.

1. Introduction

The purpose of this paper is to describe techniques for
analyzing programming language statements that specify
interactions to take place between the user and the com-
puter during the execution of an application program. The
kinds of application programs that we have in mind in-
clude computer-aided instruction (CAI) systems and in-
teractive data base systems, such as may be used by
banks or airlines. During execution of a typical inter-
active application program, a user sits at a display termi-
nal, where text is presented. The user types values, an-
swers questions, or pushes buttons. Based on these ac-
tions, the system checks inputs for validity and
consistency and responds appropriately to the user. The
response may involve requesting additional values,
changing the format and content of the information being
displayed, or invoking a computational procedure. In any
event, after the system provides its response, the user
may then key in new values or push additional buttons,
and the user-computer dialogue continues until termi-
nated by one of a number of prespecified conditions.

Some interactive systems provide a language for for-
matting frames of information and for specifying simple
interactions (e.g., which frame is to be displayed next,
depending on whether the user’s answer to a question is
“‘yes”” or ‘'no,”’ when an error message is to be dis-
played, etc.). More complex interactions, however, can-
not usually be specified with these languages, and their

programming requires substantial effort on the part of the

application programmer. Many of these languages and ex-
amples of how they can be used for programming user-
computer interactions are described by Martin [1].

In order to simplify the task of the application program-
mer, programming languages to be used for developing
interactive applications should allow the nonprocedural
description of interactive behavior rules. This is the case,
for example, in data type extensions to PASCAL described
in [2] and in an extension to COBOL reported in [3].

The designer of a compiler for a language containing
interactive behavior rules faces a new set of problems.
First, an internal representation of the rules is needed.
This internal mechanism may be constructed as the rules
are parsed or in a subsequent phase of the compilation
process. Second, the compiler must contain an analysis
procedure to verify that the rules are consistent and pos-
sibly to eliminate rules that are superfluous. Third, since
the programmer need not be concerned with the order in
which the rules are tested or executed, the compiler has
the task of determining, when relevant, the order of exe-
cution.

The compile-time analysis techniques described in this
paper are the following:

1. A directed graph—called the action/response (A/R)
graph—is defined as the mechanism for representing

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

1. M. LAFUENTE

IBM J. RES. DEVELOQP. ¢,VOL. 24 ¢,NO. 6 s, NOVEMBER 1980

relationships between user actions and system re-
sponses as well as for representing constraints and de-
pendencies among items of data.

2. An algorithm is given to analyze the A/R graph, and
thus the behavior rules, for consistency.

3. The use of a parameterized decision table is suggested
as one way to implement the analysis algorithm effi-
ciently.

4. For those rules for which the order of processing is
important, the rules are represented by a dependency
graph, and a simple algorithm is given for determining
the order in which the rules are to be processed at run
time.

The techniques described in this paper are intended to
apply to a variety of nonprocedural languages. We do not
imply that these languages must be totally nonprocedural.
For our purposes, we also regard as a language the non-
procedural statements of a general purpose programming
language or the portion of a complex interactive system
that deals with the description of the user-computer inter-
face. For illustration purposes we have taken examples
from the language extension described in [2]. A complete
language using all of these techniques has not been imple-
mented. However, the algorithms given in the paper have
been separately implemented.

We begin with an example in order to give the reader an
idea of the kind of nonprocedural specifications that the
application programmer has to deal with. This is followed
in Section 3 by a development of the concepts, terminol-
ogy, and internal mechanisms used. Compile-time analy-
sis techniques are then described in Sections 4-6. Section
7 deals with a more specific topic: the analysis of rules
used to express conditions under which the value and
properties of a variable should be changed by the system
during execution of the user-computer dialogue.

2. Use of behavior rules for describing interactions
A behavior rule is either a Boolean expression that de-
scribes a constraint on data items and their values (e.g.,
whether or not the user must select one or more options
from the item), or it is a statement that expresses the con-
ditions under which an error should be reported, a value
should be changed by the system, the text being displayed
should be changed, the user-computer dialogue is to ter-
minate, etc. Behavior rules are defined more extensively
in [2]. Here we simply give an example to illustrate the
kinds of rules that we have in mind.

Consider the data items shown in Fig. 1 (reproduced
from [2]), which represents a typical frame as the user
might see it on a display screen. On the left are shown
key-in items , that is, items for which the user must supply

IBM 1. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 6 ®« NOVEMBER 1980

BANK OF NEW YORK
NEW ACCOUNT

Enter information. Hit ENTER when done.
NAME:
SEL. SERVICE NO.: SEX: *MALE

*FEMALE

NO. CHILDREN:
SALARY:
SPOUSE’S SALARY:

STATUS: *SINGLE
*MARRIED

Figure 1 A typical frame.

a value. On the right are two menu items, each containing
two options. The user must select either *MALE or *FE-
MALE and either *SINGLE or *MARRIED. When all the re-
quested information has been supplied, the user must
depress the ENTER key on the keyboard. The ENTER key
is regarded as a special kind of item, called an attention
tem.

To control the kind of dialogue that is to take place be-
tween the user and the system, the application program-
mer may wish to specify constraints and relations on the
items shown in Fig. 1.

1. (Requirement) At least one option must be selected
from sex; a value must be entered for salary.

2. (Limit) At most one option can be selected from status
and sex.

3. (Requirement) no. children must have a nonnegative
value (which is disregarded unless the user is mar-
ried).

4. (Requirement) If the user is male, then a value must be
entered for sel. service no.

5. (Exclusion) If the user is female, then a value should
not be entered for sel. service no.

6. (Requirement) Spouse’s salary is required if the user is
married and salary is less than $15 000.

7. (Termination) The given information is to be pro-
cessed when the ENTER key is depressed.

To express these constraints and relations, behavior
rules may be specified as statements in the programming
language as follows:

require sex, salary;

allow only 1 option from sex:

allow only 1 option from szatus:
require nchild = 0 if MARRIED selected ;
require sel-ser if MALE selected;
exclude sel-ser if FEMALE selected;

77

J. M. LAFUENTE

718

1

action 1

3
AND response 1

S

action 2

Figure 2 A simple effect graph.

enter p/ if A selected;
enter p2 if A selected and any of (A2,B2) selected;
allow only 2 options from B;

require C

Figure 3 A simple example of behavior rules.

require spsalary if MARRIED selected and salary < 15000;
terminate if ENT-KEY;

The last rule indicates that the dialogue is to terminate
when the user depresses the ENTER key, provided there
are no errors. If a rule has been violated, however, an
error message is given to the user and the dialogue is not
terminated.

3. Internal representation

In general, user-computer interactions are determined by
relationships between user actions and system responses.
By a user action we mean a terminal operator’s action,
usually recognized by the system via an interrupt. Ac-
tions include pushing a button, entering a value into a
key-in item, and selecting an option of a menu item. A
response is an operation or service performed by the sys-
tem as a result of one or more actions, usually producing
some indication to the terminal user, such as a change in
the display, an error message, the lighting of an indicator,
or the ringing of a bell.

In order to relate user actions to system responses, an
underlying control structure is necessary. The compile-
time analysis then consists in analyzing this internal
structure and the relationships, constraints, and depen-
dencies which it represents.

The kind of internal structure we use is the A/R graph
mentioned earlier. Actually, the A/R graph is the super-
position of two graphs: an effect graph, which describes
how responses are produced from a combination of ac-
tions, and a constraining graph, which expresses depen-
dencies and constraints on nodes of the effect graph.

J. M. LAFUENTE

e [ffect graph

An effect graph is a directed graph in which the nodes
represent actions, responses, or intermediate conditions,
and the edges represent semantic connectives, as defined
below. For example, the effect graph in Fig. 2 represents
the combination of action 1 and action 2 producing re-
sponse 1.

If we label the nodes 1, 2, 3, then we say that there is a
semantic connective of type AND from node 1 to node 3
and from node 2 to node 3. The basic semantic con-
nectives are AND, OR, and NOT, which correspond to logi-
cal operators.

Those nodes of an effect graph that represent user ac-
tions or particular conditions whose effects are to be de-
termined are called action nodes. (For example, nodes 1
and 2 in Fig. 2.) Similarly, those nodes that are associated
with responses are called response nodes. Nodes with no
arcs entering them are called start nodes, or simply S-
nodes. Nodes with no arcs leaving them are called end
nodes. All start nodes of an effect graph are action nodes
(usually representing user actions), but the converse is
not always true. End nodes are usually designated as re-
sponse nodes. We use the following notation for the
nodes of an effect graph:

N = set of all nodes,

AN = set of action nodes,
RN = set of response nodes,
SN = set of start nodes.

Thus, SN C AN C Nand RN C N.

Each node of an effect graph has a unique integer asso-
ciated with it, called the node index. For an effect graph
with n nodes, we assume, without loss of generality, that

N=1{1,2,---, n}

Some restrictions are imposed on the effect graph:

1. A node can only have edges of one type leading toward
it.
2. There are no circular paths (cycles).

As an example of how to construct an effect graph, sup-
pose A and B are menu items having 2 and 3 options, re-
spectively, and C is a key-in item. Consider the rules
shown in Fig. 3. One possible translation of these rules
would produce the effect graph shown in Fig. 4.

In this example, Al, A2, Bl, B2, B3, and C are action

nodes and correspond to user actions (selecting an option
from A or B, or entering a value in C). Nodes A, B, RI,

IBM J. RES. DEVELOP. ¢ VOL. 24 ® NO. 6 « NOVEMBER 1980

and R2 are response nodes. The responses associated
with nodes B and R2 consist in displaying error messages.
The response ‘‘invoke procedure p/’’ is associated with
node A, while the response *‘invoke procedure p2’’ is as-
sociated with node R/.

In general, the effect graph indicates how responses are
produced from combinations of user actions. For ex-
ample, if all of the options BI, B2, and B3 were selected, a
message such as “‘too many options have been selected
from item B’ would be displayed. This message is the
system response associated with node B.

The effect graph constructed from a given set of behav-
ior rules is not unique. For example, the subgraph shown
in Fig. 5 can also be used to represent all effects caused
by the second rule of Fig. 3.

The effect graph defined here is based on the notion of a
cause-effect graph, which has been used to represent pro-
gram conditions and associated observable effects for use
in program analysis and testing [4]. A similar Boolean
graph has also been used to represent switching circuits

(e.g., [5D.

The graph in Fig. 4 could also be described by a deci-
sion table. (See, for example, [6, 7].) Decision tables pro-
vide another technique for determining the effects caused
by users’ actions. However, a combination of behavior
rules can produce a more complex structure than that
shown in Fig. 4. Furthermore, the mapping of the behav-
ior rules to their corresponding graph representation is
often not as straightforward as shown above. We show
later, for example, how some behavior rules cause other
types of edges to be constructed to represent depen-
dencies among nodes.

Definition A path of an effect graph is a sequence of
node indices (N, N,, * - -, N) such that N, is an action
node, and there is an edge from N, to N, foreach i/, 1 <i

=r-1

A key-in item is represented by an S-node in an effect
graph. A menu or attention item with m options is repre-
sented by the subgraph in Fig. 6, where {N, N,," - -, N _,
Nk} C AN.Eachnode N, - - -, N_ represents an option,

and the node N,c represents the item itself.

® Sratus properties

Like a variable of a program, an item may have a value.
However, it may also have properties which affect its ap-
pearance and behavior during the execution of the pro-
gram (e.g., whether or not the item actually has a value,
whether or not the user is permitted to act on the item,

IBM J. RES. DEVELOP. & VOL. 24 ®# NO. 6 « NOVEMBER 1980

co—NT_or2

Figure 4 Effect graph corresponding to example in Fig. 3.

Al
AND

B2
OR RI

A2

Figure 5 A subgraph corresponding to the second rule in Fig.
3.

Figure 6 Menu or attention item with options.

whether or not it is to appear on the display screen, etc.).
In particular, an item has a status property. The status of
an item is either selected or unselected, indicating
whether the item has a value or whether its value is unde-
fined. An item is unselected until it receives a value, for
example, by an assignment in the program or by user’s
input. Similarly, an option of an item may be selected or
unselected.

719

J. M. LAFUENTE

720

Figure 7 Derivation of possible status property.

1 1 [1

I O-AND 0 20-AND—»200 10-AND 0 10—AND 0

0 2 2 1
(a) (b) (c) (d)

Figure 8 Checking a subgraph for inconsistencies.

We extend the concept of status property to nodes of
an effect graph. For action nodes, the status corresponds
to that of the item or option that the node represents. For
convenience, we use | and 0 to represent node status (1 =
true = selected; 0 = fulse = unselected).

Notation 1If x is a node index, we use the notation
node(x)-p to represent the property p associated with
node x,

One special property of nodes which we use is the pos-
sible status, denoted ps. For action nodes, this is defined
simply as follows:

1. If node(x)-ps = 0, then node x must be in unselected
status.

2. If node(x)-ps = 1, then node x must be in selected sta-
tus.

3. Ifnode(x)-ps = 2, then node x can have either status.

The status property and the possible status property
should not be confused. The starus property can be used
by a run-time interpreter to keep track of whether an item
(or option of an item) is selected or unselected. On the
other hand, the possible status property is used at com-
pile-time to determine what status an item may have dur-
ing the execution of a program. Intuitively, the condition
node(x)-ps = 2 indicates an uncertainty: node x can be
selected or unselected.

For all nodes of an effect graph, the possible status
property must satisfy certain relationships, depending on
the specified semantic connectives. Consider nodes 1, 2,

- -, m with possible status 5, 5,, - - -, S, connected by a

J. M. LAFUENTE

semantic connective OP to node p, with possible status
S, as shown in Fig. 7. Then,

1. If or = AND, then
a. §,=1&8 =85,=---=8,=1
b. 5, =0=>5,=0forsomeiorS, =S, =2forsome/,
J
c. §;=0forsomei=> S, =0;
wherei #jand | =1i,j = m.

The meaning of conditions 1(a) and 1(c) is clear. The
intuitive meaning of condition 1(b) is: if node p has status
0, then one of two things must happen: either some node
on the left side has status 0, or there is an uncertainty (at
least two nodes on the left side have status 2).

Similarly, we define relationships for the semantic con-
nectives OR and NOT as follows:

2. If op = OR, then
a. §,=0S8 =§,=--=§5, =0
b. §, =125, = 1 for some i or ;= §; = 2 for some i,
J
c. §;=1forsomei= S = 1;
where i #jand 1 =i,j = m.
3. If or = NoT, then
a. S, =15 =5=-=
b. §,=0=S5,=1forsomeior
J;)
c. §;= 1forsomei= §, =0;
where i #jand 1 =i, j = m.

S, =0;
S, =S, = 2forsome i,

Let us illustrate, informally, how the possible status
relationship defined above can be used to check for incon-
sistencies. Suppose m = 3, S, = 0, and OP = AND in the
subgraph of Fig. 7. Figure 8 shows several possibilities
that may occur. Case (a) presents no problem; conditions
1(b) and 1(c) are observed. Similarly, case (b) does not
violate any of conditions 1(a)-1(c); in particular, condi-
tion 1(b) is observed. Case (¢) causes an inconsistency
because condition 1(b) is violated. However, the incon-
sistency can be resolved by forcing node(S,)-ps = 0. Case
(d) violates rules 1(a) and 1(b), producing an inconsisten-
cy that cannot be resolved.

This way of checking for inconsistencies is made more
general and precise in Section 4.

o Constraining graph

The effect graph simply describes how responses are pro-
duced from a combination of actions in the absence of any
interdependencies. It is also often necessary to represent
dependencies and constraints on nodes of the effect
graph. For this we introduce the constraining graph.

IBM J. RES. DEVELOP. ® VOL. 24 ¢ NO. 6 ® NOVEMBER 1980

Definition A constraining graph is a directed graph (not
necessarily connected) in which each edge represents one
of two types of links: an exclusion link (e-link) or an imphi-
cation link (i-link), defined below.

Given two nodes m and p, e-links and i-links express
relationships on the possible status of nodes.

Definition An e-link from m to p satisfies the following
constraints:

node(m)-ps = 1 = node(p)-ps = 0 and
node(p)-ps = 1 = node(m)-ps = 0.

Definition An i-link from m to p satisfies the following
constraints:

1 and
0.

node(m)-ps = 1 > rode(p)-ps
node(p)-ps = 0 > node(m)-ps

I

The representations of e-links and i-links are shown in
Fig. 9.

® Action/response graph
We are now ready to define our internal mechanism for
analyzing behavior rules.

Definition An action/response graph is the super-
position of an effect graph and a constraining graph. Each
node in the constraining subgraph must also appear in the
effect graph.

Restriction We impose the following restriction on the
A/R graph: If there is a link from node j to node k&, then

k& ANandj€ AN U RN.

Notation The notation j 0P k is used to specify that
there exists an edge of type op from node j to node &,
where o°p is replaced by AND, OR, NOT, e {e-link), or i (i-
link).

4. Compile-time analysis

After the internal representation of the behavior rules has
been constructed, it must be analyzed by the compiler.
This process would reveal inconsistencies or potential
problems that would arise at execution time. In this sec-
tion we show how the A/R graph can be checked for the
following conditions:

1. The A/R graph is inconsistent (over-constrained).
2. The A/R graph is consistent, but some items or options
cannot be selected or unselected.

As an example, consider items A, B, C, D, and E, and
the following behavior rules:

1. exclude A if E selected;
2. require A if (B, C) selected;

IBM J. RES. DEVELOP. @ VOL. 24 e NO. 6 ¢« NOVEMBER 1980

m _ e ? m_t 2
lo SSRGS o' o ~_y0

e-link i-link

Figure 9 Representations of e-links and i-links.

. require B if D selected;

. require A if C not selected;
. require E if D selected;

. require C.

= ANV R N Y]

The A/R graph corresponding to these rules is shown in
Fig. 10.

In this example, the first rule produces the link E >e A;
rule 2 produces the edges B =aND F and C =>AND F and
the link F =i A. The edge C =>N0T G and the remaining i-
links are similarly constructed from rules 3-5. Rule 6 does
not produce any edges or links; it simply causes the pos-
sible status of node C to be set to 1. If the programmer
had specified the two rules

require C; exclude C

an inconsistency would be detected during the semantic
analysis of the exclude rule by the compiler, since we can-
not have node(C)-ps = 1 and node(C)-ps = 0 at the same
time.

As indicated earlier, the e-links and i-links are used to
impose constraints on the nodes of the A/R graph. It is
possible, however, that these constraints are inconsis-
tent. We would be aware of this situation if we tried to
make assignments of possible status (either 0 or 1) to the
nodes of the graph while making sure that all possible
status relationships defined in Section 3 (for semantic
connectives, e-links, and i-links) are satisfied. We may
find that any assignment leads to the contradiction
node(x)-ps = 0 and node(x):ps = 1 for some node x. We
make these ideas more precise in the next subsection,
“‘Dependencies and inconsistencies.”

It is also possible that, even though the constraints are
consistent, some S-nodes are restricted to have status 0
or status 1. For example, the reader may verify that node
D in Fig. 10 cannot have status 1. This means that a dia-
logue would not terminate if a value were assigned to item
D. The compiler, therefore, should make the application
programmer aware of this situation.

® Dependencies and inconsistencies

Definition Let N ={1,2, - - -, n} be the set of nodes of
an A/R graph with corresponding possible status property

721

J. M. LAFUENTE

722

Figure 10 Example of an A/R graph.

kO—or i or jO—O0P k

Figure 11 Edges into and out of node k.

given by the list (or ordered set) P = (P, P,, - - -, P,),
that is,

P, = node(k)-ps for 1 < k < n.

Let S be a subset of N. The subset S is said to be inconsis-
tent with respect to P if there exists a node i € § such that

1.IfP,=v=0o0rl,then P, = v=> P, = —w;
2. IfP, =2, thenP,=0>P =land P,=1 P, =0.

The meaning of P, = v > P, = —wis as follows: if P,= v
and if the relationships given by the semantic con-
nectives, e-link, and i-link are to hold, we must then have
P, = node(i)-ps = —w, a contradiction.

Definition An A/R graph with possible status property
P is inconsistent if the set AN (action nodes) is inconsis-
tent with respect to P.

Before we give the algorithms for analyzing the A/R
graph, we need one more definition.

Definition Given a node k, the predecessor set of k, de-
noted PS(k), is the set of all nodes i for which there is an
edge in the effect graph from i to &, i.e.,

PS(k) = {i € N | i 0P k where OP = AND, OR, or NOT}.

J. M. LAFUENTE

The algorithm for determining dependencies on the
nodes of an A/R graph is now given. For simplicity, step 2
below is elaborated in the Appendix.

Algorithm A Let N be the set of nodes of an A/R graph,
and let S C N. Let p be the corresponding possible status
property of N, i.e., p, = node(i)-ps for each i € N. An
ordered set g is created, representing a new possible
status property such that the relationships among nodes
defined by the semantic connectives AND, OR, and NOT,
and by the e-link and i-link, are satisfied. If they cannot be
satisfied, then g = J (the empty set).

Step | (Initialization.) Set ¢ = p. If p = (J, the algorithm
terminates.
Step 2 For each node k € §, do the following:
(a) Remove £ from §. Then, examine edges into
and out of node k, as shown in Fig. 11. Here,
OP = AND, OR, NOT, e-link, or i-link. Let M be
the set of nodes whose possible status can be
derived from g,. (This step is elaborated in
the Appendix.)
(b) (Check status of dependent nodes.)
For each j € M do the following:
Let st be the derived possible status of j (0 or
1. If g; # 2 and st # g, an inconsistency ex-
ists; in this case, set ¢ = J, and the algorithm
terminates. Otherwise, let g, = st.
(¢) Set Sto S U M. If S # &, repeat step 2.

For convenience in the discussion that follows, we de-
fine a function depn which is implemented by Algorithm
A. Given a set S C N and an ordered set p representing
the possible status of N, that is, p, = node(i)-p, then

depn(S,p) = a nonempty ordered set g such that
iENandpi7é2:>qi=Pi,
i€ENandp,=2=>4q,=0,1,0r2,

provided that the constraints given by p can be satisfied;
otherwise, depn(S,p) = .

The function depn has the following characteristics:

1. depn(3,p) = p (trivial case),
2. depn(S U S',p) = depn(S',depn(S.p)),
3. depn(S,0) = ¢ (trivial case),

and from (2) it follows that
4. depn(S,depn(S,p)) = depn(S,p).

It is now a simple matter to give an algorithm to test an
A/R graph for consistency.

Algorithm B Let AN be a set of action nodes, where
AN C N, and let p be the corresponding possible status

IBM J. RES. DEVELOP. & VOL. 24 & NO. 6 4 NOVEMBER 1980

property of N. The algorithm returns a Boolean result R
(true or false) such that

R = false if and only if the A/R graph is inconsistent.

Step 1 (Initialization.) Set R to true.
Step 2 Let NS = {i € AN such that p, # 2}.
Step 3 Let g = depn(NS,p).
Step 4 If q = &, then set R = false, and the algorithm
terminates.
If ¢ # &, then
(a) Let M = {i € AN such that p, = 2};
(b) For each &k € M do the following:

g, fori#k,
Let g, lO fori = k.
v _ g, forisk,
Let 4, 1fori=k.

If depn({k},q') = & and depn({k},q") = @&,
then set R = false.

® Analysis of termination conditions
The above analysis techniques can be extended to exam-
ine terminate rules. Consider, for example, the rule

terminate if (condition)

We wish to verify that the {(condition) is such that it can
actually cause the user-computer dialogue to terminate.
To do this, a response node, say r, is associated with
{(condition). Then, in the analysis procedure we set
node(r):-ps = 1and verify that the set {r} is consistent with
respect to ps using Algorithm A.

® Other dependencies and relationships

We have so far restricted our analysis to Boolean condi-
tions. Accordingly, the only semantic connectives that
we have considered are AND, OR, and NOT. It is, however,
possible to define other types of semantic connectives to
keep track of other relationships and dependencies, such
as the result of evaluating an expression and the number
of options that have been selected from a menu item.
Some of these connectives are defined in [3]. The problem
is that these other types of connectives require ad hoc
techniques and complicate the compile-time analysis pro-
cedures.

5. Analysis using Petri nets

Petri nets (see, for example, [8]) have been successfully
used to analyze the flow of information in systems exhib-
iting concurrent activities or in which events can occur
concurrently but there are constraints on these occur-
rences. It is possible to model the dependencies and con-
straints among the nodes of an A/R graph by a Petri net.

For example, consider the implication link X =i j. This
can be represented by the Petri net shown in Fig. 12. The

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 6 « NOVEMBER 1980

Figure 12 Petri net corresponding to the implication link £ = ij.

Figure 13 Petri net corresponding to the exclusion link & = ¢j.

two conditions node (k)-ps = 0 and node (k)-ps = 1 are rep-
resented by the two places labeled p, = 0 and p, = 1,
respectively. Similarly, there are two places correspond-
ing to node j. The place labeled “‘error’’ is used to repre-
sent an undesirable condition that results if an inconsis-
tency occurs. When an inconsistency occurs, either tran-
sition 7, or ¢, is enabled.

Similarly, the exclusion link & =>e j can be represented
by the Petri net shown in Fig. 13. Nets for AND, OR, and
NOT can also be constructed, although they are more
complex, particularly as the number of nodes increases.
Proceeding in this manner, we can construct one Petri net
that models the entire A/R graph. The resulting Petri net
appears more difficult to analyze than the A/R graph, but
its construction can be used to show that an algorithm
(such as Algorithm B) that analyzes an A/R graph by
keeping track of possible status of nodes indeed exists.

Given an A/R graph with n nodes, we can construct a
Petri net having a set of places P ={m, - - -, m, r

w 1’-..,

723

J. M. LAFUENTE

724

CONDITIONS RULES
1 STk]=0 X X
2 STk} =1 X X
3 k=>ij X X
4 iDik X X
5 ST{jl=0 X
6 ST[j] =1 X
7 ST(1=2 X X

ACTIONS

1 ST(j1:=0 X
2 ST{]:= 1 X
3 S:=Su{} X X
4 ST := ¢ (error) X X

Figure 14 Example showing how to construct a decision table
with four rules.

r.» e} and a set of transitions T={¢, - - -, 2.}. Let u° = {g,,
T My Mg T s Mg Mgy}, be an initial marking of P,
where

i
1

1 if and only if node(i)-ps = 0,for 1 =i =<n,
1if and only if node(i)-ps = 1,forn + 1 =i < 2n,
= 0 (corresponding to e, the error place.).

By
L]

'u'2n+l

i

The problem of whether an A/R graph is inconsistent can
be stated in terms of the following problem for the above
Petri net.

Problem Let S = {u|u,, = 1}.Is the set S reachable
from u°, i.e., can the Petri net be executed so that there is
a final marking #' € S such that u',, = 17

The above is the reachability problem for Petri nets,
which is known to be solvable. It follows, therefore, that
the consistency of the corresponding A/R graph can be
determined.

6. Using decision tables

Decision tables can be helpful in implementing algorithms
to analyze constraints and dependencies arising from the
processing of behavior rules. One such use is illustrated
here, although the reader may skip this section without
losing the continuity of the presentation. This technique
was used to implement step 2 of Algorithm A.

For convenience, we introduce some notation.
Notation If k is a node of an A/R graph, let

ST(k) = node(k)-ps
= g, (using the notation in the Appendix).

J. M. LAFUENTE

The symbol := is the assignment symbol; thus § :=§ U
{k} means ‘‘add the node & to the set S.”

Consider, for example, steps 3(b) and 4(a) in the Ap-
pendix. Using these steps only, we can construct the
table shown in Fig. 14. This is an example of a limited-
entry decision table (see, for example, [6]). Each column
of the table represents a rule. If all of the conditions of a
rule (those marked with X’s) are satisfied, the selected
actions are performed, in order, from top to bottom.

Proceeding in this manner, we can construct the entire
decision table shown in Figs. 15 and 16. All conditions
and actions contained in the Appendix are listed in the
corresponding condition and action parts of Figs. 13 and
14. For example, the conditions k = jand q; = 2 of step
3(b.ii) correspond to the conditions in rows 4 and 13 in
Fig. 13. Similarly, the action ‘‘add jto S’ of step 3(b,ii) is
listed in row 5 of the action part of the table.

In particular, the rules of Fig. 14 appear as rules 5, 6,
17, and 18 in Figs. 15 and 16. In order to simplify this
table, however, the parameter table shown in Fig. 17 is
used. This parameter table was constructed by taking ad-
vantage of the similarity of the relationships given by the
semantic connectives AND, OR, and NOT, and by the e-
links and i-links.

Let us illustrate how the parameter table of Fig. 17 is
constructed. Consider conditions 5, 6, and 7 of Fig. 14.
These correspond to the condition ST[j] = par2 of Fig.
15. For rule 5 of Fig. 15, for example, par2 is obtained
from column 5 of the parameter table (i.e., 0), while for
rule 17, par2 is obtained from column 17 of the parameter
table (i.e., 1). There are three special entries in the second
row of Fig. 17: columns 9, 24, and 28. They indicate that
for these rules the value of par2 can be either 0 or 1.

Thus, the parameterization mechanism works as fol-
lows. When a condition of rule = is being tested, the pa-
rameter values are obtained from column » of the parame-
ter table. A condition is considered satisfied (true) if the
actual condition (j.e., that obtained after substituting the
parameter values) is satisfied. Similarly, when an action
of rule n is performed, the parameter values are obtained
from column # of the parameter table.

Decision tables are helpful in understanding the logic of
algorithms and in the actual implementation of the al-
gorithms. A number of techniques exist for translating de-
cision tables into efficient programs (see, for example,
[7]). Furthermore, the use of parameters reduces the
amount of code produced in much the same way as the
use of subroutines with parameters in a program reduces
the amount of code that would otherwise be necessary.

IBM J. RES. DEVELOP. e VOL. 24 ¢ NO. 6 « NOVEMBER 1980

CONDITIONS

Rule No.

r. . .5 . 020, 0. 15, 0 0200 0 0250 0 029

ST[k] = par!

k=>ej

Jj>ek

k=>ij

J>ik

k>AND j

Jj>AND k

k >OR j

jDORk

k SNOT j

Jj=>NOTk

ST[j] = par?

ST(j]1=2

ST{i] = ST[k] Vi € PS())
If 3m ¢ PS(G) | STIm) = 2
and Vi e PS(j): ST[{] =par3 fori= m

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X X
X X
X X

Figure 15 Parameterized decision table (condition part) for Algorithm A.

Rule No.
ACTIONS 1 5 10 15 .20 25 29
ST[j] := pard X X X X X X X X X X
ST[m] := ~par3 X X X
ST(m] := ipar5 — ST[j] ! X X X
Vie PS(k) | ST} = 2: STLi] := par6 X X X
S:=Ssu{j} X X X X X X X X X X
§:=S5U{m} X X X X X X
S:=SU{iePSk)ST[] =2} X X X
ST := ¢ (error) X X X X X X X X X X
Figure 16 Parameterized decision table (action part) for Algorithm A.
Rule No.
PARAMETERS 1 5 ... 10, 0 . 15 .. 200 . . .25, . .29
parl 1 1111111111111 0000O00OO0O0O0OO0O0OQO0
0 0 0
par2 i 6o 0 1 0 1 1o o101
par3 1 0 1 0 00
pard 0 1 1 1 0 0 0 0 1
pary 0 0 1
par6 1 0 0

Figure 17 Parameter table for decision table.

IBM J. RES. DEVELOP. VOL. 24 ¢ NO. 6 ¢« NOVEMBER 1980

725

J. M. LAFUENTE

Table 1 Processing let rules in different orders.

Vari- Old New New New
able value value value value

x 0 3 3 3

y 5 8 8 8

z 5 11 11 8

v 10 10 19 16

order is 3-2-1
order is 2-3-1
orderis 1-2-3

7. Determining the order of processing

As previously mentioned, an item has a value and certain
properties which affect its behavior and appearance dur-
ing the execution of the program. The analysis techniques
described in the previous sections dealt with item proper-
ties. Thus, for example, we were interested in the fact
that selecting an item {i.e., assigning any value to it) could
lead to an inconsistency.

In this section, we consider a more general type of rule,
the let rule, which is used to express conditions under
which the value (and properties) of a variable should be
changed by the system. We sketch here the syntax and
semantics of let rules, as given in [2].

Syntax (general form)
let (variable) be {expression) [if {condition)]

Semantics The conventional rules about matching
types of {expression) and (variable) in an assignment ap-
ply. After each response by the user, all let rules are pro-
cessed (in an unspecified order and perhaps several times
each) as follows: if a {condition) of a let rule is true, then
the {expression) is evaluated and assigned to the (vari-
able). After processing all the let rules, for any rule with
(condition) true, the (variable) will have the value of the
{expression).

With the above semantics, it may be difficult to imple-
ment let rules efficiently. Processing of the rules in dif-
ferent orders can produce different results, the processing
may not terminate, and there may be inconsistencies that
cannot be resolved. Consider, for example, the following
set of rules.

Example 1

l. let vbey + z;
2. let ybe x + 5;
726 3. letzbex +y

J. M. LAFUENTE

and suppose that the current values of x, y, z, and v are 0,
5, 5, and 10, respectively. If the value of x is changed by
the user to 3, new values may be computed for y, z, and v,
as shown in Table 1.

In this example, each rule has been evaluated once, and
the results are different, depending on the order of pro-
cessing. However, successive iterations yield, even-
tually, the same result, as shown in Table 2.

Thus, perhaps we should continue processing the rules
as long as the values of variables change. But then the
problem of termination arises, as in the following ex-
ample.

Example 2

1. let x be w — y;
2. letybex — 35

and suppose that the current values of x, y, and w are 6, 1,
and 7, respectively. If the value of w is changed to 9 and
the order of evaluation is assumed to be 1-2, successive
iterations will produce the values shown in Table 3. In
this case, processing of the rules does not terminate.

® Let rules viewed as a production system
Consider the following set of let rules:

let v, be exprl if condl;
let v, be expr? if cond2;
let v, be expr3 if cond3

There is a similarity between let rules and the non-
procedural formalism of production systems, which
should be mentioned. In the notation used by Newell and
Simon [9] for this formalism, we can write the above rules
as follows:

condl — v, := exprl
cond2 — v,:= expr2
cond3 — v, .= expr3

Two problems arise: (1) The order of processing of the
riles is not known, and (2) we want to evaluate the rules
only when necessary. As the rules are processed, we
need to keep track of variables that change. Thus we re-
write the above productions as follows:

condl and condl’ — v, := exprl; actionl
cond? and cond?’ — v, := expr2;action?
cond3 and cond3’ — v, 1= expr3;action3

It

It

where

cond i’ = any of the values of the variables in expr i
changed,
action i = indicate that v, has changed (where 1 =i =3).

IBM J. RES. DEVELOP. @ VOL. 24 ® NO. 6 ¢ NOVEMBER 1980

Processing the rules as in a true production system
would cause problems, as we encountered above. We
wish, therefore, to impose restrictions on let rules that
would make it possible to determine the order in which
the above productions should be written. This is done in
the section that follows. With these restrictions, we also
gain one further advantage over a production system for-
malism: the rules can be evaluated in one pass without the
need for repeated processing from the beginning.

® Restrictions on let rules

. The problem is to establish sufficient conditions to ensure
termination of processing and uniqueness of the com-
puted values. Moreover, since behavior rules can be writ-
ten by the programmer in any order, the compiler must
determine the order of processing of let rules.

In the discussion that follows, the (variable) specified
on the left side of a let rule is called an output variable,
while the variables contained in the {(expression) are
called input variables.

We impose the following restrictions on let rules:

1. A variable cannot appear as an output variable in more
than one rule.

2. A variable cannot appear as both input and output in
the same rule.

3. There are no side effects resulting from the evaluation
of the (expression), that is, only the value of the out-
put variable can change after processing of the rule.

The first restriction is not as severe as it may appear. If
the user specifies the two rules

let x be exprl if condl
let x be expr2 if cond2

the compiler could transform these into an equivalent rule
of the form

let x be (if condl then exprl else expr2) if (condl or cond2)

assuming that the conditions are mutually exclusive.

In addition, we impose the following restriction on the
processing of let rules by the compiler:

4. The rule that assigns a value to a variable must be
processed before any rule that uses that value.

In example 1, the proper order of processing is 2-3-1
because, in this order, the new value of each variable is
computed before the value is used in other rules. On the
other hand, restriction 4 is not obeyed in example 2. Re-
strictions 2 and 4 guarantee that processing of the let rules
terminates.

IBM J. RES. DEVELOP. @ VOL. 24 ¢ NO. 6 ¢ NOVEMBER 1980

Table 2 Iterative evaluation of let rules.

Vari- Values Vari- Values Vari- Values
able able able

x 0 3 3 X o 3 3 x 0 3 3
y 5 8 8 y 5 8 8 y 5 8 8
z 5 11 11 z 5 11 11 z 5 8 11
v 10 10 19 v 10 19 19 v 10 16 19
orderis 3-2-1

orderis 1-2-3 orderis 2-3-1

Table 3 lterative evaluation of let rules.

Variables Old values New values
x 8 6 8 6
v 1 3 1 3 1
w 7 9 9 9

o [nternal representation of let rules

The following definition of dependence is adapted from
Tesler and Enea [10], who suggest a compile-time analy-
sis to determine which statements in a program can be
executed concurrently.

Definition If A is the output variable and B is an input
variable of a let rule, then A is said to be directly depen-
dent on B, written A dep B. If the rules are numbered 1, 2,

- -, and the dependency relation is given by rule &, we
can also write A dep(k) B.

Definition If A is an output variable and B is an input
variable, then the relation dep® is defined recursively as
follows:

A dep” B if either A dep B or 3 C such that
A dep C and C dep” B.

From these definitions and from restrictions 2 and 4
given above, it is easy to verify that the relation dep” is

if A dep” B and B dep” C,
then A dep” C.

(b) Antisymmetric: if A dep® B then —B dep™ A.
(c) Irreflexive: —Adep™ A.

(a) Transitive:

We now represent dependency relations by means of a
directed graph € = (V,R) of nodes v, € Vand edges r, € R
in which

727

J. M. LAFUENTE

728

Figure 18 Example of dependency graph.

1. The finite set of nodes V represents the set of input and
output variables appearing in the set of let rules repre-
sented by R.

2. There exists an edge k € R in € from node B to node A
if and only if A dep(k) B.

Such a graph is called a dependency graph.

From the definition of dep® above and properties (b)
and (c) it follows that

1. A dep” Bif and only if there exists a path in the de-
pendency graph from B to A.
2. The dependency graph contains no cycles.

As an example, consider the following rules (the aster-
isk represents the multiplication operator):

let ybe x +2 %z
.letzbex + r
.letwbev —z
.letvbex +3xy —2%u
.letube2xz + ¢
.lettber —35

A I Y S A

These rules can be depicted by the dependency graph
shown in Fig. 18. Each edge of the graph is labeled with
the number of the rule that gives the dependency relation.

As in the case of the A/R graph, we associate a possible
status property with each node of the dependency graph.
However, in this case the possible status ps has the fol-
lowing meaning;:

z.ps = 1 if a new value has been assigned to z or if the
old value of z can be used,

0 otherwise.

[

z'ps

J. M. LAFUENTE

Now, suppose that # is a rule such that y dep(n) x, and x
is assigned a new value (either by the user or as a result of
processing a let rule). Then, rule n can be processed to
produce a value for y provided that

z-ps = 1 for all z # x such that y dep(n) z and z dep™x.

This says that to proceed along an edge of the depen-
dency graph and obtain a new value for an output vari-
able, the value of each input variable in the corresponding
rule must be available: either the old value can be used or
a new value has been assigned.

To illustrate, suppose that in Fig. 18 a new value has
been assigned to x. Thus we set x-ps = 1. Since r does not
depend on anything, we can also set »-ps = 1. Before a
value for y is computed using rule 1, a new value must be
computed for z. But rule 2 can be processed because x'ps
=]and rps = 1.

By properties (a), (b), and (c) above, the relation dep”
produces a partial ordering on the nodes of the graph 6.
We assume the existence of a topological sorting routine,
such as that given by Knuth [11]. This routine would give
us an initial evaluation order for a given set of rules. How-
ever, when the value of a variable changes during the exe-
cution of a program, the values of other variables may
need to be recomputed. To determine these, we define a
new function recomp.

Definition If A is an output variable of a set of rules R,
then

recomp(A) = {x | x dep™ A}.

The function recomp can be extended to a set of variables
in the obvious manner.

Definition If A and B are output variables, then

recomp(A,B) = recomp(A) U recomp(B).

It is now a simple matter to give an algorithm for deter-
mining the order of processing of a set of rules.

Algorithm C Let x,, x,, - - *, x, be variables whose val-
ues have changed. An ordered set R* = {r}, r,, - - -} of
rule numbers is produced, which indicates that rule r;
must be processed before r; if i <j.

Step 1 (Initialization.)

Let S be an ordered set containing all of the nodes (vari-
ables) of € after a topological sorting. LetR = {r,r,, - - -,
r,.} be the corresponding rules of S, i.e., the initial order-
ing of the rules. Let R' = ¢

Step 2 (Find the variables that require recomputation.)
Let S = recomp(x,, X, * * *5 X,)-

IBM J. RES. DEVELOP. ¢ VOL. 24 &« NO. 6 ¢« NOVEMBER 1980

Step 3 (Select the rules.)

Form the ordered set R’ by selecting from R those rules

whose output variables appear in S’. That is, for i = 1,
- -, m: If A dep(r)) v for some v such that A € S', then

append r; to R'.

An example

Consider again the earlier example for which the depen-
dency graph is shown in Fig. 18. Figure 19 shows the
nodes (variables) of € after a topological sorting. Thus §
= {rt,x,z,y,u,v,w} and R = {6,2,1,5,4,3}. From Fig. 19
(actually, from the internal representation used in the top-
ological sorting routine), we compute

recomp(r) = {t,u,v,w,z,y}
recomp(t) = {u,v,w}
recomp(x) = {z,y,v,w,u}
recomp(z) = {y,v,w,u}
recomp(y) = {v,w}
recomp(u) = {v,w}
recomp(v) = {w}
recomp(w) =

Now, suppose that new values have been assigned to x
and u. We compute

S' = recomp(x,u) = {z,y,v,w,u}

and from inspection of the rules given above we find that
R ={2,1543}.

Essentially, what Algorithm C is doing is again a topo-
logical sorting of the subset S’ of the original set of nodes
S of €. We know that dep” is also a partial ordering on S’
(or for that matter, any subset of S). The advantage of
using Algorithm C instead of picking the rules in the order
given by the original sorting routine is that some of the
rules need not be evaluated. Note, for example, that rule
6 does not appear in the final ordered set R’ in the above
example.

The order of processing of the rules is not unique. In
the above example, the rules can also be processed in the
order 2-5-1-4-3. However, the fact that the new value of
a variable is always computed before it is used in other
rules guarantees that the computed values obtained by
processing the rules in any order given by Algorithm C
are unique.

o Implementation of Algorithm C
The dependency graph € = (V,R) can be represented by
an n X n Boolean matrix M in which M, = 1if and only if
v, dep v;, where v,v; € V. Dependency relations dep® are
then given by the Boolean matrices M, M* = M x M, M®
=M x M, -, M", as follows:

IBM 1. RES. DEVELOP. &« VOL. 24 ¢ NO. 6 « NOVEMBER 1980

Figure 19 The ordering of the nodes of € of Fig. 18 after a topo-
logical sorting.

M';J. = 1 if and only if there exists a path of length k from
v to v,

The matrices M, M*, M®, etc., can be used at compile-
time to ensure that the dependency graph has no cycles.
The graph has no cycles if and only if there exists an in-
teger ¢ = n such that M" = 0 for all p = q.

8. An implementation

The compile-time analysis techniques described in Sec-
tion 4 have been implemented as a set of APL functions.
The implementation of Algorithm A uses the decision
table approach suggested in Section 6.

In this implementation, the possible status property
and the node sets used in Algorithms A and B were easily
represented and manipulated by means of APL vectors
and operators.

9. Summary

In this paper we described compile-time techniques for
analyzing user-computer interactions, as well as relation-
ships and dependencies among items of data, that occur
during the execution of interactive applications. These
kinds of compile-time analysis techniques are necessary
to construct efficient compilers for languages in which
such interactions and data item relationships and depen-
dencies are described by nonprocedural behavior rules.
The practical value of using nonprocedural descriptions is
that they simplify the programming of interactive appli-
cations.

We have considered in this paper some of the problems
that a compiler designer faces when implementing non-
procedural or declarative languages—the kind of lan-
guage in which the programmer asserts things about the
structure of data, without explicit specification of se-
quencing. Suggestions for other kinds of nonprocedural
languages have appeared in the literature. For example,
in the language proposed by Homer [12], there are several
types of statements (e.g., assignment, READ, WRITE, etc.)
Values for variables become available as they are com-
puted or introduced by READ statements, and a statement

729

J. M. LAFUENTE

730

is processed when all the input variables in a statement
have values. Another example is the ABSYS! language and
compiler described by Foster and Elcock [13].

A related area of research is the design of data flow
machines [14] for implementing nonprocedural languages.
The aim is to design these machines using a computer ar-
chitecture based on data flow models. The languages un-
der consideration usually have the single-assignment
property mentioned in Section 7, i.e., no variable can ap-
pear as an output variable in more than one statement.

Acknowledgment

The author wishes to acknowledge the valuable sugges-
tions given by an anonymous referee, which greatly im-
proved this paper. In particular, this person pointed out
the connection with Petri nets described in Section 5 and
also provided other suggestions which considerably sim-
plified Algorithm C.

Appendix: Determination of dependent nodes

The following is an expansion of step 2 of Algorithm A to
determine node dependencies implied by a given set of
nodes and corresponding possible status property.

Let S be the set of nodes to be considered, S C N, and
q the corresponding possible status property of N.

Step I (Any more nodes?) If § = & or g = (J, we are
finished; g is the new possible status property.

Step 2 (Examine each node of S.) Let £ be some node of
S. If g, = 2, go to step 5.

Case g, (Execute step 3 or 4, depending on the value of g,..)

Step 3 (Case q, = 1. Examine edges into and out of cur-
rent node.)
(a) (Exclusion)
() If k >ejorj=>ek, and g, = 1, then S is
inconsistent with respect to g; go to step
6.
(ii) If k >ejorj>ek,and g, = 2, then set g,
= 0;addjto S, thatis, set S = S U {j}.
(b) (Implication)
(i) If k =ijand ¢, = 0, then § is inconsistent
with respect to g; go to step 6.
(i) If k >ijand g, = 2, then set ¢, = 1; add j
to S.
(¢) (AND connective) If k =>AND j:
Recall that PS () is the predecessor set of j.
(@) If g; =2 and g, = 1 for all i € PS(j), then
setg; = 1;add jto S.
(iiy If g;= Oand g, = 1foralli € PS(j), then
S is inconsistent; go to step 6.

J. M. LAFUENTE

(i) If g, # 2 and if Im € PS()), such that g,
=2and g, = 1foralli € PS(j) suchthati
m, then set q,, = q;; add m to S.
If i AnND k:
(iv) Set ¢, = 1 for all i € PS(k) such that g, =
2.Set S =S U{ie PSk)|q,= 2}
(d) (OR connective) If kK >0R j:
() If g, = 2, then set ¢, = 1; add j to S.
(i) If g, = 0, then § is inconsistent; go to step
6.
If i >0R k:
(iii) If 3m € PS(k) such that g, = 2 and g, =
0 for all i € PS(k) such that i # m, then
set g, = 1;add mto §S.
(e) (~NoT connective) If kK =>NOT j:
() If g, = 2, then set g; = 0; add j to .
(i) If g, = 1, then S is inconsistent; go to step
6.
If i >NOT k:
(iii) Set g, = 0 for all i € PS(k) such that g, =
2.8etS=SU{ie PSk) |q,= 2}
Step 4 (Case g, = 0. Examine edges into and out of cur-
rent node.)
{a) (Implication)
(i) If j >i k and g, = 1, then S is inconsis-
tent; go to step 6.
(i) If j >i kand g, = 2, then set g, = 0; add j
to S.
(b) (AND connective) If k >AND J:
(i) If g, = 2, then set g, = 0; add j to S.
(i) If g, = 1, then S is inconsistent; go to step
6.
If i =>AND k:
(iii) If 3m € PS(k) such that g,, = 2and q, =
1 for all i € PS(k) such that { # m, then
set g, = 0; add m to §.
(c) (Or connective) If & 0R J:
(i) Ifg,=2and g, =0foralli € PS(j), then
set ¢, = 0; add j to S.
(i) Ifg, = land ¢, = 0 for all i € PS(j), then
S is inconsistent; go to step 6.
(iii) If g, # 2 and if 3m € PS(j) such that q,, =
2and g, = Ofor all i € PS(j) such that i #
m, then set g, = ¢;; add m to S.
If i >0R k:
(i) Set g, = 0 for all i € PS(k) such that ¢, =
2.8etS=8SU{iePSk)|q,=2}
(d) (~vort connective.) If kK SNOT j:
(i) If q;=2and g, = Ofor all i € PS(j), then
setg; = 1. Add jto S.
(i) If g, = O0and g, = Oforalli € PS(j), then
$ is inconsistent; go to step 6.
(ii) If g, # 2and if 3m € PS(j) such that g, =
2and g, = Ofor all i € PS(j) such that i =

IBM J. RES. DEVELOP. @ VOL. 24 NO. 6 ¢ NOVEMBER 1980

m, then set g, = —q;; add m to S.

If i >>NOT k:

(iv) If 3m € PS(k) suchthat g, = 2and g, =
0 for all { € PS(k) such that i # m, then
set g, = l;add mto S.

Step 5 Remove node k from set S. Go to step 1.

Step 6 Set g = .

References

1.

2.

J. Martin, Design of Man-Computer Dialogues, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1973.

J. M. Lafuente and D. Gries, ‘‘Language Facilities for Pro-
gramming User-Computer Dialogues,”” IBM J. Res. De-
velop. 22, 145 (1978).

. J. M. Lafuente, ‘‘The Specification of Data-Directed Inter-

active User-Computer Dialogues,”” Ph.D. Thesis, Cornell
University, Ithaca, NY, 1977.

. W. R. Elmendorf, ‘‘Cause-Effect Graphs in Functional Test-

ing,”’ Technical Report No. TR00.2487, IBM Corporation,
1973.

. J. M. Galey, R. E. Norby, and J. P. Roth, ‘*Techniques for

the Diagnosis of Switching Circuit Failures,”” IEEE Trans.
Commun. Electron. 83, 509 (1964).

. ACM SIGPLAN Notices 6, Special Issue on Decision Tables

1971).

IBM J. RES. DEVELOP. e VOL. 24 ¢ NO. 6 ¢« NOVEMBER 1980

7. 1. W. Pooch, “‘Translation of Decision Tables,”” Computing
Surv. 6, 125 (1974).

8. J. L. Peterson, ‘‘Petri Nets,”” Computing Surv. 9, 223-252
1977).

9. A. Newell and H. A. Simon, Human Problem Solving , Pren-
tice-Hall, Inc., Englewood Cliffs, NJ, 1972.

10. L. G. Tesler and H. J. Enea, ** A Language Design for Con-
current Processes,’” AFIPS Conf. Proc. 32, 403 (1968).

11. D. E. Knuth, The Art of Computer Programming, Volume 1:
Fundamental Algorithms, Addison-Wesley Publishing Co.,
Inc., Reading, MA, 1969, pp. 258-265.

12. E. D. Homer, ‘*An Algorithm for Selecting and Sequencing
Statements as a Basis for a Problem-Oriented Programming
System,”” Proceedings of the 21st ACM National Confer-
ence, New York, 1966, p. 305.

13. J. M. Foster and E. W. Elcock, ‘‘ABSYS 1: An Incremental
Compiler for Assertions: An Introduction,”” Machine In-
telligence 4, 423 (1969).

14. ““Workshop on Data Flow Computer and Program Organiza-
tion,”” D. P. Misumas, Ed., ACM Computer Architecture
News, Vol. 6, 1977, pp. 11-13.

Received December 5, 1979; revised June 2, 1980

The author is located at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York 10598.

731

J. M. LAFUENTE

