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Some  Techniques  for  Compile-Time  Analysis  of  User- 
Computer  Interactions 

Compile-time  techniques j b r  analyzing  user-computer  interactions and the  relationships and dependencies  among  items 
of‘dutu  thut e.uist during the  execution  ofinteructive  application  programs are presented.  These  techniques are useful in 
constructing  eficient  compilers f i ~ r  lunguages in which  such  interactions  and  data  item  relationships  and  dependencies 
are  described by nonprocedural  statements.  The  practical value of using  nonprocedural  descriptions is that  they  ease  the 
task of the  application  programnzer 

1. Introduction 
The purpose of this paper is to describe techniques  for 
analyzing programming language statements  that specify 
interactions  to  take place between the  user and  the  com- 
puter during the  execution of an application program.  The 
kinds of application  programs that we have in mind in- 
clude  computer-aided instruction (CAI) systems and in- 
teractive  data base systems, such as may be used by 
banks or airlines. During execution of a typical inter- 
active application  program,  a  user  sits  at  a  display  termi- 
nal,  where text is presented.  The  user types values, an- 
swers  questions,  or  pushes  buttons. Based on  these  ac- 
tions,  the system checks inputs  for validity and 
consistency and responds appropriately to  the  user.  The 
response may involve requesting  additional values, 
changing the format and  content of the information being 
displayed,  or invoking a  computational procedure. In any 
event,  after  the  system provides  its response,  the user 
may then key in  new values or push additional buttons, 
and  the user-computer dialogue continues until termi- 
nated by one of a number of prespecified conditions. 

Some  interactive systems provide  a language for for- 
matting frames of information and for specifying simple 
interactions (e.g. ,  which frame is to be displayed next, 
depending on whether the user’s answer  to a  question is 
“yes”  or  “no,” when an  error message is to be dis- 
played, etc.). More complex  interactions,  however,  can- 
not usually be specified with these  languages,  and  their 
programming requires substantial effort on  the part of the 

application  programmer. Many of these languages and  ex- 
amples of how they can be used for programming user- 
computer  interactions  are  described by Martin [l]. 

In order  to simplify the  task of the application program- 
mer, programming languages to be used for developing 
interactive  applications  should allow the nonprocedural 
description of interactive behavior rules.  This is  the  case, 
for example, in data  type  extensions  to PASCAL described 
in [2] and in an extension to COBOL reported in [3]. 

The designer of a  compiler for a language containing 
interactive  behavior  rules faces a new set of problems. 
First,  an internal representation of the rules is needed. 
This  internal  mechanism may be constructed  as  the rules 
are parsed or in a subsequent phase of the compilation 
process.  Second,  the compiler  must  contain an analysis 
procedure to verify that  the rules are  consistent and  pos- 
sibly to eliminate  rules that  are superfluous. Third, since 
the programmer  need  not  be concerned with the  order in 
which the rules are  tested  or  executed,  the compiler  has 
the  task of determining,  when relevant,  the  order of exe- 
cution. 

The compile-time analysis techniques described in this 
paper  are  the following: 

1. A directed  graph-called  the actionlresponse (AIR) 
graph-is defined as  the mechanism for representing 
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relationships between  user actions and system re- 
sponses  as well as  for representing constraints and de- 
pendencies  among  items of data. 
An algorithm is given to  analyze  the AIR graph, and 
thus  the behavior rules, for consistency. 
The use of a  parameterized decision  table is suggested 
as  one way to implement the analysis  algorithm efi- 
ciently. 
For those rules for which the  order of processing is 
important,  the rules are  represented by a  dependency 
graph, and a simple algorithm is given for  determining 
the order in which the rules are  to be processed at run 
time. 

The techniques  described in this  paper are intended to 
apply to  a variety of nonprocedural languages. We do not 
imply that  these languages  must  be totally nonprocedural. 
For  our  purposes, we also regard as  a langrrrtgc. the non- 
procedural statements of a general  purpose programming 
language or the  portion of a  complex interactive system 
that  deals with the  description of the  user-computer inter- 
face.  For illustration purposes we have  taken  examples 
from the language extension described in [2]. A complete 
language using all of these  techniques has not been imple- 
mented.  However,  the algorithms given in the paper  have 
been separately  implemented. 

We begin with an  example in order  to give the reader  an 
idea of the kind of nonprocedural specifications that the 
application  programmer has  to deal  with.  This is followed 
in Section 3 by a  development of the concepts, terminol- 
ogy,  and  internal  mechanisms used. Compile-time analy- 
sis techniques  are  then  described in Sections 4-6. Section 
7 deals with a more specific topic:  the  analysis of rules 
used to  express conditions under which the value and 
properties of a variable  should be changed by the  system 
during execution of the  user-computer dialogue. 

2. Use of behavior rules for  describing  interactions 
A behavior rule is either a Boolean expression  that  de- 
scribes a constraint  on  data items  and  their  values (e.g.  , 
whether  or not the  user must  select one  or more options 
from the  item),  or it is a  statement  that  expresses the con- 
ditions under which an error should be reported,  a value 
should be changed by the  system, the text being displayed 
should be  changed,  the  user-computer dialogue is to  ter- 
minate, etc. Behavior rules are defined more extensively 
in [ 2 ] .  Here we simply give an example to illustrate the 
kinds of rules  that we have in mind. 

Consider  the  data  items shown in Fig. 1 (reproduced 
from [ 2 ] ) ,  which represents  a typical frame as  the user 
might see it on  a display screen. On the left are shown 
key-in  items, that is,  items  for which the user  must  supply 

BANK OF NEW YORK 

NEW  ACCOUNT I 
Enter  information. Hit ENTER when  done. 
NAME: 
SEL.  SERVICE NO.: SEX:  *MALE 

*FEMALE 

NO.  CHILDREN: 
SALARY:  STATUS:  ”SINGLE 
SPOUSE’S  SALARY:  *MARRIED 

Figure 1 A typical frame. 

a value. On the right are  two t m n u  items,  each  containing 
two options. The  user  must  select  either *MALE or *FE- 
MALE and  either *SINGLE or *MARRIED. When all the re- 
quested information has  been supplied,  the user  must 
depress the ENTER key on the keyboard.  The ENTER key 
is regarded as  a special kind of item, called an crttrntion 
item. 

To control  the kind of dialogue that is to take place be- 
tween  the  user  and the  system,  the application  program- 
mer may  wish to specify constraints and  relations on  the 
items shown in Fig. 1.  

1 .  

2 .  

3. 

4. 

5.  

6. 

7. 

(Requirement) At least  one  option  must be selected 
from .sex; a value must be entered for scrlary. 
(Limit) At most one option can be selected  from s t m s  
and s ( ~ .  

(Requirement) n o .  children must have a nonnegative 
value  (which is disregarded unless the  user is mar- 
ried). 
(Requirement) If the user is male,  then a value must be 
entered  for s e l .  srrvicc n o .  
(Exclusion) If the  user is female,  then a value should 
not be entered  for s e l .  sc~rt-ice 1 1 o .  

(Requirement) Spor tse’s  . s n l t r / y  is required if the user is 
married and .s(rkrry is less  than $15 000. 
(Termination)  The given information is to be pro- 
cessed when the ENTER key is depressed. 

To express these constraints and  relations,  behavior 
rules may be specified as  statements in the programming 
language as follows: 

require W.Y, strltrry ; 
allow only 1 option from sex: 

allow only 1 option from srrrtus: 
require nchild 2 0 if M A R R I E D  selected: 
require .rr/-.scr if MALE selected; 
exclude .w/-.sc~r if FEMALE selected; 717 
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1 

action ' response 1 

action 2 

Figure 2 A simple effect graph. 

Effect  graph 
An effect  graph is a directed graph in which the nodes 
represent  actions,  responses, or intermediate conditions, 
and  the  edges  represent semantic  connectives, as defined 
below. For  example,  the effect graph in Fig. 2 represents 
the combination of action 1 and  action 2 producing  re- 
sponse 1. 

enter p1 if A selected; 

enter p2 if A selected  and  any  of (A2,BZ) selected; 

allow  only 2 options from B ;  

require C 

Figure 3 A simple example of behavior rules. 

require spsalaty if MARRIED selected and salary < 15000; 
terminate if ENT-KEY; 

The last rule indicates that  the dialogue is to  terminate 
when the  user  depresses  the ENTER key, provided there 
are no errors. If a rule has been  violated, however,  an 
error message is given to  the  user and the dialogue is not 
terminated. 

3. Internal  representation 
In  general,  user-computer  interactions  are  determined by 
relationships  between user  actions and  system responses. 
By a user  action we mean  a  terminal operator's  action, 
usually recognized by the  system via an interrupt. Ac- 
tions  include pushing a button, entering a value  into  a 
key-in item, and  selecting an  option of a menu item.  A 
response is an operation  or  service performed by the  sys- 
tem as a  result of one  or more actions, usually producing 
some  indication to  the terminal user, such as a change in 
the display, an  error  message,  the lighting of an  indicator, 
o r  the ringing of a bell. 

In order  to relate user  actions  to system responses,  an 
underlying  control structure is necessary.  The compile- 
time  analysis  then consists in analyzing  this  internal 
structure  and  the  relationships,  constraints,  and depen- 
dencies which it represents. 

The kind of internal structure we use is the A/R graph 
mentioned  earlier.  Actually, the A/R graph is the  super- 
position of two graphs: an effect  graph, which describes 
how responses  are  produced from a combination of ac- 
tions,  and a construining  graph, which expresses depen- 

71 8 dencies  and  constraints  on nodes of the effect graph. 
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If we label the  nodes I ,  2 ,  3 ,  then we say that  there is a 
semantic  connective of type AND from  node 1 to  node 3 
and from  node 2 to  node 3. The basic semantic con- 
nectives  are A N D ,  OR,  and N O T ,  which correspond  to logi- 
cal  operators. 

Those nodes of an effect graph that  represent  user ac- 
tions or particular conditions whose effects are  to be  de- 
termined are called action  nodes. (For  example, nodes l 
and 2 in Fig. 2 . )  Similarly, those  nodes  that  are associated 
with responses  are called response  nodes. Nodes with no 
arcs entering  them are called slart  nodes, or simply S- 
nodes.  Nodes with no  arcs leaving  them are called end 
nodes.  All start nodes of an effect  graph are action  nodes 
(usually representing user  actions), but the  converse is 
not always  true.  End  nodes  are usually designated as re- 
sponse  nodes. We use  the following notation for the 
nodes of an effect graph: 

N = set of all nodes, 
AN = set of action nodes, 
RN = set of response  nodes, 
S N  = set of start  nodes. 

Thus,  SN c AN  Nand R N  N. 

Each node of an effect graph has a unique integer asso- 
ciated with it, called the node  index. For an effect graph 
with n nodes, we assume, without loss of generality,  that 

N = { I ,  2 ,  . . ., n}.  

Some  restrictions are imposed on the effect graph: 

I .  A node can only have edges of one type  leading  toward 

2 .  There  are no circular  paths  (cycles). 
it. 

As an example of how to  construct an effect graph, sup- 
pose  A and B are menu items having 2 and 3 options, re- 
spectively, and C is a key-in item. Consider  the rules 
shown in Fig. 3 .  One possible  translation of these rules 
would produce  the effect  graph shown in Fig. 4. 

In this example, A I ,  A 2 ,  BI , B2, B3, and C are action 
nodes  and correspond  to  user  actions (selecting an  option 
from A or B ,  or entering a value in C ) .  Nodes A ,  B ,  R I ,  
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and R2 are  response  nodes.  The  responses associated 
with  nodes B and R2 consist in displaying error messages. 
The  response  “invoke  procedure P I ”  is associated with 
node A ,  while the  response  “invoke procedure p2” is as- 
sociated  with  node RI . 

In  general,  the effect graph indicates how responses  are 
produced  from  combinations of user  actions. For ex- 
ample, if all of the  options B1,  B2, and B3 were selected, a 
message such  as  “too  many  options  have been  selected 
from item B” would be  displayed.  This  message is the 
system response  associated with node B.  

B3 d 
The effect graph constructed  from a given set of behav- 

ior rules is not  unique. For  example,  the  subgraph  shown 
in Fig. 5 can also be used to  represent all effects caused 
by the  second rule of Fig. 3. 

CO -OR2 

Figure 4 Effect graph corresponding to example in Fig. 3.  

The effect  graph defined here  is based on  the notion of a 
cause-effect  graph, which has  been used to  represent pro- 
gram  conditions and  associated  observable effects for use 
in program  analysis and  testing [4]. A similar Boolean 
graph has also been  used to  represent switching circuits 
(e+?. 9 [ a .  

The graph in Fig. 4 could  also be described by a deci- 
sion table.  (See, for example, [6, 71.) Decision tables  pro- 
vide another technique for determining the effects caused 
by users’ actions.  However, a  combination of behavior 
rules can  produce a more  complex  structure  than  that 
shown in Fig. 4. Furthermore,  the mapping of the  behav- 
ior rules  to  their  corresponding graph representation is 
often not as straightforward as  shown  above. We show 
later,  for  example, how some behavior  rules cause  other 
types of edges  to be constructed  to  represent depen- 
dencies  among nodes. 

DejXtion A path of an effect graph is a sequence  of 
node  indices ( N , ,  N z ,  . . ., Nr)  such that N, is an action 
node,  and  there is an  edge from $ to Ni+l for each i, 1 c: i 
S r -  1. 

A key-in item is represented by an  S-node in an effect 
graph. A menu or attention item with m options is repre- 
sented by the subgraph in Fig. 6, where ( N , ,  N, ,  . . ., N,,  
N,} AN.  Each node N, ,  . . ., N, represents  an  option, 
and the node N, represents  the item itself. 

Status  properties 
Like a variable of a program,  an item may have  a  value. 
However, it may also have  properties which affect its ap- 
pearance and  behavior during  the execution of the  pro- 
gram ( e . g . ,  whether or not  the item  actually  has a value, 
whether or not  the  user  is permitted to  act on the  item, 
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Figure 5 A subgraph corresponding to the second rule in Fig. 
3. 

Figure 6 Menu or attention item with options. 

whether or not it is to  appear  on  the display screen,  etc.). 
In particular, an item has a status property.  The  status of 
an item is either selected or unselecred, indicating 
whether  the item has a value or  whether its value is unde- 
fined. An item is unselected until it receives  a  value, for 
example, by an assignment in the program or by user’s 
input.  Similarly, an option of an item may  be selected or 
unselected. 



Figure 7 Derivation  of  possible status  property. 

Figure 8 Checking a subgraph  for  inconsistencies. 

We extend the concept of status property to nodes of 
an effect graph. For action  nodes,  the  status  corresponds 
to  that of the item or  option  that  the node represents.  For 
convenience, we use I and 0 to  represent node status (1 3 

true selected; 0 =fuI.sc = unselected). 

N o t d o n  If x is a  node index, we use the notation 
node(x ) .p  to  represent  the  property p associated with 
node x. 

One  special property of nodes which we use is the pos -  
sible status, denoted p s .  For  action  nodes, this is defined 
simply as follows: 

1. If node(x ) .p s  = 0, then node x must be in unselected 

2 .  If node(x) .ps  = 1 ,  then  node x must be in selected sta- 

3. Ifnode(x).ps = 2, then node x can  have either  status. 

status. 

tus. 

The  status  property and the possible status  property 
should not be confused.  The st r r tus property  can be used 
by a  run-time interpreter  to  keep track of whether  an item 
(or option of an item) is selected  or  unselected.  On  the 
other  hand, the possible status property is used at  com- 
pile-time to  determine what status an item may have dur- 
ing the execution of a  program.  Intuitively, the condition 
node(x) .ps  = 2 indicates an uncertainty:  node x can be 
selected or unselected. 

For all nodes of an effect graph,  the possible status 
property must satisfy certain relationships,  depending on 
the specified semantic connectives.  Consider nodes 1, 2 ,  

720 . . ., m with possible status S,, S,, . . ., S,,, connected by a 

semantic  connective OP to  node p ,  with possible status 
S,, as  shown in Fig. 7. Then, 

1. If OP = A N D ,  then 
a. S , = l # S s , = S , = ~ . . = S , = l ;  
b .S ,=0 jSS i=Ofor someio rS i=S j=2fo r somei ,  

c. Si = 0 for  some i j S, = 0; 
where i # j a n d  1 5 i, j 5 m. 

j ;  

The meaning of conditions l(a) and l(c) is clear.  The 
intuitive meaning of condition l(b) is: if node p has  status 
0, then  one of two things must happen: either  some node 
on  the left side has status 0, or  there  is  an  uncertainty  (at 
least two nodes on  the left side have status 2) .  

Similarly, we define relationships for  the  semantic con- 
nectives OR and Nor as follows: 

2.  If OP = OR,  then 
a. S, = O@Sl = S, = .  . . = sm = 0; 
b. S o =  l + , S i =  1forsomeiorSi=Sj=2forsomei, 

c. Si  = 1 for some i 3 S, = 1; 
where i # j a n d  1 5 i ,  j 5 m. 

a. S , = 1 @ S l = S 2 = . . . =  s, = 0; 
b. S,=OjSi=1forsomeiorSi=Sj=2forsomei, 

c. Si = 1 for  some i .$ S, = 0; 
where i # j and I 5 i ,  j 5 m. 

.i; 

3. If OP E NOT, then 

.i; 

Let us illustrate,  informally, how the possible status 
relationship defined above  can be used to  check  for incon- 
sistencies.  Suppose m = 3, S, = 0, and OP = A N D  in the 
subgraph of Fig. 7. Figure 8 shows several  possibilities 
that may occur.  Case  (a)  presents no problem; conditions 
l(b)  and  l(c)  are  observed. Similarly, case (b) does not 
violate any of conditions ](a)-l(c); in particular, condi- 
tion l(b) is observed.  Case  (c)  causes  an inconsistency 
because  condition I(b) is violated.  However,  the incon- 
sistency can be resolved by forcingnode(S,).ps = 0. Case 
(d) violates  rules l(a) and  I(b),  producing an inconsisten- 
cy  that  cannot be resolved. 

This way of checking  for inconsistencies is made  more 
general and precise in Section 4. 

Construining graph 
The effect graph simply describes how responses  are pro- 
duced from  a  combination of actions in the  absence of any 
interdependencies.  It is also often  necessary  to  represent 
dependencies and constraints on nodes of the effect 
graph.  For this we introduce  the constraining graph. 
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Dejinition A constraining  graph is a directed graph  (not 
necessarily connected) in which each edge represents  one 
of two  types of links: an  exclusion link (e-link) or an impli- 
cation  link (i-link), defined below. 

Given two nodes m and p ,  e-links and i-links express 
relationships on  the possible status of nodes. 

Dejinition An e-link  from rn to p satisfies the following 
constraints: 

node(m).ps = 1 + node(p).ps = 0 and 
node(p).ps = 1 j node(m).ps = 0. 

Dejinition An i-link from rn to p satisfies the following 
constraints: 

node(rn).ps = 1 j node(p).ps = 1 and 
node(p).ps = 0 j node(mj.ps = 0. 

The  representations of e-links and i-links are  shown in 
Fig. 9. 

Actionlresponse graph 
We are now ready to define our internal  mechanism  for 
analyzing  behavior  rules. 

Dejinition An actionlresponse  graph is the  super- 
position of  an effect graph and a constraining graph.  Each 
node in the constraining subgraph must  also appear in the 
effect graph. 

Restriction We impose  the following restriction on  the 
A/R graph: If there is a link from node j to node k, then 

k E A N a n d j E A N U R N .  

Notation  The  notation j ~ O P  k is used to specify that 
there  exists an edge of type OP from  node j to  node  k, 
where OP is replaced by A N D ,  O R ,  NOT,  e (e-link), or i (i- 
link). 

4. Compile-time  analysis 
After the internal representation of the  behavior rules  has 
been constructed, it must  be  analyzed by the compiler. 
This process would reveal inconsistencies or potential 
problems that would arise  at execution  time. In this sec- 
tion we show how the A/R graph  can be checked  for  the 
following conditions: 

1. The A/R graph is inconsistent  (over-constrained). 
2. The AIR graph is  consistent, but  some items or options 

cannot be selected or unselected. 

As an example, consider  items A ,  B ,  C ,  D,  and E ,  and 
the following behavior rules: 

1 .  exclude A if E selected; 
2. require A if (B ,  C)  selected; 
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Figure 9 Representations of e-links and i-links. 

3. require B if D selected; 
4. require A if C not selected; 
5.  require E if D selected; 
6. require C. 

The A/R graph corresponding  to  these  rules is shown in 
Fig. 10. 

In this example,  the first rule produces  the link E +e A; 
rule 2 produces  the  edges B + A N D  F and C +AND F and 
the link F j i  A. The edge C +NOT G and  the remaining i- 
links are similarly constructed from  rules 3-5. Rule 6 does 
not produce any edges or links; it simply causes  the pos- 
sible status of node C to be set  to 1. If the programmer 
had specified the  two rules 

require C ;  exclude C 

an inconsistency would be detected during the  semantic 
analysis of the exclude rule by the compiler,  since we can- 
not have  node(C).ps = 1 and node(C).ps = 0 at  the same 
time. 

As indicated earlier,  the e-links  and i-links are used to 
impose constraints  on  the  nodes of the A/R graph.  It is 
possible, however,  that  these  constraints  are inconsis- 
tent. We would be aware of this situation if we tried to 
make  assignments of possible status  (either 0 or 1) to  the 
nodes of the graph while making sure  that all possible 
status relationships defined in Section 3 (for  semantic 
connectives, e-links,  and i-links) are satisfied. We may 
find that any  assignment leads to the contradiction 
node(x).ps = 0 and nodr(x).ps = 1 for  some  node x. We 
make these ideas  more precise in the  next  subsection, 
“Dependencies and inconsistencies.” 

It is also possible that,  even though the  constraints  are 
consistent, some S-nodes  are restricted to have status 0 
or status 1. For  example, the reader may verify that node 
D in Fig. 10 cannot  have status 1. This  means that a  dia- 
logue would not terminate if a  value  were  assigned to item 
D.  The compiler, therefore, should make the application 
programmer aware of this situation. 

Drpendc~ncies and inconsistrncirs 

Dejinition Let N = { I ,  2 ,  . . .. n }  be the  set of nodes of 
an AIR graph with corresponding possible status  property 721 
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Figure 10 Example of an AIR graph. 

Figure 11 Edges into and out of node k .  

given by the list (or ordered  set) P = (PI, P,, . . ., Pn), 
that  is, 

P,  = node(k).ps for 1 I k I It. 

Let S be a  subset of N.  The  subset S is said to be inconsis- 
tent  with  respect  to P if there  exists a  node i E S such  that 

1. If Pi = u = 0 or 1, then Pi = u j Pi = 10; 

2 .  IfP, = 2 , t h e n P i = O + P , =   l a n d p i =   l j P , = O .  

The meaning of Pi = v 3 Pi = l v  is as follows: if Pi = u 
and if the relationships  given by the  semantic  con- 
nectives, e-link, and i-link are  to hold, we must then  have 
Pi = node(i).ps = l v ,  a contradiction. 

Definition An AIR graph  with possible status  property 
P is inconsistent if the  set AN (action nodes) is inconsis- 
tent  with respect  to P. 

Before we give the algorithms  for  analyzing the AIR 
graph, we need one more definition. 

Definition Given  a  node k, the predecessor set of k ,  de- 
noted PS(k), is the  set of all nodes i for which there is an 
edge in the effect graph  from i to k ,  i . e . ,  

722 PS(k) = { i  E N I i ~ O P  k where OP = A N D ,  O R ,  or Nor}. 

The algorithm for determining dependencies  on  the 
nodes of  an AIR graph is now  given. For simplicity, step 2 
below is elaborated in the Appendix. 

Algorithm A Let N be the  set of nodes of an AIR graph, 
and let S N. Let p be the corresponding possible status 
property of N, ; .e . ,  pi = node(i).ps  for  each i E N. An 
ordered  set q is created, representing a new possible 
status property such  that  the relationships  among nodes 
defined by the  semantic  connectives A N D ,   O R ,  and N O T ,  

and by the e-link and i-link, are satisfied. If they cannot be 
satisfied, then q = 0 (the  empty set). 

Step I (Initialization.) Set q = p .  I f p  = 0, the algorithm 

Step 2 For each node k E S, do  the following: 
terminates. 

(a) Remove  k  from S. Then,  examine  edges  into 
and out of node  k, as shown in Fig. 11. Here, 
OP S A N D ,  OR,  N O T ,  e-link, or i-link. Let M be 
the set of nodes whose possible status  can be 
derived from qk, (This  step is elaborated in 
the Appendix.) 

For  each j E M do  the following: 
Let st be  the  derived possible status of j (0 or 
1). If qj # 2 and st # qj, an inconsistency ex- 
ists; in this case,  set q = 0, and the algorithm 
terminates.  Otherwise, let qj = st .  

(b)  (Check status of dependent nodes.) 

(c) Set S to S u M .  If S # 0, repeat  step 2. 

For  convenience in the  discussion  that follows, we de- 
fine a function depn which is implemented  by Algorithm 
A. Given a set S N  and an  ordered  set p representing 
the possible status of N ,  that  is, pi = node(i).p,  then 

depn(S,p) = a nonempty  ordered set q such  that 
i E N and pi f 2 3 qi = p i ,  
i E N a n d p i = 2 + q i = 0 , 1 , 0 r 2 ,  

provided that  the  constraints given by p can be  satisfied; 
otherwise,  depn(S,p) = 0. 

The function  depn has  the following characteristics: 

1.  depn(0,p) = p (trivial case), 
2. depn(S u S‘,p) = depn(S’,depn(S,p)), 
3. depn(S,@) = 0 (trivial case), 

and  from (2 )  it follows that 

4. depn(S,depn(S,p)) = depn(S,p). 

It is now a simple matter  to give an algorithm to test  an 
AIR graph for consistency. 

Algorithm B Let  AN be a set of action nodes,  where 
AN  N, and  let p be the  corresponding possible status 
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property of N .  The algorithm returns a  Boolean  result R 
(true orfalse) such  that 

R =false  if and only if the AIR graph is inconsistent. 

Step 1 (Initialization.) Set R to true. 
Step 2 Let NS = { i  E A N  such  that p i  # 2). 
Step 3 Let q = depn(NS,p). 
Step 4 If q = 0, then  set R = false, and  the algorithm 

terminates. 
If q # 0, then 
(a) Let M = { i  E A N  such  that pi = 2); 
(b) For each k E M do  the following: 

Let q :  = 

Let 4 = 

q 1  for i # k, 
0 for i = k. 
q r  for i # k, 
1 for i = k. I 

If depn({k),q')' = 0 and depn({k),q") = 0, 
then  set R = f a l s e .  

0 Analysis of termination  conditions 
The  above analysis techniques  can be extended  to  exam- 
ine terminate rules. Consider,  for  example,  the  rule 

terminate  if (condition ) 

We wish to verify that  the (condition) is such  that  it can 
actually cause  the  user-computer dialogue to  terminate. 
To do  this, a response  node,  say r, is associated with 
(condition). Then, in the  analysis  procedure  we  set 
node(r).ps = 1 and verify that  the  set {r} is  consistent with 
respect  to ps using Algorithm A. 

Other  dependencies and relationships 
We have so far restricted  our analysis to Boolean  condi- 
tions.  Accordingly, the only  semantic connectives  that 
we have considered are A N D ,  OR, and NOT. It  is,  however, 
possible to define other  types of semantic connectives  to 
keep  track of other relationships and dependencies,  such 
as the  result of evaluating an  expression  and  the  number 
of options that have been selected  from a menu  item. 
Some of these  connectives  are defined in [3]. The problem 
is that  these  other  types of connectives  require ad hoc 
techniques and complicate the compile-time  analysis  pro- 
cedures. 

5. Analysis  using  Petri  nets 
Petri nets  (see, for example, [8]) have  been  successfully 
used to  analyze  the flow of information in systems exhib- 
iting concurrent  activities or in which events  can  occur 
concurrently but there  are  constraints  on  these  occur- 
rences.  It  is possible to model the  dependencies  and con- 
straints among the  nodes of an A/R graph by a Petri net. 

For example,  consider  the implication link k +i j .  This 
can be  represented by the  Petri  net shown in Fig. 12. The 

w Error - P k =  1 Pi= 1 

Figure 12 Petri  net  corresponding  to  the  implication link k + ij. 

I Io p , =  1 

w Error 

0Ift-o P!,= 1 

Pi = 0 

Figure 13 Petri net corresponding to the  exclusion link k + ej. 

two  conditions node(k).ps = 0 andnode(k).ps = 1 are rep- 
resented by  the two places labeled p k  = 0 and p k  = 1, 
respectively.  Similarly, there  are two places correspond- 
ing to node j .  The place  labeled "error" is used to repre- 
sent  an undesirable  condition that results if an inconsis- 
tency occurs. When an inconsistency occurs,  either  tran- 
sition t ,  or t ,  is enabled. 

Similarly, the exclusion  link k +e j can  be  represented 
by the  Petri net shown in Fig. 13. Nets for A N D ,  O R ,  and 
NOT can also  be constructed, although they  are more 
complex, particularly as  the  number of nodes increases. 
Proceeding in this  manner,  we  can  construct  one  Petri  net 
that models  the entire A/R graph.  The resulting Petri  net 
appears  more difficult to analyze than the A/R graph, but 
its  construction  can be used to show that  an algorithm 
(such  as Algorithm B) that  analyzes  an A/R graph by 
keeping track of possible status of nodes  indeed exists. 

Given an AIR graph with n nodes, we can  construct a 
Petri  net having a set of places P = {ml, . . ., m,, r , ,  . . ., 723 
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2 ST[k]  = 1 

3 k + i j  

4 j j i  k 

5 S T [ j ]  = 0 

6 ST[j l  = 1 

7 S T [ j ]  = 2 

ACTIONS 

1 S T [ j J  := 0 

2 ST[ j ]  : = 1 

3 S := S u { j }  

X X Consider, for example,  steps 3(b) and 4(a) in the Ap- 
X X pendix. Using these  steps  only, we can  construct  the 

X of the  table  represents a rule. If all of the conditions of a 
X rule (those marked  with X's) are satisfied, the  selected 

X 
table shown in Fig. 14. This  is  an example of a limited- ' entry  decision table  (see,  for  example, [6]). Each column 

X x actions are  performed, in order, from top  to  bottom. 

X 

X 

X X 

4 ST := 0 (error) X X 

Figure 14 Example  showing  how to construct  a decision table 
with  four  rules. 

r,, e} and a set of transitions T = {tl, . . ., fa}. Let p" = {pl, 

where 

pi = 1 if and only if node(i).ps = 0, for 1 5 i 5 n ,  
pi = 1 if and only if node(i).ps = 1, for n + I I i 5 2n,  
pZn+l = 0 (corresponding  to e ,  the  error place.). 

The  problem of whether  an A/R graph is inconsistent  can 
be stated in terms of the following problem for  the  above 
Petri net. 

Problem Let S = {p I pznfl = I}. Is the  set S reachable 
from po, ; . e . ,  can the  Petri  net be executed so that  there is 

. . .  , p,, P,,+~, * . ., p Z n ,  pZnfl}, be an initial marking of P ,  

I 
l a final marking p' E S such  that p'zn+l = I ?  

The  above is the reachability problem for Petri nets, 
which is known to be  solvable. It follows, therefore,  that 
the  consistency of the  corresponding AIR graph can  be 
determined. 

6. Using  decision tables 
Decision tables  can be helpful in implementing  algorithms 
to  analyze  constraints and dependencies arising from  the 
processing of behavior rules. One  such  use is illustrated 
here,  although the  reader may  skip  this section  without 
losing the continuity of the  presentation.  This  technique 
was used  to implement step 2 of Algorithm A. 

For  convenience,  we  introduce some  notation. 

Notation If k is a node of an AIR graph, let 

Proceeding in this manner,  we can construct  the  entire 
decision table  shown in Figs. 15 and 16. All conditions 
and actions  contained in the Appendix are listed in the 
corresponding  condition and action  parts of Figs. 13 and 
14. For  example,  the  conditions k +i j and qj = 2 of  step 
3(b,ii) correspond  to  the conditions in rows 4 and 13 in 
Fig. 13. Similarly, the action "addjto S" of step 3(b,ii) is 
listed in row 5 of the action part of the  table. 

In particular, the rules of Fig. 14 appear  as  rules 5, 6, 
17, and 18 in Figs. 15 and 16. In  order  to simplify this 
table,  however,  the  parameter table shown in Fig. 17  is 
used.  This parameter  table  was  constructed by  taking  ad- 
vantage of the  similarity of the relationships given by  the 
semantic connectives A N D ,  O R ,  and NOT, and by the e- 
links and i-links. 

Let  us illustrate  how the  parameter table of Fig. 17 is 
constructed.  Consider  conditions 5, 6, and 7 of Fig. 14. 
These  correspond  to  the  condition S T [ j ]  = pur2 of Fig. 
15. For rule 5 of Fig. 15, for  example, pur2 is  obtained 
from  column 5 of the  parameter table (;.e., 0) ,  while for 
rule 17, par2 is obtained  from column 17 of the  parameter 
table (i .e. ,  1). There  are  three special entries in the  second 
row of Fig. 17: columns 9, 24, and 28. They indicate that 
for  these rules the value of par2 can be either 0 or 1 .  

Thus,  the  parameterization mechanism works  as fol- 
lows. When a condition of rule n is being tested,  the pa- 
rameter values are obtained from column n of  the parame- 
ter table.  A  condition is considered satisfied (true) if the 
actual condition ( i .e . ,  that  obtained  after  substituting  the 
parameter values) is satisfied. Similarly, when an  action 
of rule n is performed, the  parameter values are  obtained 
from  column n of the  parameter table. 

Decision  tables are helpful in  understanding the logic of 
algorithms and in the  actual implementation of the al- 
gorithms. A number of techniques exist for  translating de- 
cision tables into efficient programs (see,  for  example, 
[7]). Furthermore,  the use of parameters  reduces  the 
amount of code produced in much  the  same way as  the 

ST(k) = node(k).ps use of subroutines with parameters in a program reduces 
724 = qk (using the notation in the Appendix). the  amount of code  that would  otherwise  be necessary. 

J .  M. LAFUENTE IBM J .  RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980 



x x x  
x x  

x x  
X 

x x  



Vari- Old Ne M’ New New 
able value value value value 

x 0  3 3 3 

r 5  8 8 8 

z 5  11  11 8 

v 10 10 19 16 

order is 3-2-1 

order is 2-3-1 

order is 1-2-3 

7. Determining the order of processing 
As previously  mentioned, an  item has a  value and  certain 
properties which affect its  behavior and appearance  dur- 
ing the  execution of the  program.  The analysis techniques 
described in the  previous sections dealt  with item proper- 
ties. Thus,  for  example, we were  interested in the  fact 
that  selecting an item @.e., assigning any value to it) could 
lead to  an inconsistency. 

In  this  section,  we  consider a more  general  type of rule, 
the let rule, which is used to  express conditions under 
which the value (and  properties) of a variable  should  be 
changed  by the  system. We sketch  here  the  syntax and 
semantics of let rules,  as given  in [ 2 ] .  

Syntax  (general  form) 

let (variable) be (expression) [if (condition)] 

Semantics The  conventional rules about matching 
types of (expression) and (variable) in an assignment  ap- 
ply. After each  response by the  user, all let rules are pro- 
cessed (in an unspecified order  and  perhaps  several times 
each) as follows: if a (condition ) of a let rule is true, then 
the (expression) is evaluated  and assigned to the (vari- 
able) .  After  processing all the let rules,  for any  rule with 
(condition)  true, the (variable) will have  the value of the 
(expression ). 

With the  above  semantics, it may be difficult to imple- 
ment let rules efficiently. Processing of the rules in dif- 
ferent orders can  produce  different results,  the processing 
may not  terminate, and there may be  inconsistencies that 
cannot  be resolved. Consider,  for  example,  the following 
set of rules. 

Example 1 

1.  let v be y + z; 
2. let y be x + 5 ;  

726 3. l e t z b e x + y  

5 , 5 ,  and 10, respectively. If the value of x is changed by 
the  user  to 3, new values may be computed for y, Z, and V, 
as  shown in  Table 1. 

In this  example, each rule has been  evaluated once, and 
the results  are different, depending  on  the  order of pro- 
cessing. However,  successive iterations  yield, even- 
tually, the same result,  as  shown in Table 2 .  

Thus, perhaps we should continue processing the rules 
as long as the  values of variables change.  But then  the 
problem of termination arises,  as in the following ex- 
ample. 

Example  2 

1 .  let x be w - y ;  
2. l e t y b e x - 5  

and suppose  that  the  current  values of x, y ,  and w are 6, 1, 
and 7, respectively. If the  value of w is changed to 9 and 
the  order of evaluation is assumed  to be 1-2, successive 
iterations will produce  the  values shown in Table 3. In 
this case, processing of the  rules  does not terminate. 

Let rules  viewed  as  a  production  system 
Consider the following set of let rules: 

let v1 be exprl if condl ; 
let u2 be expr2 if cond2 ; 
let v g  be expr3 if cond3 

There is a similarity between let rules and  the non- 
procedural formalism of production  systems, which 
should  be  mentioned. In  the notation  used  by Newel1 and 
Simon [9] for this  formalism, we  can write the  above rules 
as follows: 

condl + v1 := exprl 
cond2 + v2 := expr2 
cond3 + v3 := expr3 

Two problems  arise: (1)  The  order of processing of the 
rules is  not known,  and (2)  we want to  evaluate  the rules 
only when  necessary. As the rules are  processed, we 
need to  keep  track of variables that change. Thus  we re- 
write the  above  productions  as follows: 

condl and condl’  -+ v1 := exprl ; action1 
cond2 and cond2 ’ -+ v2 : = expr2 ; action2 
cond3 and cond3’ -+ v3 : = expr3;  action3 

where 

cond i ‘  any of the values of the variables in expr i 
changed, 
action i E indicate that vi has changed (where 1 5 i 5 3). 
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Processing  the  rules  as in a  true  production system 
would cause problems, as  we  encountered  above. We 
wish, therefore, to impose restrictions  on let rules  that 
would make it possible to  determine  the  order in which 
the above productions  should  be  written.  This is done in 
the section that  follows. With these  restrictions,  we also 
gain one  further  advantage  over a production system for- 
malism: the rules can  be  evaluated in one  pass  without  the 
need for repeated  processing from the beginning. 

Restrictions on let rules 
The problem is to  establish sufficient conditions to  ensure 
termination of processing and uniqueness of the com- 
puted  values. Moreover,  since behavior  rules can be writ- 
ten by the programmer in any  order,  the compiler  must 
determine  the  order of processing of let rules. 

In  the discussion that follows,  the (variable) specified 
on  the left side of a let rule is called an output variable, 
while the variables contained in the (expression) are 
called input variables. 

We impose  the following restrictions  on let rules: 

1. A  variable cannot  appear  as  an  output variable in more 

2. A  variable cannot  appear  as  both input and  output in 

3. There  are no side  effects  resulting  from the evaluation 
of the (expression), that  is, only the value of the  out- 
put variable can  change  after processing of the  rule. 

than  one rule. 

the  same rule. 

The first  restriction is not as  severe  as it may appear. If 
the user specifies the  two  rules 

let x be exprl if condl ; 
let x be expr2 if cond2 

the compiler could transform these into an equivalent rule 
of the  form 

let x be (if condl then exprl else expr2) if (condl or cond2) 

assuming that  the conditions are mutually exclusive. 

In  addition, we impose the following restriction on the 
processing of let rules by the compiler: 

4. The rule that  assigns a value to a variable  must be 
processed before any rule that  uses  that value. 

In  example 1 ,  the  proper  order of processing is 2-3-1 
because, in this order,  the new value of each variable is 
computed before the value is used in other rules. On the 
other  hand, restriction 4 is not  obeyed in example 2. Re- 
strictions 2 and 4 guarantee  that processing of the let rules 
terminates. 

Table 2 Iterative evaluation of let rules. 

Vari-  Values  Vari-  Values  Vari-  Values 
able  able able 

x 0 3 3  x 0 3 3  x 0 3 3  

y 5 8 8  y 5 8 8  y 5 8 8  

z 5 1 1 1 1  z 5 1 1 1 1  z 5 8 1 1  

v 10 10 19 v 10 19 19 u 10 16 19 

order is 1-2-3 order is 2-3- 1 order is 3-2- 1 

Table 3 Iterative  evaluation of let rules. 

Variables Old values New values 

X 6 8 6 8 6  
Y 1 3 1 3 1 . ' .  
W 7 9 9 9 9  

0 Internal representation of let rules 
The following definition of dependence is adapted from 
Tesler and  Enea [lo], who suggest  a  compile-time  analy- 
sis to determine  which statements in a  program can be 
executed  concurrently. 

Dejinition If A is the  output variable and B is an input 
variable of a let rule, then A is said to be directly depen- 
dent on B ,  written A dep B. If the rules are numbered 1 , 2 ,  
. . ., and  the  dependency relation is given by rule k ,  we 
can also write A dep(k) B.  

Dejinition If A is an  output variable  and B is an  input 
variable, then  the relation dep' is defined recursively as 
follows: 

A dep' B if either A dep B or 3 C such  that 
A dep C and C dep' B .  

From  these definitions and from restrictions 2 and 4 
given above, it is easy  to verify that  the relation dep' is 

(a) Transitive: if A dep' B and B dep' C ,  

(b) Antisymmetric: if A depf  B then 1 B  dep' A .  
(c)  Irreflexive: TA dep' A .  

then A dep' C. 

We now represent  dependency relations  by means of a 
directed graph (e = (V,R) of nodes vi E Vand edges ri E R 
in which 727 
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Figure 18 Example of dependency graph. 

1. The finite set of nodes  Vrepresents  the  set of input  and 
output variables  appearing  in  the set of let rules repre- 
sented by R.  

2. There  exists  an  edge k E R in %from node B to  node A 
if and only if A dep(k) B.  

Such  a graph is called a dependency graph. 

From  the definition of dep' above  and  properties (b) 
and (c) it follows that 

1.  A dep' B if and only if there  exists a path in the de- 

2. The  dependency  graph  contains  no  cycles. 
pendency graph from B to A .  

As an  example,  consider  the following rules  (the  aster- 
isk represents  the multiplication  operator): 

1. l e t y b e x + 2 * z  
2.  let z be x + r 
3 .  l e t w b e u - z  
4 . 1 e t v b e x + 3 * y - 2 * ~  
5 .  l e t u b e 2 * z + t  
6. let t be r - 5 

These  rules can  be depicted by the  dependency graph 
shown  in Fig. 18. Each edge of the graph is labeled  with 
the number of the rule that  gives  the  dependency relation. 

As in the case of the AIR graph, we associate  apossible 
status property with each  node of the dependency  graph. 
However, in this case  the  possible  status p s  has  the fol- 
lowing meaning: 

z.ps = 1 if a new value has  been assigned to z or if the 
old value of z can be used, 

728 zaps = 0 otherwise. 

Now,  suppose  that n is a  rule  such  that y dep(n)  x, and x 
is assigned  a new value  (either  by the  user or as a result of 
processing  a let rule).  Then,  rule n can be processed to 
produce a value for y provided that 

z.ps = 1 for all z # x such  that y dep(n) z and z dep'x. 

This says  that  to  proceed along an edge of the depen- 
dency graph and obtain a new value for an  output vari- 
able,  the value. of each input  variable in the  corresponding 
rule must be  available: either  the old value can be used  or 
a new value  has been assigned. 

To illustrate, suppose  that in Fig. 18 a new value  has 
been  assigned to x. Thus we set x.ps = 1 .  Since r does not 
depend  on anything, we can also  set r*ps = 1. Before  a 
value for y is computed using rule 1, a new value must be 
computed for 2. But  rule 2 can be  processed because x*ps 
= 1 and r-ps = 1 .  

By properties  (a),  (b),  and (c) above,  the relation dep' 
produces a partial ordering on  the nodes of the graph %. 
We assume the existence of a  topological  sorting routine, 
such as  that given by Knuth [ 111. This  routine  would give 
us an initial evaluation order  for a given set of rules. How- 
ever,  when the  value of a variable  changes  during the exe- 
cution of a  program, the  values of other variables may 
need to  be recomputed. To determine  these,  we define a 
new function recomp. 

Dejinition If A is an  output variable of a set of rules R, 
then 

recomp(A) = {x 1 x dep+ A} .  

The function recomp can be extended  to a set of variables 
in the  obvious  manner. 

Definition If A and B are  output variables, then 

recomp(A,B) = recomp(A) U recomp(B). 

It is now  a simple matter  to give an algorithm for  deter- 
mining the  order of processing of a set of rules. 

Algorithm C Let xl, x2,  . . ., xt  be  variables whose val- 
ues  have changed. An ordered  set R ' = { r i ,  rh, . . .} of 
rule  numbers is produced, which indicates that rule r l  

must  be processed before r j  if i < j .  

Step 1 (Initialization.) 
Let S be an  ordered  set containing all of the nodes  (vari- 
ables) of % after a topological  sorting. Let R = {rl, rp ,  . . ., 
rm} be  the  corresponding rules of S, i.e., the initial order- 
ing of  the rules. Let R' = @. 

Step 2 (Find  the  variables that require recomputation.) 
Let S' = recomp(x,,  x 2 ,  * . ., xk) .  
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Step 3 (Select the  rules.) 
Form the ordered set R' by selecting from R those rules 
whose output variables appear in S'. That  is, for i = I ,  
. . ., m: If A dep(ri)  u for  some v such that A E S ' ,  then 
append ri to R ' .  

An example 
Consider again the earlier example for which the  depen- 
dency graph is shown in Fig. 18. Figure 19 shows the 
nodes  (variables) of %' after a  topological  sorting. Thus S 
= {r, t ,x,z,y,u,o,w} and R = {6,2,1,5,4,3}. From Fig. 19 
(actually,  from the internal representation used in the top- 
ological sorting routine), we compute 

recompir) = {t ,u,u,w,z,y} 
recomp(t) = {u,u,w} 
recomp(x) = {z,y,u,w,u} 
recomp(z) = Iy,u,w,u} 
recomp(y) = {u,w} 
recomp(u) = {u,w} 
recomp(u) = {w}  
recomp(w) = 0 

Now,  suppose  that new values have been  assigned to x 
and u. We compute 

S' = recomp(x,u) = {z,y,u,w,u} 

and from inspection of the rules given above we find that 
R' = {2,1,5,4,3}. 

Essentially,  what Algorithm C is doing is again a topo- 
logical sorting of the  subset S' of the original set of nodes 
S of %. We know that dep' is also a  partial  ordering on S' 
(or for  that  matter,  any  subset of 5). The  advantage of 
using Algorithm C instead of picking the rules in the  order 
given by the original sorting routine is that  some of the 
rules need not be evaluated.  Note,  for  example,  that rule 
6 does  not  appear in the final ordered  set R' in the  above 
example. 

The  order of processing of the rules is not unique. In 
the above  example,  the rules can also be processed in the 
order 2-5-1-4-3. However,  the  fact  that  the new value of 
a variable is always computed before it is used in other 
rules guarantees  that  the  computed values obtained by 
processing the rules in any  order given by Algorithm C 
are  unique. 

Implementation of Algorithm C 
The  dependency graph % = (V,R) can  be represented by 
an n x n Boolean matrix M in which Mu = 1 if and  only if 
uj dep vi, where vi,uj E V .  Dependency relations dep' are 
then given by the Boolean matrices M ,  M 2  = M x M ,  M3 
= M 2  x M ,  . ' e ,  M"", as follows: 

IBM I. RES. DEVELOP. 8 VOL. 2 .A NO. 6 NOVEMBER 1980 

Figure 19 The ordering of the nodes of ie of Fig. 18 after a topo- 
logical sorting. 

M:j = 1 if and  only if there  exists a path of length k from 
ui to uj. 

The  matrices M ,   M 2 ,  M 3 ,  etc., can  be  used at compile- 
time to ensure  that  the  dependency graph has no cycles. 
The graph has no  cycles if and only if there  exists  an in- 
teger q 5 n such  that M" = 0 for all p 2 q. 

8. An implementation 
The compile-time  analysis techniques  described in Sec- 
tion 4 have been implemented as a set of APL functions. 
The  implementation of Algorithm  A uses  the decision 
table approach suggested in Section 6. 

In this  implementation, the possible status  property 
and the  node  sets  used in Algorithms  A and B were easily 
represented and  manipulated  by  means of APL vectors 
and operators. 

9. Summary 
In this paper we described  compile-time techniques  for 
analyzing  user-computer interactions,  as well as relation- 
ships and dependencies among items of data,  that  occur 
during the execution of interactive applications. These 
kinds of compile-time  analysis  techniques are  necessary 
to  construct efficient compilers  for  languages in which 
such interactions  and  data item  relationships  and  depen- 
dencies  are described by nonprocedural  behavior  rules. 
The practical value of using nonprocedural  descriptions is 
that  they simplify the programming of interactive appli- 
cations. 

We have considered in this paper some of the problems 
that a compiler  designer faces when implementing  non- 
procedural or declarative languages-the kind of lan- 
guage in which the  programmer  asserts things about  the 
structure of data, without  explicit specification of se- 
quencing.  Suggestions  for other kinds of nonprocedural 
languages have appeared in the literature. For  example, 
in the  language proposed by Homer [12], there  are  several 
types of statements (e .g . ,  assignment, READ, WRITE, etc.) 
Values for variables  become  available as  they  are  com- 
puted or introduced  by READ statements,  and a statement 



compiler  described  by Foster  and Elcock [13]. 

A related  area of research is the design of data flow 
machines [ 141 for implementing  nonprocedural  languages. 
The aim is to design these  machines using a computer  ar- 
chitecture based on  data flew models. The languages un- 
der consideration usually have  the single-assignment 
property mentioned in Section 7 ,  i.e., no variable can ap- 
pear as an output  variable  in more  than  one  statement. 
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Appendix:  Determination of dependent  nodes 
The following is an  expansion of step 2 of Algorithm A to 
determine node dependencies implied by a given set of 
nodes and corresponding  possible status  property. 

Let S be the  set of nodes to be considered, S C N ,  and 
q the  corresponding possible status  property of N .  

Step I (Any more  nodes?) If S = 0 or q = 0, we  are 
finished; q is the new  possible status  property. 

Step 2 (Examine  each  node of S.) Let k be some node of 
S. If qb = 2, go to  step 5 .  

Case qk (Execute  step 3 or 4, depending on  the value of qk.) 

Step 3 (Case qb = 1. Examine edges  into and  out of cur- 
rent  node.) 
(a) (Exclusion) 

(i)  If k + e j o r j  +e k ,  and qj = 1, then S is 
inconsistent with  respect to q; go to  step 
6. 

(ii) If k j e j o r j  +e k ,  and qj = 2, then set qj 
= 0; add j to S, that  is,  set S = S U Q}. 

(i) If k ji j and  qj = 0, then S is  inconsistent 
(b) (Implication) 

with respect  to q;  go to  step 6. 

to s. 
I (ii) If k j i j a n d  qj = 2, then  set qj = 1; add j 

1 (c) ( A N D  connective) If k +AND j :  
Recall that PS ( j )  is the  predecessor  set of j .  
(i) If qj = 2 and qi = 1 for all i E PS( j ) ,  then 

(ii) If qj = 0 and q i  = 1 for all i E P S ( j ) ,  then 
set qj = 1; add j to S .  

730 S is inconsistent; go to  step 6. 

# rn, then  set q, = q,; add rn to S. 
If i +AND k: 
(iv) Set qi = 1 for all i E PS(k)  such  that q i  = 

2. Set S = S u {i E PS(k) 1 q i  = 2). 
(d) (OR connective) If k +OR j :  

(i) If qj = 2, then  set qj = 1; a d d j  to S. 
(ii)  If qj = 0, then S is inconsistent; go to  step 

6. 
If i +OR k:  
(iii) If 3 m  E PS(k)  such  that q ,  = 2 and q i  = 

0 for all i E PS(k)  such that i # rn, then 
set q, = 1; add rn to S .  

(e) (NOT connective) If k $NOT j :  
(i) If qj = 2 ,  then  set qj = 0; add j to S. 
(ii) If qj = 1, then S is inconsistent; go to  step 

6. 
If i +NOT k 
(iii) Set qi = 0 for all i E PS(k) such  that q i  = 

2. Set S = S u {i E PS(k)  1 qi = 2). 
Step 4 (Case qb = 0. Examine edges into  and  out  of  cur- 

rent node.) 
(a) (Implication) 

(i)  If j j i  k and q, = 1 ,  then S is inconsis- 

(ii) I f j  +i k and qj  = 2, then set q, = 0; a d d j  
tent;  go  to  step 6. 

to s. 
(b) (AND connective) If k +AND j :  

(i)  If q, = 2, then  set qj = 0; add j to S .  
(ii) If q, = 1, then S is inconsistent; go to  step 

6. 
If i +AND k:  
(iii) If 3 m  E PS(k)  such  that q, = 2 and q i  = 

1 for all i E PS(k)  such  that i # m, then 
set q ,  = 0; add rn to S .  

(c) (OR connective)  If k +OR j :  
(i) If qj = 2 and q i  = 0 for all i E PSh’), then 

set q, = 0; add j to S. 
(ii)  If qj = 1 and qt = 0 for all i E PS( j ) ,  then 

S is inconsistent;  go  to  step 6. 
(iii)  If qj # 2 and if 3rn E PSG) such  that q, = 

2 and qi = 0 for all i E PSG) such  that i # 
rn, then  set q ,  = 4,; add rn to S. 

If i +OR k:  
(i) Set q i  = 0 for all i E PS(k)  such  that q i  = 

2. Set S = S u {i E PS(k)  I q i  = 2). 

(i) If q, = 2 and q i  = 0 for all i E PSG), then 
set qj = 1. Add j to S. 

(ii)  If qj = 0 and qi = 0 for all i E PSG) ,  then 
S is inconsistent; go to  step 6. 

(iii) If qj # 2 and if 3rn E PS(j)  such  that q, = 
2 and qi = 0 for all i E PSG) such  that i # 

(d) (NOT connective.) If k +NOT j :  
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m, then  set q, = l q j ;  add m to S. 
If i +NOT k :  
(iv) If 3m E PS(k)  such  that q, = 2 and q i  = 

0 for all i E PS(k) such that i # rn, then 
set q, = 1; add m to S. 

Step 5 Remove  node k from set S. Go to  step 1. 

Step 6 Set q = 0. 
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