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The  Experimental  Compiling  System 

The  Experimental  Compiling  System (EcS) described  here  represents  a new compiler  construction  methodology  that  uses 
a  compiler  base which can  be  augmenttd  to  create  a  compiler  for  any  one of a wide class of source  languages.  The 
resulting  compiler  permits  the  user t o  select  code  quality ranging from highly  optimized to  interpretive.  The  investigation 
is  concentrating  on easy expression  and  eficient  implementation  of  language  semantics;  syntax  analysis  is  ignored. 

1. Introduction 
The Experimental Compiling System (ECS) uses a new 
compiler construction methodology [ 13 the fundamental 
goal of which is to provide  a system  on which customized 
compilers for a variety of source languages and  a  variety 
of target  machines can be developed.  The compilers are 
intended to be easy to build,  modify,  and maintain and to 
produce  optimized object  code if desired. In our investi- 
gation we assume the  existence of a  general  parsing sys- 
tem, which is therefore  not considered.  Instead, we con- 
centrate  on the design and development of a  system 
which permits  easy expression of language semantics in a 
form amenable to analysis  and  optimization. 

The meanings of most of the constructs in a language 
are given in a collection of procedures, which are  essen- 
tially identical to user procedures and can thus be sub- 
jected  to  the same analyses  and optimizations. In this way 
specific characteristics of the source language can be de- 
duced by the  system. Modifying or extending the lan- 
guage involves  changing or augmenting the collection of 
procedures defining i t .  

The basic system is designed to minimize the  con- 
straints imposed on languages.  This  increases the range of 
possible constructs which can be supported when the  sys- 
tem is customized to compile a given language. The pri- 

mary  interface  between the basic system,  the  procedures 
defining a language, and the programs written in  it is the 
internal language in which the  procedures and their  char- 
acteristics are  expressed.  The basic system  provides a 
schema  for this language and understands its semantics. 
The meaning of a given language is built on this  schema. 

These ideas  (the  internal language schema, semantic 
definition by procedures, and  procedure characteristics 
derived by analysis,  as well as  the mechanism for  code 
expansion  and  selection) are fundamental to  the Experi- 
mental Compiling System  approach  and significant depar- 
tures from conventional approaches  to compiler design. 

The internal language (IL) schema is a  framework for 
expressing various  languages. One of two unique aspects 
of the  schema is that  attributes, including information nor- 
mally provided by data  declarations, are  variables. ECS 
has no a priori knowledge about  attributes,  their possible 
values, or when  such  values are bound to  attributes.  Fur- 
thermore,  the usual dictionary  in which such source-spe- 
cific information is directly encoded for use during  the 
compilation  process does not exist in ECS. 

The  other unique feature of the schema is that all opera- 
tions are references to  procedures which implicitly define 
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and  elaborate  the meaning of the operation. The proce- 
dure  reference mechanism is used to  express  declarative 
information as well as  the  executable  statements in a 
given source language. Unlike conventional  programming 
languages in which. a syntax  and  semantics  are specified, 
the IL schema provides  a form but only limited semantics; 
it does not attach meaning to most of the operations. 

The collection of procedures (called defining p r o w -  
dures) which elaborate  the  operations of a language must 
eventually  reference  primitive operations.  These  opera- 
tions  are defined by degenerate  procedures-procedures 
with no elaborating  text-and are  abstractions of the  tar- 
get machine. 

The term dialect is used to refer to a language-includ- 
ing its semantics-expressed in the form provided by the 
IL schema.  The notation IL/X is used to refer to  the dialect 
of IL supporting  the language X. The  terms IUS and IL/P 
are used to refer to the  particular  source and primitive 
dialects  employed in an ECS compiler.  Because, in our 
experimental work, we use PL/I as  the  source language 
and the  IBM Systemi370 as  the target  machine, the  output 
of the PL/I translator is called the ILJPLI dialect, and  the 
primitive language is called the 1Li370 dialect. 

The defining procedures  for nonprimitive operators  are 
written in an external syntax of IL called DP. Although it 
would be most  convenient to use the same IL language for 
elaborating the  operators of a source language as is used 
for the source language itself,  this does not work in gen- 
eral. PWI does not, for  example, permit the testing of pa- 
rameter  types, which is needed to select code  alterna- 
tives. 

When  processing  a program, it  is necessary to get an- 
swers  to  such  questions as:  Does  this  instruction branch? 
What  variables are used by this instruction? What vari- 
ables are defined?  Normally such information about  the 
operators of a language is built into  a  compiler. Further- 
more, compilers  generally make worst-case assumptions 
about  an operation which refers  to  an external procedure. 
In order  to answer such  questions and mitigate worst- 
case  assumptions, ECS performs both  intra-  and  inter-pro- 
cedural  analyses. Given a  collection of procedures,  cer- 
tain control and  data flow characteristics of each  proce- 
dure  are found by an in-depth  analysis of the  procedure in 
the  context of the collection. Externally interesting infor- 
mation, such as how global variables or  parameters  are 
used, is summarized and retained with the  procedure in a 
library.  Since all operators  are defined by procedures, 
most of the interesting operator  characteristics  are me- 
chanically  derived by the  system. Certain characteristics 

696 must be given, however. Summary information for the 

degenerate procedures which define the primitive oper- 
ators  cannot be derived  automatically, since the body of 
such  a  procedure does not exist. Such properties as oper- 
and  commutativity are also not deducible by our  analysis. 
The  system provides  a  mechanism  whereby the  summary 
information  can be supplied or augmented by the definer 
of the  procedure. 

Code expansion is accomplished by procedure in- 
tegration. This  contrasts with code generation in most 
compilers, which basically involves  scanning an input 
text  string and, depending on what is found there and in a 
dictionary, selecting and emitting code  sequences  to an 
output  text string. In ECS code emission occurs before 
code selection  and is usually accomplished by replacing  a 
procedure reference with the  procedure itself. It is similar 
to  macro expansion: the  actual arguments  replace occur- 
rences of parameters in the  text, local names are distin- 
guished, and  external names  are resolved.  This transfor- 
mation, therefore,  can be used to replace the  code emis- 
sion  function of the usual code generator. If desired, 
integration can be done  selectively;  for  example, it can be 
made dependent on the projected  frequency of execution 
of an operation instance. When a  procedure  reference is 
not replaced with the procedure itself, it becomes  a CALL 
to  the  executable version of the procedure. A single defi- 
nition of an operation  thus suffices for use in systems hav- 
ing quite disparate optimization  goals. 

When global program analyses and  optimizations are 
applied to the text  after  procedure integration, a general 
procedure frequently becomes tailored to  the particular 
reference. EcS exploits  this  idea to effect the  code selec- 
tion usually accomplished by emitting  code sequences af- 
ter interrogating  contextual and dictionary  information. 

An analyze-optimize-integrate  cycle  reduces an IUS 

program to an IWP program  consisting of primitive opera- 
tions.  These  operations reflect the functions of the target 
machine  but not its resource  constraints.  Thus storage is 
not mapped  and  registers are not allocated. The  system 
provides  a  table-driven  mechanism to perform machine- 
tailoring functions. 

Given  the basic ECS system, a particularization to sup- 
port  a given target  machine P can be constructed by first 
defining IWP.  Then  the register  requirements  and alterna- 
tive code  skeletons  for  the IL/P operations  are defined and 
a  storage  mapper written. 

A  compiler for a particular source language s can be 
constructed from this  particularization by detining ILIS. A 
translator is then written which translates s programs into 
IUS. The defining procedures for all the  nonprimitive IL/S 
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operations  are written next.  (These  are written in DP, the 
defining procedure  language.) The defining procedures 
are compiled and  the  compiling  process  augments the IL  
library of procedures with these new defining procedures. 
(The  procedures in the IL library  contain  summary infor- 
mation  and are  optimized.)  The compilation also  gener- 
ates optimized object modules for these procedures and 
augments  the  object  library. 

The resulting compiling system  can compile an s pro- 
gram in any of several modes. A complete  optimization 
can be requested in which all or most procedure  refer- 
ences  are expanded in line, and the  analyze-optimize-in- 
tegrate  cycle is performed as often as necessary to 
achieve full optimization. Less optimization and  faster 
compilation is achieved by decreasing  the  number of iter- 
ations  through the  cycle. If no iterations are  performed, 
the result is a  program in which every instruction be- 
comes a  reference to the  compiled form of the defining 
procedure. 

In order to realistically evaluate  the approach we are, 
as already  indicated, using PUI as  the source language and 
the 370 as  the target  machine. The run-time  environment 
of the IBM PUI Optimizing  Compiler [ 2 ]  and its run-time 
library are being used. This not only  obviates the need to 
develop a new environment and library but allows more 
accurate comparative evaluations  to be made regarding 
the relative efficiency of the code produced by the PL/I 

Optimizer and by ECS. 

In the  next section of this paper, we discuss the IL  

schema on which various  dialects  can be constructed  to 
express  source and  target language constructs and their 
semantic interpretation. Section 3 describes the organiza- 
tion of the ECS compiler which is being constructed  to 
evaluate the methodology as it applies to PLII. Section 4 
gives an example of a (hand-simulated) application of the 
approach  to string concatenation. Although this appli- 
cation has been reported  elsewhere [3], it is repeated  here 
to provide  a specific basis  for  evaluating  the approach. 
The last  section  includes  some observations regarding  the 
relevance of the ECS approach in extensible language sys- 
tems, program development  systems, program mainte- 
nance, and data isolation. An Appendix elaborates some 
of the technical  mechanisms  developed to support  the ECS 

approach. 

2. IL schema  and its dialects 
In this section  the  objectives and the constructs  and  con- 
cepts of the intermediate  language  schema are given. Fol- 
lowing that the two dialects of IL (IL/PLI and IW370) and the 
IL external form (DP) being used in the  current ECS imple- 
mentation are  discussed. 
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0bjc~c.tiw.s 
The IL schema [4] is designed to support  a  class of lan- 
guages which includes PWI, FORTRAN. COBOL, ALGOL-60 

and 68, as well as low-level languages  close to the  assem- 
bly language level. While the IL schema is capable of sup- 
porting APL, the rest of the system would require  addi- 
tional  analysis and transformation  components to ef- 
fectively compile that  language. 

The number of built-in IL constructs is small.  Since the 
schema (and ECS) is independent of any  particular source 
language,  a minimal schema both avoids precluding con- 
structs in source languages  and  avoids including con- 
structs in the  base system which are not required  for a 
given language. 

Since  the notion of procedures, their  definition,  in- 
vocation, and  integration is central  to ECS, the IL schema 
necessarily supports a wide class of definitional and in- 
vocational mechanisms, including all the usual call-by- 
reference, call-by-value, and call-by-name  argument-pa- 
rameter association forms.  Furthermore  the  schema lets 
the ECS procedure  integrator  be a mechanical, language- 
independent transformer which can preserve  the seman- 
tics of an invocation. 

In addition to these objectives, which are central in de- 
termining  the form of the IL schema, several  practical 
considerations are factored in. The most important one is 
the  need to collect  and  retain  storage mapping and  alias- 
ing information.  The  actual  representation of IL within the 
system is also very much dictated by practical, primarily 
efficiency, considerations. 

Constructs crnd concepts 
The objectives of the IL schema  are  supported through  a 
number of constructs and assumptions regarding the  ex- 
pression of a  language, S, in IL. These  represent  our  con- 
clusions as to what constitutes a  practical, “lowest  com- 
mon denominator”  schema  on which a  class of languages 
can be expressed. 

Vcrricrhlcs 
Most source languages explicitly or implicitly associate 
with each variable rules  governing attributes, storage 
mapping, aliases, name scope, and legal usage. The IL 

schema contains mechanisms  for the expression of these 
rules but does not imbed them in the schema. 

Atzrih14re.s As mentioned earlier, attributes are  treated 
as variables, and no assumptions are made regarding 
kinds of attributes,  their  values,  or when values are 
bound to  attributes.  The  attributes of a source program 
are  expressed as  additional qualifiers to names. Thus  the 
PL/I structure component B in 697 
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DECLARE 1 A, 
2 B CHAR (2) VARYING, 

2 C  FIXED BIN (IS); 

might result in such ILiPLI variables as A.B.FORM, 

A.B.TYPE, and A.B.VARY. These might take  on  such values 
as 

MOVE (A.B.FORM = ‘STRING’) 
MOVE (A.B.TYPE = ‘CHAR’) 

MOVE (A.B.VARY = ‘TRUE’) 

(Here  and throughout most of the paper we use the ex- 
ternal  form of IL: the  operation, i.e., the  procedure refer- 
enced, followed by the  operands,  separated by such  de- 
limiters as = + * ( ). All such delimiters are equivalent to 
a comma or a blank and  have no semantic  implication.) 
Since these  are truly  variables-not  reserved  symbols- 
the IL schema  contains  no  restrictions  as  to when they 
can be  tested,  changed, or initialized. A representational 
expedient  has been introduced internally,  however. 
When translating a program in s into IUS, invariant as- 
signments such  as MOVE  (A.B.FORM = ‘STRING’) may be  ex- 
pressed in a “constants  dictionary”  rather  than directly 
in text. This is done  to  save processing  time. The diction- 
ary  does  not, however, have  the usual form in which spe- 
cific bits and fields hold specific attribute  values,  but is 
used in this context  to  associate variables with their pro- 
gram-invariant constant values. 

Storage  mapping  information The size,  alignment,  and 
storage class (e.g., static,  controlled,  etc.)  are used in the 
machine tailoring component of ECS. Most of this infor- 
mation is not used by the IL but is “passed  through” and 
is not normally  referenced until storage is mapped. It is 
expressed in a  language-dependent table. 

Aliasing information The  process of deducing  relation- 
ships in a program and transforming the program  based 
on such  information requires complete  knowledge of the 
aliasing relationships in the program to avoid making  very 
pessimistic  and limiting assumptions.  There  are various 
types of aliases ranging from  the  static sharing of storage, 
exemplified by the FORTRAN EQUIVALENCE statement,  to 
the dynamic  sharing, which can  occur by using PUI 

POINTER variables.  Some of the aliasing information is 
best gleaned or at least refined by analyzing the program; 
other  forms  are explicit in the  source program and  must 
be expressed in the IL dialect of the  source language. A 
table describes  the  static  storage relationships which may 
exist  between  variables.  Another table is used to hold the 
more  dynamic aliasing possibilities by expressing  the po- 
tential  values of language-dependent  variables such  as 
pointers,  entry variables, and label variables. 

Name scoping In order to support block structured lan- 
guages  and to  do  procedure integration, it is expedient  to 
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incorporate a “weak” form of name  scoping in the IL 
schema. This form assumes  that all names are  resolved so 
that identical names in different  blocks are identical in IL 
if and only if they are the same  object;  otherwise,  the 
names are different. Consider  the example given in Fig. 1. 

If the procedure integrator replaces the reference to IN- 

NER by the body of the  procedure, it must adjust  the 
names within INNER. Since A in this case belongs to 
OUTER, it should  not  be changed;  however, if A were de- 
clared in INNER, it would have to be given a new name  to 
prevent conflict with other  copies of INNER. 

Operands 
Each I L  operand is a single variable or  constant  and, with 
the exception of their  use in built-in operations,  each is 
actually an argument in a procedure reference. The vari- 
ables can be qualified (e.g. ,  A.TYPE) or indicate a location 
(e.g. ,  addr A). If an  operand is an  address of a  variable, 
then the  operand  contains a  level of indirection to  the var- 
iable. Constants can  be  labels, entries, the value con- 
stants of the  source language, or symbolic constants. 
Symbolic  constants are  items which do not change but 
whose actual  constant  representation is irrelevant. 
‘FALSE,’ ‘FLOAT,’ ‘SCALAR’ are examples. 

Instructions 
All instructions have a uniform structure: the name of the 
procedure  to be  invoked  followed by the list of argu- 
ments.  (The  external  syntax used  for printing or program- 
ming purposes may be more elaborate, of course.) 

BIND built-in operation 
The IL schema has  four built-in operations.  The meaning 
of these  operations is known  to  the  system; they are not 
specified as defining procedures. BIND is one of them and 
has the  form 

BIND (X, P) 

which is read “bind  (associate)  the  address of X to be the 
value of P.” In  other  words  the variable X now has as its 
address  the value of P. 

Suppose A were  a  string of characters declared in PUI 

by 

DECLARE  A CHAR (50); 

Now  suppose  the value of variable C, a single character, 
were  assigned to  the  tenth position in A. This  can be  done 
by first calculating the  address of the  character to be 
changed, then  setting the  value at that  address  to C. HOW 
long is  the item at the  tenth position in A? The  reader 
knows it is a single character,  but  the compiling system 
must  be told that  fact.  To  do  this a BIND is used to explic- 
itly name  the  tenth position  in A. The  total  calculation is 
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ADD (P = addrA + 9 )  

BIND (X, P) 

MOVE (X = C) 
The  attributes  associated with X ( e . g . ,  X.LENGTH = 1) are 
ascribed to  the  storage at the  tenth  byte of A. (Later in 
this section  the  use of BIND in supporting  various PL/I con- 
structs is shown.) 

B U Y  built-in  operation 
BUY is used to obtain  storage  for variable-sized  tempo- 
raries. It is built into the  schema so that  the allocation  can 
be easily removed from  the  execution string  and aggre- 
gated with other variables if the size of the  temporary be- 
comes  known  during  compilation. 

LABEL and ENTRY built-in  operations 
These  two built-in operations  are simply syntactic mark- 
ers in the  text.  They  are needed for control flow analysis. 
Their operands  are  the label or  entry  symbols  associated 
with that text  point. 

Purameter  passing 
The IL  schema must support  procedure integration and a 
variety of argument-parameter association conventions. 
When a procedure is integrated, one of the  changes made 
to  the integrated procedure involves  substituting actual 
arguments  for  parameters.  Thus the IL schema  has a call- 
by-name convention.  However,  parameter passing is re- 
stricted so that there is no difference between  call-by- 
name and call-by-reference. A source language translator 
must generate  the IL appropriate to the language conven- 
tion. Consider the source program  fragments given in Fig. 
2 .  

PLlI 
OUTER  :PROC; 

DCL A 

CALL INNER: 
. . .  

1NNER:PROC: 
. . .  
= A. . 

END  INNER; 
END  OUTER: 

Figure 1 PL/I procedure showing name scoping. 

R: PROC  (X,Y); 
I = 2: x = 5 ;  
CALL R (I,  A (I)); Y = 10: 

END: 

Figure 2 PL/I call with related  arguments 

R:PROC  (X,Y) 
MOVE (I = 2) MOVE (X = 5 )  
INDEX  (P, A, 1) 
BIND  (T, P) 
R ( 1 , V  

MOVE (Y = 10) 
END 

Figure 3 IL/PLI form of the  procedures in Fig. 2. 

If the  source language  uses  a  call-by-reference conven- 
tion (as  does PUI), then  the  desired result of the CALL is 
I = s and A(2) = IO. Figure 3 shows an I L  expression of the 
source language which supports this convention.  The IN-  

DEX defining procedure puts the location of A(]) in the 
locator variable P. 

MOVE (1 = 2) 
INDEX (P, A,  I) 
BIND (T, P) 
MOVE ( I  = 5 )  
MOVE (T = 10) 

Figure 4 Result of integrating the  procedures in Fig. 3.  

Figure 4 shows the result of integrating the two proce- 
dures. If the source  language has a call-by-name parame- 
ter passing mechanism (d IN ALGOL")), then  the  source 
translator will create  procedures  to  compute dynamically 
the  location of arguments  when referenced in the called 
procedure. The names of these procedures are  passed in- 
stead of the actual arguments. 

11. dicrlects 
The I L  dialects used in the current ECS development effort 
include the DP language, ILIPLI, and ILi370. 

DP /llntgldUR0 
The defining procedures  for a given source language can 
be written in any convenient language for which a trans- 

lator to IL exists. However, most users would find the 
constraints of such languages as PL/I too restrictive.  For 
example, PWI does  not provide  direct  mechanisms for  set- 
ting and interrogating the  attributes of variables. There- 
fore, it is necessary to allow defining procedures  to be 
written in IL. For this purpose, an external representation 
of IL programs, called DP, has been  developed. Two im- 
portant guidelines were  applied in its design. In  order  to 
keep the underlying form accessible  and  transparent to 
the  writer of a defining procedure,  there should  generally 
be a direct, one-for-one correspondence  between  external 699 
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and  internal text. (A few statements, notably the control 
statements,  are  exceptions.)  The number of language con- 
structs actually  needed in writing  a defining procedure is 
quite  small. Only those considered  necessary to  elaborate 
a definition or highly desirable  for expressibility are in- 
cluded. 

ILiPLI 

The decision to use PL/I as  the language for testing the 
feasibility of the ECS approach was made for several  rea- 
sons,  the most important being the richness of the PU 
language. By establishing the technology required to 
handle such  constructs  as  pointer variables, ON condi- 
tions,  etc., ECS will be able to support similar facilities 
occurring in many other languages. 

In choosing PL/I we were able  to take advantage of an 
available  translator: the  "front end" of the IBM P ~ I  

Checkout Compiler [ 5 ] .  This  translates PL/I into an inter- 
nal form called HTEXT, which is actually a text  and dic- 
tionary  suitable for  interpretation. It is this  form that is 
transformed  into ILIPLI. 

In the discussion of the I L  schema several Pur-related 
examples were used to illustrate  schema constructs.  The 
PLiI features now discussed  are some examples of the 
strategy  used to  express  interesting PLII constructs in IL. 

ON condition enuhlement The PUI ON conditions which 
are  enabled  at any  time are established by their lexical 
scopes. A defining procedure  for an operation may need 
to find out what  conditions are enabled.  This  information 
is passed to  the  procedure  as an explicit argument which 
has been  established by the  translator. 

ON units The PL/I program  units used to define the  ac- 
tions to be taken  when an  enabled condition occurs in the 
executing program are  treated as procedures.  The ON 

condition name itself is treated  as a local entry variable. 

Procedures In multiple-entry  procedures the relation 
between  parameters and  their  order  or  existence in a pa- 
rameter list can  vary  between  entries: 

A: PROC (X, Y): 
X = l :  

B: ENTRY (Y, 2); 
. . .  

Y=2;  

END; 

To avoid making parameter  operands  entry-dependent, 
an alternate solution to  the PLII method of renaming pa- 
rameters  at different entries was chosen. When a mul- 
tiple-entry procedure is encountered whose entry lists 

700 specify different parameters,  the procedure is modified so 

that each parameter is assigned a fixed position in a ca- 
nonical list to be used at all entry points. All entry  points 
are  altered  to  accept this canonical  list.  A series of 
dummy procedures is then created at  the same lexical 
level as  the  procedure being modified. Each of these 
dummy procedures  reorders  the arguments to  the canoni- 
cal form and  invokes the  corresponding  entry point in the 
modified procedure. Thus  the  above PLiI procedure be- 
comes  the equivalent of 

A: PROC (XX, YY): 
CALL AA (XX, YY, 0); 

END; 

B: PROC (YY, ZZ); 

CALL  BB (0, YY, ZZ); 

END: 

AA: PROC (X ,  Y, Z): 

X = l :  

BB:  ENTRY (X, Y, 2): 
. . .  
Y = 2 :  
. . .  

END; 

The procedure integration  optimization  can  generally re- 
move the introduced CALL. 

The procedure statement In addition to the  parameters 
expressed in the PL/I procedure  statement,  the IWPLI form 
indicates the PLil procedure  statement options (e .g . ,  re- 
cursion) and  contains the number of parameters,  the ON- 

condition  enablement parameter, the  return  variable, and 
the label of the initialization block. Initialization  includes 
space acquisition,  variable  initialization,  and the usual 
procedure prelude. It is separated as  a procedure  and ref- 
erenced from each  entry point of the original procedure. 
Again procedure  integration will embed it in-line if there 
is only one reference or when otherwise feasible. 

Computed  r~fc~rencrs Addressing of the components of 
structures,  arrays,  and  based variables is handled using 
the BIND built-in operation. A reference to P "-t A becomes 
BIND  (A,P) followed by a reference  to A. 

An example of addressing is given in Fig. 5. (Note  that 
in PL'I on the 370 the current length of a varying-length 
character string is stored in the two bytes preceding  the 
characters.) 

ILl370 

The primitive dialect of I L  in the  current ECS is ILi370. 

While providing access  to  the 370 constructs, it differs 
from the machine instructions in several  ways: 

1. Registers are not visible. 
2 .  Load and  store  instructions  are not included in the rep- 

ertory of I L ~ O  instructions. 
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3. Operands  are IL variables and  constants; they are not 
in base-index-displacement  form.  Since storage has 
not  been mapped,  addresses relative to, for example, 
the beginning of the  dynamic storage area  are not 
known. 

4. The  instructions generally have  three  addresses.  The 
target  operand need  not  be  one of the  source  oper- 
ands.  However, all instructions which will not  use reg- 
isters in  their  realization ( e . g . ,  the  decimal instruc- 
tions) have two  addresses. 

5. Operand lengths are  those of the 370 and  are  encoded 
in the  operation  code if the instruction can be  realized 
by the use of registers. 

6. The raising of exceptions  is modeled as a call on  an 
external variable. 

7. Condition codes and  program  masks are modeled as 
external variables. 

An example of the description of an IW370 instruction fol- 
lows. (The summary  information to be associated with 
the  degenerate defining procedure is contained in the ECS 

library.) 

FIXED-ADD-ijk(X, Y, 2) 

This performs  the fixed point  addition X = Y + Z, 

where the lengths of X,  Y ,  and z are given by i ,  j ,  and 
k,  respectively. Here i, j ,  and k may each be either 
2 or 4. 

Implementation: Load,  Add,  Store, with “Half- 
word”  on any of the  instructions if appropriate. If 
either X or Y is in  a register, then the Load can be 
omitted. 

Summary  information: X and the  condition code  are 
defined; Y and z and  the program mask are used and 
preserved. A Fixed-point Overflow exception will be 
raised if the  appropriate bit in the program  mask bit is 
on  and a  4-byte overflow occurs. 

Y and z commute if you  also  switch the  operand 
lengths, i . e . ,  FIXED-ADD-ijk (X ,  Y ,  Z) is the  same  as 
FIXED-ADD-ikj (X, Z. Y). 

3. ECS compiler  organization 
In this  section we describe  the  structure of the Experi- 
mental Compiling System  currently being developed. Fig- 
ure 6 depicts its structure. 

Translntors 
Two different translators  exist: one for PL/I and  one  for 
the defining procedure language, DP. The  translator for 
the DP language uses a general LALR(I) parser which pro- 
vides a  convenient tool  for translating other languages to 

PLII IL/PLI 
DCL  Y  CHAR ( 5 )  VAR  MOVE  (Y.FORM = ‘STRING’) 

MOVE  (Y.MAXLENGTH = 5 )  
BASED:  MOVE  (Y.TYPE = ‘CHAR  VAR’) 

. . .  
P = ADDR(X); MOVE (P = addr X) 

P + Y = ‘ZZ’: BIND  (Y.LENGTH, P) 
. . .  . . .  

ADD (P1 = P+2) 
BIND  (T, PI) 
MOVE  (Y.LENGTH = 2) 
MOVE (T = ‘ZZ’) 

Figure 5 Example of the  use of BIND when  translating  a store 
into a PWI varying-length character string. 

PL/J 

1 
DP 

I 
Translator 

Translator 

and transformer 

Library 

Flow-free nnal)zcr 

Flowdcpendent analyzer 
- - - - - - - - - - - -. 

Optimmr 

Inteerator 

Storage mapper 

Instruction  aggregator 

?l Rcgistcrallocutor 

170 module 

Figure 6 ECS compiler  organization for PLiI on the 370. 

IL. The  translator  for PUI is the translator  used by the PUI 
Checkout Compiler [5] to produce HTEXT (the internal 
form of PUI which is interpreted by the back end of that 
system) followed by a transformer  to  change HTEXT into 
IUPLI. 

One of the functions of a source language translator is 
to  determine puckrts: all data objects  which  have  a lan- 701 
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guage-dictated storage relationship to  each  other  are 
mapped into  the  same  packet; otherwise data  objects  are 
in unique packets. (The  relationship of objects in the 
same  storage  class but in separate  packets  is not  resolved 
until later in the compilation.)  Associated  with each vari- 
able is its  packet number  and enough  mapping  informa- 
tion to resolve to  the bit level the mapping of a variable 
and its  components. With this level of information  partial 
overlay can be  distinguished-a  fact  which is of interest 
to  those  components of the  system doing alias  analysis. 
Of particular  importance in PL/I is the  ability to  note sub- 
structure independence. For  example,  changes to any of 
the 10 B’S do not  affect the C’S in the  structure: 

DECLARE 1 A (IO), 

2 B  FIXED  BIN (15), 

2 C  FIXED  BIN (15); 

0 Library 
The library is a repository of analyzed and unanalyzed IL 

procedures, including both  user and system  procedures. 
In  the  current implementation the library contains IW370 
degenerate  procedures, IL procedures which  establish the 
meaning of the IUPLI operations, and PUI user  procedures 
translated  to IUPLI. The  procedures may have  just  been 
produced by the  translator or they may have  been re- 
tained from earlier compilations.  The  fact  that  procedures 
can be created  during  the translation of a program and can 
be subsequently analyzed, optimized, and integrated 
makes the handling of a number of source language con- 
structs relatively easy.  For  example, a procedure  can be 
created by the  translator  when array or  structure initial- 
ization is requested. 

The  existence of this  library  has  interesting implica- 
tions for  the flow of information  through the compiler and 
on the relationship of the  compiler  to  its  environment. 

1. All procedures  associated  with a problem  solution  and 
submitted  for compilation at  the  same time are  trans- 
lated  and placed  in the  library before the  rest of the 
compilation proceeds.  (Most compilers  independently 
compile each  external  procedure.  Furthermore,  the in- 
termediate  form is usually very  transient.) 

2. After a procedure  has  been analyzed and summary in- 
formation (see  Appendix) has been accumulated,  the 
augmented procedure  replaces  the original procedure 
in the library.  This may happen more than  once  as ad- 
ditional  knowledge is acquired about the  entire collec- 
tion of procedures  associated with a problem solution. 

3. During the  analysis  and optimization of a procedure, 
summary information for a referenced procedure may 
be used if it is available.  With this additional  informa- 
tion optimizations across CALLS and of CALLS can  be 

702 done.  For  example,  expressions involving global vari- 
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ables might be removed from loops  containing CALLS 

if it is known that  the CALLS cannot change  the  values 
of these variables.  A CALL itself might be  removed un- 
der  the right circumstances. 

Flow-free anulysis 
In order  to establish an  analysis  order [6] on  the collection 
of procedures, a CALL graph-possibly disconnected- 
must be built. Also,  since various language constructs, 
like CASE statements  and subscripting operations,  are not 
built into  the compiler  but are realized by the defining 
procedures, the compiler  must be prepared to produce 
good code for procedures  that manipulate  labels and ad- 
dresses  as variables. For  these and other  reasons flow- 
free analysis [7] must be  performed  before flow-depen- 
dent analysis.  Flow-free analysis  determines  the possible 
values of variables used  to  reference  procedures, desig- 
nate procedures  and  branch  targets,  and  contain ad- 
dresses. Instruction execution  order is not  considered. 
The  values obtained  by the analysis are used by the flow- 
dependent analyzer to  obtain more  precise control and 
data-dependent relationships. The Appendix contains ad- 
ditional  material on flow-free analysis. 

The call graph built by the flow-free analyzer is used to 
determine  the  order in which the  subsequent  analyses and 
optimizations will be applied to  the collection of proce- 
dures. Basically it is inverse  invocation order: a proce- 
dure is analyzed and optimized  after all procedure refer- 
ences  have been analyzed.  This is not,  however,  the loop 
depicted in Fig. 6. Before  describing the  components of 
that loop-the  flow-dependent analyzer,  the  optimizer, 
and  the procedure  integrator-we discuss  the  purpose of 
the  loop. 

ECS is designed to permit multiple applications of pro- 
gram  analysis and  transformation. This is possible be- 
cause  the programs  which perform  these  functions  are in- 
sensitive to the text levels so can be applied to multiple 
levels, and  because  the IL schema, which is  the only  lan- 
guage the basic system knows about,  has  no built-in as- 
sumptions  about text levels or binding times  for informa- 
tion. 

The primary reason  for  the  loop is the way operations 
are defined. The operation-defining procedures  elaborate 
the high-level operations in terms of other  operations. By 
successive  elaborations,  every IUS instruction is  reduced 
to a sequence of IL/P instructions.  Thus  an I U S  program is 
processed by the compiler until all instructions are IUP 

instructions. This can  occur in three ways: 

1. IL/S can be IWP. If s is very close  to  the  target language, 
the  parser  for s may not generate any  higher-level in- 
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structions. Most ILIS’S will probably  contain  some IWP 
instructions. 

2 .  As a result of integrating procedures and thereby 
elaborating the high-level IUS instructions  to IWP. 

3. As a result of transforming IUS instructions into a se- 
quence of IWP statements calling the IUS defining pro- 
cedure or user-supplied procedure. 

The  choice of when to  replace a high-level instruction 
with a procedure and when to replace it with a calling 
sequence  depends  on many factors:  the goals of the sys- 
tem and/or of this  particular run, and the  spacehime 
tradeoffs of making a particular replacement. 

Since the defining procedures  are compilable, they  are 
available for use at run  time. By transforming references 
to  these procedures  into  run  time  calls,  a  program is 
created which is executed in the object environment de- 
fined by these  procedures. In this way we can get  an inter- 
preter. Furthermore, if during  the optimization process 
all  of the input operands of an  operation  become  known, 
the operation  can be performed  at  compile time using  a 
compiled version of a defining procedure, 

We now  consider  analyses and transformations  applied 
to a procedure during  a single iteration of the loop. 

Flowdependent analysis 
Using the aliasing and  summary information provided by 
the flow-free analyzer  and  the packet mapper,  control  and 
data flow analyses are performed on a procedure.  Control 
flow analysis builds the control flow graph of the proce- 
dure  and  performs a variant of the  interval  analysis  de- 
scribed in [8]. The  purpose of interval  analysis is to codify 
the  control flow relationships (e.‘?. , loops and  loop  nests), 
so that  other  analyses  and  transformations  can  be done 
more rapidly. The interval analysis  variant is based on 
[91. 

Data flow analysis finds all “def-use” relationships: all 
definitions which may affect a given use (and all uses 
which may be  affected  by  a  given definition) are found by 
the bit-vectoring methods  described in [8]. In order  to 
limit the  sizes of the bit vectors and to retain the  results of 
data flow analysis when  procedures  are  integrated,  the 
analysis is performed  and  retained within “data-flow do- 
mains.”  This  program  partition and its uses are  described 
in the Appendix. 

Optitnizution 
The collection of optimizing  transformations is quite 
open-ended and subject  to  change.  The initial collection 
includes  some ”classical” transformations as well as 
some new ones. 

DCL A(100) INT; 
DO1 = 1 TO 10; 

M I )  
END; 

1 = 1  
GO TO TEST 

LOOP: 

CK[l r I s 1001 
= A(I) 

I = I + 1  

IF I 5 10 GOT0 LOOP 

. . .  

TEST: 

Figure 7 Subscript range check generated during translation. 

Redundant expression  elimination This  includes  both 
code motion  and  common subexpression elimination. 

Constant propagation Instructions  are  executed at 
compile time if the  operands which are used are  constant. 
The ECS methodology  allows the system to  provide di- 
rectly executable  constant propagators for all opera- 
tions-whether  user- or system-defined. The Appendix 
describes this  optimization in more  detail. 

Dead code elimination Unreachable  code  is eliminated. 
Performing this transformation after  propagating  con- 
stants through procedures  which have been integrated 
has the effect of tailoring the  general  procedure  to  its spe- 
cific instance of use.  This transformation also eliminates 
useless instructions  and  instructions of the form A = A. 

Strength reduction This is primarily aimed at changing 
subscript  calculations to increment instructions [lo]. 

Range  analysis In [ 1 11 a  method is given for determin- 
ing the  bounds  on  the ranges of values assumed by certain 
variables at various  points in the program.  Such range 
information is used to eliminate redundant  tests  and  to 
expose  dead  code. A particularly  interesting  application 
for  this  analysis is in reducing the  costs of checking for 
subscripts that are  out of range. Figure 7 shows  a frag- 
ment of a PLA program on  the left and  on  the right  a 
schematized  internal form in which  a check  on  the range 
of subscript I has  been  expressed. 

The  range  analyzer  acquires range  information from 
definition and  test  points and  propagates it to  use  points. 
When applied to this example, it will  find that  the value of 
I at the point of the check is 1 5 I 5 10. The  check  state- 
ment is unnecessary  and is eliminated. By explicitly ex- 
pressing such  checks  as  instructions in the  text string, 
they are also  subject to  other  forms of optimization: they 
will frequently  be redundant  and  can be eliminated or 
moved out of loops. 

Vuriuhlr  propugation The variable propagation trans- 
formation  changes an  occurrence of a  variable  name in a 
program to a  different name which has  the  same value: 
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x = Y  x = Y  
use of ( X )  

becomes use of (Y) 

This may allow the elimination of the  trivial  assignment X 
= Y as  dead  code.  Its most important applications in the 
ECS context  are in removing levels of indirect addressing, 
particularly  after procedure integration. 

Renaming Renaming is a  transformation in which one 
variable is replaced by another.  The motivation is to 
reuse  variables in order  to  reduce  the number of tempo- 
raries  required and  the number of moves. There  are  two 
forms as shown in Fig. 8. In  Section 4 an  example is given 
using this  transformation. 

Prc~cedure  integration 
References to  proeedures  are replaced by the  procedures 
or by their calling sequences  when  procedure integration 
is performed. The Appendix discusses this transforma- 
tion in greater detail. 

4. Machine tailoring 
Not all functions a compiler  must  perform fit naturally 
into a  procedurally  based specification and elaboration. 
Storage mapping in particular  does not  entirely fit into 
this approach. 

The fundamental  function of storage mapping is to 
change the underlying model of storage  used by the pro- 
gram. All  of the variables required by a procedure  are 
examined  and  relative  locations assigned to  each.  Since 
ECS does not distinguish temporary, compiler-generated 
variables from other variables  and  since it generates a 
new such variable whenever  one is required, ECS overlays 
storage [12-141. This  decreases user storage as well as 
making temporary  management unnecessary. 

When  storage is mapped,  the references to that storage 
must also be  changed.  This  transformation is accom- 
plished by  instruction  aggregation which constructs  the 
more  complicated 370 base-index or base-index-dis- 
placement (BXD) operands  from the  simpler IL operands 
and the  results of storage mapping. 

In ECS, storage mapping and instruction  aggregation are 
part of the target  machine  tailoring  function. Another ma- 
jor  function performed by the machine tailoring  function 

Figure 8 Effects of the renaming  transformation 

Original becomes or 
T = op (A, X) B = op ( A ,  X) A = op (A, X) 

704 B = op’ (T, Y )  B = op’ (B, Y )  B = op’ (A, Y )  
. . .  . . .  . . .  

is register  allocation. Its input is  an augmented form of IL, 
called RL for Register Language, which is the output of 
instruction aggregation. The machine  tailoring functions 
of the  compiler are now considered. 

Storuge rnupping 
Storage mapping in ECS involves collecting packets be- 
longing to  the  same  storage  class into larger packets. This 
includes  overlaying  storage-determining  which sets of 
packets in the  same  storage  class  can be  assigned over- 
lapping storage so that  the  overall object  storage  require- 
ment is reduced. It  also  includes generating the  instruc- 
tions  required to allocate and reference  a packet  and  the 
objects in it. 

The first task, integrating and overlaying  the  primitive 
packets  into larger packets within  storage classes, could 
be done by defining procedures which are  referenced at 
appropriate points in the  text  string and  provided  with the 
necessary  information by the usual analysis techniques. 
For several  reasons,  however, it is desirable to  treat this 
function in a  special  way. 

1 .  The target environment  as well as the source language 
influences the organization of the larger packets. 

‘2. The information  required for packet construction is 
not that normally collected  by the analysis processes. 
It might be necessary  to  make a  special  analysis to 
derive such information. 

3. The integration of packets should  happen after  other 
optimizations and  procedure integration. At that time 
the  “dead variables”  which need no storage will have 
been identified, and the coalescing of storage  class 
membership for  the integrated procedures will have 
occurred. 

4. Since  storage mapping changes  the  storage model  from 
that of the source language to  that of the  target ma- 
chine,  the  reference  forms must  also be changed. This 
involves, for example, transforming references  to a 
.variable x in the PUI automatic storage class  to refer- 
ences  to an offset (off) to  the  base of the  appropriate 
dynamic storage area (DSA). 

For  these reasons our  current implementation  performs 
packet  integration as part of the machine  tailoring  com- 
ponent of the system.  The  storage  overlay  aspect of 
packet  integration is discussed in the  Appendix. 

0 Instruction aggregation 
The instruction  aggregation component of ECS augments 
the IL instructions to include the storage mapping infor- 
mation. The additions  explicit in the IL prior  to aggrega- 
tion are implicit in an RL operand.  Thus,  the aggregator 
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synthesizes  the  complex machine operands  out of the op- 
erands of several IL expressions.  It is described in greater 
detail  in the Appendix. 

RL, the  annotated IL instructions  produced by instruc- 
tion aggregation, can be characterized  as follows: opera- 
tions are identical with ILi370; operands  are  annotated  to 
include the 370 base + index + displacement (BXD) form. 

0 Register allocation 
The register  allocation component of ECS not  only allo- 
cates  and assigns  registers  but  makes the final code selec- 
tions.  Any optimizing compiler for  the IBM 370 (or any 
computer with multiple ways of performing the same 
function) is faced  with the dilemma caused by the fact 
that the selection of the  instruction  sequence  depends  on 
register availability and  the assignment of registers de- 
pends on  the  instruction  sequence. 

If there were only  one  possible sequence  for  every 
higher-level operation, then the problem would be  some- 
what easier, though  by no means trivial. The ECS register 

MO\ 

M=A.MAXLEN-B.LEN 

MOVEl = B.LEN 
IF EXTRA EXTRA = >IFM\ M-C.LEN > 0 

/\F 

\ \  i 
MOVEl = A.MAXLEN 
MOVE2 = 0 
EXTRA = 0 

MOVE2 = M 
‘E2 = C.LEN EXTRA = 0 

TOTAL = MOVEl + MOVE2 
BUY TI (MOVEl  BYTES) 
BUY T2 (MOVE2 BYTES) 
P1 = addr A + MOVEl 
BIND  AI, PI 
T1 = B  (MOVEl  BYTES) 
T2 = C (MOVE2  BYTES) 
A = TI (MOVE1 BYTES) 
A1 = T2 (MOVE2 BYTES) 

IF A.VARY = ‘TRUE’ 

T/ \F 
A.LEN = TOTAL P2 = addr A + TOTAL 

\d 
BIND  A2, €9 
PAD A2 (EXTRA) 

RETURN 
allocation component tries to  select  the  best  sequence of 
instructions subject to register availability and an esti- Figure 9 Defining procedure for concatenate. 

mate of the relative execution frequencies of various 
areas of the program. 

The organization of the ECS register  allocator is given in 
the Appendix. 5. The  context of the  concatenate  operation may greatly 

Final assembly 
The  last  component of ECS generates  the  actual  code and 
creates  the load module. 

5. An example 
The  example given in this section is taken from [3]. The 
study reported in that paper was designed to  evaluate (by 
a hand simulation) the effectiveness of the ECS approach 
in producing good code for a hard problem. The problem 
chosen  was the PLil string concatenation  operation: A = 

BIIC. 

A code  generator  has  to be aware of numerous possi- 
bilities when generating code  for this operation: 

1. The  operands may be  varying or fixed-length strings. 
2. The  result may need to be  padded or truncated. 

affect the kind of code  that should be generated.  The 
quintessential  example of this is LENGTH (AIIB) in 
which the  actual  concatenation is unnecessary since 
the desired  result is the  sum of the lengths of the  two 
operands. 

The  conventional strategy for producing  good code  for 
such an  operation is to build into the code  generators  an 
extensive selection process which  distinguishes the  “spe- 
cial cases.” 

The ECS strategy is  to  write  the defining procedure in as 
straightforward  a way as possible and  use  the existing 
analysis  and  optimization techniques  to  produce good 
code.  The next  few figures elaborate  the application of 
this strategy  to a specific instance of concatenation. Fig- 
ure 9 shows in schematic form  most of the defining proce- 

3. One or both of the  operands may alias the target vari- dure  for  the  concatenation A = BIIC. Note  that the overlay 
able.  For  example, if c is aliased with A, then moving problem is handled by moving  each  input string into a 
B into A will destroy the  original C. If B and A start  at temporary. (The  notation used in this  example differs 
the same memory address,  then we might be able  to from our usual notation, but we hope it is both  clear and 
save a  move operation. concise.) 

4. Different instruction sequences  are required for oper- 
ands of diEerent  lengths. These can  range  from  a Now  consider  the PWI program in Fig. 10 which  refer- 
simple  load-store sequence to loops for long strings. ences  the defining procedure  for  concatenate.  The  declare 
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A=BJJC; 

Figure 10 A  reference to  the concatenate denning procedure. 

MOVEl = 10 YM = 40 
EXTRA = 30 MOVEl = 50 

i MOVE2 = 0 
EXTRA = 0 

MOVE2 = 40 
MOVE2 = 10 EXTRA = 0 I 

T6TAL = MOVEl + MOVE2 
BUY T1 (MOVEl BYTES) 
BUY T2 (MOVE2 BYTES) 
P1 = addr A + MOVEl 
BIND Al,  P1 
T1 = B (MOVEI BYTES) 
T2 = C (MOVE2  BYTES) 
A = T1 (MOVEl BYTES) 
A1 = T2 (MOVE2 BYTES) 

\ 
\ /  

A.LEN = TOTAL €9 = addr A + TOTAL 
BIND A2, P2 
PAD A2 (EXTRA  BYTES) 

\/ 
Continue 

Figure 11 After integrating the  concatenate defining proce- 
dure. 

BUY Tl(10 BYTES) 
BUY T2 (10 BYTES) 
P1 = addr A + 10 
BIND Al ,  P1 
T1 = B (10 BYTES) 
T2 = C (10 BYTES) 
A = T1 (10 BYTES) 
A1 = T2 (10 BYTES) 
P2 = addr A + 20 
BIND A2, P2 
PAD A2 (30 BYTES) 

Figure 12 After applying constant propagation and dead code 
elimination. 

statements  are  translated  into IL statements which  assign 
values to a number of variables, including A.LEN, 
AMAXLEN,  A.VARY, etc.  The PL/I concatenate  statement 
is translated into a reference  to  the  concatenate proce- 

706 dure.  After  procedure integration  has  replaced the refer- 

Fig. 11. (In this example  arguments and parameters  have 
the same names-this is not  usually the  case, of course.) 

Figure 11 shows several  instructions which cannot be 
executed. Dead code elimination  removes them.  The  con- 
stants assigned to  the remaining MOVEl,  MOVEZ, and EX- 
TRA can  then be propagated  to  their  uses. Having done 
the constant propagation, the assignments of the con- 
stants to  these variables are  dead  and can  be  eliminated. 
The program in Fig. 12 is left. The program now has TI  = 
B and A = TI.  Since it can be  established that A, B, and T1 

are  not  aliases,  variable  propagation can  transform the 
latter  statement  to A = B. This causes T1 = B to  become 
dead, so it can  be  eliminated. This, in turn,  makes  the 
BUY of TI  dead. Similar analyses and transformations af- 
fect T2 and C. The  result is shown in Fig. 13. 

When the  operations in Fig. 13 are replaced by their 
defining procedures,  the 1Li370 version of the program 
fragment is obtained. After more optimization, the result 
is the  code of Fig. 14. (The number of bytes  expressed in 
a 370 move instruction is one  less than the  number of 
bytes  to be  moved  by the instruction.) 

Storage is now mapped. A, B, and c are in automatic 
storage so are mapped  relative to  the beginning of the dy- 
namic storage  area ( i . e . ,  the DSA) at  constant offsets: off& 
 off^, and offc. The result of the storage mapping is shown 
in Fig. 15. (In  the implementation the  text is not actually 
expanded with the  instructions  for accessing the  data, but 
the accessing information is held in a table  associated 
with the instructions.)  Only the  address  computations 
needed to  address A are  shown. 

The IL to RL conversion is performed. The  addressing 
computations  are collected into the  base-index-dis- 
placement operands of the 370. In this example, we are 
assuming that  the offsets are < 4096. In conjunction with 
the  formation of BxD operands,  other  constant com- 
ponents of the address  computation  are also  collected 
into the displacement if possible.  The result is shown in 
Fig. 16. The register allocator  generates  the result shown 
in Fig. 17. 

Thus,  the original, very general defining procedure for 
concatenate has been reduced  by  general transformations 
to  four instructions for this  particular case.  What  about 
other  cases? A number of cases were considered  and the 
results  compared  with  the PL/I Optimizer,  which contains 
a  very large, special-case code  generator. 

1. For A = AIIc,  A will not be moved by either ECS or the 
Optimizer. 
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2. For LENGTH (BIIC), the  concatenation will not be done 
by ECS; it is done by the  Optimizer. 

3 .  In ECS, A = B[(CI(D will use  the renaming  optimization 
to  avoid unnecessary moves to and from  temporaries. 
The Optimizer also  avoids  unnecessary moves. 

4. If concatenation is done on parameters of unknown 
length, as in 

P PROC (A, B, C); 

DCL (A, B, C)  CHAR (*); 

A = B(jC; 

then the ECS code will be longer but faster in com- 
parison with the  Optimizer. 

6. Conclusions 
A  compiler construction methodology has been described 
which provides  a  language-independent  compiler frame- 
work on which language-specific compilers  can  be built. 
The  approach is based upon the use of 

1 .  An intermediate language (IL) schema to  express lan- 

2. Procedures  to specify (“elaborate”)  the  semantics of 

3 .  Analysis to  derive  the  characteristics of operations. 
4. Procedure integration to expand high-level code into 

5 .  Analysis and optimization to tailor code  to its particu- 

guages. 

the language. 

lower-level code. 

lar context. 

As a consequence of the approach, the system  features 

1. Interprocedural analysis and optimization, including 
in-line expansion (“integration”) of user  procedures. 

2. Both interpretation and compilation within the  same 
system and from  a single semantic definition. The 
compiled  object code can  optionally be highly opti- 
mized.  Interpretive code (in the form of references  to 
the generalized procedures  for  each  operator)  and op- 
timized  code can be mixed in the same  routine. 

3 .  An extensive collection of optimizing transformations. 
4. Variable binding times. Most systems  expect  to bind 

information  at fixed times: attributes to variables at 
compile time, relative addresses at load time or  execu- 
tion time. The Experimental Compiling System binds 
information when it is known. 

The approach is being validated by implementing the 
basic system and testing its applicability to PL/I on  the 
370. 

I n  addition to providing  a compiling system which 
should significantly reduce  the  cost and  complexity of 
creating a compiler, while increasing  the reliability and 
code quality of the programs compiled by it, the ECS ap- 
proach  has other  advantages [IS]. 

PI = addr A + 10 
BIND Al,  P1 
A = B (10 BYTES) 
AI = C (10 BYTES) 
P2 = addr A + 20 
BIND A2, P2 
PAD A2 (30 BYTES) 

Figure 13 After  variable  propagation  and  other  optimizations. 

ADDRESS-ADD 
BIND 
MOVE 
MOVE 
ADDRESS-ADD 
BIND 
MOVE 
EXTEND 

PI = A + 10 
AI,  PI 
A, B, 9 bytes 
Al ,  C, 9 bytes 
P2 = A + 20 
A2, P2 
A2, ‘ L ’ ,  0 bytes  /*insert  pad  char */ 
A2, 28 bytes i* pad  end  of A*/ 

Figure 14 ILl370 version  of  the  program. 

ADDRESS-ADD LA = DSA + offA 

BIND  A,LA 

ADDRESS-ADD P1 = A + 10 
BIND Al,  PI 
MOVE A, B,  9 bytes 
MOVE AI, C, 9 bytes 
ADDRESS-ADD P2 = A + 20 
BIND A2, P2 
MOVE 
EXTEND A2, 28 bytes 

/*EST. LOC. OF A*/ 

. . . I* SIMILAR INSTS FOR B AND C. */ 

A2, ‘ L ’ ,  0 bytes 

Figure 15 After  storage  mapping. 

MOVE A[DSA+offA], B[DSA+of€J3], 9 
MOVE Al[DSA+(offA+lO)], C[DSA+offC], 9 
MOVE Af[DSA+(offA+ZO)], ‘-’[SI+off.-.], 0 
MOVE AZ[DSA+(offA+21)], A2[DSA+(offA+20)], 28 

Figure 16 After  instruction  aggregation. 

MVC  offA (9,DSA), offB(DSA) 
MVC offA+ 10 (9,DSA), offC(DSA) 
MVI offA+20, C ‘.L’ 
MVC offA+21  (28,DSA), offA+20(DSA) 

Figure 17 After register  allocation. 

Good programming style is supported.  The program- 
mer  can freely organize a  problem into a  functionally 
related, highly structured collection of procedures.  The 
system deduces  the  data flow through the collection and 
can open  procedures in line. This latter transformation 
not only  eliminates the  overhead of a call but, when fol- 707 
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lowed by optimization,  tailors  a  general  procedure to a 
specific instance. A  particularly  interesting  use of this is 
in isolating data  representations. ~ ( 1 . ~ 1  can be  treated as a 
reference to a function A which, using arguments I and J ,  

returns a value or a pointer  to a  value. 

Program  management functions  are  supported. ECS can 
be used to  check  the  consistency of a collection of proce- 
dures  and, when one is changed,  to determine the prolif- 
eration of the effects.  Ideally an ECS compiler is a com- 
ponent of a larger system which can both use and supply 
information regarding the  status of an entire collection of 
procedures. A component of this could be  a  design  speci- 
fication subsystem in which the functions of the  com- 
ponents of a  system being designed are specified. The 
components  can be checked  for  consistency and as each 
component is developed  a check made to ensure  that the 
specified interface  has been  correctly implemented. 

Interesting  diagnostic  and  maintenance  material is 
available. As a  result of the  extensive and  intensive  analy- 
sis of a  collection of procedures, a  great deal of informa- 
tion about  the  entire collection is available. Comments 
can be  automatically added  to a program listing at proce- 
dure call and definition points which summarize the ef- 
fects of the procedure call or definition. Because of the 
volume of information  made  available by the system, an 
interactive  mode of communicating to the user is desir- 
able. 

Extensive  error  checking is supported by the  system. 
The usual overhead of in-line checks  on subscript ranges, 
argument-parameter  compatibility, variable types,  etc., 
will largely disappear as a result of compile time analysis 
and  optimization. 

Language  extensibility is supported via the  procedure 
mechanisms. 
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Appendix:  Specific techniques 
Several  techniques which are new andlor  basic to the ECS 

approach  are discussed in this  Appendix: flow-free analy- 
sis, summaries,  procedure integration, data flow do- 
mains, constant  propagation, storage overlay,  and in- 

708 struction aggregation. 

e Flow-free clndysis 
Data flow analysis in ECS is complicated by the  presence 
of procedure, label, and pointer  variables.  Procedure 
variables  make it impossible to  determine, from a simple 
scan of the  program, which procedures may be called by 
each call statement. Label  variables similarly make it  im- 
possible to determine  which  labels may be the  targets of 
each goto statement.  Thus a call graph  and  a control flow 
graph cannot be constructed  after a simple scan of the 
program. Further complications occur when aliasing 
among variables in a  program is possible.  This can result 
from mechanisms such  as pointers  and  call-by-reference 
parameter passing, both of which we must be able to 
handle. As an example of the  problems which aliasing can 
cause. a call on a procedure variable using call-by-refer- 
ence could have the effect, depending on the value of the 
procedure variable at the time of the call, of assigning a 
procedure value to  one of the  parameters of the call.  This 
fact must be taken  into  account in constructing  the call 
graph,  for if a procedure A contains a call on  procedure 
variable X, the call graph must contain  arcs from the node 
for procedure A to  the nodes for  each procedure which X 

can have as its value. To  determine  the necessary infor- 
mation, a program analysis which is flow-free (in the 
sense  that  the call graph and control flow graph are not 
yet available) is required. 

Given  a  collection of procedures,  the flow-free analyzer 

1. Computes range information ( i . e . ,  lists of possible val- 
ues)  for procedure variables,  thereby generating a call 

2. Computes aliasing patterns  and range information for 
pointers while computing ( l ) ,  since  procedure vari- 
ables can acquire  values as a result of aliasing, 

3 .  Computes range information for label variables for use 
when determining the control flow graph, and 

4. Finds  argument-parameter relationships. 

Flow-free analysis also generates summaries for proce- 
dures, which is necessary in the  case of recursive  calls. 
This is considered in a subsequent  section. 

graph, 

Unfortunately, the problem of determining  completely 
precise information (precise up to symbolic evaluation 
[ 161) is inherently difficult. The algorithm suggested here, 
though  not precise in all cases, is safe and has  a running 
time which is approximately  bounded by the  product of 
the  number of alias  relationships in the program  and  the 
number of variables  and constants of pointer, procedure, 
or label type. 

The method used extends the work of Barth [ 161, Ban- 
ning [ 171, and Allen [6] to the cases we wish to handle. I t  
is described by  Weihl in [7]  and is similar to  that given in 
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[18]. In general outline,  the method involves manipulating 
relations over a set of variables and values of interest. 
The  code must be  scanned  to initialize the relations, and 
then  a  closure operation is performed on  the relations. 
We illustrate the method by considering  several ex- 
amples, starting with the simplest case, a single proce- 
dure with no aliasing, and gradually  considering  reference 
parameters, pointers, and calls on procedure  variables. 

Let us first consider the  case of a single procedure with 
no aliasing and no procedure calls. We first create a rela- 
tion MODVAL such that 

(x.A) in MODVAL means x is assigned value A .  

Suppose  our  procedure  consists of two  assignments 

B = C: 

A = B; 

Then, scanning  the code, we put the pairs (B,C), (A,B) in 
MODVAL. We then create  the relation PVAL to be such  that 

(x,A) in PVAL means x has  possible value A. 

If  we take PVAL = (MODVAL)+ (where .+ is the  non- 
reflexive transitive closure), then we get (A$) in PVAL. In 
this limited case, the above  formula is both correct and as 
precise as possible. 

Next, let us consider the case of multiple procedures 
with procedure  calls and no aliasing, where operands  are 
passed to procedures in the collection by value. Suppose 
the  body of one of the  procedures contains the following 
code: 

Call P(A); 

B = C; 

A = B; 

where P is a  procedure in the  collection with a single for- 
mal parameter X. We first define a relation AFFECT to be 
such that 

(X,A) in AFFECT 

means X may be aliased to A and to every other variable 
which may be aliased  to A .  AFFECT is the  set of all for- 
mal-actual  parameter  pairs which result from calls to pro- 
cedures in the  collection,  and so in our example (x,A) is in 
AFFECT. We then take 

PVAL = (AFFECT U M0DVAL)S 

This accounts  for  the transmission of values from  actual 
parameters  to formal parameters. In our example we then 
obtain, among other  pairs, (x,C) and (X,A) in PvAL. 

As a further  extension, let us now allow parameters  to 
procedures in the  collection to be passed by reference. 

This  means that when  a  value Y is copied into a  variable 
x, there is an implied copy of Y into each alias of X. Fol- 
lowing Barth [16], the ALIAS relation, which indicates 
possible aliasing relationships  among  variables, can be 
computed by 

ALIAS = (AFFECT*) 0 (AFFECT*)T 

(where T is the  transpose, * is reflexive transitive  clo- 
sure,  and 0 is composition). As an  example,  suppose  our 
collection consists of two  procedures P and Q ,  as follows: 

P(X,Y) Q 
x = B; Call P(A,A); 

Then we initialize our relations  as follows: 

(x,B) in MODVAL 

(x,A), (Y,A) in AFFECT. 

We then obtain (X,A), (Y,A), and (x,Y) in ALIAS. We use the 
following to compute PVAL: 

PVAL = ((ALIAS 0 MODVAL) U AFFECT)+ 

We note the information is correct in this case, but not 
completely  precise. See Weihl [7] for  further details. 

In the  case of pointer variables  and  procedure vari- 
ables,  no closed  form  formulas for computing PVAL can 
be obtained.  The algorithm  used to handle the  case of ref- 
erence  parameters is not sufficiently general to handle 
pointers.  The difference with pointers is that  the variables 
which contain addresses  can be aliased as  well, and so 
assignments to a  pointer  variable  must be propagated to 
all  of the aliases of the variable. The method used to  solve 
this problem is to incrementally iterate.  For  each modifi- 
cation to a variable,  the aliasing relationships implied by 
that modification are  added,  and we iterate to  see if this 
produces any  more  modifications. See Weihl [7] for  de- 
tails of the  algorithm, which is both precise and  correct in 
the  case of pointers,  given the assumption that no control 
flow information is available. 

We next consider  calls on procedure  variables. The 
basic  problem is that  at  the time the call is encountered in 
scanning the program, the possible values for  the vari- 
able,  and hence the  actual  procedures which might be 
called by the  statement,  are  unknown.  Therefore, it is not 
possible to immediately associate  the actual parameters 
of  the call with the  formal parameters of the procedure 
being called. To avoid  rescanning  the program several 
times, we need a mechanism to  keep track of the  actual 
parameters of calls on  procedure variables. When a value 
is determined for a procedure variable, we can then asso- 
ciate  the actual parameters of the calls on  the variable 
with the formal parameters of the value. The mechanism 
used to accomplish  this is to  create,  for each procedure 709 
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PL/I Source: CALL R(I,A(I), B+C,2); 
at IL level: INDEX (P, A,  I) 

BIND (Tl, P) 
ADD (T2 = B + C) 
MOVE (T3=2) 
R (I,Tl, T2, T3) 

Figure 18 The IWPLI form of a call 

variable,  dummy  formal parameters.  The algorithm in this 
case, like the  one  for  pointers, involves  incremental  itera- 
tion. 

Summaries 
The summary for a procedure delineates the effects of 
calling the procedure on all nonlocal  (to the  procedure) 
variables  mentioned in the  procedure and all formal pa- 
rameters  to  the  procedure.  The effects to be  summarized 
for a variable include whether it is used or modified in the 
procedure,  whether  data  accessible through  the  variable 
is used or modified, and whether  the variable is called and 
in what manner.  The  summary also  includes  what copies 
( ; .e . ,  assignments) between variables  take  place as a re- 
sult of executing the  procedure and information about  the 
nature of the  copy ( e . g . ,  whether it  is actually the storage 
accessible  through  the  given  variable, and not  the  vari- 
able  itself, being assigned). 

x may be used 
D may be used 
x may be copied into A 

D may be  copied into A 

Collected in a  flow-dependent manner, the  summary 
would be 

A must be modified 
A may be used 
x may be used 
D may be used 
x may be  copied into A 

D may be copied  into A 

; .e . ,  the additional information that A must be modified is 
detected. Reference [19] has a  discussion of the dif- 
ferences between “may” and “must.” 

0 Procedure  integration 
In general  the  term procedure integration can be used to 
apply to a  range of transformations designed to bind call- 
ing and called procedures more intimately prior to  execu- 
tion. We restrict our use of the  term here to mean in-line 
opening. By that we mean  replacing  a  reference to a pro- 
cedure with the procedure itself. There  are  three  central 
considerations in this: the conditions  under which it is 
reasonable, the order in which to perform  possible  se- 

The use and modify information is necessary anytime 
we want to examine the effects of an operand, e . g . ,  for 
data flow analysis. In data flow analysis,  summaries are 

quences of such transformations,  and  the  ”mechanics”  of 
the  actual integration as  related  to maintaining the  correct 
semantics  for  the  source language. 

examined  per  instruction in the program,  and bit vectors 
are formed based on this summary information. The infor- 
mation about  copies is needed for flow-free analysis to 
propagate procedure, label, and pointer values. 

We consider this  last  issue  first. Here,  as in  all  of the 
discussion  related to  the ECS transformations, it is impor- 
tant  to remember that integration occurs after the pro- 
gram  has  been translated from  its  external form. Sym- 

The information for  summaries is first collected by a 
flow-free analysis  and then by a flow-dependent  analysis. 
In broad outline,  the flow-free collection of this  informa- 
tion requires initializing relations and  then  performing  a 
closure operation.  The flow-dependent counterpart is 
computed  as a data flow analysis problem. 

We present an example  to illustrate  summaries as well 
as  the differences in flow-free and flow-dependent  sum- 
mary  generation. Consider  the following procedure p: 

P: PROC(X); 

I F A >  X THEN A = X; 

ELSE A = D; 
END; 

Collecting information in a flow-free manner,  the sum- 
71 0 mary would be 

bolic names have been  replaced by numbers (referring to 
symbol  table entries),  and all name qualifications, scoping 
conventions, implicit definitions, etc., have  been re- 
solved.  Thus variables local to  an internal  procedure 
have  already  been  distinguished from  other variables hav- 
ing the  same name. The following adjustments  must be 
made when replacing a reference  to a  procedure  with  the 
procedure itself 

1. The  argument-parameter associations  must be made. 
Different languages have  a wide variety of different 
possible associations.  The ECS procedure  integration 
transformation replaces all occurrences of parameters 
in the text with the corresponding arguments.  It is as- 
sumed that the source language translator has  re- 
placed  the  actual arguments given in the  source pro- 
gram with references to  actual  or dummy  arguments if 
this is appropriate.  Consider  the example for PUI given 
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in Fig. 18. Occurrences of the  parameters in the  text of 
procedure R are replaced with the  arguments I ,  T I ,  T2, 

and T3 if R is integrated. The result is correct  according 
to PUI semantics. 

2 .  Variables local to  the called procedure  must be kept 
distinct from those in the calling procedure; variables 
which are the same must be given the same identifica- 
tion.  Since it is assumed  that  the  translator will have 
resolved all names in internal procedures, name ( i . e . ,  
number) adjustments are made only on integrating an 
external  procedure.  Static variables must get the same 
identitications across all copies of a procedure. 

3 .  Members of storage  classes which require the dynamic 
acquisition of storage when  a  procedure is referenced 
are merged with similar storage  classes in the calling 
procedure. 

4. Statically inherited environments must be carried 
over. As an interesting case of this,  consider  the ex- 
ample in Fig. 19. If procedure C,  which inherits A’S 

static environment, is opened  up  at  its reference point 
in procedure B, then we must ensure  that c continues 
to inherit A’S static  environment. 

We now turn to  another of the  three considerations in- 
volved in procedure  integration as we are  discussing it 
here: the conditions under which it  is permitted and prof- 
itable.  Surprisingly, it  is nearly  always  permissible to in- 
tegrate one procedure  into another.  Even if the  procedure 
is recursive,  either directly  (containing a reference  to it- 
self) or indirectly, it can be integrated. (Of course, the 
integrator  must be careful not to get into an infinite loop 
of integrations.) 

Determining the profitability of an integration is  diffi- 
cult in general.  Procedure size and the  projected  number 
of times a  reference is executed  are clearly factors. An- 
other  factor is the  tailoring effect that will occur  on an 
integrated  procedure when it is optimized in the calling 
context. An algorithm for predicting the tailoring effects 
is given in [20]. In [21] it is shown that in certain contexts 
it is almost  always  profitable. Figure 20 gives an example 
of two  procedures which are integrated and the  result op- 
timized. 

It would be desirable to be  able to predict at least some 
of the  improvements to be gained by integrating a proce- 
dure  and  then  optimizing the  result. It  is probable that  the 
dramatic  effects  obtained in the  example in Fig. 20 could 
not be predicted, but certain simpler cases  seem promis- 
ing. A particularly promising and profitable case  exists 
when an argument is a constant and  the  corresponding 
parameter in the procedure is tested against another  con- 
stant. This is often done  to determine which of several 
alternate paths to take  through  a generalized procedure. 
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A: PROC 
B: PROC 

C: PROC 
CALL C 

. . .  

Figure 19 The static  environment of C and its call  are  different. 

ORIGINAL PL/I  PROCEDURES 
P: PROC (A); Q: PROC (X,Y); 

B=5; X=X*Y; 

CALL Q (A,B); 
C=A*B; 

RETURN  (C); 
END; 

END; 

After  integration  After  optimization 
P: PROC(A); 

B=5; P: PROC(A): 
C=A*B; A=A*5; 
A=A*B; RETURN(A); 
RETURN(C); END; 
END; 

Figure 20 Example  showing  the  integration  and  optimization of 
two procedures. ‘rC ‘r 
Figure 21 System of procedures. 

Unused  alternatives  should  disappear.  Since we have 
found that 24% of the  arguments passed in a large sample 
of actual  programs are  constants, this may be a  particu- 
larly important  prediction basis. In fact, it is likely that 
references  to defining procedures will involve an even 
larger  percentage of constants, 

The third  consideration  related to integrating proce- 
dures is the order in which to perform the  integrations. 
Assuming it  is profitable to  do a  complete  integration, the 
order in which the integration is performed can pro- 
foundly affect the optimality of the resulting code. This 
occurs because  the  optimizations which are  performed af- 
ter an integration work best when transforming  (moving, 
eliminating, modifying) single expressions. A CALL is a 
single expression; a procedure is not.  It may be  possible 
to move a CALL out of a  loop or eliminate it,  but it is 
difficult to effect the  same transformation on  the  ex- 
panded form.  This is particularly true if the  expanded 
form contains any control flow. Consider the little system 
of procedures A,  B, and c given in Fig. 21. 



I 

Figure 22 Control flow graph of a program  partitioned  into  data 
flow domains. 

Now consider applying  a strategy  to this system which 
results in integrating B into A first. A would now contain 
two calls to C. As a  result of optimization, the second call 
to c might possibly be recognized as being redundant. If, 
however, C had been integrated into B before B was in- 
tegrated  into A, the possible  redundancy would probably 
be obscured. 

Data , f l o ~ ,  domains 
Before they  are  integrated,  procedures have been ana- 
lyzed and their  internal control and data flow relation- 
ships are  known. We would like to avoid redoing the  en- 
tire  analysis  after  integration. Furthermore, many of the 
def-use  and live relationships would not  be  changed (pa- 
rameters, global variables. and  shared  scopes  create the 
exceptions), but the bit vectors would be much expanded 
and even  sparser than before. Even within a procedure, 
the bit vectors could become  very  large,  since  there is one 
bit for every definition of interest in the  program. 

These  and other  considerations have led to d o m l i n  ptrr- 
titioned dutu,flow rrnrrlysis. By this  method  a  control flow 
subgraph is encapsulated  and  the  data flow analysis com- 
pleted within the  subgraph.  Collections of such subgraphs 
or data ,flow domains can be further encapsulated into 

larger data flow domains. Each  subgraph  becomes  a  node 
in its  containing subgraph. Multiple definitions or  uses in 
a data flow domain are  treated as  a single definition or use 
in the  representative  node. 

Figure 22 shows a control flow graph  consisting of basic 
nodes 1, 2, 3 ,  . . ., 9. Each of these may be a single in- 
struction (i.e., a procedure  reference), a  basic block, a 
subgraph,  etc.  There  are definitions of X in nodes 3 ,4 ,  and 
7; uses in 8 and 9. The various definitions of a  variable are 
distinguished by subscripting the variable name with the 
number of the node  containing the definition. Thus X,,  X,, 
and X, appear in the  example. Assume that subgraphs (2, 
3, 4, 5 )  = I O  and (6, 7, 8, 9) = 1 I form data flow domains 
and further  that ( I ,  IO ,  11) forms the  all-encompassing 
data flow domain represented by node 12. X,, then is a 
pseudo-definition representing all the definitions of X in 
node 10. Similarly we have  a use and definition for node 
11.  

Within a data flow domain the def-use  relationship is 
expressed directly. Thus  the relationship between  the 
definition in 7 and the  uses in 8 and 9 are found  directly [8] 
and expressed explicitly. The relationships which cross 
data flow  domains go through one  or more levels of in- 
direction.  These levels of indirection are  encoded through 
the pseudo-definitions  and uses.  The  data flow analysis of 
nodes 1, 10, and 11 finds that X,, can affect the use in 11. 
In  order  to find out,  for  example, what  uses the definition 
in node  3  can  affect, we look at  the uses  its representative 
pseudo-definition, x,,, can affect. Since X,, has a def-use 
relationship with the  pseudo-use  for node 11, we can find 
the actual  uses of X, by looking at the  uses  represented by 
that  pseudo-use. 

The fact that domain-partitioned data flow analysis  can 
be  used to limit the lengths of the bit vectors used to  do 
the analysis  results from  the  fact  that  the number of defi- 
nitions being considered at  any  one time can be limited. 
However, the number of levels of indirection needed to 
relate  a definition and a  use increases. This  method is of 
interest in the context of integrating procedures which 
have  been previously analyzed.  The results of the analy- 
sis can be easily integrated with existing results  at  the 
time procedure integration is done. 

Constant  propagation 
Constant propagation is a more critical  optimization in 
ECS than in most compilers, mainly due to a  larger  ex- 
pected proportion of compile-time constants. This is be- 
cause, in ECS, an integrated defining procedure, such as 
the  one given in the  example of Section 4, will typically 
contain  a large number of constant-valued variable  refer- 
ences.  For this reason, a rather ambitious approach  to 
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constant propagation has been  undertaken in  ECS-an ap- 
proach which is facilitated by the ECS methodology. 

Constant propagation  involves the folding of compile- 
time constant values into variable  references. In many 
compilers, as in ECS, the def-use  chains are used to  deter- 
mine all the definition points  reaching  a given use when 
constants  are  propagated  between basic blocks. Such 
propagation  may, in turn, give rise to an expression all of 
whose operands  are  constant, and constant propagation 
can proceed if the  expression  can be  evaluated  and the 
target of the  expression is addressable. 

Most constant  propagators  restrict  the evaluation to in- 
teger  arithmetic involving simple variables or  tempo- 
raries. In ECS, the  greatest possible  latitude is provided. 

Any expression  that  can be evaluated  at  object time can 
also be evaluated by the  constant propagator at compile 
time.  This is achieved by associating with each IL primi- 
tive  a  simulator that  can  be invoked  by  the ECS constant 
propagator to  evaluate  that IL  operation when its  oper- 
ands  are  constant.  Furthermore, any procedure whose ar- 
guments are all constant  can be invoked at compile  time, 
thus supporting the propagation of constants through 
built-in functions,  such as SINE, and  type  conversion rou- 
tines. The simulator for  such a nonprimitive procedure is 
the result of integrating the more primitive simulators, 
and is thus  an  automatic  product of the ECS compiler. 

cerned;  the IL simulators  provide the  type  interpretation. 
The  exceptions here are values that  have been ascer- 
tained to be of pointer,  label, or entry  type.  These values 
are  represented in a  stylized form  that  conveys informa- 
tion about  the variables or program  points referenced by 
the value.  This form supports  the simulation of such  func- 
tions as indirect addressing and  transfers to  constant la- 
bels. 

Storage overlay 
In the ECS defining procedure  approach,  there is no dis- 
tinction between program  variables  and generated tempo- 
rary  variables. In general,  the  storage  requirement of an 
Ecs-compiled  program  before  storage mapping will be 
considerably  greater  than the typical  compiler’s output. 
Furthermore,  procedure integration produces  enhanced 
opportunities  for a storage  overlay algorithm to  determine 
storage-sharing  opportunities for temporaries and pro- 
gram  variables  alike, in a  uniform,  systematic manner. 
Such an algorithm is described in detail in [12-141. 

To illustrate the  storage  overlay problem, consider  the 
PUI program in Fig. 23(a). 

Most  compilers would produce  the  storage layout 
in Fig. 23(b). 

Improved  storage  utilization would result if the com- 
piler could observe  that  the first reference  to E follows the 
last  use of A and the first reference  to G follows the  last 
uses of C and D, as shown in Fig. 23(c). 

Propagation of constants  “through  storage” is sup- 
ported in the ECS compiler. For example, suppose  the 
program  contains  the statement 

A(I) = J ;  

If I and J are known to  have  constant values 2 and 3, re- 
spectively,  at this statement,  then  the value 3 can be 
propagated  through A(2) to all program expressions A(K) 

where K is also  known  to be 2. The ECS BIND operation 
and aliasing information supports this  function. The  ad- 
dress of a bindable variable is treated by the  data flow 
functions as a variable in its  own right: a  reference to  the 
bindable variable is a use of the address, and  a BIND opera- 
tion is a redefinition of the  address. In this way,  the def- 
use chains  are used to  propagate  constant  “address Val- 
ues”  as well as  other  values. 

An even  better solution results [Fig. 23(d)] from the ob- 
servation  that B and G are not  simultaneously live,  nor  are 
c and D. Thus,  the  overlay problem consists of finding 
sets of overlayable  variables and juggling their sizes so 
that  the  total storage requirement is minimized. 

Briefly described,  the key to  the algorithm is the  con- 
cept of a conjict graph.  The  nodes of the conflict graph 
are the variables in a  given storage class. An edge con- 
nects  a  pair of variables x, Y if and only if there is some 
node in the program flow graph  where X and Y are simul- 
taneously live and,  hence, may not share  storage.  The 
minimum assignment of overlapping  storage to  the vari- 
ables in a  storage class  can be formulated as an  extended 
coloring  problem.  This  formulation  suggests the use of a 
simple overlay  heuristic. 

These functions are provided in a completely  machine- 
independent  manner. The  constant propagator “knows 
nothing” about the storage  characteristics of the  object 
machine when it propagates  constant  addresses. Program 
variables, for  the most part,  are  “typeless” (i.e., bit 
strings) as  far  as  the  constant propagator itself is con- 

The nodes of the conflict graph (i.e., variables in a stor- 
age class)  are selected for  extended coloring (i.e.,  storage 
assignment)  according to a figure of merit which measures 
the relative  urgency of each node. The  extended color 
(storage  interval) is chosen  from  the  set of available  col- 
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P: PROC; 
DCL A(100), B(100), C(50), D(50), E(100), G(100); 
GET  LIST( B, C ): 

D = F2( A, B ); 
E = F3( B, D ); 
G = F4( E ); 
PUT LIST( E, G ); 

(a) A = F1( B, C ); 

END P; 

(b) A(100) G(100) E(100) D(50) C(50) B(100) 

Total: 500 cells 

A( 100) 

G(100) E(100) 

D(50) C(50) 
(C) ’- B(1W 

Total:  300 cells 

A(1W 

D(50) G(100) E(1W 

C(50) B(1W 
(dl . 

Total: 250 cells 

Figure 23 Effects of improved storage overlays. 

ors  according to a storage selection strategy,  such  as first- 
fit. 

e Instruction aggregation 
An important  part of the machine tailoring phase is a pro- 
cess  for recognizing that  certain groups of instructions 
compute a value  which can  be  computed by  a single in- 
struction of higher complexity.  Instructions  to be aggre- 
gated are related  by their  data flow-not by their physical 
proximity. In  order to deal with the aggregation of in- 
structions which are  not immediately adjacent,  the ma- 
chine tailoring phase of the ECS compiler makes  use of 
data flow analysis  which has already  been  performed  by 
the  semantic  elaboration  phase. 

For  example, most computers allow for operand ad- 
dressing  via  some kind of basehndex register arrangement 
in  which an implicit addsubtract  operation is used to  de- 
rive an effective address which points  to  the  actual  data  to 
be  manipulated. On the IBM Systed370,  storage oper- 
ands may be  addressed by summing the value  in a base 
register (B), the  value in an index  register (x),  and a dis- 
placement (D) which must be a compile-time constant. 

This  information is  expressed by writing apattern.  The 
pattern  characterizes  the  real machine’s  complex instruc- 

ET AL. 

tion by expressing  their  functions  as a set of simpler IL 
instructions related by data flow. For  example, a pat- 
tern  for this BXD sequence would begin as 

BXDpattern: ADD (TI = B + D) 
ADD (T2 = T1 + X) 
BIND (T, T2) 

To match the  patterns against the program, a pass is 
made  through  the  program.  Each instruction is matched 
against all pattern points (the simpler IL instructions ap- 
pearing in the  patterns) which are applicable to  its  opera- 
tion code. 

For  pattern points whose  inputs  come  from  other in- 
structions in the  pattern, determining the  success of a 
match  requires determining whether some other pattern- 
pointhnstruction  match is successful. This  situation is 
dealt  with  recursively. A collection of “already-tried” 
flags is used to  prevent  repeated  attempts. 

If the  pattern point is successfully  matched  against the 
instruction, a resolution is constructed for use in sub- 
stitution.  The resolution is a map  from  the identifiers used 
in the  pattern description to  the  actual variables  used in 
the program  fragment that  matches  the  pattern.  For pat- 
tern points  which have several alternatives,  the  “best” 
alternative is selected. 

Having  determined the  matches  for all program points, 
instruction aggregation chooses which  productions are to 
be  executed. This choice  can be  accomplished by numer- 
ous algorithms, the simplest of which is a bottom-up 
“greedy” algorithm. Code production requires  that a 
value  be  assigned to  each  pattern point whose  match 
causes  code  to be produced. Such pattern points are 
called  terminal pattern points. The value measures  the 
time or space  saved by using the higher-complexity  in- 
struction  to be generated  instead of its  expansion. In addi- 
tion, each terminal pattern point  must have a production 
rule,  and  each  operation  code  must  have a  default produc- 
tion rule.  These  are used to  form  the  replacement  for 
matched  and  unmatched pattern  points, respectively. 

e Register ullocation 
The ECS register  allocator is  based  on  the  approach given 
in [22] .  It  consists of five phases: 

The relative frequencies of program  points (;.e., RL in- 
structions)  are  estimated.  In  the  absence of real  fre- 
quencies, this is necessarily determined  by such  con- 
trol flow patterns  as  nested strongly connected re- 
gions. 
The displacement  priorities of the variables at  each 
point are  established.  These priorities are based on a 

IBM I. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980 



frequency-weighted measure of the  distance  to  the 
next use.  These priorities are used when determining 
which variable to displace  when the allocation  phase 
finds that it is out of registers. 

3. Variables are allocated to registers in that a decision is 
made as  to which  variables at  each program  point are 
contenders  for registers. The actual  decision as  to 
which symbolic  register they will get is made in the 
next phase. In this phase we note when the value of a 
potential  register contender is also “home,” i . e . ,  the 
current value for  the variable  also exists in storage. 

4. Registers are assigned symbolically and the skeletal 
code  sequences  are  determined. This does not desig- 
nate the absolute register. An infinite supply of sym- 
bolic registers is assumed  overall, but no more  than 
the actual number of registers may be in  use at any 
point. 

5. The symbolic  registers are given absolute  designa- 
tions. 

By separating the allocation of variables to symbolic 
registers  from the assignment of variables to  actual regis- 
ters, we can permute the allocations to  decrease mis- 
matches  and  the  consequent register  moves. 

Having  selected the  absolute registers, the  code skele- 
tons  chosen earlier can be finalized. 
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