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The Experimental Compiling System

The Experimental Compiling System (ECS) described here represents a new compiler construction methodology that uses
a compiler base which can be augmented to create a compiler for any one of a wide class of source languages. The
resulting compiler permits the user to select code quality ranging from highly optimized to interpretive. The investigation
is concentrating on easy expression and efficient implementation of language semantics; syntax analysis is ignored.

1. Introduction

The Experimental Compiling System (ECS) uses a new
compiler construction methodology [1] the fundamental
goal of which is to provide a system on which customized
compilers for a variety of source languages and a variety
of target machines can be developed. The compilers are
intended to be easy to build, modify, and maintain and to
produce optimized object code if desired. In our investi-
gation we assume the existence of a general parsing sys-
tem, which is therefore not considered. Instead, we con-
centrate on the design and development of a system
which permits easy expression of language semantics in a
form amenable to analysis and optimization.

The meanings of most of the constructs in a language
are given in a collection of procedures, which are essen-
tially identical to user procedures and can thus be sub-
jected to the same analyses and optimizations. In this way
specific characteristics of the source language can be de-
duced by the system. Modifying or extending the lan-
guage involves changing or augmenting the collection of
procedures defining it.

The basic system is designed to minimize the con-
straints imposed on languages. This increases the range of
possible constructs which can be supported when the sys-
tem is customized to compile a given language. The pri-

mary interface between the basic system, the procedures
defining a language, and the programs written in it is the
internal language in which the procedures and their char-
acteristics are expressed. The basic system provides a
schema for this language and understands its semantics.
The meaning of a given language is built on this schema.

These ideas (the internal language schema, semantic
definition by procedures, and procedure characteristics
derived by analysis, as well as the mechanism for code
expansion and selection) are fundamental to the Experi-
mental Compiling System approach and significant depar-
tures from conventional approaches to compiler design.

The internal language (IL) schema is a framework for
expressing various languages. One of two unique aspects
of the schema is that attributes, including information nor-
mally provided by data declarations, are variables. ECS
has no a priori knowledge about attributes, their possible
values, or when such values are bound to attributes. Fur-
thermore, the usual dictionary in which such source-spe-
cific information is directly encoded for use during the
compilation process does not exist in ECS.

The other unique feature of the schema is that all opera-
tions are references to procedures which implicitly define
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and elaborate the meaning of the operation. The proce-
dure reference mechanism is used to express declarative
information as well as the executable statements in a
given source language. Unlike conventional programming
languages in which. a syntax and semantics are specified,
the IL schema provides a form but only limited semantics;
it does not attach meaning to most of the operations.

The collection of procedures (called defining proce-
dures) which elaborate the operations of a language must
eventually reference primitive operations. These opera-
tions are defined by degenerate procedures—procedures
with no elaborating text—and are abstractions of the tar-
get machine.

The term dialect is used to refer to a language—includ-
ing its semantics—expressed in the form provided by the
iL schema. The notation IL/X is used to refer to the dialect
of IL supporting the language X. The terms IL/S and IL/P
are used to refer to the particular source and primitive
dialects employed in an ECS compiler. Because, in our
experimental work, we use PL/ as the source language
and the IBM System/370 as the target machine, the output
of the PL/ translator is called the 1L/PLI dialect, and the
primitive language is called the 1L/370 dialect.

The defining procedures for nonprimitive operators are
written in an external syntax of IL called pp. Although it
would be most convenient to use the same IL language for
elaborating the operators of a source language as is used
for the source language itself, this does not work in gen-
eral. PL/I does not, for example, permit the testing of pa-
rameter types, which is needed to select code alterna-
tives.

When processing a program, it is necessary to get an-
swers to such questions as: Does this instruction branch?
What variables are used by this instruction? What vari-
ables are defined? Normally such information about the
operators of a language is built into a compiler. Further-
more, compilers generally make worst-case assumptions
about an operation which refers to an external procedure.
In order to answer such questions and mitigate worst-
case assumptions, ECS performs both intra- and inter-pro-
cedural analyses. Given a collection of procedures, cer-
tain control and data flow characteristics of each proce-
dure are found by an in-depth analysis of the procedure in
the context of the collection. Externally interesting infor-
mation, such as how global variables or parameters are
used, is summarized and retained with the procedure in a
library. Since all operators are defined by procedures,
most of the interesting operator characteristics are me-
chanically derived by the system. Certain characteristics
must be given, however. Summary information for the
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degenerate procedures which define the primitive oper-
ators cannot be derived automatically, since the body of
such a procedure does not exist. Such properties as oper-
and commutativity are also not deducible by our analysis.
The system provides a mechanism whereby the summary
information can be supplied or augmented by the definer
of the procedure.

Code expansion is accomplished by procedure in-
tegration. This contrasts with code generation in most
compilers, which basically involves scanning an input
text string and, depending on what is found there and in a
dictionary, selecting and emitting code sequences to an
output text string. In ECS code emission occurs before
code selection and is usually accomplished by replacing a
procedure reference with the procedure itself. It is similar
to macro expansion: the actual arguments replace occur-
rences of parameters in the text, local names are distin-
guished, and external names are resolved. This transfor-
mation, therefore, can be used to replace the code emis-
sion function of the usual code generator. If desired,
integration can be done selectively; for example, it can be
made dependent on the projected frequency of execution
of an operation instance. When a procedure reference is
not replaced with the procedure itself, it becomes a CALL
to the executable version of the procedure. A single defi-
nition of an operation thus suffices for use in systems hav-
ing quite disparate optimization goals.

When global program analyses and optimizations are
applied to the text after procedure integration, a general
procedure frequently becomes tailored to the particular
reference. ECS exploits this idea to effect the code selec-
tion usually accomplished by emitting code sequences af-
ter interrogating contextual and dictionary information.

An analyze-optimize-integrate cycle reduces an IL/S
program to an IL/P program consisting of primitive opera-
tions. These operations reflect the functions of the target
machine but not its resource constraints. Thus storage is
not mapped and registers are not allocated. The system
provides a table-driven mechanism to perform machine-
tailoring functions.

Given the basic ECS system, a particuiarization to sup-
port a given target machine P can be constructed by first
defining 1L/p. Then the register requirements and alterna-
tive code skeletons for the IL/P operations are defined and
a storage mapper written.

A compiler for a particular source language S can be
constructed from this particularization by defining iL/S. A
translator is then written which translates s programs into
iLss. The defining procedures for all the nonprimitive 1L/S
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operations are written next. (These are written in DP, the
defining procedure language.) The defining procedures
are compiled and the compiling process augments the 1L
library of procedures with these new defining procedures.
(The procedures in the IL library contain summary infor-
mation and are optimized.) The compilation also gener-
ates optimized object modules for these procedures and
augments the object library.

The resulting compiling system can compile an § pro-
gram in any of several modes. A complete optimization
can be requested in which all or most procedure refer-
ences are expanded in line, and the analyze-optimize-in-
tegrate cycle is performed as often as necessary to
achieve full optimization. Less optimization and faster
compilation is achieved by decreasing the number of iter-
ations through the cycle. If no iterations are performed,
the result is a program in which every instruction be-
comes a reference to the compiled form of the defining
procedure.

In order to realistically evaluate the approach we are,
as already indicated, using PL/1 as the source language and
the 370 as the target machine. The run-time environment
of the IBM pi/1 Optimizing Compiler [2] and its run-time
library are being used. This not only obviates the need to
develop a new environment and library but allows more
accurate comparative evaluations to be made regarding
the relative efficiency of the code produced by the pL/i
Optimizer and by ECS.

In the next section of this paper, we discuss the IL
schema on which various dialects can be constructed to
express source and target language constructs and their
semantic interpretation. Section 3 describes the organiza-
tion of the ECS compiler which is being constructed to
evaluate the methodology as it applies to PL/1. Section 4
gives an example of a (hand-simulated) application of the
approach to string concatenation. Although this appli-
cation has been reported elsewhere [3], it is repeated here
to provide a specific basis for evaluating the approach.
The last section includes some observations regarding the
relevance of the ECS approach in extensible language sys-
tems, program development systems, program mainte-
nance, and data isolation. An Appendix elaborates some
of the technical mechanisms developed to support the ECS
approach.

2. iL schema and its dialects

In this section the objectives and the constructs and con-
cepts of the intermediate language schema are given. Fol-
lowing that the two dialects of IL (IL/PLI and 1L/370) and the
IL external form (DP) being used in the current ECS imple-
mentation are discussed.
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® Objectives
The 1L schema [4] is designed to support a class of lan-
guages which includes PL/I, FORTRAN, COBOL, ALGOL-60
and 68, as well as low-level languages close to the assem-
bly language level. While the 1L schema is capable of sup-
porting APL, the rest of the system would require addi-
tional analysis and transformation components to ef-
fectively compile that language.

The number of built-in IL constructs is small. Since the
schema (and ECS) is independent of any particular source
language, a2 minimal schema both avoids preciuding con-
structs in source languages and avoids including con-
structs in the base system which are not required for a
given language.

Since the notion of procedures, their definition, in-
vocation, and integration is central to ECS, the IL schema
necessarily supports a wide class of definitional and in-
vocattonal mechanisms, including all the usual call-by-
reference, call-by-value, and call-by-name argument-pa-
rameter association forms. Furthermore the schema lets
the ECs procedure integrator be a mechanical, language-
independent transformer which can preserve the seman-
tics of an invocation.

In addition to these objectives, which are central in de-
termining the form of the IL schema, several practical
considerations are factored in. The most important one is
the need to collect and retain storage mapping and alias-
ing information. The actual representation of 1L within the
system is also very much dictated by practical, primarily
efficiency, considerations.

o (Constructs and concepts

The objectives of the IL schema are supported through a
number of constructs and assumptions regarding the ex-
pression of a language, S. in IL. These represent our con-
clusions as to what constitutes a practical, ‘lowest com-
mon denominator’’ schema on which a class of languages
can be expressed.

Variables

Most source languages explicitly or implicitly associate
with each variable rules governing attributes, storage
mapping, aliases, name scope, and legal usage. The IL
schema contains mechanisms for the expression of these
rules but does not imbed them in the schema.

Attributes  As mentioned earlier, attributes are treated
as variables, and no assumptions are made regarding
kinds of attributes, their values, or when values are
bound to attributes. The attributes of a source program
are expressed as additional qualifiers to names. Thus the
PL/I structure component B in
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DECLARE 1 A,
2 B CHAR (2) VARYING,
2 C FIXED BIN (15);

might result in such IL/PLI variables as A.B.FORM,
A.B.TYPE, and A.B.VARY. These might take on such values
as

MOVE (A.B.FORM = ‘STRING’)
MOVE (A.B.TYPE = ‘CHAR")
MOVE (A.B.VARY = "TRUE’)

(Here and throughout most of the paper we use the ex-
ternal form of IL: the operation, i.e., the procedure refer-
enced, followed by the operands, separated by such de-
limiters as = + = (). All such delimiters are equivalent to
a comma or a blank and have no semantic implication.)
Since these are truly variables—not reserved symbols—
the IL schema contains no restrictions as to when they
can be tested, changed, or initialized. A representational
expedient has been introduced internally, however.
When translating a program in § into IL/S, invariant as-
signments such as MOVE (A.B.FORM = 'STRING’) may be ex-
pressed in a ‘‘constants dictionary’’ rather than directly
in text. This is done to save processing time. The diction-
ary does not, however, have the usual form in which spe-
cific bits and fields hold specific attribute values, but is
used in this context to associate variables with their pro-
gram-invariant constant values.

Storage mapping information  The size, alignment, and
storage class (e.g., static, controlled, etc.) are used in the
machine tailoring component of ECS. Most of this infor-
mation is not used by the IL but is "*passed through’” and
is not normally referenced until storage is mapped. It is
expressed in a language-dependent table.

Aliasing information  The process of deducing relation-
ships in a program and transforming the program based
on such information requires complete knowledge of the
aliasing relationships in the program to avoid making very
pessimistic and limiting assumptions. There are various
types of aliases ranging from the static sharing of storage,
exemplified by the FORTRAN EQUIVALENCE statement, to
the dynamic sharing, which can occur by using PLI
POINTER variables. Some of the aliasing information is
best gleaned or at least refined by analyzing the program;
other forms are explicit in the source program and must
be expressed in the IL dialect of the source language. A
table describes the static storage relationships which may
exist between variables. Another table is used to hold the
more dynamic aliasing possibilities by expressing the po-
tential values of language-dependent variables such as
pointers, entry variables, and label variables.

Name scoping In order to support block structured lan-
guages and to do procedure integration, it is expedient to
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incorporate a “‘weak’ form of name scoping in the IL
schema. This form assumes that all names are resolved so
that identical names in different blocks are identical in IL
if and only if they are the same object; otherwise, the
names are different. Consider the example given in Fig. 1.

If the procedure integrator replaces the reference to IN-
NER by the body of the procedure, it must adjust the
names within INNER. Since A in this case belongs to
OUTER, it should not be changed; however, if A were de-
clared in INNER, it would have to be given a new name to
prevent conflict with other copies of INNER.

Operands

Each IL operand is a single variable or constant and, with
the exception of their use in built-in operations, each is
actually an argument in a procedure reference. The vari-
ables can be qualified (¢.g., A.TYPE) or indicate a location
(e.g., addr A). If an operand is an address of a variable,
then the operand contains a level of indirection to the var-
iable. Constants can be labels, entries, the value con-
stants of the source language, or symbolic constants.
Symbolic constants are items which do not change but
whose actual constant representation is irrelevant.
‘FALSE, ‘FLOAT,' ‘SCALAR’ are examples.

Instructions

All instructions have a uniform structure: the name of the
procedure to be invoked followed by the list of argu-
ments. (The external syntax used for printing or program-
ming purposes may be more elaborate, of course.)

BIND built-in operation

The 1L schema has four built-in operations. The meaning
of these operations is known to the system; they are not
specified as defining procedures. BIND is one of them and
has the form

BIND (X, P)

which is read ‘‘bind (associate) the address of x to be the
value of P.”” In other words the variable X now has as its
address the value of p.

Suppose A were a string of characters declared in PL/1I
by

DECLARE A CHAR (50):

Now suppose the value of variable ¢, a single character,
were assigned to the tenth position in A. This can be done
by first calculating the address of the character to be
changed, then setting the value at that address to ¢. How
long is the item at the tenth position in A? The reader
knows it is a single character, but the compiling system
must be told that fact. To do this a BIND is used to explic-
itly name the tenth position in A. The total calculation is
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ADD (P = addrA + 9)

BIND (X, P)

MOVE (X = Q)

The attributes associated with X (¢.g., X.LENGTH = 1) are
ascribed to the storage at the tenth byte of A. (Later in
this section the use of BIND in supporting various PL/I con-
structs is shown.)

BUY built-in operation

BUY is used to obtain storage for variable-sized tempo-
raries. It is built into the schema so that the allocation can
be easily removed from the execution string and aggre-
gated with other variables if the size of the temporary be-
comes known during compilation.

LABEL and ENTRY built-in operations

These two built-in operations are simply syntactic mark-
ers in the text. They are needed for control flow analysis.
Their operands are the label or entry symbols associated
with that text point.

Parameter passing

The 1L schema must support procedure integration and a
variety of argument-parameter association conventions.
When a procedure is integrated, one of the changes made
to the integrated procedure involves substituting actual
arguments for parameters. Thus the IL schema has a call-
by-name convention. However, parameter passing is re-
stricted so that there is no difference between call-by-
name and call-by-reference. A source language translator
must generate the IL appropriate to the language conven-
tion. Consider the source program fragments given in Fig.
2.

If the source language uses a call-by-reference conven-
tion (as does PL/I), then the desired result of the CALL is
I=5and A@2) = 10. Figure 3 shows an IL expression of the
source language which supports this convention. The IN-
DEX defining procedure puts the location of A() in the
locator variable P.

Figure 4 shows the resuit of integrating the two proce-
dures. If the source language has a call-by-name parame-
ter passing mechanism (¢ la ALGOL-60), then the source
transiator will create procedures to compute dynamically
the location of arguments when referenced in the called
procedure. The names of these procedures are passed in-
stead of the actual arguments.

® L dialects
The 1L dialects used in the current ECS development effort
include the DP language, 1L/PLI, and 1L/370.

pP language
The defining procedures for a given source language can
be written in any convenient language for which a trans-
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PL1
OUTER :PROC;
DCLA---
CALL INNER;
INNER:PROC:;
= A- - -

END INNER;
END OUTER;

Figure 1 PL/I procedure showing name scoping.

R: PROC (X,Y);
1=2; X =5;
CALL R {, A (I)); Y = 10;

END;

Figure 2 PL/I call with related arguments.

R:PROC (X,Y)
MOVE (I = 2) MOVE (X = 5)
INDEX (P, A, I) MOVE (Y = 10)
BIND (T, P) END
R (1,T)

Figure 3 IL/PLI form of the procedures in Fig. 2.

MOVE ({1 =2)
INDEX (P, A, D)
BIND (T, P)
MOVE (I = 5)
MOVE (T = 10)

Figure 4 Result of integrating the procedures in Fig. 3.

lator to 1L exists. However, most users would find the
constraints of such languages as PL/I too restrictive. For
example, PL/1 does not provide direct mechanisms for set-
ting and interrogating the attributes of variables. There-
fore, it is necessary to allow defining procedures to be
written in IL. For this purpose, an external representation
of IL programs, called pP, has been developed. Two im-
portant guidelines were applied in its design. In order to
keep the underlying form accessible and transparent to
the writer of a defining procedure, there should generally
be a direct, one-for-one correspondence between external
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and internal text. (A few statements, notably the control
statements, are exceptions.) The number of language con-
structs actually needed in writing a defining procedure is
quite small. Only those considered necessary to elaborate
a definition or highly desirable for expressibility are in-
cluded.

ILIPLI

The decision to use PL/I as the language for testing the
feasibility of the ECS approach was made for several rea-
sons, the most important being the richness of the PL/
language. By establishing the technology required to
handle such constructs as pointer variables, ON condi-
tions, etc., ECS will be able to support similar facilities
occurring in many other languages.

In choosing PL/1 we were able to take advantage of an
available translator: the ‘‘front end’” of the IBM PpL1
Checkout Compiler [5). This translates PL/1 into an inter-
nal form called HTEXT, which is actually a text and dic-
tionary suitable for interpretation. It is this form that is
transformed into IL/PLI.

In the discussion of the IL schema several pL/-related
examples were used to illustrate schema constructs. The
pLi features now discussed are some examples of the
strategy used to express interesting PL/1 constructs in IL.

ON condition enablement  The PL/1ON conditions which
are enabled at any time are established by their lexical
scopes. A defining procedure for an operation may need
to find out what conditions are enabled. This information
is passed to the procedure as an explicit argument which
has been established by the translator.

ON units  The PL/I program units used to define the ac-
tions to be taken when an enabled condition occurs in the
executing program are treated as procedures. The ON
condition name itself is treated as a local entry variable.

Procedures  In multiple-entry procedures the relation
between parameters and their order or existence in a pa-

rameter list can vary between entries:

A: PROC (X, Y);
X=1;
B: ENTRY (Y, Z);

To avoid making parameter operands entry-dependent,
an alternate solution to the PL/1 method of renaming pa-
rameters at different entries was chosen. When a mul-
tiple-entry procedure is encountered whose entry lists
specify different parameters, the procedure is modified so
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that each parameter is assigned a fixed position in a ca-
nonical list to be used at all entry points. All entry points
are altered to accept this canonical list. A series of
dummy procedures is then created at the same lexical
level as the procedure being modified. Each of these
dummy procedures reorders the arguments to the canoni-
cal form and invokes the corresponding entry point in the
modified procedure. Thus the above PL/1 procedure be-
comes the equivalent of

A: PROC (XX, YY);
CALL AA (XX, YY, 0);
END;

B: PROC (YY, ZZ);

CALL BB (0, YY, ZZ);
END:

AA: PROC (X, Y, 2);
X=1

BB: ENTRY (X, Y, Z);

Y=2:

END;

The procedure integration optimization can generally re-
move the introduced CALL.

The procedure statement  In addition to the parameters
expressed in the PL/1 procedure statement, the 1L/PLI form
indicates the pL/1 procedure statement options (¢.g., re-
cursion) and contains the number of parameters, the ON-
condition enablement parameter, the return variable, and
the label of the initialization block. Initialization includes
space acquisition, variable initialization, and the usual
procedure prelude. It is separated as a procedure and ref-
erenced from each entry point of the original procedure.
Again procedure integration will embed it in-line if there
is only one reference or when otherwise feasible.

Computed references  Addressing of the components of
structures, arrays, and based variables is handled using
the BIND built-in operation. A reference to P— A becomes
BIND (A,P) followed by a reference to A.

An example of addressing is given in Fig. 5. (Note that
in PL/1 on the 370 the current length of a varying-length
character string is stored in the two bytes preceding the
characters.)

L1370

The primitive dialect of IL in the current ECS is IL/370.
While providing access to the 370 constructs, it differs
from the machine instructions in several ways:

1. Registers are not visible.
2. Load and store instructions are not included in the rep-
ertory of 1L/370 instructions.
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3. Operands are iL. variables and constants; they are not
in base-index-displacement form. Since storage has
not been mapped, addresses relative to, for example,
the beginning of the dynamic storage area are not
known.

4. The instructions generally have three addresses. The
target operand need not be one of the source oper-
ands. However, all instructions which will not use reg-
isters in their realization (¢.g., the decimal instruc-
tions) have two addresses.

5. Operand lengths are those of the 370 and are encoded
in the operation code if the instruction can be realized
by the use of registers.

6. The raising of exceptions is modeled as a call on an
external variable.

7. Condition codes and program masks are modeled as
external variables.

An example of the description of an 1L/370 instruction fol-
lows. (The summary information to be associated with
the degenerate defining procedure is contained in the ECS
library.)

FIXED_ADD_ijk(X, Y, 2)

This performs the fixed point addition x = Y + Z,
where the lengths of X, Y, and z are given by i, j, and
k, respectively. Here i, j, and k may each be either
2 or 4.

Implementation: Load, Add, Store, with ‘‘Half-
word’’ on any of the instructions if appropriate. If
either X or Y is in a register, then the Load can be
omitted.

Summary information: X and the condition code are
defined; Y and z and the program mask are used and
preserved. A Fixed-Point Overflow exception will be
raised if the appropriate bit in the program mask bit is
on and a 4-byte overflow occurs.

Y and z commute if you also switch the operand
lengths, i.c., FIXED_ADD_ijk (X, Y. Z) is the same as
FIXED _ADD_ ikj (X, Z. Y).

3. ecs compiler organization

In this section we describe the structure of the Experi-
mental Compiling System currently being developed. Fig-
ure 6 depicts its structure.

o Translators

Two different translators exist: one for PL/1 and one for
the defining procedure language, Dp. The translator for
the DP language uses a general LALR(1) parser which pro-
vides a convenient tool for translating other languages to
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PL/I IL/PLI
DCL Y CHAR (5) VAR MOVE (Y.FORM = ‘STRING")

BASED: MOVE (Y.TYPE = ‘CHAR VAR’)
MOVE (Y.MAXLENGTH = 5)
P = ADDR(X): MOVE (P = addr X)
PoY =72 BIND (Y.LENGTH, P)

ADD (P1 = P+2)
BIND (T, P1)

MOVE (Y.LENGTH = 2)
MOVE (T = ‘ZZ")

Figure 5 Example of the use of BIND when translating a store
into a PL/I varying-length character string.

PL/1 DpP
Translator l
(PLI Checker) Translator
and transformer
llL/PLl yIL/DP

r Library 1
i

Flow-free analyzer

Flow-dependent analyzer

Optimizer

Integrator

T

Storage mapper

Instruction aggregator

YR

Register allocator

Final asserably

'

370 module

Figure 6 ECS compiler organization for PL/I on the 370.

IL. The translator for pL/ is the translator used by the PL1
Checkout Compiler [5] to produce HTEXT (the internal
form of pL/1 which is interpreted by the back end of that
system) followed by a transformer to change HTEXT into
IL/PLI.

One of the functions of a source language translator is
to determine packets: all data objects which have a lan-
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guage-dictated storage relationship to each other are
mapped into the same packet; otherwise data objects are
in unique packets. (The relationship of objects in the
same storage class but in separate packets is not resolved
until later in the compilation.) Associated with each vari-
able is its packet number and enough mapping informa-
tion to resolve to the bit level the mapping of a variable
and its components. With this level of information partial
overlay can be distinguished —a fact which is of interest
to those components of the system doing alias analysis.
Of particular importance in PL/1 is the ability to note sub-
structure independence. For example, changes to any of
the 10 B’s do not affect the C’s in the structure:

DECLARE 1 A (10),
2 B FIXED BIN (15),
2 C FIXED BIN (15);

e Library

The library is a repository of analyzed and unanalyzed IL
procedures, including both user and system procedures.
In the current implementation the library contains 11/370
degenerate procedures, IL procedures which establish the
meaning of the IL/PLI operations, and PL/I user procedures
translated to IL/PLI. The procedures may have just been
produced by the translator or they may have been re-
tained from earlier compilations. The fact that procedures
can be created during the translation of a program and can
be subsequently analyzed, optimized, and integrated
makes the handling of a number of source language con-
structs relatively easy. For example, a procedure can be
created by the translator when array or structure initial-
ization is requested.

The existence of this library has interesting implica-
tions for the flow of information through the compiler and
on the relationship of the compiler to its environment.

1. All procedures associated with a problem solution and
submitted for compilation at the same time are trans-
lated and placed in the library before the rest of the
compilation proceeds. (Most compilers independently
compile each external procedure. Furthermore, the in-
termediate form is usually very transient.)

2. After a procedure has been analyzed and summary in-
formation (see Appendix) has been accumulated, the
augmented procedure replaces the original procedure
in the library. This may happen more than once as ad-
ditional knowledge is acquired about the entire collec-
tion of procedures associated with a problem solution.

3. During the analysis and optimization of a procedure,
summary information for a referenced procedure may
be used if it is available. With this additional informa-
tion optimizations across CALLs and of CALLs can be
done. For example, expressions involving global vari-
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ables might be removed from loops containing CALLS
if it is known that the CALLs cannot change the values
of these variables. A CALL itself might be removed un-
der the right circumstances.

o Flow-free analysis

In order to establish an analysis order [6] on the collection
of procedures, a CALL graph—possibly disconnected—
must be built. Also, since various language constructs,
like CASE statements and subscripting operations, are not
built into the compiler but are realized by the defining
procedures, the compiler must be prepared to produce
good code for procedures that manipulate labels and ad-
dresses as variables. For these and other reasons flow-
free analysis [7] must be performed before flow-depen-
dent analysis. Flow-free analysis determines the possible
values of variables used to reference procedures, desig-
nate procedures and branch targets, and contain ad-
dresses. Instruction execution order is not considered.
The values obtained by the analysis are used by the flow-
dependent analyzer to obtain more precise control and
data-dependent relationships. The Appendix contains ad-
ditional material on flow-free analysis.

The call graph built by the flow-free analyzer is used to
determine the order in which the subsequent analyses and
optimizations will be applied to the coliection of proce-
dures. Basically it is inverse invocation order: a proce-
dure is analyzed and optimized after all procedure refer-
ences have been analyzed. This is not, however, the loop
depicted in Fig. 6. Before describing the components of
that loop—the flow-dependent analyzer, the optimizer,
and the procedure integrator —we discuss the purpose of
the loop.

ECS is designed to permit multiple applications of pro-
gram analysis and transformation. This is possible be-
cause the programs which perform these functions are in-
sensitive to the text levels so can be applied to multiple
levels, and because the 1L schema, which is the only lan-
guage the basic system knows about, has no built-in as-
sumptions about text levels or binding times for informa-
tion.

The primary reason for the loop is the way operations
are defined. The operation-defining procedures elaborate
the high-level operations in terms of other operations. By
successive elaborations, every IL/S instruction is reduced
to a sequence of IL/p instructions. Thus an IL/S program is
processed by the compiler until all instructions are IL/P
instructions. This can occur in three ways:

1. 1S can be IL/P. If S is very close to the target language,
the parser for s may not generate any higher-level in-
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structions. Most IL/S’s will probably contain some IL/P
instructions.

2. As a result of integrating procedures and thereby
elaborating the high-level 1L/s instructions to IL/P.

3. As a result of transforming IL/$ instructions into a se-
quence of IL/P statements calling the 11/s defining pro-
cedure or user-supplied procedure.

The choice of when to replace a high-level instruction
with a procedure and when to replace it with a calling
sequence depends on many factors: the goals of the sys-
tem and/or of this particular run, and the space/time
tradeoffs of making a particular replacement.

Since the defining procedures are compilable, they are
available for use at run time. By transforming references
to these procedures into run time calls, a program is
created which is executed in the object environment de-
fined by these procedures. In this way we can get an inter-
preter. Furthermore, if during the optimization process
all of the input operands of an operation become known,
the operation can be performed at compile time using a
compiled version of a defining procedure.

We now consider analyses and transformations applied
to a procedure during a single iteration of the loop.

e Flow-dependent analysis

Using the aliasing and summary information provided by
the flow-free analyzer and the packet mapper, control and
data flow analyses are performed on a procedure. Control
flow analysis builds the control flow graph of the proce-
dure and performs a variant of the interval analysis de-
scribed in [8]. The purpose of interval analysis is to codify
the control flow relationships (¢.g., loops and loop nests),
so that other analyses and transformations can be done
more rapidly. The interval analysis variant is based on

[91.

Data flow analysis finds all **def-use’’ relationships: all
definitions which may affect a given use (and all uses
which may be affected by a given definition) are found by
the bit-vectoring methods described in [8]. In order to
limit the sizes of the bit vectors and to retain the results of
data flow analysis when procedures are integrated, the
analysis is performed and retained within *‘data-flow do-
mains.”” This program partition and its uses are described
in the Appendix.

e Optimization
The collection of optimizing transformations is quite
open-ended and subject to change. The initial collection
includes some ‘‘classical’’ transformations as well as
some new ones.
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DCL A(100) INT;

DO1=1TO 10; I=1
GO TO TEST
LOOP:

CK([1 = I = 100]
. = A(D
A(D I=1+1
END; TEST:
IF I = 10 GOTO LOOP

Figure 7 Subscript range check generated during translation.

Redundant expression elimination  This includes both
code motion and common subexpression elimination.

Constant propagation  Instructions are executed at
compile time if the operands which are used are constant.
The ECS methodology allows the system to provide di-
rectly executable constant propagators for all opera-
tions —whether user- or system-defined. The Appendix
describes this optimization in more detail.

Dead code elimination Unreachable code is eliminated.
Performing this transformation after propagating con-
stants through procedures which have been integrated
has the effect of tailoring the general procedure to its spe-
cific instance of use. This transformation also eliminates
useless instructions and instructions of the form A = A.

Strength reduction  This is primarily aimed at changing
subscript calculations to increment instructions [10].

Range analysis  In [11] a method is given for determin-
ing the bounds on the ranges of values assumed by certain
variables at various points in the program. Such range
information is used to eliminate redundant tests and to
expose dead code. A particularly interesting application
for this analysis is in reducing the costs of checking for
subscripts that are out of range. Figure 7 shows a frag-
ment of a PL/I program on the left and on the right a
schematized internal form in which a check on the range
of subscript I has been expressed.

The range analyzer acquires range information from
definition and test points and propagates it to use points.
When applied to this example, it will find that the value of
1 at the point of the check is 1 = 1 < 10. The check state-
ment is unnecessary and is eliminated. By explicitly ex-
pressing such checks as instructions in the text string,
they are also subject to other forms of optimization: they
will frequently be redundant and can be eliminated or
moved out of loops.

Variable propagation  The variable propagation trans-
formation changes an occurrence of a variable name in a
program to a different name which has the same value:
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X=X becomes X=Y
use of (X) use of (Y)

This may allow the elimination of the trivial assignment X
= Y as dead code. Its most important applications in the
ECS context are in removing levels of indirect addressing,
particularly after procedure integration.

Renaming Renaming is a transformation in which one
variable is replaced by another. The motivation is to
reuse variables in order to reduce the number of tempo-
raries required and the number of moves. There are two
forms as shown in Fig. 8. In Section 4 an example is given
using this transformation.

® Procedure integration

References to procedures are replaced by the procedures
or by their calling sequences when procedure integration
is performed. The Appendix discusses this transforma-
tion in greater detail.

4. Machine tailoring

Not all functions a compiler must perform fit naturally
into a procedurally based specification and elaboration.
Storage mapping in particular does not entirely fit into
this approach.

The fundamental function of storage mapping is to
change the underlying model of storage used by the pro-
gram. All of the variables required by a procedure are
examined and relative locations assigned to each. Since
ECS does not distinguish temporary, compiler-generated
variables from other variables and since it generates a
new such variable whenever one is required, ECS overlays
storage [12-14]. This decreases user storage as well as
making temporary management unnecessary.

When storage is mapped, the references to that storage
must also be changed. This transformation is accom-
plished by instruction aggregation which constructs the
more complicated 370 base-index or base-index-dis-
placement (BXD) operands from the simpler IL operands
and the results of storage mapping.

In ECS, storage mapping and instruction aggregation are

part of the target machine tailoring function. Another ma-
jor function performed by the machine tailoring function

Figure 8 Effects of the renaming transformation.

Original becomes or
T =op (A, X) B =o0p (A, X) A =op (A, X)
B=op (T, Y) B=op B,Y) B=op (A, Y)
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is register allocation. Its input is an augmented form of IL,
called RL for Register Language, which is the output of
instruction aggregation. The machine tailoring functions
of the compiler are now considered.

o Storage mapping

Storage mapping in ECS involves collecting packets be-
longing to the same storage class into larger packets. This
includes overlaying storage—determining which sets of
packets in the same storage class can be assigned over-
lapping storage so that the overall object storage require-
ment is reduced. It also includes generating the instruc-
tions required to allocate and reference a packet and the
objects in it.

The first task, integrating and overlaying the primitive
packets into larger packets within storage classes, could
be done by defining procedures which are referenced at
appropriate points in the text string and provided with the
necessary information by the usual analysis techniques.
For several reasons, however, it is desirable to treat this
function in a special way.

1. The target environment as well as the source language
influences the organization of the larger packets.

2. The information required for packet construction is

not that normally collected by the analysis processes.
It might be necessary to make a special analysis to
derive such information.

3. The integration of packets should happen after other
optimizations and procedure integration. At that time
the **dead variables’’ which need no storage will have
been identified, and the coalescing of storage class
membership for the integrated procedures will have
occurred.

4. Since storage mapping changes the storage model from
that of the source language to that of the target ma-
chine, the reference forms must also be changed. This
involves, for example, transforming references to a
‘variable X in the PI/I automatic storage class to refer-
ences to an offset (off) to the base of the appropriate
dynamic storage area (DSA).

For these reasons our current implementation performs
packet integration as part of the machine tailoring com-
ponent of the system. The storage overlay aspect of
packet integration is discussed in the Appendix.

e [Instruction aggregation

The instruction aggregation component of ECS augments
the IL instructions to include the storage mapping infor-
mation. The additions explicit in the IL prior to aggrega-
tion are implicit in an RL operand. Thus, the aggregator

IBM J. RES. DEVELOP. ® VOL. 24 ¢ NO. 6 ®« NOVEMBER 1980




synthesizes the complex machine operands out of the op-
erands of several IL expressions. It is described in greater
detail in the Appendix.

RL, the annotated IL instructions produced by instruc-
tion aggregation, can be characterized as follows: opera-
tions are identical with 1L/370; operands are annotated to
include the 370 base + index + displacement (BXD) form.

® Register allocation

The register allocation component of ECS not only allo-
cates and assigns registers but makes the final code selec-
tions. Any optimizing compiler for the IBM 370 (or any
computer with multiple ways of performing the same
function) is faced with the dilemma caused by the fact
that the selection of the instruction sequence depends on
register availability and the assignment of registers de-
pends on the instruction sequence.

If there were only one possible sequence for every
higher-level operation, then the problem would be some-
what easier, though by no means trivial. The ECS register
allocation component tries to select the best sequence of
instructions subject to register availability and an esti-
mate of the relative execution frequencies of various
areas of the program.

The organization of the ECS register allocator is given in
the Appendix.

e Final assembly
The last component of ECS generates the actual code and
creates the load module.

5. An example

The example given in this section is taken from [3]. The
study reported in that paper was designed to evaluate (by
a hand simulation) the effectiveness of the ECS approach
in producing good code for a hard problem. The problem
chosen was the PL/I string concatenation operation: A =
BJ|c.

A code generator has to be aware of numerous possi-
bilities when generating code for this operation:

1. The operands may be varying or fixed-length strings.

2. The result may need to be padded or truncated.

3. One or both of the operands may alias the target vari-
able. For example, if C is aliased with A, then moving
B into A will destroy the original C. If B and A start at
the same memory address, then we might be able to
save a move operation.

4. Different instruction sequences are required for oper-
ands of different lengths. These can range from a
simple load-store sequence to loops for long strings.
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M=A.MAXLEN-B.LEN
T IFM>0
F
MOVE! = B.LEN
EXTRA = M-C.LEN

IF EXTRA > 0 MOVE! = A.MAXLEN
MOVE2 = 0
T F EXTRA = 0
MOVE2 = M

MOVE2 = C.LEN EXTRA =0

TOTAL = MOVE1 + MOVE2
BUY T1 (MOVEI BYTES)
BUY T2 (MOVE2 BYTES)
Pl = addr A + MOVE!1
BIND Al, PI
T1 = B (MOVE1 BYTES)
T2 = C (MOVE2 BYTES)
A =T1 (MOVE] BYTES)
Al = T2 (MOVE2 BYTES)
IF A.VARY = ‘TRUFE’

T F
A.LEN = TOTAL P2 = addr A + TOTAL

BIND A2, P2
PAD A2 (EXTRA)

RETURN

Figure 9 Defining procedure for concatenate.

5. The context of the concatenate operation may greatly
affect the kind of code that should be generated. The
quintessential example of this is LENGTH (Al|B) in
which the actual concatenation is unnecessary since
the desired result is the sum of the lengths of the two
operands.

The conventional strategy for producing good code for
such an operation is to build into the code generators an
extensive selection process which distinguishes the *‘spe-
cial cases.”

The EcCs strategy is to write the defining procedure in as
straightforward a way as possible and use the existing
analysis and optimization techniques to produce good
code. The next few figures elaborate the application of
this strategy to a specific instance of concatenation. Fig-
ure 9 shows in schematic form most of the defining proce-
dure for the concatenation A = B||C. Note that the overlay
problem is handled by moving each input string into a
temporary. (The notation used in this example differs
from our usual notation, but we hope it is both clear and
concise.)

Now consider the PL/1 program in Fig. 10 which refer-
ences the defining procedure for concatenate. The declare
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DCL (B,C) CHAR (10);
DCL A CHAR (50);

A=BJC;

Figure 10 A reference to the concatenate denning procedure.

M = 40
MOVEI = 10—
EXTRA = 30 MOVE! = 50
MOVE2 = 0
EXTRA = 0
MOVE2 = 40
MOVE2 = 10 EXTRA = 0

TOTAL = MOVE1 + MOVE2
BUY T1 (MOVE1 BYTES)
BUY T2 (MOVE2 BYTES)

P1 = addr A + MOVE]I

BIND Al, Pi

T1 = B (MOVE1 BYTES)

T2 = C (MOVE2 BYTES)

A =T1 (MOVEI BYTES)

Al = T2 (MOVE2 BYTES)

A.LEN = TOTAL P2 = addr A + TOTAL
BIND A2, P2

PAD A2 (EXTRA BYTES)

Continue

Figure 11 After integrating the concatenate defining proce-
dure.

BUY T1 (10 BYTES)
BUY T2 (10 BYTES)
Pl = addr A + 10
BIND Al, P1

T1 = B (10 BYTES)
T2 = C (10 BYTES)
A = T1 (10 BYTES)
Al = T2 (10 BYTES)
P2 = addr A + 20
BIND A2, P2

PAD A2 (30 BYTES)

Figure 12 After applying constant propagation and dead code
elimination.

statements are translated into IL statements which assign
values to a number of variables, including A.LEN,
A.MAXLEN, A.VARY, etc. The PL/ concatenate statement
is translated into a reference to the concatenate proce-
dure. After procedure integration has replaced the refer-
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ence to concatenate by the defining procedure, constants
can be propagated. We now get the program shown in
Fig. 11. (In this example arguments and parameters have
the same names—this is not usually the case, of course.)

Figure 11 shows several instructions which cannot be
executed. Dead code elimination removes them. The con-
stants assigned to the remaining MOVEL, MOVE2, and EX-
TRA can then be propagated to their uses. Having done
the constant propagation, the assignments of the con-
stants to these variables are dead and can be eliminated.
The program in Fig. 12 is left. The program now has T1 =
Band A = Ti. Since it can be established that A, B, and T1
are not aliases, variable propagation can transform the
latter statement to A = B. This causes Ti = B to become
dead, so it can be eliminated. This, in turn, makes the
BUY of T1 dead. Similar analyses and transformations af-
fect T2 and C. The result is shown in Fig. 13.

When the operations in Fig. 13 are replaced by their
defining procedures, the 1L/370 version of the program
fragment is obtained. After more optimization, the result
is the code of Fig. 14. (The number of bytes expressed in
a 370 move instruction is one less than the number of
bytes to be moved by the instruction.)

Storage is now mapped. A, B, and C are in automatic
storage so are mapped relative to the beginning of the dy-
namic storage area (i.e., the DSA) at constant offsets: offa,
offB, and offC. The result of the storage mapping is shown
in Fig. 15. (In the implementation the text is not actually
expanded with the instructions for accessing the data, but
the accessing information is held in a table associated
with the instructions.) Only the address computations
needed to address A are shown.

The IL to RL conversion is performed. The addressing
computations are collected into the base-index-dis-
placement operands of the 370. In this example, we are
assuming that the offsets are < 4096. In conjunction with
the formation of BXD operands, other constant com-
ponents of the address computation are also collected
into the displacement if possible. The result is shown in
Fig. 16. The register allocator generates the result shown
in Fig. 17.

Thus, the original, very general defining procedure for
concatenate has been reduced by general transformations
to four instructions for this particular case. What about
other cases? A number of cases were considered and the
results compared with the pL/1 Optimizer, which contains
a very large, special-case code generator.

1. For A = Allc, A will not be moved by either ECS or the
Optimizer.
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2. For LENGTH (B||C), the concatenation will not be done
by ECS; it is done by the Optimizer.

3. In EcS, A = B||c||p will use the renaming optimization
to avoid unnecessary moves to and from temporaries.
The Optimizer also avoids unnecessary moves.

4. If concatenation is done on parameters of unknown
length, as in

P: PROC (A, B, C);
DCL (A, B, C) CHAR (#);
A = B||C;

then the ECS code will be longer but faster in com-
parison with the Optimizer.

6. Conclusions

A compiler construction methodology has been described
which provides a language-independent compiler frame-
work on which language-specific compilers can be built.
The approach is based upon the use of

1. An intermediate language (IL) schema to express lan-
guages.

2. Procedures to specify (‘‘elaborate’’) the semantics of
the language.

3. Analysis to derive the characteristics of operations.

4. Procedure integration to expand high-level code into
lower-level code.

5. Analysis and optimization to tailor code to its particu-
lar context.

As a consequence of the approach, the system features

1. Interprocedural analysis and optimization, including
in-line expansion (*‘integration’’) of user procedures.

2. Both interpretation and compilation within the same
system and from a single semantic definition. The
compiled object code can optionaliy be highly opti-
mized. Interpretive code (in the form of references to
the generalized procedures for each operator) and op-
timized code can be mixed in the same routine.

3. Anextensive collection of optimizing transformations.

4. Variable binding times. Most systems expect to bind
information at fixed times: attributes to variables at
compile time, relative addresses at load time or execu-
tion time. The Experimental Compiling System binds
information when it is known.

The approach is being validated by implementing the
basic system and testing its applicability to PL/1 on the
370.

In addition to providing a compiling system which
should significantly reduce the cost and complexity of
creating a compiler, while increasing the reliability and
code quality of the programs compiled by it, the ECS ap-
proach has other advantages [15].
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Pl =addr A + 10
BIND Al, P1

A = B (10 BYTES)
Al = C (10 BYTES)
P2 = addr A + 20
BIND A2, P2

PAD A2 (30 BYTES)

Figure 13 After variable propagation and other optimizations.

ADDRESS_ADD Pl =A +10

BIND Al, P1

MOVE A, B, 9 bytes

MOVE Al, C, 9 bytes

ADDRESS_ADD P2 =A +20

BIND A2, P2

MOVE A2,'_’, 0 bytes /+insert pad char */
EXTEND A2, 28 bytes /* pad end of A%/

Figure 14 11/370 version of the program.

ADDRESS_ADD LA = DSA + offA
/*EST. LOC. OF A%/

BIND A,LA

- - - /» SIMILAR INSTS FOR B AND C. #/

ADDRESS_ADD Pl=A+ 10

BIND Al, P1

MOVE A, B, 9 bytes
MOVE Al, C, 9 bytes
ADDRESS_ADD P2 =A+20
BIND A2, P2

MOVE A2, ‘_’, 0 bytes
EXTEND A2, 28 bytes

Figure 15 After storage mapping.

MOVE  A[DSA-+offA], B[DSA+offB], 9
MOVE  AI[DSA+(offA+10)], C[DSA+offC], 9

MOVE  A2[DSA+(offA+20)], *_’[SI+off._.], 0
MOVE  A2[DSA+(offA+21)], A2[DSA+(offA+20)], 28

Figure 16 After instruction aggregation.

MVC offA (9,DSA), off B(DSA)

MVC offA+10 (9,DSA), off C(DSA)
MVI  offA+20,C*_°

MVC offA+21 (28,DSA), offA+20(DSA)

Figure 17 After register allocation.

Good programming style is supported. The program-
mer can freely organize a problem into a functionally
related, highly structured collection of procedures. The
system deduces the data flow through the collection and
can open procedures in line. This latter transformation
not only eliminates the overhead of a call but, when fol-
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lowed by optimization, tailors a general procedure to a
specific instance. A particularly interesting use of this is
in isolating data representations. A{.J) can be treated as a
reference to a function A which, using arguments I and J,
returns a value or a pointer to a value.

Program management functions are supported. ECS can
be used to check the consistency of a collection of proce-
dures and, when one is changed, to determine the prolif-
eration of the effects. Ideally an ECS compiler is a com-
ponent of a larger system which can both use and supply
information regarding the status of an entire collection of
procedures. A component of this could be a design speci-
fication subsystem in which the functions of the com-
ponents of a system being designed are specified. The
components can be checked for consistency and as each
component is developed a check made to ensure that the
specified interface has been correctly implemented.

Interesting diagnostic and maintenance material is
available. As a result of the extensive and intensive analy-
sis of a collection of procedures, a great deal of informa-
tion about the entire collection is available. Comments
can be automatically added to a program listing at proce-
dure call and definition points which summarize the ef-
fects of the procedure call or definition. Because of the
volume of information made available by the system, an
interactive mode of communicating to the user is desir-
able.

Extensive error checking is supported by the system.
The usual overhead of in-line checks on subscript ranges,
argument-parameter compatibility, variable types, etc.,
will largely disappear as a result of compile time analysis
and optimization.

Language extensibility is supported via the procedure
mechanisms.
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Appendix: Specific techniques

Several techniques which are new and/or basic to the ECS
approach are discussed in this Appendix: flow-free analy-
sis, summaries, procedure integration, data flow do-
mains, constant propagation, storage overlay, and in-
struction aggregation.
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o Flow-free analysis

Data flow analysis in ECS is complicated by the presence
of procedure, label, and pointer variables. Procedure
variables make it impossible to determine, from a simple
scan of the program, which procedures may be called by
each call statement. Label variables similarly make it im-
possible to determine which labels may be the targets of
each goto statement. Thus a call graph and a control flow
graph cannot be constructed after a simple scan of the
program. Further complications occur when aliasing
among variables in a program is possible. This can result
from mechanisms such as pointers and call-by-reference
parameter passing, both of which we must be able to
handle. As an example of the problems which aliasing can
cause, a call on a procedure variable using call-by-refer-
ence could have the effect, depending on the value of the
procedure variable at the time of the call, of assigning a
procedure value to one of the parameters of the call. This
fact must be taken into account in constructing the call
graph, for if a procedure A contains a call on procedure
variable X, the call graph must contain arcs from the node
for procedure A to the nodes for each procedure which x
can have as its value. To determine the necessary infor-
mation, a program analysis which is flow-free (in the
sense that the call graph and control flow graph are not
yet available) is required.

Given a collection of procedures, the flow-free analyzer

1. Computes range information (i.e., lists of possible val-
ues) for procedure variables, thereby generating a call
graph,

2. Computes aliasing patterns and range information for
pointers while computing (1), since procedure vari-
ables can acquire values as a result of aliasing,

3. Computes range information for label variables for use
when determining the control flow graph, and

4. Finds argument-parameter relationships.

Flow-free analysis also generates summaries for proce-
dures, which is necessary in the case of recursive calls.
This is considered in a subsequent section.

Unfortunately, the problem of determining completely
precise information (precise up to symbolic evaluation
[16]) is inherently difficult. The algorithm suggested here,
though not precise in all cases, is safe and has a running
time which is approximately bounded by the product of
the number of alias relationships in the program and the
number of variables and constants of pointer, procedure,
or label type.

The method used extends the work of Barth [ 16], Ban-

ning [17], and Allen [6] to the cases we wish to handle. It
is described by Weihl in [7] and is similar to that given in

IBM ). RES. DEVELOP. ® VOL. 24 » NO. 6 « NOVEMBER 1980




[18]. In general outline, the method involves manipulating
relations over a set of variables and values of interest.
The code must be scanned to initialize the relations, and
then a closure operation is performed on the relations.
We illustrate the method by considering several ex-
amples, starting with the simplest case, a single proce-
dure with no aliasing, and gradually considering reference
parameters, pointers, and calls on procedure variables.

Let us first consider the case of a single procedure with
no aliasing and no procedure calls. We first create a rela-
tion MODVAL such that

(X.A) In MODVAL means X is assigned value A.
Suppose our procedure consists of two assignments

B=C;
A = B;

Then, scanning the code, we put the pairs (B,C), (A,B) in
MODVAL. We then create the relation PVAL to be such that

(X,A) in PVAL means X has possible value A.

If we take PVAL = (MODVAL)+ (where + is the non-
reflexive transitive closure), then we get (A,C) in PVAL. In
this limited case, the above formula is both correct and as
precise as possible.

Next, let us consider the case of multiple procedures
with procedure calls and no aliasing, where operands are
passed to procedures in the collection by value. Suppose
the body of one of the procedures contains the following
code:

Call pA);
B=C;
A = B;

where P is a procedure in the collection with a single for-
mal parameter X. We first define a relation AFFECT to be
such that

(X,A) In AFFECT

means X may be aliased to A and to every other variable
which may be aliased to A. AFFECT is the set of all for-
mal-actual parameter pairs which result from calls to pro-
cedures in the collection, and so in our example (X,A) is in
AFFECT. We then take

PVAL = (AFFECT U MODVAL)+.

This accounts for the transmission of values from actual
parameters to formal parameters. In our example we then
obtain, among other pairs, (X,C) and (X,A) in PVAL.

As a further extension, let us now allow parameters to
procedures in the collection to be passed by reference.
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This means that when a value Y is copied into a variable
X, there is an implied copy of Y into each alias of X. Fol-
lowing Barth [16], the ALIAS relation, which indicates
possible aliasing relationships among variables, can be
computed by

ALIAS = (AFFECT*) o (AFFECT*)T

(where T is the transpose, * is reflexive transitive clo-
sure, and o is composition). As an example, suppose our
collection consists of two procedures P and Q, as follows:

P(X,Y) Q
X = B; Call p(a,A);

Then we initialize our relations as follows:

(X,B) in MODVAL
(X,A), (Y,A) in AFFECT.

We then obtain (X,A), (Y,A), and (X.,Y) in ALIAS. We use the
following to compute PVAL:

PVAL = ((ALIAS - MODVAL) U AFFECT)+

We note the information is correct in this case, but not
completely precise. See Weihl [7] for further details.

In the case of pointer variables and procedure vari-
ables, no closed form formulas for computing PVAL can
be obtained. The algorithm used to handle the case of ref-
erence parameters is not sufficiently general to handle
pointers. The difference with pointers is that the variables
which contain addresses can be aliased as well, and so
assignments to a pointer variable must be propagated to
all of the aliases of the variable. The method used to solve
this problem is to incrementally iterate. For each modifi-
cation to a variable, the aliasing relationships implied by
that modification are added, and we iterate to see if this
produces any more modifications. See Weihl [7] for de-
tails of the algorithm, which is both precise and correct in
the case of pointers, given the assumption that no control
flow information is available.

We next consider calls on procedure variables. The
basic problem is that at the time the call is encountered in
scanning the program, the possible values for the vari-
able, and hence the actual procedures which might be
called by the statement, are unknown. Therefore, it is not
possible to immediately associate the actual parameters
of the call with the formal parameters of the procedure
being called. To avoid rescanning the program several
times, we need a mechanism to keep track of the actual
parameters of calls on procedure variables. When a value
is determined for a procedure variable, we can then asso-
ciate the actual parameters of the calls on the variable
with the formal parameters of the value. The mechanism
used to accomplish this is to create, for each procedure
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PL/ Source: CALL R(I,A(I), B+C,2);
at IL level: INDEX (P, A, D)

BIND (T1, P)

ADD (T2=B+C)

MOVE (T3=2)

R {,T1, T2, T3)

Figure 18 The IL/PLI form of a call.

variable, dummy formal parameters. The algorithm in this
case, like the one for pointers, involves incremental itera-
tion.

® Summaries

The summary for a procedure delineates the effects of
calling the procedure on all nonlocal (to the procedure)
variables mentioned in the procedure and all formal pa-
rameters to the procedure. The effects to be summarized
for a variable include whether it is used or modified in the
procedure, whether data accessible through the variable
is used or modified, and whether the variable is called and
in what manner. The summary also includes what copies
(i.e., assignments) between variables take place as a re-
sult of executing the procedure and information about the
nature of the copy (e.g., whether it is actually the storage
accessible through the given variable, and not the vari-
able itself, being assigned).

The use and modify information is necessary anytime
we want to examine the effects of an operand, e.g., for
data flow analysis. In data flow analysis, summaries are
examined per instruction in the program, and bit vectors
are formed based on this summary information. The infor-
mation about copies is needed for flow-free analysis to
propagate procedure, label, and pointer values.

The information for summaries is first collected by a
flow-free analysis and then by a flow-dependent analysis.
In broad outline, the flow-free collection of this informa-
tion requires initializing relations and then performing a
closure operation. The flow-dependent counterpart is
computed as a data flow analysis problem.

We present an example to illustrate summaries as well
as the differences in flow-free and flow-dependent sum-
mary generation. Consider the following procedure p:

P: PROC(X);
IFA> X THEN A = X;
ELSE A = D;

END;

Collecting information in a flow-free manner, the sum-
mary would be
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A may be modified

A may be used

X may be used

D may be used

X may be copied into A
D may be copied into A

Collected in a flow-dependent manner, the summary
would be

A must be modified

A may be used

X may be used

D may be used

X may be copied into A
D may be copied into A

i.e., the additional information that A must be modified is
detected. Reference [19] has a discussion of the dif-
ferences between ‘‘may’’ and “‘must.”’

® Procedure integration

In general the term procedure integration can be used to
apply to a range of transformations designed to bind call-
ing and called procedures more intimately prior to execu-
tion. We restrict our use of the term here to mean in-line
opening. By that we mean replacing a reference to a pro-
cedure with the procedure itself. There are three central
considerations in this: the conditions under which it is
reasonable, the order in which to perform possible se-
quences of such transformations, and the ‘*mechanics’’ of
the actual integration as related to maintaining the correct
semantics for the source language.

We consider this last issue first. Here, as in all of the
discussion related to the Ecs transformations, it is impor-
tant to remember that integration occurs after the pro-
gram has been translated from its external form. Sym-
bolic names have been replaced by numbers (referring to
symbol table entries), and all name qualifications, scoping
conventions, implicit definitions, etc., have been re-
solved. Thus variables local to an internal procedure
have already been distinguished from other variables hav-
ing the same name. The following adjustments must be
made when replacing a reference to a procedure with the
procedure itself:

1. The argument-parameter associations must be made.
Different languages have a wide variety of different
possible associations. The ECS procedure integration
transformation replaces all occurrences of parameters
in the text with the corresponding arguments. It is as-
sumed that the source language translator has re-
placed the actual arguments given in the source pro-
gram with references to actual or dummy arguments if
this is appropriate. Consider the example for PL/1 given
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in Fig. 18. Occurrences of the parameters in the text of
procedure R are replaced with the arguments 1, T1, T2,
and T3 if R is integrated. The result is correct according
to PL/I semantics.

2. Variables local to the called procedure must be kept
distinct from those in the calling procedure; variables
which are the same must be given the same identifica-
tion. Since it is assumed that the translator will have
resolved all names in internal procedures, name (i.e.,
number) adjustments are made only on integrating an
external procedure. Static variables must get the same
identifications across all copies of a procedure.

3. Members of storage classes which require the dynamic
acquisition of storage when a procedure is referenced
are merged with similar storage classes in the calling
procedure.

4. Statically inherited environments must be carried
over. As an interesting case of this, consider the ex-
ample in Fig. 19. If procedure ¢, which inherits A’s
static environment, is opened up at its reference point
in procedure B, then we must ensure that C continues
to inherit A’s static environment.

We now turn to another of the three considerations in-
volved in procedure integration as we are discussing it
here: the conditions under which it is permitted and prof-
itable. Surprisingly, it is nearly always permissible to in-
tegrate one procedure into another. Even if the procedure
is recursive, either directly (containing a reference to it-
self) or indirectly, it can be integrated. (Of course, the
integrator must be careful not to get into an infinite loop
of integrations.)

Determining the profitability of an integration is diffi-
cult in general. Procedure size and the projected number
of times a reference is executed are clearly factors. An-
other factor is the tailoring effect that will occur on an
integrated procedure when it is optimized in the calling
context. An algorithm for predicting the tailoring effects
is given in [20]. In [21] it is shown that in certain contexts
it is almost always profitable. Figure 20 gives an example
of two procedures which are integrated and the result op-
timized.

[t would be desirable to be able to predict at least some
of the improvements to be gained by integrating a proce-
dure and then optimizing the result. It is probable that the
dramatic effects obtained in the example in Fig. 20 could
not be predicted, but certain simpler cases seem promis-
ing. A particularly promising and profitable case exists
when an argument is a constant and the corresponding
parameter in the procedure is tested against another con-
stant. This is often done to determine which of several
alternate paths to take through a generalized procedure.
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A: PROC
B: PROC
CALL C
C: PROC

Figure 19 The static environment of C and its call are different.

ORIGINAL PL/1 PROCEDURES

P: PROC (A); Q: PROC (X,Y);
B=35; X=X*Y;
C=Ax*B;

CALL Q (A,B); END;
RETURN (C);
END;

After integration After optimization

P: PROC(A);

B=5; P: PROC(A);
C=AxB; A=Ax*S;
A=AxB; RETURN(A);
RETURN(C); END;

END;

Figure 20 Example showing the integration and optimization of
two procedures.

CALL B CALL C

CALL C

Figure 21 System of procedures.

Unused alternatives should disappear. Since we have
found that 24% of the arguments passed in a large sample
of actual programs are constants, this may be a particu-
larly important prediction basis. In fact, it is likely that
references to defining procedures will involve an even
larger percentage of constants,

The third consideration related to integrating proce-
dures is the order in which to perform the integrations.
Assuming it is profitable to do a complete integration, the
order in which the integration is performed can pro-
foundly affect the optimality of the resulting code. This
occurs because the optimizations which are performed af-
ter an integration work best when transforming (moving,
eliminating, modifying) single expressions. A CALL is a
single expression; a procedure is not. It may be possible
to move a CALL out of a loop or climinate it, but it is
difficult to effect the same transformation on the ex-
panded form. This is particularly true if the expanded
form contains any control flow. Consider the little system
of procedures A, B, and C given in Fig. 21. 711
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Figure 22 Control flow graph of a program partitioned into data
flow domains.

Now consider applying a strategy to this system which
results in integrating B into A first. A would now contain
two calls to C. As a result of optimization, the second call
to C might possibly be recognized as being redundant. If,
however, ¢ had been integrated into B before B was in-
tegrated into A, the possible redundancy would probably
be obscured.

® Data flow domains

Before they are integrated, procedures have been ana-
lyzed and their internal control and data flow relation-
ships are known. We would like to avoid redoing the en-
tire analysis after integration. Furthermore, many of the
def-use and live relationships would not be changed (pa-
rameters, global variables, and shared scopes create the
exceptions), but the bit vectors would be much expanded
and even sparser than before. Even within a procedure,
the bit vectors could become very large, since there is one
bit for every definition of interest in the program.

These and other considerations have led to domain par-
titioned data flow analysis. By this method a control flow
subgraph is encapsulated and the data flow analysis com-
pleted within the subgraph. Collections of such subgraphs
or data flow domains can be further encapsulated into
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larger data flow domains. Each subgraph becomes a node
in its containing subgraph. Multiple definitions or uses in
a data flow domain are treated as a single definition or use
in the representative node.

Figure 22 shows a control flow graph consisting of basic
nodes 1, 2, 3, - - -, 9. Each of these may be a single in-
struction (i.e., a procedure reference), a basic block, a
subgraph, etc. There are definitions of X in nodes 3, 4, and
7; uses in 8 and 9. The various definitions of a variable are
distinguished by subscripting the variable name with the
number of the node containing the definition. Thus X, X,,
and X, appear in the example. Assume that subgraphs (2,
3,4,5) = 10and (6, 7, 8, 9) = 11 form data flow domains
and further that (1, 10, 11) forms the all-encompassing
data flow domain represented by node 12. X,  then is a
pseudo-definition representing all the definitions of X in
node 10. Similarly we have a use and definition for node
11.

Within a data flow domain the def-use relationship is
expressed directly. Thus the relationship between the
definition in 7 and the uses in 8 and 9 are found directly [8]
and expressed explicitly. The relationships which cross
data flow domains go through one or more levels of in-
direction. These levels of indirection are encoded through
the pseudo-definitions and uses. The data flow analysis of
nodes 1, 10, and 11 finds that x,, can affect the use in 11.
In order to find out, for example, what uses the definition
in node 3 can affect, we look at the uses its representative
pseudo-definition, X, , can affect. Since X, has a def-use
relationship with the pseudo-use for node 11, we can find
the actual uses of X, by looking at the uses represented by
that pseudo-use.

The fact that domain-partitioned data flow analysis can
be used to limit the lengths of the bit vectors used to do
the analysis results from the fact that the number of defi-
nitions being considered at any one time can be limited.
However, the number of levels of indirection needed to
relate a definition and a use increases. This method is of
interest in the context of integrating procedures which
have been previously analyzed. The results of the analy-
sis can be easily integrated with existing results at the
time procedure integration is done.

Constant propagation

Constant propagation is a more critical optimization in
ECS than in most compilers, mainly due to a larger ex-
pected proportion of compile-time constants. This is be-
cause, in ECS, an integrated defining procedure, such as
the one given in the example of Section 4, will typically
contain a large number of constant-valued variable refer-
ences. For this reason, a rather ambitious approach to
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constant propagation has been undertaken in ECS—an ap-
proach which is facilitated by the ECS methodology.

Constant propagation involves the folding of compile-
time constant values into variable references. In many
compilers, as in ECS, the def-use chains are used to deter-
mine all the definition points reaching a given use when
constants are propagated between basic blocks. Such
propagation may, in turn, give rise to an expression all of
whose operands are constant, and constant propagation
can proceed if the expression can be evaluated and the
target of the expression is addressable.

Most constant propagators restrict the evaluation to in-
teger arithmetic involving simple variables or tempo-
raries. In ECS, the greatest possible latitude is provided.

Any expression that can be evaluated at object time can
also be evaluated by the constant propagator at compile
time. This is achieved by associating with each IL primi-
tive a simulator that can be invoked by the ECS constant
propagator to evaluate that IL operation when its oper-
ands are constant. Furthermore, any procedure whose ar-
guments are all constant can be invoked at compile time,
thus supporting the propagation of constants through
built-in functions, such as SINE, and type conversion rou-
tines. The simulator for such a nonprimitive procedure is
the resuit of integrating the more primitive simulators,
and is thus an automatic product of the ECS compiler.

Propagation of constants ‘‘through storage” is sup-
ported in the ECS compiler. For example, suppose the
program contains the statement

Al =17,

If 1 and j are known to have constant values 2 and 3, re-
spectively, at this statement, then the value 3 can be
propagated through A(2) to all program expressions A(K)
where K is also known to be 2. The ECS BIND operation
and aliasing information supports this function. The ad-
dress of a bindable variable is treated by the data flow
functions as a variable in its own right: a reference to the
bindable variable is a use of the address, and a BIND opera-
tion is a redefinition of the address. In this way, the def-
use chains are used to propagate constant “‘address val-
ues’’ as well as other values.

These functions are provided in a completely machine-
independent manner. The constant propagator ‘‘knows
nothing’’ about the storage characteristics of the object
machine when it propagates constant addresses. Program
variables, for the most part, are “‘typeless’” (i.e., bit
strings) as far as the constant propagator itself is con-
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cerned; the 1L simulators provide the type interpretation.
The exceptions here are values that have been ascer-
tained to be of pointer, label, or entry type. These values
are represented in a stylized form that conveys informa-
tion about the variables or program points referenced by
the value. This form supports the simulation of such func-
tions as indirect addressing and transfers to constant la-
bels.

® Storage overlay

In the ECS defining procedure approach, there is no dis-
tinction between program variables and generated tempo-
rary variables. In general, the storage requirement of an
Ecs-compiled program before storage mapping will be
considerably greater than the typical compiler’s output.
Furthermore, procedure integration produces enhanced
opportunities for a storage overlay algorithm to determine
storage-sharing opportunities for temporaries and pro-
gram variables alike, in a uniform, systematic manner.
Such an algorithm is described in detail in [12-14].

To illustrate the storage overlay problem, consider the
PL/I program in Fig. 23(a).

Most compilers would produce the storage layout
in Fig. 23(b).

Improved storage utilization would result if the com-
piler could observe that the first reference to E follows the
last use of A and the first reference to G follows the last
uses of ¢ and D, as shown in Fig. 23(c).

An even better solution results [Fig. 23(d)] from the ob-
servation that B and G are not simultaneously live, nor are
C and D. Thus, the overlay problem consists of finding
sets of overlayable variables and juggling their sizes so
that the total storage requirement is minimized.

Briefly described, the key to the algorithm is the con-
cept of a conflict graph. The nodes of the conflict graph
are the variables in a given storage class. An edge con-
nects a pair of variables X, Y if and only if there is some
node in the program flow graph where X and Y are simul-
taneously live and, hence, may not share storage. The
minimum assignment of overlapping storage to the vari-
ables in a storage class can be formulated as an extended
coloring problem. This formulation suggests the use of a
simple overlay heuristic.

The nodes of the conflict graph (i.e., variables in a stor-
age class) are selected for extended coloring (i.e., storage
assignment) according to a figure of merit which measures
the relative urgency of each node. The extended color
(storage interval) is chosen from the set of available col-
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P: PROC;
DCL A(100), B(100), C(50), D(50), E(100), G(100);
GET LIST(B, C);

(a) A =FI(B,C);
D=F2(A,B);
E =F3(B,D);
G = FA(E);
PUT LIST(E, G);
END P;

(b) A(100) | B(100) | C(50) | D(50) | E(100) | G(100)

Total: 500 cells

A(100) C(50) | D(50)
(©) B(100)
E(100) G(100)

Total: 300 cells

A(100) B(100) C(50)
@)

E(100) G(100) D(50)

Total: 250 cells

Figure 23 Effects of improved storage overlays.

ors according to a storage selection strategy, such as first-
fit.

o Instruction aggregation

An important part of the machine tailoring phase is a pro-
cess for recognizing that certain groups of instructions
compute a value which can be computed by a single in-
struction of higher complexity. Instructions to be aggre-
gated are related by their data flow—not by their physical
proximity. In order to deal with the aggregation of in-
structions which are not immediately adjacent, the ma-
chine tailoring phase of the ECS compiler makes use of
data flow analysis which has already been performed by
the semantic elaboration phase.

For example, most computers allow for operand ad-
dressing via some kind of base/index register arrangement
in which an implicit add/subtract operation is used to de-
rive an effective address which points to the actual data to
be manipulated. On the IBM System/370, storage oper-
ands may be addressed by summing the value in a base
register (B), the value in an index register (X), and a dis-
placement (D) which must be a compile-time constant.

This information is expressed by writing a pattern. The
pattern characterizes the real machine’s complex instruc-
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tion by expressing their functions as a set of simpler IL
instructions related by data flow. For example, a pat-
tern for this BXD sequence would begin as

BXD pattern: ADD (T1 =B + D)
ADD (T2 =Ti1 + X)
BIND (T, T2)

To match the patterns against the program, a pass is
made through the program. Each instruction is matched
against all pattern points (the simpler IL instructions ap-
pearing in the patterns) which are applicable to its opera-
tion code.

For pattern points whose inputs come from other in-
structions in the pattern, determining the success of a
match requires determining whether some other pattern-
point/instruction match is successful. This situation is
dealt with recursively. A collection of ‘‘already-tried”’
flags is used to prevent repeated attempts.

If the pattern point is successfully matched against the
instruction, a resolution is constructed for use in sub-
stitution. The resolution is a map from the identifiers used
in the pattern description to the actual variables used in
the program fragment that matches the pattern. For pat-
tern points which have several alternatives, the ‘‘best”
alternative is selected.

Having determined the matches for all program points,
instruction aggregation chooses which productions are to
be executed. This choice can be accomplished by numer-
ous algorithms, the simplest of which is a bottom-up
‘‘greedy’’ algorithm. Code production requires that a
value be assigned to each pattern point whose match
causes code to be produced. Such pattern points are
called terminal pattern points. The value measures the
time or space saved by using the higher-complexity in-
struction to be generated instead of its expansion. In addi-
tion, each terminal pattern point must have a production
rule, and each operation code must have a default produc-
tion rule. These are used to form the replacement for
matched and unmatched pattern points, respectively.

® Register allocation
The ECS register allocator is based on the approach given
in [22]. It consists of five phases:

1. The relative frequencies of program points (i.e., RL in-
structions) are estimated. In the absence of real fre-
quencies, this is necessarily determined by such con-
trol flow patterns as nested strongly connected re-
gions.

2. The displacement priorities of the variables at each
point are established. These priorities are based on a
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frequency-weighted measure of the distance to the
next use. These priorities are used when determining
which variable to displace when the allocation phase
finds that it is out of registers.

3. Variables are allocated to registers in that a decision is

made as to which variables at each program point are
contenders for registers. The actual decision as to
which symbolic register they will get is made in the
next phase. In this phase we note when the value of a
potential register contender is also ‘*home,”’ i.e., the
current value for the variable also exists in storage.

4. Registers are assigned symbolically and the skeletal

code sequences are determined. This does not desig-
nate the absolute register. An infinite supply of sym-
bolic registers is assumed overall, but no more than
the actual number of registers may be in use at any
point.

5. The symbolic registers are given absolute designa-

tions.

By separating the allocation of variables to symbolic

registers from the assignment of variables to actual regis-
ters, we can permute the allocations to decrease mis-
matches and the consequent register moves.

Having selected the absolute registers, the code skele-

tons chosen earlier can be finalized.
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