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Strength  Reduction for Division and Modulo with 
Application to Accessing  a Multilevel Store 

A method  for  replacing  certain  division  and  modulo  operations by additions  and  subtractions  is  presented.  This  opti- 
mization  allows  eficient  and  easy  use of partitioned  arrays t o  N C C ~ S S  a  m~dtilevel  store. 

0. Introduction 
Reduction in strength is an optimization which moves 
”expensive” calculations from a high-frequency execu- 
tion region to a  lower-frequency  region,  and  replaces the 
original expensive  calculations with “cheaper”  ones 
within the region [l]. The most  common examples  are 
“code  motion,” in which the  cheaper  operation is no  op- 
eration  at all,  and the  replacement of multiplications (usu- 
ally associated with indexing  through arrays) by addi- 
tions.  In this paper,  we  describe a strength  reduction  pro- 
cedure  for integer  division and modulo operations, and 
demonstrate its use in accessing  arrays in a multilevel 

x = x + k , o r  
x = k ,  

where k is constant throughout the strongly connected re- 
gion. 

lntroduce  two new variables Q and R by inserting the 
following computations  on entry to  (but  outside of) the 
strongly connected region: 

Q = x + c ,  
R = mod (x, c). 

store. In the strongly connected region,  replace every  computa- 

In this paper, x + c is used  to  denote integer  division, 
as defined by the Euclidean  algorithm: x + c = Q ,  where 
Q and R are integers  satisfying 

tion of x + c with a reference to Q, and  replace every 
computation of mod (x, e )  with a  reference to R. When- 
ever a computation 

x = Q *  c + R ,  0 I R < IcI. 
x = x + k  

R is taken  to be the value of mod (x, e). Observe  that 
x -+ c is linear in the  numerator in the following sense: 

appears in the strongly connected region,  insert immedi- 
ately after  that  computation  the following: 

(x + k * e)  + c = x + c + k for all integers k .  
R = R + mod ( k ,  c ) ;  
if R 2 lcl then do; 

1. Strength  reduction of division  and  modulo 
Suppose  either  or both of the following computations ap- 
pear in a strongly connected region [2] of a  program: 

R = R - IcI; 
Q = Q + sgn ( c ) ;  
end; 

Q = Q + k + c ;  
x + c,  or 
mod (x,  c), 

and whenever 

where c is constant  throughout  the region and where x is 
modified only by computations of the form appears in the strongly connected region, insert 

x = k ;  
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R = mod ( k ,  e);  
Q = k + c ;  

since k and c are region constants, mod ( k ,  c) and k + c 
can be computed on entry  to  the region or  at compilation 
time. 

To show  that Q and R hold the updated  values of x f c 
and mod (x, e ) ,  suppose  that 

Q = x f e ,  and 
R = mod (x, c). 

If x‘ = x + k ,  then 

mod (x‘, c) = mod [mod (x, e)  + mod ( k ,  e ) ,   e ]  
= R + mod ( k ,  e )  

= R + mod ( k ,  e )  - IcI 

if R + mod ( k ,  e)  < IcI, 

if R + mod ( k ,  e )  2 I C / ,  
and 

x ” c = ( x + k ) + c  

= [(x + c) * c + mod (x, e )  
+ ( k  + e)  * c + mod ( k  e)] + c 

if R + mod ( k ,  e )  < IcI, 

if R + mod ( k ,  e )  2 IcI. 

= Q + k + c  

= Q + k + c + sgn ( e )  

In most higher-level languages  integer division x + c is 
defined as 

x + c = [Ixl / Icl] * sgn (x * e ) ,  

so that [x/c] corresponds  to  the Euclidean  algorithm defi- 
nition of integer  division  only  when x 2 0 and c > 0. In 
particular,  the definition of integer division just cited is 
nonlinear in the  numerator, since  for 0 < x < lei, IcI > 1, 
x + c = 0, and (x - e )  + c = 0. For such  languages, 
strength reduction can be applied to modulo without  qual- 
ifications, but  can  only  be used for division when it can be 
shown that the numerator is always  nonnegative. 

2. Arrays in multilevel storage hierarchies 
Let us assume  that a  two-dimensional  array A having rn 
rows  and n columns is stored  “row-wise,” so that A(;, j )  
is located n * i +jelements beyond A(0,O). If only a small 
part of the array  can  be  kept in fastest memory, as is the 
case with cache memory and with paged memory, then 
operations which use elements of A by row will be very 
efficient, utilizing all elements in a “page” of fast mem- 
ory,  whereas columnwise operations use only w / n  ele- 
ments, where w is the  number of elements in a page of fast 
memory. If an  array will be used principally in a  column- 
wise manner, it is good  practice to work with its trans- 

pose  instead. However, it may be the  case  that  the  array 
is accessed both by rows  and by columns,  as for example 
in matrix transposition, matrix  inversion,  iterative solu- 
tions to partial differential equations,  etc. 

Let k = [sqrt ( w ) ] .  If we partition arrays  into k X k sub- 
arrays,  then  for use of the  array by columns or by rows, k 
elements  per page will be accessed. Rather than  burden 
the programmer  with the  task of managing partitioned ar- 
rays, a compiler can  generate  code  to  compute  the loca- 
tion of A(i, j )  as being i ’  + i ”  + j ’  + j ”  elements  from 
A(0, O ) ,  where 

i ’ = ( i + k ) * n * k ;  
i ”  = [mod ( i ,  k ) ]  * k ;  

j ”  = mod (j, k ) ;  

(assuming that rn and n are multiples of k).  In commonly 
encountered  loops,  these  computations  can  produce  sur- 
prisingly little overhead by using the strength  reduction 
given in Section 1. Suppose  for example that a  program 
fragment has  the  structure 

d o i =  Otorn - 1; 

j ‘ = ( j t k ) * k * k ;  

d o j = O t o n  - 1; 

access A(i ,  j )  

end: 
end; 

Straightforward code  generation, using matrix  partition- 
ing, would produce 

loop: . . . 
i’ = (i + k )  * n * k ;  
i” = [mod ( i ,  k) ]  * k ;  

j ”  = mod ( j ,   k ) ;  

access A(i’ + i“ + j ’  + j “ )  

j ’  = ( j  + k )  * k * k ;  

. . .  

j = j  + 1; 

j = 0. 
i = i +  1; 
if i < rn then go to  loop; 

if j < n then go to  loop; 

. . .  

Applying reduction in strength  to division and  modulo 
yields 693 
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R' = 0;  
Q' = 0; 
Q" = 0. 
R" = 0. 

loop: i' = Q' * n * k 
I = R ' * k ;  
j '  = Q"* k * k; 

. I1 

j "  = R"; 
. . .  
access A(i' + it' + j '  + j " ) ;  
. . .  

j = j +  1; 
R" = R" + 1; 
if R" 2 k then  do; 

R" = R" - k.  
Q" = Q" + 1 ;  

9 

end; 
if j < n then go to  loop; 
j = 0; 
R" = 0. 
Q" = 0; 
i = i + l ;  
R' = R' + 1; 
if R' 2 k then  do; 

R' = R' - k.  
Q' = Q' + 1; 
end; 

if i < rn then  go  to  loop; 
. . .  

If we now apply strength  reduction  to  the multiplications 
of i ' ,  i", and j '  by the loop constants n * k,   k ,  and k * k,  
respectively, apply  linear test replacement and  dead  code 
elimination to  computations involving i and j (assuming 
that  they  are only  used for  subscript  computation  and 
loop control), and subsume variables, then  the  above 
code  becomes 

k2 = k * k;  
nk = n * k;  
rnk = rn * k; 
i' = 0; 
i" = 0;  

100~2: j '  = 0; 
j "  = 0; 

loop: * . . 
. . .  
access A(i'  + i" + j '  + j " ) ;  
. . .  
j "  = j "  + 1 ; 

if j "  2 k then do; 
j "  = j "  - k; 
j '  = j '  + k2; 
end; 

if j '  < nk then  go to loop; 

if it' 2 k2 then do; 

it' = i" + k;  

I = I  - k 2 ;  . I ,  .,I 

i' = i' + nk; 
end; 

if i' < rnn then go to loop2; 

For k - 1 out of k times through  the  loop,  the  cost of 
loop  closing is thus only one addition, two  comparisons, 
and two  branches, which presumably is cheaper than 
k - 1 page faults, if the  array is large. There  are  an addi- 
tional two or three  instructions in the  inner loop to com- 
bine i t ,  i", j ' ,  and j "  to  compute  the  actual  address of 
A(i, j ) .  The final code  shown  above  can be produced by 
straightforward code  generation and  optimization tech- 
niques,  augmented  by strength reduction for division  and 
modulo. 
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