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Strength Reduction for Division and Modulo with
Application to Accessing a Multilevel Store

A method for replacing certain division and modulo operations by additions and subtractions is presented. This opti-
mization allows efficient and easy use of partitioned arrays to access a multilevel store.

0. Introduction

Reduction in strength is an optimization which moves
‘*expensive’’ calculations from a high-frequency execu-
tion region to a lower-frequency region, and replaces the
original expensive calculations with “‘cheaper’’ ones
within the region [1]. The most common examples are
*‘code motion,”’ in which the cheaper operation is no op-
eration at all, and the replacement of multiplications (usu-
ally associated with indexing through arrays) by addi-
tions. In this paper, we describe a strength reduction pro-
cedure for integer division and modulo operations, and
demonstrate its use in accessing arrays in a multilevel
store.

In this paper, x + ¢ is used to denote integer division,
as defined by the Euclidean algorithm: x +~ ¢ = Q, where
Q and R are integers satisfying
x=Q%c+R, 0=<R <|c|
R is taken to be the value of mod (x, ¢). Observe that
x + c is linear in the numerator in the following sense:

(x+k*c)= c=x+ c+ kforall integers k.

1. Strength reduction of division and modulo
Suppose either or both of the following computations ap-
pear in a strongly connected region [2] of a program:

X + ¢, or
mod (X, ¢),

where c is constant throughout the region and where x is
modified only by computations of the form

x=x+k,or
x =k,

where & is constant throughout the strongly connected re-
gion.

Introduce two new variables @ and R by inserting the
following computations on entry to (but outside of) the
strongly connected region:

Q=x~+c,

R = mod (x, ¢).

In the strongly connected region, replace every computa-
tion of x + ¢ with a reference to (0, and replace every

computation of mod (x, ¢) with a reference to R. When-
ever a computation

x=x+k

appears in the strongly connected region, insert immedi-
ately after that computation the following:

R =R + mod (k, ¢);

if R = |c| then do;

R=R—|c;
Q = Q + sgn(c);
end;

Q=0 +k=+c

and whenever

= k:

appears in the strongly connected region, insert
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R = mod (k, ¢);
Q=k+c

since & and c are region constants, mod (&, ¢) and & + ¢
can be computed on entry to the region or at compilation
time.

To show that Q and R hold the updated values of x + ¢
and mod (x, ¢}, suppose that

Q=x+c,and
R = mod (x, ¢).

If X' = x + k, then

mod (x', ¢) = mod [mod (x, ¢) + mod (k, ¢), c]
= R + mod (%, ¢)
if R + mod (&, ¢) < |c],
=R + mod (k, ¢) — ||
if R + mod (k, ¢) = |c|,

and

X c=kx+k +c
=[x = ¢)* ¢ + mod (x, ¢)
+k+c)*c+mod ko) +c
=Q+k+e
if R + mod (k, ¢) <[],
=Q+ k= c+sgnl)
if R + mod (k, ¢) = |c|.

In most higher-level languages integer division x =+ ¢ is
defined as

x = c =[x /]cl] * sgn (x = o),

so that [x/c] corresponds to the Euclidean algorithm defi-
nition of integer division only when x = 0 and ¢ > 0. In
particular, the definition of integer division just cited is
nonlinear in the numerator, since for 0 < x <|c|, |c| > 1,
x +c=0,and (x — ¢) + ¢ = 0. For such languages,
strength reduction can be applied to modulo without qual-
ifications, but can only be used for division when it can be
shown that the numerator is always nonnegative.

2. Arrays in multilevel storage hierarchies

Let us assume that a two-dimensional array A having m
rows and n columns is stored ‘‘row-wise,”” so that A(i, j)
is located n * i + j elements beyond A(0, 0). If only a small
part of the array can be kept in fastest memory, as is the
case with cache memory and with paged memory, then
operations which use elements of A by row will be very
efficient, utilizing all elements in a ‘‘page’” of fast mem-
ory, whereas columnwise operations use only w/n ele-
ments, where w is the number of elements in a page of fast
memory. If an array will be used principally in a column-
wise manner, it is good practice to work with its trans-
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pose instead. However, it may be the case that the array
is accessed both by rows and by columns, as for example
in matrix transposition, matrix inversion, iterative solu-
tions to partial differential equations, etc.

Let k = [sqrt (w)]. If we partition arrays into k X & sub-
arrays, then for use of the array by columns or by rows, k
elements per page will be accessed. Rather than burden
the programmer with the task of managing partitioned ar-
rays, a compiler can generate code to compute the loca-
tion of A(, j) as being i’ +i{"” +j' +j” elements from
A(0, 0), where

i' =+ k) xnx*k;
i" = [mod (i, k)] = k;
Jm Uk ks

Jj" = mod (j, k);

’

(assuming that m and n are multiples of k). In commonly
encountered loops, these computations can produce sur-
prisingly little overhead by using the strength reduction
given in Section 1. Suppose for example that a program
fragment has the structure

doi=0tom— 1;
doj=0ton—1;

access A(/, j)

end;
end;

Straightforward code generation, using matrix partition-
ing, would produce

loop: - - -
i'=3{+k*n=*k
i" = [mod (i, k)] * k;
J =0k xkxk
i’ = mod (j, k);

access A" +i" +j +j

J=j+ 1

if j < n then go to loop;
Jj=0;

i=i+ 1

if i < m then go to loop;

Applying reduction in strength to division and modulo
yields
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R =0;
Q =0
Q// = 0;
R” = 0;
loop: i' = Q' *n=+k
" = RI *k’
JI = Q”* k % k’
j” — RII;

access AG' + " +j + ),

j=jt+1

R'=R"+1;

if R” = k then do;
R'=R" -k
Q=0 +1
end;

if j < n then go to loop;

j=0;

R’ = 0;

Q" =0,

i=i+1;

R =R +1,

if R' = k then do;
R' =R -k
Q' =0 +1
end;

if i < m then go to loop;

If we now apply strength reduction to the multiplications
of i’, i", and j' by the loop constants n = k, k, and k * k,
respectively, apply linear test replacement and dead code
elimination to computations involving / and j (assuming
that they are only used for subscript computation and
loop control), and subsume variables, then the above
code becomes

k2 =kxk

nk=n=x*k;

mk = m * k;
loop2: j =0

loop: - - -
access A(i' + i" +j +j");

j/r =j// + 1;

if j = k then do;
J=i =k
i=i k2
end;
if /' < nk then go to loop;
i"=i"+k
if i = k2 then do;
" =i - k2;
i"=1i + nk;
end;

if i’ < mn then go to loop2;

For k — 1 out of k times through the loop, the cost of
loop closing is thus only one addition, two comparisons,
and two branches, which presumably is cheaper than
k — 1 page faults, if the array is large. There are an addi-
tional two or three instructions in the inner loop to com-
bine i', i", j', and j” to compute the actual address of
A(i, j). The final code shown above can be produced by
straightforward code generation and optimization tech-
niques, augmented by strength reduction for division and
modulo.
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