Communication

692

John Cocke
Peter W. Markstein

Strength Reduction for Division and Modulo with
Application to Accessing a Multilevel Store

A method for replacing certain division and modulo operations by additions and subtractions is presented. This opti-
mization allows efficient and easy use of partitioned arrays to access a multilevel store.

0. Introduction

Reduction in strength is an optimization which moves
‘*expensive’’ calculations from a high-frequency execu-
tion region to a lower-frequency region, and replaces the
original expensive calculations with “‘cheaper’’ ones
within the region [1]. The most common examples are
*‘code motion,”’ in which the cheaper operation is no op-
eration at all, and the replacement of multiplications (usu-
ally associated with indexing through arrays) by addi-
tions. In this paper, we describe a strength reduction pro-
cedure for integer division and modulo operations, and
demonstrate its use in accessing arrays in a multilevel
store.

In this paper, x + ¢ is used to denote integer division,
as defined by the Euclidean algorithm: x +~ ¢ = Q, where
Q and R are integers satisfying
x=Q%c+R, 0=<R <|c|
R is taken to be the value of mod (x, ¢). Observe that
x + c is linear in the numerator in the following sense:

(x+k*c)= c=x+ c+ kforall integers k.

1. Strength reduction of division and modulo
Suppose either or both of the following computations ap-
pear in a strongly connected region [2] of a program:

X + ¢, or
mod (X, ¢),

where c is constant throughout the region and where x is
modified only by computations of the form

x=x+k,or
x =k,

where & is constant throughout the strongly connected re-
gion.

Introduce two new variables @ and R by inserting the
following computations on entry to (but outside of) the
strongly connected region:

Q=x~+c,

R = mod (x, ¢).

In the strongly connected region, replace every computa-
tion of x + ¢ with a reference to (0, and replace every

computation of mod (x, ¢) with a reference to R. When-
ever a computation

x=x+k

appears in the strongly connected region, insert immedi-
ately after that computation the following:

R =R + mod (k, ¢);

if R = |c| then do;

R=R—|c;
Q = Q + sgn(c);
end;

Q=0 +k=+c

and whenever

= k:

appears in the strongly connected region, insert

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

JOHN COCKE AND PETER W. MARKSTEIN

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. 6 « NOVEMBER 1980

R = mod (k, ¢);
Q=k+c

since & and c are region constants, mod (&, ¢) and & + ¢
can be computed on entry to the region or at compilation
time.

To show that Q and R hold the updated values of x + ¢
and mod (x, ¢}, suppose that

Q=x+c,and
R = mod (x, ¢).

If X' = x + k, then

mod (x', ¢) = mod [mod (x, ¢) + mod (k, ¢), c]
= R + mod (%, ¢)
if R + mod (&, ¢) < |c],
=R + mod (k, ¢) — ||
if R + mod (k, ¢) = |c|,

and

X c=kx+k +c
=[x = ¢)* ¢ + mod (x, ¢)
+k+c)*c+mod ko) +c
=Q+k+e
if R + mod (k, ¢) <[],
=Q+ k= c+sgnl)
if R + mod (k, ¢) = |c|.

In most higher-level languages integer division x =+ ¢ is
defined as

x = c =[x /]cl] * sgn (x = o),

so that [x/c] corresponds to the Euclidean algorithm defi-
nition of integer division only when x = 0 and ¢ > 0. In
particular, the definition of integer division just cited is
nonlinear in the numerator, since for 0 < x <|c|, |c| > 1,
x +c=0,and (x — ¢) + ¢ = 0. For such languages,
strength reduction can be applied to modulo without qual-
ifications, but can only be used for division when it can be
shown that the numerator is always nonnegative.

2. Arrays in multilevel storage hierarchies

Let us assume that a two-dimensional array A having m
rows and n columns is stored ‘‘row-wise,”” so that A(i, j)
is located n * i + j elements beyond A(0, 0). If only a small
part of the array can be kept in fastest memory, as is the
case with cache memory and with paged memory, then
operations which use elements of A by row will be very
efficient, utilizing all elements in a ‘‘page’” of fast mem-
ory, whereas columnwise operations use only w/n ele-
ments, where w is the number of elements in a page of fast
memory. If an array will be used principally in a column-
wise manner, it is good practice to work with its trans-

IBM J. RES. DEVELOP. & VOL. 24 & NO. 6 « NOVEMBER 1980

pose instead. However, it may be the case that the array
is accessed both by rows and by columns, as for example
in matrix transposition, matrix inversion, iterative solu-
tions to partial differential equations, etc.

Let k = [sqrt (w)]. If we partition arrays into k X & sub-
arrays, then for use of the array by columns or by rows, k
elements per page will be accessed. Rather than burden
the programmer with the task of managing partitioned ar-
rays, a compiler can generate code to compute the loca-
tion of A(, j) as being i’ +i{"” +j' +j” elements from
A(0, 0), where

i' =+ k) xnx*k;
i" = [mod (i, k)] = k;
Jm Uk ks

Jj" = mod (j, k);

’

(assuming that m and n are multiples of k). In commonly
encountered loops, these computations can produce sur-
prisingly little overhead by using the strength reduction
given in Section 1. Suppose for example that a program
fragment has the structure

doi=0tom— 1;
doj=0ton—1;

access A(/, j)

end;
end;

Straightforward code generation, using matrix partition-
ing, would produce

loop: - - -
i'=3{+k*n=*k
i" = [mod (i, k)] * k;
J =0k xkxk
i’ = mod (j, k);

access A" +i" +j +j

J=j+ 1

if j < n then go to loop;
Jj=0;

i=i+ 1

if i < m then go to loop;

Applying reduction in strength to division and modulo
yields

693

JOHN COCKE AND PETER W. MARKSTEIN

R =0;
Q =0
Q// = 0;
R” = 0;
loop: i' = Q' *n=+k
" = RI *k’
JI = Q”* k % k’
j” — RII;

access AG' + " +j +),

j=jt+1

R'=R"+1;

if R” = k then do;
R'=R" -k
Q=0 +1
end;

if j < n then go to loop;

j=0;

R’ = 0;

Q" =0,

i=i+1;

R =R +1,

if R' = k then do;
R' =R -k
Q' =0 +1
end;

if i < m then go to loop;

If we now apply strength reduction to the multiplications
of i’, i", and j' by the loop constants n = k, k, and k * k,
respectively, apply linear test replacement and dead code
elimination to computations involving / and j (assuming
that they are only used for subscript computation and
loop control), and subsume variables, then the above
code becomes

k2 =kxk

nk=n=x*k;

mk = m * k;
loop2: j =0

loop: - - -
access A(i' + i" +j +j");

j/r =j// + 1;

if j = k then do;
J=i =k
i=i k2
end;
if /' < nk then go to loop;
i"=i"+k
if i = k2 then do;
" =i - k2;
i"=1i + nk;
end;

if i’ < mn then go to loop2;

For k — 1 out of k times through the loop, the cost of
loop closing is thus only one addition, two comparisons,
and two branches, which presumably is cheaper than
k — 1 page faults, if the array is large. There are an addi-
tional two or three instructions in the inner loop to com-
bine i', i", j', and j” to compute the actual address of
A(i, j). The final code shown above can be produced by
straightforward code generation and optimization tech-
niques, augmented by strength reduction for division and
modulo.

Reference and note

1. John Cocke and J. T. Schwartz, ‘‘Programming Languages
and Their Compilers,”’ Courant Institute of Mathematical Sci-
ences, New York University, New York, 1970.

2. A strongly connected region of a program is a subset of pro-
gram statements such that control can flow between any two
statements in the subset without leaving the subset. A PL/I
do-loop is an example of a strongly connected region.

Received February 29, 1980, revised May 20, 1980

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

694

JOHN COCKE AND PETER W. MARKSTEIN

IBM J. RES. DEVELOP. @ VOL. 24 ®» NO. 6 ®« NOVEMBER 1980

