
John Cocke
Peter W. Markstein

Communication

Strength Reduction for Division and Modulo with
Application to Accessing a Multilevel Store

A method for replacing certain division and modulo operations by additions and subtractions is presented. This opti-
mization allows eficient and easy use of partitioned arrays t o N C C ~ S S a m~dtilevel store.

0. Introduction
Reduction in strength is an optimization which moves
”expensive” calculations from a high-frequency execu-
tion region to a lower-frequency region, and replaces the
original expensive calculations with “cheaper” ones
within the region [l]. The most common examples are
“code motion,” in which the cheaper operation is no op-
eration at all, and the replacement of multiplications (usu-
ally associated with indexing through arrays) by addi-
tions. In this paper, we describe a strength reduction pro-
cedure for integer division and modulo operations, and
demonstrate its use in accessing arrays in a multilevel

x = x + k , o r
x = k ,

where k is constant throughout the strongly connected re-
gion.

lntroduce two new variables Q and R by inserting the
following computations on entry to (but outside of) the
strongly connected region:

Q = x + c ,
R = mod (x, c).

store. In the strongly connected region, replace every computa-

In this paper, x + c is used to denote integer division,
as defined by the Euclidean algorithm: x + c = Q , where
Q and R are integers satisfying

tion of x + c with a reference to Q, and replace every
computation of mod (x, e) with a reference to R. When-
ever a computation

x = Q * c + R , 0 I R < IcI.
x = x + k

R is taken to be the value of mod (x, e). Observe that
x -+ c is linear in the numerator in the following sense:

appears in the strongly connected region, insert immedi-
ately after that computation the following:

(x + k * e) + c = x + c + k for all integers k .
R = R + mod (k , c) ;
if R 2 lcl then do;

1. Strength reduction of division and modulo
Suppose either or both of the following computations ap-
pear in a strongly connected region [2] of a program:

R = R - IcI;
Q = Q + sgn (c) ;
end;

Q = Q + k + c ;
x + c, or
mod (x, c),

and whenever

where c is constant throughout the region and where x is
modified only by computations of the form appears in the strongly connected region, insert

x = k ;

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the J o u r n d reference and IBM copyright notice are included on the first page.

692
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

JOHN COCKE AND PETER W. MARKSTEIN IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

R = mod (k , e);
Q = k + c ;

since k and c are region constants, mod (k , c) and k + c
can be computed on entry to the region or at compilation
time.

To show that Q and R hold the updated values of x f c
and mod (x, e) , suppose that

Q = x f e , and
R = mod (x, c).

If x‘ = x + k , then

mod (x‘, c) = mod [mod (x, e) + mod (k , e) , e]
= R + mod (k , e)

= R + mod (k , e) - IcI

if R + mod (k , e) < IcI,

if R + mod (k , e) 2 I C / ,
and

x ” c = (x + k) + c

= [(x + c) * c + mod (x, e)
+ (k + e) * c + mod (k e)] + c

if R + mod (k , e) < IcI,

if R + mod (k , e) 2 IcI.

= Q + k + c

= Q + k + c + sgn (e)

In most higher-level languages integer division x + c is
defined as

x + c = [Ixl / Icl] * sgn (x * e) ,

so that [x/c] corresponds to the Euclidean algorithm defi-
nition of integer division only when x 2 0 and c > 0. In
particular, the definition of integer division just cited is
nonlinear in the numerator, since for 0 < x < lei, IcI > 1,
x + c = 0, and (x - e) + c = 0. For such languages,
strength reduction can be applied to modulo without qual-
ifications, but can only be used for division when it can be
shown that the numerator is always nonnegative.

2. Arrays in multilevel storage hierarchies
Let us assume that a two-dimensional array A having rn
rows and n columns is stored “row-wise,” so that A(;, j)
is located n * i +jelements beyond A(0,O). If only a small
part of the array can be kept in fastest memory, as is the
case with cache memory and with paged memory, then
operations which use elements of A by row will be very
efficient, utilizing all elements in a “page” of fast mem-
ory, whereas columnwise operations use only w / n ele-
ments, where w is the number of elements in a page of fast
memory. If an array will be used principally in a column-
wise manner, it is good practice to work with its trans-

pose instead. However, it may be the case that the array
is accessed both by rows and by columns, as for example
in matrix transposition, matrix inversion, iterative solu-
tions to partial differential equations, etc.

Let k = [sqrt (w)] . If we partition arrays into k X k sub-
arrays, then for use of the array by columns or by rows, k
elements per page will be accessed. Rather than burden
the programmer with the task of managing partitioned ar-
rays, a compiler can generate code to compute the loca-
tion of A(i, j) as being i ’ + i ” + j ’ + j ” elements from
A(0, O) , where

i ’ = (i + k) * n * k ;
i ” = [mod (i , k)] * k ;

j ” = mod (j, k) ;

(assuming that rn and n are multiples of k). In commonly
encountered loops, these computations can produce sur-
prisingly little overhead by using the strength reduction
given in Section 1. Suppose for example that a program
fragment has the structure

d o i = Otorn - 1;

j ‘ = (j t k) * k * k ;

d o j = O t o n - 1;

access A(i , j)

end:
end;

Straightforward code generation, using matrix partition-
ing, would produce

loop: . . .
i’ = (i + k) * n * k ;
i” = [mod (i , k)] * k ;

j ” = mod (j , k) ;

access A(i’ + i“ + j ’ + j “)

j ’ = (j + k) * k * k ;

. . .

j = j + 1;

j = 0.
i = i + 1;
if i < rn then go to loop;

if j < n then go to loop;

. . .

Applying reduction in strength to division and modulo
yields 693

JOHN COCKE AND PETER W. MARKSTEIN IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

R' = 0;
Q' = 0;
Q" = 0.
R" = 0.

loop: i' = Q' * n * k
I = R ' * k ;
j ' = Q"* k * k;

. I1

j " = R";
. . .
access A(i' + it' + j ' + j ") ;
. . .

j = j + 1;
R" = R" + 1;
if R" 2 k then do;

R" = R" - k.
Q" = Q" + 1 ;

9

end;
if j < n then go to loop;
j = 0;
R" = 0.
Q" = 0;
i = i + l ;
R' = R' + 1;
if R' 2 k then do;

R' = R' - k.
Q' = Q' + 1;
end;

if i < rn then go to loop;
. . .

If we now apply strength reduction to the multiplications
of i ' , i", and j ' by the loop constants n * k, k , and k * k,
respectively, apply linear test replacement and dead code
elimination to computations involving i and j (assuming
that they are only used for subscript computation and
loop control), and subsume variables, then the above
code becomes

k2 = k * k;
nk = n * k;
rnk = rn * k;
i' = 0;
i" = 0;

100~2: j ' = 0;
j " = 0;

loop: * . .
. . .
access A(i' + i" + j ' + j ") ;
. . .
j " = j " + 1 ;

if j " 2 k then do;
j " = j " - k;
j ' = j ' + k2;
end;

if j ' < nk then go to loop;

if it' 2 k2 then do;

it' = i" + k;

I = I - k 2 ; . I , .,I

i' = i' + nk;
end;

if i' < rnn then go to loop2;

For k - 1 out of k times through the loop, the cost of
loop closing is thus only one addition, two comparisons,
and two branches, which presumably is cheaper than
k - 1 page faults, if the array is large. There are an addi-
tional two or three instructions in the inner loop to com-
bine i t , i", j ' , and j " to compute the actual address of
A(i, j) . The final code shown above can be produced by
straightforward code generation and optimization tech-
niques, augmented by strength reduction for division and
modulo.

Reference and note
1. John Cocke and J . T. Schwartz, "Programming Languages

and Their Compilers," Courant Institute of Mathematical Sci-
ences, New York University, New York, 1970.

2. A strongly connected region of a program is a subset of pro-
gram statements such that control can flow between any two
statements in the subset without leaving the subset. A PUI
do-loop is an example of a strongly connected region.

Received February 29, 1980; revised May 20, 1980

The authors are located at the IBM Thomas J . Watson
Research Center, Yorktown Heights, New York 10598.

30CKE AND PETER W. MARKSTEIN IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

