684

Brian Marks

Compilation to Compact Code

A compilation process is described that emphasizes small object code rather than fast object code. The approach entails
synthesizing an instruction set and an interpreter for that instruction set during compilation of an individual source
program. Numerical results are given for compiling a systems programming subset of PLiI to System/370 code.

Introduction

The functions which a particular computer hardware con-
figuration can execute efficiently are often limited by the
amount of main storage in the configuration. Over the
years the functions expected of a computer system have
increased, and the programmer’s ability to provide those
functions has also increased through the use of more pro-
ductive tools. Hence main storage is still a key consid-
eration, despite its reduced cost per bit.

The problem of combining high function with small
main stores is particularly relevant when processors are
combined in a network. The system designer will want to
minimize the difference in the functions provided by pro-
cessors of different sizes. The smaller processors will
have significant limitations in addressability as well as
amount of storage. Where programs are transmitted
about the network, their size will influence the time for
transmission.

In this paper we consider some of the contributors to
storage utilization to be fixed, and we examine improve-
ments in others. The fixed items are

& Storage for data. We are concerned here with storage
for executing programs and not with methods of com-
pacting data.

& The skill of the designers and programmers.

® The language in which the programs are written. To fix
this factor we assume that the programs are written in a
language which does not trade object program effi-
ciency for programmer productivity. (Or if it does, we
assume thdt the programmer has avoided using lan-
guage features that are difficult to compile efficiently.)

Given these factors, there remain several approaches to
reducing the amount of storage devoted to executing pro-
grams.

The hardware approach consists of using a processor
with an instruction set that is highly space efficient, i.e.,
keeps the number of bytes needed to represent a given
function low. Existing processors have space efficiency
as a consideration in their instruction set design, but extra
emphasis on space can give more compactness. If a set of
programs is available that is “*typical’’ of the programs to
be executed on the processor, then the statistics of this
set can be used in the instruction set design. Short in-
structions will be used for frequently occurring functions,
along the lines of Huffman coding [1, 2].

The same approach to instruction set design can be
taken when a software interpreter is used to execute pro-
grams. The software interpreter itself will need storage,
which affects the overall compactness achieved.

Unless the range of applications for the processor is
very narrow, any set of ‘‘typical’® programs will be a
compromise and may well not be statistically similar to
the code that comprises a particular application for the
processor.

This paper details a software approach to code com-
paction that does not involve the compromises implicit in
using a set of ““typical”” programs. The design of the in-
struction set and the construction of the interpreter for
that instruction set are done dynamically during com-
pilation of an individual source program. The instruction

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

BRIAN MARKS

IBM J. RES. DEVELOP. ,VOL. 24 8,NO. 6 ¢NOVEMBER 1980

set of the interpreter is approached by first compiling to
the instruction set of the actual hardware and then recog-
nizing common sequences.

To measure the effectiveness of code compaction one
needs a standard of comparison—for a given function
how many bytes of code should there be if the com-
paction is good? Could the compaction be merely a reflec-
tion of poor quality in the uncompacted compiled code?
Within IBM, the natural standard of comparison is code
produced by the PL/SII systems programming language [3]
for System/370. This compiles a dialect of PL/1, and varia-
tions of it have been used to develop many software prod-
ucts over the last ten years. It is similar to BLISS and BCPL
[4, 5] in having demonstrated the combination of ease of
programming and the object code efficiency that systems
programmers require.

We adopt as the base for our measurements a compiler
that uses compilation techniques and a run time environ-
ment similar to those used by the PL/s II compiler, includ-
ing a simple flow trace and calling sequences similar to
the SAVE/RESTORE mechanism of 0s/370. This base com-
piler differs from PL/S 11 in ways that do not affect object
code size. A proper subset of PL/1is supported, so that it
can be compared with other pPL/I compilers. Compilation
is directly to machine code, and not a cascade through
assembly language.

The base compiler produces nonreentrant 0S/370 object
code. The phases of the compiler itself are used as sample
source programs for measurements. When self-com-
piling, the compiler produces an overall 11 bytes per PLI
statement from its 6500 source statements. The count of
statements is a semicolon count so that *‘IF A=1 THEN
B=2;"" counts as one statement. The compilation speed is
6000 statements per minute. Machine times are IBM Sys-
tem/370 Model 168 CPU times.

This paper details three variations on subroutine recog-
nition. High level subroutine recognition, recognizing in
the source program subroutines that the programmer
might have written, was not found to be effective. Low
level subroutine recognition, recognizing small pieces of
machine code, is more effective. The technical difficulties
lie in predicting what the size of a piece of code will be
before all the code details are settled and in choosing be-
tween potential subroutines that are mutually exclusive
because the pieces of code that would comprise them
have an overlap. Simple but nonoptimal strategies are
given to overcome these difficulties.

If the calls to the recognized subroutines are made by
the natural linkage instructions of the hardware, a typical

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. 6 ¢ NOVEMBER 1980

saving will be 15% in space at the expense of 15% in
speed.

Tailored interpretation, where the recognition is ex-
tended to very small routines which are invoked by an
interpreter, can halve code size at a much greater cost in
speed.

High level subroutine recognition

If similar sequences of code were being recognized me-
chanically, there would appear to be advantages in feed-
ing back the results to the programmer. The programmer
could then evaluate the possibility of using a subroutine
for these sequences and change the source program ac-
cordingly.

The advantages of advising the programmer of poten-
tial changes to the source program, as opposed to having
the compiler create routines, are

1. The problem is made easier. When the ultimate deci-
sion is the programmer’s, the subroutine recognizer
does not need to be so accurate in measuring the merit
of some potential subroutine. It can list the things
which appear on a mechanical basis to be marginally
not worthwhile, as well as those that look worthwhile.

2. Pattern matching is expensive in CPU time. Incorpo-
rating the results into the source program avoids doing
the work on every compilation.

3. There are benefits in involving the programmer. It ap-
pears in practice that repetitious code tends to occur
in areas where the programmer has not really thought
through the problem (even if the code works). Direct-
ing attention to the area may result in a clean-up far
beyond what could be done mechanically.

The utility program we use to measure the potential of
this approach operates on one of the compiler’s internal
versions of the source program, an object-machine-inde-
pendent, n-address form (Fig. 1). This is a compromise—
operating on an internal text from a later stage would be
more accurate from the point of view of assessing the real
gain in code space from a subroutine; operating on an ear-
lier text would make it easier to limit the search to those
pieces of code that can be isolated as source. (Consider
““IF A>B THEN J=K”’ and “‘IF C>D THEN J=K.”’ At the
source level we can make only “‘J=K’’ a subroutine, al-
though at the hardware level we would be able to include
in the subroutine the Branch on Condition instruction that
tested the condition code setting.)

The utility evaluates potential subroutines in isolation,
i.e., on the assumption that there is only one being
created. (If the decision were not in the user’s hands one

685

BRIAN MARKS

686

Listing of
Internal n-address largest
Source form of program identical

secti
program ections

]
NN/

Separate
roce:
Processed by Eompzsaies
early phases sections
of compiler
of program
for equality

Figure 1 High level routine recognition.

would have to worry about how the decision to create
subroutine X could influence the value of creating subrou-
tine Y.) The utility searches for sections of code that are
similar to the extent that they become the same if up to
three of their operands are made into parameters. Each of
these parameter-operands may be referenced many times
in the section.

The utility does not attempt to re-order the text in order
to promote the presence of similar sections. That would
require flow analysis to determine what changes were al-
lowable, and there would be many permutations of what
changes ought to be tried. In practice the failure to re-
order is not a great loss. If there are two sections that are
similar except for a stray statement in the middle of one of
them, then the utility will indicate that the piece before
the stray instruction is similar to the start of the other
section and that the piece after the stray instruction is
similar to the finish of the other section. This should pro-
voke the user into thinking about moving the stray in-
struction.

Because operators (as opposed to operands) cannot be
parameters, the comparison of sections against all other
sections can be done separately for each operator, com-
paring sections that start with that operator. (This makes
the necessary computing reasonable—less than a minute
of Model 168 time for a 1000-statement program.) Sec-
tions are considered in pairs, the text following an oper-
ator appearance being compared with the text following
each subsequent appearance of that operator. For a given
operator, quite short similar sections must be recorded,
since subsequent appearances of pairs that are similar to
each other and to the recorded pair are possible, thus in-
creasing the merit of this section as a subroutine. After all
the comparisons for one operator have been made, only
the most meritorious need remain recorded. As the utility
works through the operators, it keeps a record of the

BRIAN MARKS

‘‘best-so-far’” potential subroutines. Finally the line num-
bers of these similar pieces are listed for the user. There is
also a listing of those subroutines that the programmer
wrote which were only called once, so that he can review
whether they should have been subroutines.

As usual, the compiler itself was used as a source of
test cases. When the utility was applied to the compiler
source code, it uncovered a section of 18 lines suitable for
a subroutine, some smaller sections suitable as subrou-
tines, and a great many other similarities that were either
too small or alternatives to the best routines. The total
saving attributable to use of the utility was 922 bytes,
1.3% of the object code. This saving is not entirely negli-
gible—if some program were reaching the limits on hard-
ware with 16-bit addressing, one would be very glad to
recover a few hundred bytes—but it is not large when
compared with other approaches to compaction.

Some of the saving from this high level recognition
would be obtained by low level recognition (g.v.) in the
absence of high level. Other test cases and a more sophis-
ticated utility might achieve more than 1.3%, but it seems
safe to say that the effectiveness of this approach will al-
ways remain limited—a way of doing a little tidying of the
source program but not a major contributor to com-
paction. It takes programmer time to decide which sec-
tions suggested by the utility are actually worth changing
in the source—~we do not have a way of measuring what
the same amount of time spent in actually redesigning the
programs would achieve.

Low level subroutine recognition

Here we consider automatic subroutine recognition on a
more detailed internal text, leading to subroutines that the
programmer could not have written. The text chosen is n-
address from a late stage of compilation, and its relevant
characteristics are

1. It is machine code to the extent that the final length of
any sequence is known (with minor exceptions).
Given the length of a sequence and the number of
times it appears, one can calculate the saving from
turning it into a subroutine.

2. Branches are not resolved to final addresses. Because
System/370 branches have a displacement which is not
relative to the branching instruction, the branch in-
structions will tend to appear as all different. Leaving
the flow of control in an IF-THEN-ELSE format makes it
possible for sequences to be identical even when they
imply branching.

3. Registers have been allocated. In part this is a dis-
advantage, since two sequences may differ only in
some transient register usage. However, it seems to be

IBM J. RES. DEVELOP. & VOL. 24 & NO. 6 # NOVEMBER 1980

necessary for a simple scheme since the short lengths
of code we are considering cannot have their lengths
estimated with any accuracy in the absence of infor-
mation about whether registers are to be used in their
expansion. In practice the method of register alloca-
tion adopted (with each variable having its preferred
register for transient residence) rarely leads to code
sequences that differ only in transient register use.
However, the freedom to allocate registers sub-
sequently, as in the calling sequences for nested rec-
ognized routines, is lost. It may be that leaving regis-
ter allocation until after subroutine recognition, ac-
cepting the inaccuracies in measuring the potential of
different subroutines, would be a more effective
scheme overall; this has not been measured.

The recognition algorithm does not allow for parame-
ters; it only recognizes identical sequences. The advan-
tage of this is that it makes recognition much easier and
hence makes it reasonable to do the recognition on each
compilation. It takes about two seconds of Model 168
time to do the recognition for a 1000-statement program.

Whether the absence of parameters is a disadvantage is
probably a matter of machine architecture. On the Sys-
tem/370 the Branch and Link mechanism requires a regis-
ter to be used for the return link. The gains from making
subroutines are marginally offset by the poorer code that
results from there being one fewer register available for
the nonhousekeeping code. If additional registers were
taken for passing parameters, this loss would be in-
creased, and any other way of passing parameters would
probably make the subroutine so much longer than the
code it replaced that it would rarely be profitable.

The recognition algorithm assumes that a space saving
is worth making irrespective of its cost in speed. It would
be possible to heuristically determine a figure of merit
that would cover both speed and space [6]. This would get
very complicated in the case of deciding between alterna-
tive sequences that occurred many times.

Figure 2 describes the subroutine recognition. The op-
erations of the internal representation are divided up by
hashing and making chains through operators with the
same hashed value of operation code. The effect of this is
to split the computation up, since equivalent operations
will be on the same chain.

For each chain, each pair of operations from the chain
is considered. The operators of the pair are taken as the
starting points for comparing two sections of code. The
distance over which these sections compare equal is
found. The distance is measured in terms of the halfwords

IBM J. RES. DEVELOP. @ VOL. 24 # NO. 6 « NOVEMBER 1980

Compile source program through early stages of compiler.

G

Develop n-address internal text with hash chaining of operations.

U

Pairwise examination of operations and their following text, for
each hash chain. Matching sections of text form groups.

U

“‘Best’’ compatible groups become routines. Reflect this in the
internal text.

Y

Complete the compilation.

Figure 2 Low level routine creation.

of machine code that the section represents. (Strictly
speaking, the comparison is not just for equality—if both
sections have an IF-THEN-ELSE construct in them and
these constructs are equivalent at their beginnings but not
totally equivalent, then no part of the constructs is con-
sidered equivalent. The actual branching, as opposed to
the THEN and ELSE clauses, is thus prevented from being
split by a subroutine call.)

Although equivalent sections are found as pairs, they
are subsequently held as groups, i.e., if (A,B) is an equiva-
lent pair and also (B,C), then the group (A,B,C) is formed.

Each group is considered as a potential subroutine plus
calls. The group may be unsuitable because the code se-
quence it represents is short and there are not enough oc-
currences of it to outweigh the space overhead of a sub-
routine. The groups that look profitable when considered
individually cannot, in general, all be made into routines,
because the code sequences will overlap. On System/370
the simple BAL mechanism with a single dedicated link
register does not support nested calls to subroutines. This
makes a potential subroutine that is totally contained in
another just as much of a problem as partially overlapping
potential routines.

Theoretically it would be possible to find the best com-
bination of subroutines by collecting all the candidates
and evaluating the merit of every combination. However,
it would be computationally beyond reason to do this on
every compilation, so a less than optimal approach is
taken. A list of ‘‘best’” groups is maintained, and the
groups are considered serially for inclusion in the list. The
decision for the group is made on the basis of net gain in
space. Note that the outcome is not necessarily a yes/no
on addition of the whole group to the **best’’ list, but may

687

BRIAN MARKS

688

Table 1 Results of low level subroutine recognition.

Stmts Bytes Seconds Saving Number Average
(after (% of of length
saving) original) routines (bytes)
Phase 1 1114 8236 13 10.9 52 17.0
Phase J 826 8640 12 7.2 S5 15.6
Phase K 1191 10894 16 11.6 83 14.4
Phase L 590 5904 8 8.1 37 13.0
Phase M 1862 18384 55 20.1 129 15.2
Phase N 1076 9894 11 9.9 68 13.9
Phase O 418 2592 6 5.0 11 16.0
7077 64544 121

be some combination of keeping the group and over-
lapped “‘best’” groups with fewer members.

In principle the result of this whole sequence of deci-
sions depends on the order in which the groups are con-
sidered. However, in practice the space difference be-
tween the solutions from different orderings is not great.

Table 1 presents the figures for self-compiling the com-
piler with low level subroutine recognition. These figures
show that the gain is made by creating a relatively large
number of small routines. Approximately one subroutine
was created for each 15 statements of source code. The
average size of these routines was 15 bytes. A BAL to one
of them was compiled once per seven machine instruc-
tions (on average) giving a 15% degradation in speed from
the original code.

As one would intuitively expect, the results are non-
linear. The larger phases show a greater percentage sav-
ing, and the time for finding and choosing the best rou-
tines increases rapidly with the size of the source module
and the savings made.

Tailored interpretation—the interpreter framework

As more and smaller subroutines are used, it is the length
of the calling sequences that limits the saving in space. In
order to reduce the calling sequence we can represent the
call in a more compact form than the hardware instruc-
tions and make the actual call by inspecting that compact
form at execution time. This interpretation of a represen-
tation of the source program that is not totally comprised
of hardware operations is an extreme trade-off of speed
against space.

There are many interpreters of compact forms. APL is
an example where the internal form is very compact in

BRIAN MARKS

terms of the function that it represents [7]. However, a
very compact and general form of the text being inter-
preted implies a large interpreter. Since we are concerned
with the case where the interpreter is in software and re-
garded as part of the overall size of the program, such an
approach can only show space savings on very large pro-
grams.

Here we are concerned with smaller programs and re-
strict the interpreter to a few hundred bytes. This makes
the internal form and the interpreter more oriented to a
particular hardware. The internal form can be regarded as
code for a software-enhanced version of the $/370 archi-
tecture.

We can usefully view the interpreter in two parts, a
fixed part that handles the flow of control and calls rou-
tines and a tailored part that consists of suitable routines
for the program being executed. In our examples the com-
piler derives the tailored part from the source program.
The details of the fixed part depend crucially on the un-
derlying hardware, but the techniques for developing the
tailored part do not.

A natural fixed-part mechanism for the System/370
would be to use the invalid and privileged operation
codes, in amongst normal System/370 object code. Non-
privileged execution of these by the System/370 would
give rise to exceptions that could be made to call tailored
routines. If only hardware timings are considered, this
looks to be an efficient method, but in practice, using the
MVS operating system, it is not, since the operating sys-
tem assumes that the exceptions are the result of errors
and need not be handled quickly. Hundreds of machine
operations are executed in the operating system when
handling each exception.

IBM J. RES. DEVELOP. & VOL. 24 & NO. 6 ®« NOVEMBER 1980

The fixed part used in our experiments operates as fol-
lows. It is described in terms of how it processes the **in-
structions’’ in the internal form that it interprets—some
of these instructions are in the System/370 instruction for-
mat and some are not. The compact forms of the calling
sequences to both the subroutines written by the pro-
grammer and the recognized subroutines will not be Sys-
tem/370 instructions.

The current instruction’s operation code is used as an
index to a table. If it is marked in the table as a System/
370 operation, then the instruction is executed using the
hardware Ex instruction. (The EX operation itself is an ex-
ception.) Note that the subject operation may be a super-
visor call, in which case the single EXecute results in
some operating system action—it is never necessary for
the interpreter to interpret operating system code. If the
operation code is not marked as a System/370 operation,
then it is to be interpreted by the mechanism as a branch-
ing or subroutine calling operation. The table contents are
determined by the compiler, and only those System/370
operations actually used by the particular program have
to be marked as System/370 operations—this increases
the operation code values available for other uses.

Some operation codes are reserved for relative branch-
ing, with the condition mask being part of the operation
code. One operation code is reserved for calling routines
without parameters—the following byte contains the rou-
tine number. This routine number is the index of the rou-
tine’s address in the table of routine information. It may
be equal to some System/370 operation code. The proce-
dures written explicitly by the user are also invoked in
this way, after loading arguments into registers.

Operation codes that are not marked as System/370 op-
erations and not used as the operation codes for parame-
terless routines are used as operation codes for routines
with parameters. The argument being passed to the rou-
tine as a parameter is in the byte succeeding the operation
code. The interpreter copies the argument byte into the
actual code of the routine before calling the routine. (This
would qualify as “‘tricky coding’” if a human coder did it,
since even an operation code in the routine may be over-
written, but since only the compiler-developer has to un-
derstand such code, this is not a severe problem.)

The mechanism for calling the routine distinguishes
among single instruction routines (which can be invoked
using the Execute instruction and need no return linkage),
routines where all the operation codes are System/370
codes (these can be branched to and not interpreted), and
other routines (which need a general call mechanism with
a stack of return addresses). See Fig. 3.

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 6 ® NOVEMBER 1980

N Operation
is relative
branching

OPCODE
VALUE
1S HIGH

OPCODE =

CALL”

LOAD ROUTINE LOAD ROUTINE
NUMBER FROM
INFORMATION
NEXT BYTE OF
USING OPCODE
AS INDEX INSTRUCTION
STREAM
LOAD ROUTINE
Operation y INFORMATION
s $/370 INFORMATION INFORMATION USING ROUTINE
EXecute =0 <9 NUMBER
AS$ INDEX

Operation is $/370. SEPARATE
operation is OPCODE ROUTINE .
INFORMATION Operation
INTO ROUTINE INFORMATION is return
ADDRESS AND =g from
PARAMETER subroutine
ADDRESS with
* unstacking
MOVE NEXT
BYTE OF CONVERT
INSTRUCTION ROUTINE
STREAM TO INFORMATION
PARAMETER TO ROUTINE
POSITION ADDRESS
IN ROUTINE

Routine is a single
S/370 operation,
to be EXccuted

ROUTINE
ADDRESS <
LIMIT}

Routine is ail $/370 code.
Branchto it; it will

return to interpreter
loop.

ROUTINE
ADDRESS <
LIMIT2

STACK
RETURN
ADDRESS

Start interpreting
the routine

Figure 3 Operation decoding by the interpreter.

This fixed part represents a compromise between small
size, 320 bytes, and the desire to cover most features that
offer a space economy.

The tailored part of the interpreter for a particular pro-
gram consists of a routine table, three program-specific
values, and the routines themselves. The routine table
has an entry for each operation code indicating whether
or not it is a System/370 code, the routine address, and
the position of any parameter. (By using an aligned offset
for the address and restricting the parameter position to
the first 16 bytes of the routine, this information can be
held in 16 bits.)

Two of the values are used in distinguishing three types
of routines: one-instruction routines, routines comprised

689

BRIAN MARKS

690

entirely of System/370 code, and others. The different
classes of routines are physically separated in memory at
run time, and these values are the boundaries of the
classes, i.e., the class of a routine can be determined by
comparing its address with these values.

The third program-specific value is an adjustment used
in relative branches. The fixed part of the interpreter
computes the target address for short branches, relative
to the position of the instruction, as twice the one-byte
argument (regarded as unsigned binary) minus the adjust-
ment. If the adjustment were 256 bytes, each relative
branch would cover a range symmetrical about the in-
struction. In practice there are more forward branches
than backward ones, so that increasing the range forward
at the expense of the range backward will permit more
branches to be two-byte branch instructions. The com-
piler chooses a near-optimal value for the adjustment. (In
practice the actual advantage of this mechanism over
symmetric branching is small.)

Tailored interpretation —creating the routines

The compiler that takes the fixed part of the interpreter as
the target machine is a variation of the compiler that does
low level subroutine creation. The extra mechanisms are
required for

1. The creation of routines with parameters and of rou-
tines that call other created routines.

2. The sorting of routines so that they will lie in the ap-
propriate physical order in memory at run time.

3. The relative branch optimization.

4, Creating the routine table, etc., as part of the object
module.

The latter three are straightforward. The complications of
parameters and nested routines make the algorithm given
in Fig. 2 for routine selection impractical. Instead a multi-
pass algorithm is used:

1. Potential routines are discovered and given a figure of
merit, which is the space saving that the routine would
achieve in isolation. This discovery is done in the
same way as for low level routine creation, comparing
members on hash chains, with appropriate elaboration
to record parameter possibilities.

2. The potential routines are entered on a list. Since no
routines are discarded because of overlap at this stage,
the list may become large. If it becomes too large, the
least meritorious routines are dropped from the list.

3. When the list is complete, the potential routines are
considered in order of merit. A routine is accepted if it
does not overlap any routine higher in merit. The text
of the program is altered to contain the body of the
routine and the calls to it.

BRIAN MARKS

4, If any potential routines were rejected in steps 2 and 3,
the process is repeated from step 1 with the new text.
(Typically it takes three or four passes before all the
routines are selected.)

There are many minor elaborations to the process de-
scribed above, because for example there is a limit to the
number of operation codes available and hence to the
number of routines. This limit is determined by inspection
of the text before the process starts.

Note that compaction could be applied selectively to
the text, i.e., some routines could be given an attribute by
the programmer to indicate that they were not to be com-
pacted. They would then not be scanned in the search for
routines and would be compiled to System/370 code and
become routines that the interpreter would run at full Sys-
tem/370 speed. Such attributes would allow the program-
mer to balance the speed and space of the object module.

Table 2 presents the results for creating a tailored inter-
preter for each of the phases of the compiler. These sub-
ject phases are the same as those used to measure subrou-
tine recognition.

The effect of the fixed interpreter architecture is to
make more small routines profitable. The interpreter and
routine table are included in the size. This adds to the
nonlinearity, with the larger phases showing the larger
percentage savings. From a practical point of view the
figures for large phases are the most relevant. The overall
figure is 6.0 bytes per statement.

No separate measurements were made to determine
how much saving was due to subroutine recognition and
how much due to other mechanisms of the interpreter,
but from inspection of the code compiled it appears that
some 10% of the original code size would be saved if the
interpreter implemented only the short relative branch
mechanism.

Phase M was the only phase for which the compaction
was limited by the number of operation codes available.
Many of the 48 internal procedures in the source of the
phase are called only once, and some further compaction
would be obtained if the source were rewritten with this
code in line, freeing up operation codes and allowing
more created routines.

In raw speed the fixed interpreter is some 15 times
slower than the speed of the System/370 instructions it
executes. This is diluted by time spent in the operating
system and in noninterpreted subroutines. The compile
speed of the compacted compiler was measured on small

IBM J. RES. DEVELOP. @ VOL. 24 ¢ NO. 6 ¢ NOVEMBER 1980

Table 2 Results for tailored interpretation.

Stmts Bytes Seconds Saving Number Average
(after (% of of length
saving) original) routines (bytes)
Phase I 1114 5680 35 39 128 7.3
Phase J 826 6128 49 34 145 6.5
Phase K 1191 7172 86 42 168 6.6
Phase L 590 4514 24 30 92 7.1
Phase M 1862 11654 182 49 190 7.6
Phase N 1076 6942 59 37 171 6.5
Phase O 418 2278 8 16 42 7.5
7077 44368 443

test cases and found to be eight times slower than the
uncompacted version.

Conclusions

Over the years, more work has been done on compiling
fast object code than on compiling compact object code.
The numeric results presented in this paper indicate a
worthwhile return from attention to compacting. The re-
sults will, no doubt, be improved in the future when more
work has been done on algorithms for discovering and
choosing between potential subroutines.

Looking for subroutines that could be reflected in the
source program did not prove to be a success.

Looking for subroutines at a lower level gave a notice-
able compaction, as the result of the compiler creating a
large number of small routines. With the run-time mecha-
nisms constrained to those provided directly by the Sys-
tem/370 hardware, a typical saving would be 15% at a cost
of 15% in speed.

Extending this approach to allow parameters and the
nesting of routines, together with relative branch instruc-
tions, can produce a 50% reduction in code space. This
size includes the interpreter necessary to make the mech-
anism run on System/370. Execution is many times
slower.

IBM J. RES. DEVELOP. e VOL. 24 ¢ NO. 6 « NOVEMBER 1980

The programmer could be involved in balancing the
speed and space of the object program by marking some
procedures in the source program for exclusion from the
compacting process.

References

1. E. C. R. Hehner, ‘*Computing Design to Minimise Memory
Requirements,”” Computer, 65-70 (1976).

2. A. S. Tanenbaum, ‘‘Implications of Structured Programming
for Machine Architecture,”” Commun. ACM 21, 237-246
(1978).

3. Guide to PLS/II, Order No. GC28-6794, available through the
local 1BM branch office.

4. W. A. Wulf, D. B. Russell, and A. N. Habermann, ‘‘BLISS:
A Language for Systems Programming,”” Commun. ACM 14,
780-790 (1971).

5. M. Richards, ““BCPL: A Tool for Compiler Writing and
Structured Programming,”” AFIPS Conf. Proc. 34 (1969).

6. C. M. Geschke, ‘‘Global Program Optimizations,”” Ph.D.
Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1972.

7. M. Alfonseca, M. L. Tavera, and R. Casajuana, ‘*An APL
Interpreter System for a Small Computer,”” IBM Syst. J. 16,
18-40 (1970).

Received December 17, 1979; revised June 19, 1980

The author is located at the IBM United Kingdom Labora-
tories Limited, Hursley Park, Winchester, Hampshire
S021 2JN, England.

691

BRIAN MARKS

