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Compilation  to  Compact  Code 

I 

A compilation  process  is  described  that  emphasizes  small  object  code  rather  than  fast  object  code.  The  approach  entails 
synthesizing  an  instruction  set  and  an  interpreter for  that  instruction  set during compilation of an individual source 
program.  Numerical  results  are  given  jbr  compiling  a  systems  programming  subset  of PLII to System1370 code. 

Introduction 
The functions which a  particular computer  hardware  con- 
figuration can  execute efficiently are often limited by the 
amount of main storage in the configuration. Over  the 
years  the functions expected of a computer system  have 
increased, and the programmer’s ability to provide those 
functions has also  increased  through the use of more  pro- 
ductive tools.  Hence main storage is still a key consid- 
eration,  despite i ts  reduced cost per  bit. 

The problem of combining high function with small 
main stores is particularly  relevant when processors  are 
combined in a network.  The  system designer will want to 
minimize the difference in the functions  provided by pro- 
cessors of different sizes.  The smaller processors will 
have significant limitations in addressability  as well as 
amount of storage. Where  programs are  transmitted 
about  the  network,  their size will influence the time for 
transmission. 

In this paper we consider some of the  contributors  to 
storage utilization to be fixed, and we examine  improve- 
ments in others.  The fixed items are 

Storage for  data. We are  concerned here with storage 
for executing  programs and not with methods of com- 
pacting data. 
The skill of the designers  and  programmers. 

0 The language in which the programs are  written.  To fix 
this factor we assume  that  the programs  are  written in a 
language which does not trade object  program  effi- 
ciency for programmer  productivity. (Or if it does, we 
assume  that  the programmer has avoided using lan- 
guage features  that  are difficult to compile efficiently.) 

Given these  factors,  there remain  several approaches  to 
reducing the amount of storage  devoted  to executing  pro- 
grams. 

The hardware approach  consists of using a processor 
with an instruction set  that is highly space efficient, i.e., 
keeps the number of bytes needed to  represent a given 
function low. Existing processors have space efficiency 
as a  consideration in their instruction set design,  but extra 
emphasis  on space can give more compactness. If a set  of 
programs is available that is “typical” of the  programs to 
be executed on the  processor,  then  the  statistics of this 
set can be used in the instruction set design. Short in- 
structions will be used for frequently  occurring functions, 
along the lines of Huffman coding [ I ,  21. 

The  same  approach  to instruction set design can be 
taken when a  software interpreter is used to execute pro- 
grams. The software interpreter itself will need storage, 
which affects the overall compactness achieved. 

Unless the range of applications for  the  processor is 
very narrow, any set of “typical” programs will be a 
compromise and may well not be  statistically similar to 
the code  that  comprises a  particular  application for  the 
processor. 

This  paper  details  a  software approach  to  code  com- 
paction that  does not involve the compromises implicit in 
using a set of “typical”  programs.  The design of the in- 
struction  set and the construction of the interpreter for 
that instruction  set are  done dynamically during com- 
pilation of an individual source program. The instruction 
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set of the  interpreter is approached by first compiling to 
the instruction  set of the  actual hardware  and  then  recog- 
nizing common sequences. 

To measure the effectiveness of code compaction one 
needs a standard of comparison-for a given function 
how many  bytes of code should there be if the com- 
paction is good? Could the  compaction be merely a reflec- 
tion of poor  quality in the uncompacted compiled code? 
Within IBM,  the natural standard of comparison is code 
produced by the PUS 11 systems programming language [3] 
for Systemi370. This  compiles  a  dialect of PLII, and varia- 
tions of it have been  used to  develop many software  prod- 
ucts  over  the last ten  years. It is similar to BLISS and BCPL 

[4, 51 in having demonstrated  the combination of ease of 
programming and the  object code efficiency that  systems 
programmers  require. 

We adopt as  the base  for  our measurements  a  compiler 
that  uses compilation techniques  and a run  time  environ- 
ment similar to  those used by the PUS 11 compiler, includ- 
ing a simple flow trace  and calling sequences similar to 
the SAVE~RESTORE mechanism of OS/370. This base com- 
piler differs from PUS 11 in ways that  do not affect object 
code  size. A proper  subset of PL/I is supported, so that it 
can be compared with other PL/I compilers.  Compilation 
is directly to machine code,  and not a cascade through 
assembly language. 

The  base compiler produces  nonreentrant OSi370 object 
code.  The phases of the compiler itself are used  as  sample 
source programs for  measurements. When self-com- 
piling, the compiler produces  an overall 11 bytes  per PUI 

statement from its 6500 source  statements.  The  count of 
statements is a  semicolon count so that “IF A = l  THEN 

B=2;” counts  as one statement.  The compilation speed is 
6000 statements per  minute.  Machine  times are IBM Sys- 
tend370 Model 168 CPU  times. 

This  paper details three variations on  subroutine recog- 
nition. High level subroutine recognition, recognizing in 
the  source program subroutines  that the  programmer 
might have  written, was not found to be effective. Low 
level subroutine recognition, recognizing small pieces of 
machine code, is more effective. The technical difficulties 
lie  in predicting  what the size of a piece of code will  be 
before all the code  details  are settled  and in choosing be- 
tween  potential subroutines  that  are mutually exclusive 
because the  pieces of code  that would comprise  them 
have an  overlap. Simple  but nonoptimal strategies are 
given to  overcome  these difficulties. 

If the calls to  the recognized subroutines  are made by 
the natural linkage instructions of the  hardware, a  typical 

saving will be 15% in space  at  the  expense of 15% in 
speed. 

Tailored interpretation,  where the recognition is ex- 
tended to very small routines which are invoked by an 
interpreter,  can halve code size at a much greater  cost in 
speed. 

High  level  subroutine  recognition 
If similar sequences of code were being recognized me- 
chanically, there would appear  to be advantages in feed- 
ing back the  results  to  the programmer. The programmer 
could then  evaluate the possibility of using a subroutine 
for these  sequences and change the  source  program  ac- 
cordingly. 

The  advantages of advising the programmer of poten- 
tial changes  to  the  source  program,  as  opposed  to having 
the compiler create  routines,  are 

1. The problem is made easier. When the ultimate deci- 
sion is the programmer’s, the subroutine  recognizer 
does not  need to be so accurate in measuring the merit 
of some potential subroutine.  It can list the things 
which appear  on a mechanical  basis to be marginally 
not  worthwhile, as well as  those  that look worthwhile. 

2. Pattern  matching is expensive in CPU  time.  Incorpo- 
rating the results  into the  source program avoids doing 
the work on  every  compilation. 

3. There  are benefits in involving the programmer.  It  ap- 
pears in practice that repetitious code  tends to occur 
in areas where  the  programmer  has  not really thought 
through the problem  (even if the code works).  Direct- 
ing attention  to  the  area may result in a  clean-up far 
beyond  what could be done mechanically. 

The utility program we use  to measure the potential of 
this approach  operates  on  one of the  compiler’s  internal 
versions of the  source  program, an object-machine-inde- 
pendent,  n-address  form (Fig. 1 ) .  This is a compromise- 
operating on an internal text from  a later stage would be 
more accurate from the point of view of assessing the real 
gain in code  space from a subroutine; operating on  an  ear- 
lier text would make it easier  to limit the  search  to  those 
pieces of code  that  can be isolated as  source. (Consider 
“IF A>B  THEN J = K ”  and “IF c > D  THEN J = K . ”  At the 
source level we can  make  only “ J = K ”  a subroutine, al- 
though at the  hardware level we would be able  to include 
in the  subroutine  the Branch on Condition  instruction that 
tested the  condition code  setting.) 

The utility evaluates potential subroutines in isolation, 
i.e., on  the assumption that  there is only one being 
created. (If the  decision were not in the  user’s hands one 685 
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Source form of program 
program 

identical bers of these similar pieces  are listed for  the  user.  There is 
sections 

f - 6 u  also a listing of those  subroutines  that  the programmer 
wrote which  were  only  called once, so that he can review 
whether  they should have been subroutines. 

As usual,  the compiler itself was used as a source of 

source  code, it uncovered a section of 18 lines  suitable for 
Separate test  cases. When the utility was applied to  the compiler 
process 
compares , -_ ..-. , sections a subroutine, some  smaller sections suitable as  subrou- 

forequality 
of program tines,  and a great many other similarities that were either 

Processed by 

too small or  alternatives  to  the  best  routines.  The total 
saving  attributable to use of the utility was 922 bytes, 
1.3% of the object code.  This saving is not entirely negli- 
gible-if some  program were reaching the limits on  hard- 
ware with 16-bit addressing,  one would be very glad to 
recover a few hundred  bytes-but it  is not large  when 
compared with other  approaches  to compaction. 

Figure 1 High level routine recognition. 

would have  to worry about how the decision to  create 
e value of creating subrou- 

le Y.J lne utlllty searches  tor  sections of code  that  are 
milar to  the  extent  that  they become the  same if up  to ... ree of their  operands  are  made into parameters.  Each of 

these  parameter-operands may be  referenced  many  times 
in the  section. 

* .. ~~ ... n . 

The utility does not attempt  to  re-order  the  text in order 
to  promote  the  presence of similar sections.  That would 

A-*--Tine what changes  were al- 
vu.u v1 ..lany permutations of what 

VUbxIC Lv tried.  In practice the failure to re- 
order is not  a great loss. If there  are  two  sections  that  are 

Tent in the middle of one of 
the  piece  before 

,-a"..;" a,... 7 n"l..-:" +,. 

Some of the  saving  from  this high level recognition 
would be  obtained by low level recognition (q.v.) in the 
absence of high level. Other  test  cases  and a more  sophis- 
ticated utility might achieve  more than  1.3%,  but it seems 
safe to say that  the effectiveness of this approach will al- 
ways  remain limited-a way of doing a little tidying of the 
source program but not a major contributor  to  com- 
paction. It  takes  programmer time to decide  which sec- 
tions  suggested by the utility are actually  worth changing 
in the source-we do not have a way of measuring  what 
the same  amount of time spent in actually redesigning the 
programs would achieve. 

tart of the  other I 
'ay instruction is 

JcLCIulI. This should  pro- 
_ _ _ _  _ _ _ _  _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  ..bout moving the  stray in- 

Low level  subroutine  recognition 
Here we consider  automatic  subroutine recognition on a 
more  detailed  internal text, leading to  subroutines  that  the 
programmer could not have written. The text chosen is n -  
address from  a  late  stage of compilation,  and  its  relevant 

struction. 

Because operators  (as  opposed  to  operands)  cannot be 
parameters,  the  comparison of sections against all other 
sections  can be done  separately  for  each  operator,  com- 
paring sections  that  start with that  operator. (This makes 
the  necessary computing  reasonable-less than a  minute 
of Model 168 time for a 1000-statement program.) Sec- 
tions  are considered in pairs,  the  text following an  oper- 
ator  appearance being compared with the  text following 
each  subsequent  appearance of that  operator.  For a given 
operator,  quite  short similar sections must  be recorded, 
since  subsequent  appearances of pairs that  are similar to 
each  other  and  to  the  recorded pair are possible, thus in- 
creasing the merit of this  section  as a subroutine. After all 
the  comparisons  for  one  operator have  been made, only 
the most  meritorious need remain recorded. As the utility 

686 works  through  the  operators, it keeps a record of the 

characteristics  are 

1 .  It is machine code  to  the  extent  that  the final length of 
any  sequence is known  (with minor exceptions). 
Given the length of a sequence  and the number of 
times it appears,  one  can calculate the saving from 
turning it into a subroutine. 

2 .  Branches  are not resolved to final addresses. Because 
System/370 branches have a displacement  which is not 
relative to  the branching instruction,  the  branch in- 
structions will tend  to  appear  as all different. Leaving 
the flow of control in an IF-THEN-ELSE format makes it 
possible for  sequences  to be  identical even when  they 
imply branching. 

3. Registers  have  been  allocated. In part  this is a dis- 
advantage, since two  sequences may differ only in 
some  transient  register usage. However, it seems  to be 
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necessary  for a simple scheme since the  short lengths 
of code we are considering cannot have their lengths 
estimated with any accuracy in the absence of infor- 
mation about  whether registers are  to be  used in their 
expansion. In practice  the  method of register  alloca- 
tion adopted (with each variable having its preferred 
register  for transient  residence) rarely  leads to  code 
sequences  that differ only in transient register  use. 
However,  the freedom to allocate  registers  sub- 
sequently,  as in the calling sequences  for  nested rec- 
ognized  routines, is lost. It may be that leaving regis- 
ter allocation until after  subroutine recognition, ac- 
cepting  the inaccuracies in measuring the potential of 
different subroutines, would be a  more  effective 
scheme overall;  this has not  been  measured. 

The recognition algorithm does not allow for parame- 
ters; it only  recognizes  identical sequences.  The advan- 
tage of this is that it makes recognition much easier and 
hence makes it reasonable  to  do  the recognition on  each 
compilation.  It takes  about  two  seconds of Model 168 
time to  do  the recognition for a 1000-statement program. 

Whether  the absence of parameters is a disadvantage is 
probably  a  matter of machine architecture. On the  Sys- 
tem/370 the Branch and Link mechanism  requires  a regis- 
ter  to be used for  the  return link. The gains from making 
subroutines  are marginally offset by the poorer code  that 
results from there being one fewer register  available for 
the nonhousekeeping code. If additional  registers  were 
taken  for passing parameters, this loss would be in- 
creased,  and any other way of passing parameters would 
probably make the subroutine so much longer than  the 
code it replaced that it would rarely be profitable. 

The recognition  algorithm assumes that  a space saving 
is worth making irrespective of its cost in speed. It would 
be possible to heuristically  determine  a figure  of merit 
that would cover both speed and  space [6]. This would get 
very  complicated in the  case of deciding between alterna- 
tive sequences  that  occurred many  times. 

Figure 2 describes  the  subroutine recognition. The op- 
erations of the  internal representation  are divided  up by 
hashing and making chains through operators with the 
same  hashed value of operation  code.  The effect of this is 
to split the computation  up,  since  equivalent operations 
will be on the  same chain. 

For  each  chain,  each pair of operations from the chain 
is considered.  The  operators of the pair are  taken  as the 
starting  points  for  comparing two sections of code.  The 
distance  over which these  sections  compare  equal is 
found. The distance is measured in terms of the halfwords 

Compile  source  program  through  early  stages  of  compiler. 

V 
Develop n-address  internal  text with hash  chaining  of operations. 

V 
Painvise  examination of operations and  their  following text, for 
each  hash chain. Matching sections of text form  groups. 

V 
“Best” compatible  groups  become  routines.  Reflect  this in the 
internal text. 

V 
Complete  the  compilation. 

Figure 2 Low  level  routine creation. 

of machine code  that  the section represents. (Strictly 
speaking, the  comparison is not just  for equality-if both 
sections have  an IF-THEN-ELSE construct in them and 
these  constructs  are  equivalent  at  their beginnings but not 
totally equivalent,  then  no  part of the  constructs is con- 
sidered equivalent.  The  actual branching, as  opposed  to 
the THEN and ELSE clauses, is thus prevented from being 
split by a subroutine call.) 

Although equivalent sections  are found as pairs,  they 
are  subsequently held as  groups, i .e . ,  if (A,B) is an equiva- 
lent  pair  and  also (B,c), then  the group (A,B,c) is formed. 

Each group is considered  as a  potential subroutine plus 
calls. The  group may be  unsuitable because  the  code se- 
quence it represents is short  and  there  are  not enough oc- 
currences of  it to outweigh the  space  overhead of a sub- 
routine. The groups that look profitable when considered 
individually cannot, in general, all be made into routines, 
because  the  code  sequences will overlap. On System/370 
the simple BAL mechanism with a single dedicated  link 
register does not support  nested calls to  subroutines.  This 
makes  a  potential subroutine  that is totally contained in 
another  just  as much of a  problem as partially overlapping 
potential routines. 

Theoretically it would be  possible to find the  best  com- 
bination of  subroutines by collecting all the  candidates 
and evaluating the merit of every combination. However, 
it would be computationally  beyond  reason to  do this on 
every compilation, so a less than  optimal approach  is 
taken. A list of “best”  groups is maintained, and  the 
groups are considered  serially for inclusion in the list. The 
decision for  the group is made on the  basis of net  gain in 
space.  Note  that  the  outcome is not  necessarily  a yes/no 
on addition of the  whole group  to  the  “best” list, but may 687 
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Table 1 Results of low level  subroutine  recognition. 

Phase I 
Phase J 
Phase K 
Phase L 
Phase M 
Phase N 
Phase 0 

Stmts Bytes 
(after 

saving) 

Seconds 

1114 
826 

1191 
590 

1862 
1076 
418 

8236 
8640 

10894 
5904 

18384 
9894 
2592 

13 
12 
16 
8 

55 
1 1  
6 

7077 64544 121 

Saving 
(% of 

original) 

10.9 
7.2 

11.6 
8.1 

20.1 
9.9 
5.0 

Number 
of 

routines 

52 
55 
83 
37 

I29 
68 
1 1  

Average 
length 
(bytes) 

17.0 
15.6 
14.4 
13.0 
15.2 
13.9 
16.0 

be some  combination of keeping the group and  over- 
lapped “best”  groups with fewer members. 

In principle the result of this whole sequence of deci- 
sions depends  on  the  order in which the groups  are  con- 
sidered. However, in practice  the  space difference be- 
tween the solutions  from  different  orderings is not great. 

Table 1 presents  the figures for self-compiling the com- 
piler with low level subroutine recognition. These figures 
show  that  the gain is made by creating  a relatively large 
number of small routines. Approximately one  subroutine 
was created  for  each 15 statements of source  code.  The 
average size ofthese  routines was 15 bytes. A BALto one 
of them  was  compiled once  per seven machine instruc- 
tions (on average) giving a 15% degradation in speed from 
the original code. 

As one would intuitively expect,  the results are non- 
linear. The larger phases show  a  greater  percentage sav- 
ing, and the time for finding and choosing the best rou- 
tines  increases rapidly with the size of the  source module 
and  the savings made. 

Tailored  interpretation-the  interpreter  framework 
As more  and  smaller subroutines  are  used, it  is the length 
of the calling sequences  that limits the saving in space. In 
order  to  reduce  the calling sequence we can represent the 
call in a  more compact form  than  the  hardware  instruc- 
tions and make the actual call by inspecting that  compact 
form at execution  time. This interpretation of a represen- 
tation of the  source program that is not totally  comprised 
of hardware operations is an  extreme trade-off of speed 
against space. 

There  are many interpreters of compact forms. APL is 
688 an  example where the internal form is very compact in 

terms of the function that it represents [7]. However, a 
very compact and  general  form of the  text being inter- 
preted implies a large interpreter. Since we are  concerned 
with the  case where the  interpreter is in software and re- 
garded as part of the overall  size of the  program, such  an 
approach can  only  show space savings on very large pro- 
grams. 

Here we are  concerned with smaller  programs  and  re- 
strict the  interpreter  to a few hundred  bytes.  This  makes 
the  internal form and the  interpreter more  oriented to a 
particular  hardware. The internal form can be regarded as 
code  for a  software-enhanced  version of the Si370 archi- 
tecture. 

We can usefully view the  interpreter in two parts, a 
fixed part that handles the flow  of control  and  calls  rou- 
tines  and  a  tailored  part that  consists of suitable  routines 
for the program being executed. In our examples the  com- 
piler derives  the tailored  part  from the  source program. 
The details of the fixed part  depend crucially on the un- 
derlying hardware, but the  techniques for  developing the 
tailored  part do not. 

A  natural fixed-part mechanism for the Systemi370 
would be to use the invalid and privileged operation 
codes, in amongst normal Systemi370 object code. Non- 
privileged execution of these by the Systemi370 would 
give rise to  exceptions  that could be made to call tailored 
routines. If only hardware timings are  considered, this 
looks to be an efficient method, but in practice, using the 
MVS operating system, it is not, since  the  operating sys- 
tem assumes that the exceptions  are  the result of errors 
and need not be handled quickly. Hundreds of machine 
operations  are  executed in the operating  system when 
handling each  exception. 
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The fixed part used in our  experiments  operates  as fol- 
lows.  It is described in terms of how it processes the  “in- 
structions’’ in the internal form that it interprets-some 
of these instructions are in the Systemi370 instruction for- 
mat and  some are not. The  compact forms of the calling 
sequences  to both the  subroutines written by the pro- 
grammer  and  the  recognized subroutines will not be Sys- 
temi370 instructions. 

The  current instruction‘s operation  code is used as an 
index to a  table. If it is  marked in the  table as a  System/ 
370 operation, then the instruction is executed using the 
hardware EX instruction. (The EX operation itself is an  ex- 
ception.) Note  that  the subject operation may be a super- 
visor call, in which case the single ExecUte results in 
some  operating system action-it is never necessary  for 
the interpreter  to  interpret operating  system code. If the 
operation  code is not marked as a Systemi370 operation, 
then it is to be interpreted by the mechanism as  a branch- 
ing or  subroutine calling operation.  The  table  contents  are 
determined by the compiler, and  only  those Systemi370 
operations actually  used by the  particular  program  have 
to be marked as Systemi370 operations-this increases 
the operation  code values  available  for other  uses. 

Some  operation codes  are reserved  for  relative branch- 
ing, with the condition  mask being part of the  operation 
code. One operation  code is reserved for calling routines 
without  parameters-the following byte contains  the rou- 
tine number. This routine number is the index of the  rou- 
tine’s address in the table of routine  information.  It may 
be equal to some  Systemi370 operation  code.  The proce- 
dures written  explicitly by the user  are  also invoked in 
this way,  after loading  arguments into registers. 

Operation  codes  that  are not marked as System/370 op- 
erations and not used as  the  operation  codes  for parame- 
terless  routines are used as operation codes  for routines 
with parameters.  The  argument being passed to  the rou- 
tine as a  parameter is  in the byte  succeeding the  operation 
code.  The  interpreter  copies the  argument  byte  into  the 
actual code of the  routine  before calling the  routine.  (This 
would qualify as “tricky coding” if a human coder did it, 
since even an operation  code in the routine may be over- 
written, but  since  only the compiler-developer has  to un- 
derstand  such code, this is not a severe problem.) 

The mechanism for calling the routine  distinguishes 
among single instruction routines (which can be invoked 
using the Execute instruction  and need no return  linkage), 
routines  where all the  operation  codes  are Systemi370 
codes (these  can be branched  to and not interpreted), and 
other  routines (which need a general call mechanism with 
a  stack of return addresses). See Fig. 3. 

LOAD ROUTINE 
Operation y INFORMATION 

Execute hUMBER 
AS  INDEX 

SEPARATE 
ROUTINE 

IYFORMATION 
INTO  ROUTIYE 
ADDRESSAND 
PARAMETER 

ADDRESS 

MOVE  NEXT 

INSTRUCTION 

PARAMETER 
STREAM T O  

POSITION 

BYTE OF i CONVERT 

INFORMATION 
ROUTINE 

T O  ROUTINE 
ADDRESS 

Start lntcrpretmg 
theroutine 

t 

Figure 3 Operation decoding by the interpreter. 

This fixed part represents a  compromise between small 
size, 320 bytes, and the  desire  to  cover most features  that 
offer a space  economy. 

The tailored  part of the  interpreter  for a  particular pro- 
gram consists of a routine  table, three  program-specific 
values, and the  routines  themselves. The  routine  table 
has an entry for each  operation code indicating whether 
or not it is a Systemi370 code,  the routine address, and 
the position of any parameter. (By using an aligned offset 
for the address  and restricting the parameter  position to 
the first 16 bytes of the  routine, this  information can be 
held in 16 bits.) 

Two of the values are used in distinguishing three  types 
of routines:  one-instruction routines, routines  comprised 689 
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entirely of Systed370  code,  and  others.  The different 
classes of routines are physically separated in memory at 
run time,  and  these values are  the boundaries of the 
classes, i . e . ,  the  class of a routine  can be determined by 
comparing  its address with these values. 

The  third program-specific value is an  adjustment used 
in relative branches.  The fixed part of the  interpreter 
computes  the target address  for  short  branches, relative 
to  the position of the  instruction,  as twice the  one-byte 
argument  (regarded as unsigned  binary)  minus the adjust- 
ment. If the  adjustment  were 256 bytes,  each relative 
branch would cover a range  symmetrical about  the in- 
struction.  In practice there  are more  forward branches 
than backward ones, so that increasing the range forward 
at  the  expense of the  range  backward will permit more 
branches  to be two-byte  branch instructions. The  com- 
piler chooses a near-optimal value  for  the  adjustment. (In 
practice the  actual  advantage of this  mechanism over 
symmetric  branching is small.) 

Tailored  interpretation-creating  the  routines 
The compiler that  takes  the fixed part of the  interpreter  as 
the target  machine is a variation of the compiler that  does 
low level subroutine  creation.  The  extra mechanisms are 
required for 

1. The  creation of routines with parameters  and of rou- 

2 .  The sorting of routines so that  they will lie in the ap- 

3. The relative  branch  optimization. 
4. Creating the routine table,  etc.,  as part of the  object 

tines that call other  created routines. 

propriate physical order in memory  at  run  time. 

module. 

The  latter  three  are  straightforward.  The complications of 
parameters  and  nested  routines make the algorithm given 
in Fig. 2 for routine selection impractical. Instead a multi- 
pass algorithm is  used: 

1 .  Potential  routines are  discovered  and given  a figure of 
merit,  which is the  space saving that  the routine would 
achieve in isolation. This discovery is done in the 
same way as  for low level routine  creation, comparing 
members  on hash chains, with appropriate elaboration 
to  record  parameter possibilities. 

2. The potential routines  are  entered  on a  list.  Since no 
routines  are  discarded  because of overlap  at this stage, 
the list may become  large. If  it becomes too  large,  the 
least meritorious routines  are  dropped  from  the list. 

3. When the list is complete,  the potential routines  are 
considered in order of merit. A routine is accepted if it 
does  not  overlap any routine higher in merit. The  text 
of the program is altered  to contain the body of the 

690 routine and  the calls to it. 

4. If any potential routines were  rejected in steps 2 and  3, 
the  process is repeated from step 1 with the new text. 
(Typically it takes  three or four passes  before all the 
routines  are  selected.) 

There  are many minor elaborations  to  the  process de- 
scribed above,  because  for  example  there is a limit to  the 
number of operation  codes available  and  hence to  the 
number of routines. This limit is determined by inspection 
of the  text before the  process  starts. 

Note  that compaction  could  be applied selectively to 
the  text, i .e . ,  some routines could  be given an  attribute by 
the programmer to indicate that  they were  not to be  com- 
pacted.  They would then not  be scanned in the  search  for 
routines  and would be compiled to  Systed370  code and 
become  routines that  the  interpreter would run at full Sys- 
tend370 speed.  Such  attributes would allow the program- 
mer to balance the  speed and space of the  object module. 

Table 2 presents  the  results  for creating  a  tailored  inter- 
preter  for  each of the  phases of the compiler. These sub- 
ject  phases  are  the  same  as  those used to measure subrou- 
tine  recognition. 

The effect of the fixed interpreter  architecture is to 
make  more small routines profitable. The  interpreter and 
routine table are included in the size.  This adds  to  the 
nonlinearity, with the larger phases showing the larger 
percentage  savings. From a  practical point of view the 
figures for large phases  are  the most  relevant. The overall 
figure is 6.0 bytes  per  statement. 

Phase  M  was the only phase  for which the  compaction 
was limited by the  number of operation  codes available. 
Many of the 48 internal procedures in the  source  of the 
phase  are called only once,  and some further  compaction 
would be obtained if the  source were  rewritten with this 
code in line,  freeing  up operation  codes and allowing 
more created routines. 

In raw speed  the fixed interpreter is some 15 times 
slower than  the  speed of the Systend370 instructions it 
executes. This is diluted by time spent in the operating 
system and in noninterpreted  subroutines.  The compile 
speed of the  compacted compiler was measured on small 
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Table 2 Results for tailored interpretation. 

Stmts Bytes Seconds Saving Number Average 
(after (% of of length 

saving) original) routines (bytes) 

Phase I 1114  5680 35 
Phase J 826 6128 49 
Phase K 1191  7172  86 
Phase L 590 45  14  24 
Phase M 1862  11654  182 
Phase N 1076  6942  59 
Phase 0 418 2278 8 

39 
34 
42 
30 
49 
37 
16 

128 
145 
168 
92 

190 
171 
42 

7.3 
6.5 
6.6 
7.1 
7.6 
6.5 
7.5 

7077  44368  443 

test cases and  found to be  eight  times  slower than  the 
uncompacted  version. 

Conclusions 
Over the years, more work has  been  done on compiling 
fast  object  code  than  on compiling compact  object  code. 
The numeric  results presented in this paper indicate  a 
worthwhile  return from  attention  to compacting. The re- 
sults will, no  doubt, be improved in the future  when  more 
work has  been done  on algorithms  for  discovering  and 
choosing between  potential subroutines. 

Looking for  subroutines  that could be reflected in the 
source program did not  prove to be  a success. 

Looking for  subroutines  at a  lower level gave a notice- 
able compaction,  as  the result of the  compiler  creating a 
large number of small routines. With the run-time mecha- 
nisms constrained  to  those provided  directly  by  the Sys- 
tem/370 hardware, a  typical  saving would be 15% at a cost 
of IS% in speed. 

Extending this approach  to allow parameters and  the 
nesting of routines, together with relative  branch  instruc- 
tions,  can produce  a 50% reduction in code  space. This 
size includes  the interpreter  necessary  to make the mech- 
anism run on System/370. Execution is many times 
slower. 
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The programmer  could  be involved in balancing the 
speed  and  space of the  object program by marking  some 
procedures in the  source program for exclusion  from the 
compacting process. 
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