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Optimization and Code  Generation in a  Compiler  for 
Several Machines 

This  paper  describes  Optimization  techniques  that  have  been  implemented in a  compiler  which  was  designed to produce 
code  comparable  to  that  produced by hand.  Additional  optimization  methods were incorporated  into  successive  versions 
of  the  compiler.  It MJUS found  that  no single method  was  effective  with all compiled  programs  but  that  each of the 
techniques  described  was  effective  for  some  programs. 

Introduction 
This  paper  describes  the optimization and  code  genera- 
tion techniques which have  been  implemented in a com- 
piler which generates  code for several different machines. 
The compiler was designed to  produce  code  which, in 
terms of space, is no more  than 10% larger than  that pro- 
duced by hand.  One  version of the compiler has been 
used  extensively to  produce microcode for various  pe- 
ripheral devices. In these  cases,  the target  machines  have 
proprietary instruction sets. A second version of the  com- 
piler produces  code  for  the IBM 8100, and it was used to 
develop  the  entire multiprogramming  operating system 
for  that machine. A description of the language of the lat- 
ter version of the compiler  can  be  found in [ 11. 

The development of the compiler extended  over a pe- 
riod of several  years. Periodically, a new version of the 
compiler was made  available to  the user community, with 
each  successive version  increasing  the  degree of opti- 
mization. The section on  “Results” shows how the  code 
size decreased with successive  releases for a representa- 
tive  sample of programs. 

The compiler achieves a high degree of optimization by 
applying a number of techniques.  The salient techniques 
are  presented below. We have  chosen  to  present  these in 
the order in which they were  implemented. The  “Re- 
sults” section gives an idea of the effectiveness of each 

technique. We believe that  the handling of special  register 
sets is unique, as is the table-driven  implementation of 
built-in instructions. Although well known, some of the 
other methods are  described in this paper  because of their 
significant influence on  the effectiveness of the opti- 
mization strategy  as a whole. The language is frequently 
described as a subset of PUI, from which it derives its ter- 
minology and  syntax.  However,  there  are a number of 
semantic  differences  which  make it an improper subset. 
The target  machine(s) are  exposed in the language by pro- 
viding the REGISTER storage  attribute  and Built-in Instruc- 
tion (see below). Furthermore,  there  are many  restric- 
tions placed on  the language to  prevent  the generation of 
cumbersome  code  sequences. In spirit, the language re- 
sembles the programming language c [ 2 ] .  

The  structure of the  compiler follows the classical 
front-end, optimization, and  code generation approach. 
The optimization phase  can be  bypassed at  the user’s op- 
tion. 

Code  generation 
The  code generation phase performs one  pass through the 
program text  to  generate  code. This phase  keeps a  table 
describing the  current  register  contents  for  scalars  and 
constants [3]. This  form of history is limited to basic 
blocks,  and there is no attempt  to  keep  interstatement his- 
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Table 1 Improvement  with  succeeding  compiler  versions. 

Module Size in bytes of sample  programs 
name 

Version  Version % Version % Version % 
I 2 3 4 

LYNXOOP 
LEVEL7X 
TEST 
XKEALSCN 
XKEAINFO 
XKECGADD 
HGSCIDV 
IKT0940A 
IKT09405 
IKT00413 
HANS3 
HANS5 
IGRMGRVZ 
IGARIOCS 
KDBFLIH 
BOYBLUE 

TOTALS 

2,000 
800 
112 

3,248 
1,997 
4,728 
1,405 

218 
134 
328 
356 

1,211 
3,172 

968 
448 
448 

21,573 

880 
670 
108 

3,096 
1,877 
4,744 
1,345 

202 
122 
280 
352 

1,191 
2,772 

848 
364 
408 

19,259 

56.0 
16.3 
3.6 
4.7 
6.0 

-0.3 
4.3 
7.3 
9.0 

14.6 
1 . 1  
1.7 

12.6 
12.4 
18.8 
8.9 

~ 

10.7 

872 
596 
84 

2,120 
1,393 
3,316 
1,001 

190 
122 
242 
240 
659 

2,412 
780 
352 
408 

14,787 

0.9 
11.0 
22.2 
31.5 
25.8 
30.1 
25.6 
5.9 
0.0 

13.6 
31.8 
44.7 
13.0 
8.0 
3.3 
0.0 

~ 

23.2 

868 
520 
76 

2,084 
1,309 
3,276 

969 
190 
122 
242 
236 
65 1 

2,380 
696 
276 
336 

14,231 

0.5 
12.8 
9.5 
1.7 
6.0 
1.2 
3.2 
0.0 
0.0 
0.0 
1.7 
1.2 
1.3 

10.8 
21.6 
17.6 
- 

3.8 

The % column is the percentage size decrease between each version and the preceding one 

tory of expressions.  There is a great  deal of machine-de- 
pendent special  casing  in this  phase. We believe that  such 
special casing  is  the first step  to effective  optimization. 

Version 1 of the  compiler lacked the optimization 
phase,  but  its  code  generation  phase had most of the spe- 
cial casing  which is in the  current version of the compiler. 
Therefore,  the  version-I  column of Table 1 presented 
later in “Results” gives a rather good measure of the  best 
that  one  can  do  on a single pass  down  the internal text. 

Holding  scalar  variables in registers 
In version 2 we  introduced  the optimization phase (which 
grew over  the  next  several releases). This  meant  that  the 
compiler  began to  take program  topology into  account. 

Whereas in version 1 all user-declared data  were 
mapped into main storage, in version 2, user-declared 
scalar variables  were  automatically  mapped into registers 
so that no loadstores  are  needed.  Each variable is given a 
“profit,” which is a measure of the payoff for placing the 
variable in a register.  Assignments are  done  to maximize 
total profit. A  given  variable is bound to a particular regis- 
ter  throughout  the life of the program being compiled. If 
variable  activity permits,  several  names  are bound to  the 
same register. The  actual  register assignment  algorithm 
used is one  described by Day [4]. The version-2  column of 
Table 1 gives us  an  idea of the benefits from this ap- 
proach. 678 
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Placing  common  expression  computations in regis- 
ters 
The  next compiler version  treated  expressions instead of 
merely  dealing  with  simple scalars. As text is read, a 
“candidate table” of expressions found in the  text is con- 
structed. This table  shows  where a given expression is 
referenced or killed. By using techniques described by 
Ernst [SI, we are  able to determine  the program points  at 
which each  expression value must be  reestablished or  can 
simply be  used. Each  entry in the  expression  candidate 
table is then  treated  as if it were a user-declared scalar, 
and it is assigned to a register using the same methods  as 
are used for scalars.  Expression  candidates  and scalar can- 
didates vie for the  same register. The internal text and 
dictionary are  then modified to  make it appear to the  code 
generation phase as if the original user program  were 
written in terms of user-written  variables. The version-3 
column of Table 1 reflects  this  addition. 

Special  register  sets 
The optimization techniques  described so far  are ma- 
chine-independent. The  detection of expression or vari- 
able  usage, the  counting of profit, and  the tracing of can- 
didate activity  have  little or nothing to  do with a particu- 
lar machine.  Machine dependence is simply reflected in a 
table which lists the available  registers. 

Machine dependence is introduced by the  fact  that 
some of the  supported  machines have  nonhomogeneous 
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registers. For  example, although  bits can be tested in any 
register, it is,  on  one  machine, more efficient to  test bits if 
the  datum is  in register number 2. Several such machine- 
dependent register characteristics were implied by the in- 
struction  sets. 

This  problem was  addressed by introducing  the  notion 
of special  register sets. All registers  sharing a particular 
property ( e . g . ,  "able-to-do-fast-bit-test") are marked as 
being in a  special  register set.  (Some register  numbers 
may be in several  special  register sets.) While reading 
text,  an  occurrence of a  particular  candidate for assign- 
ment is checked  to  determine  whether this occurrence 
would imply that inclusion in a given  register set is desir- 
able. If so, the candidate is marked as being "desirable to 
place in special  register set n." 

When candidates  are actually  assigned to  registers, the 
special  register sets  are tried first using only those can- 
didates which are so marked. This tends  to put candidates 
into register numbers which allow the  code generation 
phase to exploit the use of special  registers. Note  that a 
marked  candidate  which fails to be assigned to  the pre- 
ferred  special  register set may still be  assigned to a regis- 
ter not in that  set. Also, unmarked  candidates may be as- 
signed to a special register set when no marked candidate 
is active at  the particular  program  points at which the un- 
marked  candidate is active. 

Pre-optimization  transforms 
We then introduced  machine-dependent transforms  at  the 
start of optimization. This  can be viewed as recoding the 
original program so that  features of the  subsequent opti- 
mization and code generation phases tend to be exploited. 
We have  incorporated a number of such transformations 
in the compiler,  but the one described below should give 
an idea of the  approach. 

DCL C(4) FIXED(I5) BASED; 

DCL €" POINTER; 

€T+C(J) = 0; 

The  compiler's  front  end  converts the subscript ex- 
pression  into  a byte offset expression. This can be repre- 
sented  as 

FT-*C[(J*2)-2] = 0; 

where [(J*2)-2]iS the offset to  add  to €"to address ~ + C ( J ) .  

If we are compiling for a  machine which has  index reg- 
isters, this is a good form for internal text.  The opti- 
mization phase will tend  to assign PT to a base register, 
and [(J*2)-2] can be assigned to  an index register. How- 
ever, sometimes we are compiling for a machine which 

lacks index registers. In this case the text is transformed 
to look like the following: 

(€"+((J*2)-2))+C = 0; 

This exposes  the full addressing calculation to opti- 
mization and allows the  expression (€"+((J*2)-2)) to be  as- 
signed to a single register.  When the  text  transformation 
phase encounters a  bit  assignment statement  where  the 
source is a bit constant, it checks  whether  the previous 
statement  was a bit assignment  that  refers  to  the  same 
byte  or halfword. If this is the  case,  the previous state- 
ment is deleted  and  a single character  operation  is pro- 
duced which combines the effects of the  two  statements. 
This  process is repeated until this bit history is terminated 
by the  occurrence of any  statement which is not a bit as- 
signment  referring to  the  same  byte  or halfword. 

The following examples illustrate the effect of bit com- 
moning: 

DCL 1 S BDY(HW0RD) BASED(€"), 
2 SA BIT@), 

3 (SI,S2,S3,S4) BIT(l), 
3 S5678 BIT(4), 

2 SB BIT@), 

3 S9T016 BIT(8); 

Sl='l 'B; 

S2='1'B; 

S3='1'B; 

S4='1'B; 

S5678(1:2)='00'B; 

S9T016(5:8)='llll'B; 

This  sequence of statements would be  transformed to  the 
single character  operation 

SA = (SA & 'F3FF'X) I 'FOOF'X; 

Bit  testing 
In order  to help the  code  generation  phase to exploit  par- 
ticular  instructions for  testing bits in a byte, a further 
transformation is performed for  those bit-testing opera- 
tions which are  one  byte long. This  involves the  use of 
four special  internal operators: 

BON-Test specified bits equal  to '1'B 

BOF-Test specified bits equal  to 'O'B 
NBON-Test specified bits  not equal  to '1'B 

NBOF-Test specified bits  not equal  to 'O'B 

Each of these  operators specifies the name of the  byte 
under  test and  a bit mask  which  indicates  which bit(s) are 
to be tested. This makes it simple for  the  code generation 
phase to produce the  appropriate "test  with mask" in- 
structions. 679 
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Consecutive bit tests which address  the  same  byte  can 
be combined.  For  example,  assume  that  the following 
statement  appears  for  the  data  as declared above: 

IF Sl=‘I ’B & S2=‘0B & S3=’1’B 

& S4=‘O’B & S5678(1:3)=‘101’B . . . 

These  consecutive bit tests would be combined as fol- 
lows: 

IF (SA  BON ‘10101010’B) & (SA  BOF ‘010101OO’B) . . . 

which  allows us to test by merely issuing two of the spe- 
cial bit testing instructions. 

Jump  optimization 
Some of the supported machines contain short  jump in- 
structions which allow a backwards  or  forwards  branch  to 
a  point near  the  current  location. A branch which must go 
a greater distance  must  be done with a long branch. 

The compiler  optimizes for time  and space by gener- 
ating short  jumps  whenever  the target is in range. This is 
performed by the “goto-optimization’’ phase, which runs 
after  the  code generation phase. This phase  operates  on a 
table  containing all the  branch  instructions  and labels  to- 
gether with  their displacements from the  start of gener- 
ated code.  The  current displacement is incremented by 
the size of each instruction generated. All branch instruc- 
tions are initially assumed  to  be ‘:short.” 

An iterative  process then operates  on  the  table,  and  any 
branch  which is out of short  jump range is marked 
“long.”  This may cause existing short  jumps  to  become 
“long” and so on. The  process  continues until all jump 
instructions have  been determined  to be either  “long”  or 
“short.” 

The following pseudo-code illustrates the basic al- 
gorithm for goto  optimization: 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* all “gxx”  entries in the  goto table 
are initialized to  “short” */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
DO UNTIL one  complete  pass with no change; 

DO over goto table; 
IF table  entry is of type  “gxx” & 

entry is “short” & 
displacement needs long THEN 

DO; 

A further function  performed  by  this phase is jump-to- 
jump optimization.  This is applicable  when  optimizing for 
space  rather than execution  time. 

For  each branch which cannot be achieved  with a short 
jump: 

1. Determine  whether  there is a branch  instruction  within 
short  jump range which causes control to (eventually) 
reach  the desired target. If so, insert a label in front of 
it and change the initial branch target to be  this  label. 

2. If there is no such  branch within the range of a short 
jump, find a  suitable place  to insert an intermediate 
jump instruction (e.g., after  an unconditional branch). 
Then change the initial branch  to be the label on  the 
intermediate jump. 

Access to built-in  machine  instructions 
The  compiler has  a  language feature called  Built-In In- 
structions (BII’s). This allows the  user  to  code  any in- 
struction available on  the  hardware  as a statement.  The 
user codes full expressions  as the instruction’s argu- 
ments,  and  the compiler generates  code  as needed to per- 
form necessary housekeeping such  as loading  and  storing 
registers. 

The instructions are viewed as in-line routines which 
require expressions with particular  attributes  as  oper- 
ands.  This leads to a table-driven implementation tech- 
nique  which  makes it possible to  support all of the in- 
structions  on the target  machine with little compiler im- 
plementation cost. 

We defined a table  structure which allows one  to  en- 
code a description of any  machine instruction. An in- 
struction  entry has information  such as  the instruction 
name; the number of operands  required;  the permissible 
attributes for each  operand;  the number  and  type of regis- 
ters  required for each  operand;  an indication of which  op- 
erands  are inputs to  the  instruction;  an indication of 
which operands  are  outputs  from  the  instruction. 

A macro  processor was  used to provide  a  “language” 
which can be  used to write these instruction descriptions. 
Persons who know little or nothing about  the internal 
characteristics of the optimization or  code generation 
phases can define and modify these tables. 

mark this “gxx”  entry  as  “long”; 
increment displacements of all following table 

entries by the difference in size between a 

For example the load-byte  instruction of the  IBM 8100 
is described  as follows: 

short  jump  and a  long jump; 
END; 

END; 

680 END; 

?BII  (L) / *  AB11  DEFINITION - MNEMONIC=“L” */ 
FORM (RS) /*  A REGISTER - STORAGE FORM *I 
SEQFLOW / *  “FALLS  THROUGH” TO NEXT  INSTR. */ 
NONEEDCC / x  DOESN’T  DEPEND  ON  CONDITION  CODE */ 
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NOSETSCC /* IT  DOESN’T  SET  THE  CONDITION  CODE */  
SIZE(4); /* NUMBER OF BYTES  IN  INSTRUCTION */ 

?BIIARG /* DESCRIPTION O F  FIRST  ARGUMENT */ 
ATTR( /* MUST HAVE ONE  OF THESE  AlTRIBUTES */ 

FIXED@),CHAR(l),BlT@)) 

REGTYPE(BYTE,PRIMARV /* TYPE OF REGISTER REQUIRED */ 
ACCESS(VALUE) /* VALUE OF ARG IS  IN  REGISTER */ 
OUTPUT; /* REGISTER IS SET BY INSTRUCTION */ 

?BIIARG /* DESCRIPTION O F  SECOND  ARGUMENT */ 
ATTR (FIXED@),  CHAR(l),BIT(8))/*  PERMITTED  ATTRS */ 
REGTYPE(FULLWORD.NOTZER0) /* REGISTER  TYPE IS 

ANY FULLWORD  SAVE 

REGISTER  ZERO */  
ACCESS(BASED1SP) /* BASE-DISPLACEMENT FORM WHICH 

MEANS  THAT  THE  ARGUMENT  NAMED 

ACTUALLY  RESIDES  IN  STORAGE  AND 

THE  REGISTER IS TO  GET  A  BASE 

ADDRESS */ 
DISP(-32768:32767) /* PERMISSIBLE  DISPLACEMENT 

RANGE */ 
INPUT; /* ARG IS NOT CHANGED BY INSTRUCN */ 

When a built-in instruction appears in the  text,  the BII 
module is called. This module interprets  these tables  and 
calls the expression handling routines  as needed to prop- 
erly process the user’s  statement.  There is one  such BII 

module for each phase of the compiler. There is only  one 
copy of the tables,  which is used in a read-only manner by 
all phases. 

Local block optimization 
Before  emitting the  code for a basic block,  the  code gen- 
eration phase  makes a pass against the  code which it has 
just  generated  to  determine  whether any final opti- 
mizations based on  the peculiarities of the  target instruc- 
tion set  can be done.  The individual  optimizations are de- 
fined by means of macros. These macros generate  tables 
which are interpreted by the local block optimization 
module. The macros allow new optimizations to be added 
very easily. 

Since  the  process is iterative, some  optimizations  to- 
gether can have a dramatic effect.  Consider the following 
(nonoptimized) sequence of code which would be appli- 
cable for the IBM 8100: 

* x = x - 1 ;  

SRI X,1 SUBTRACT 1 FROM BYTE 

REGISTER  “X” 
* IF  X l = O  THEN 

RL X,O ROTATE  “X”  SIMPLY  TO  SET 

CONDITION  CODE 
JZ @RF00001 JUMP  ON PROPER CONDITION 

CODE 

* GO TO P-BLAB; 

BR P  BRANCH  UNCONDITIONALLY 
USING ADDRESS IN  REGISTER 
“p” 

@RFOOOOl DS OH 

Following are  the local block optimizations  performed on 
this sequence: 

First  the RL is removed since it follows SRI, which has 
already set  the  condition  code according to  the value of x. 

$ X=X-I;  

SRI X.1 
* IF   Xl=O  THEN 

JZ @RF00001 

* GO  TO  P-BLAB; 

BR P 

QRF00001 DS OH 

Then,  the JZJBRIBRF. . . sequence is changed to BNZR P. 

* x = x - 1 ;  

SRI X.1 
* IF   Xl=O  THEN 

* GO  TO  P-BLAB; 
BNZR P 

@RF00001 DS OH 

Finally, the SRVBNZR sequence is changed to BCTR. 

* x = x - 1 ;  SUBTRACT  1 FROM BYTE  REGISTER 
* IF X l = O  THEN “X”  THEN BRANCH IF  RESULT NOT 
* GOT0  P-BLAB;  ZERO 

BCTR X,P 
QRFOOOOI DS OH 

Thus  the four instructions  are eventually transformed  to 
one BCTR. 

Results 
Table 1 shows the  results of compiling a set of programs 
using different versions of the compiler.  Combined with 
Table 2, this  gives us  an  idea of the degree of improve- 
ment from  the various  optimization methods. 

The  results in Table I are  the size (in bytes) of the re- 
sulting object  code of each program.  This  includes both 
executable instructions  and static  data  for literals and  the 
like. (We have  made sure  that  the programs do not have a 
large amount of user-declared  static data  because this 
would have  distorted  the  results; e . g . ,  “DCL x CHAR (8000) 

STATIC;” cannot be optimized. 
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Table 2 Four versions of the compiler and the optimization 
methods added in each version. 

Version  Optimization  methods 

1 No optimization (except for code generation 

2 Scalar variables kept in registers 

3 Common expressions kept in registers 
Jump optimization 
Special register sets 

special casing) 

4 Re-optimization transformations 
Bit assignment commoning 
Bit testing commoning 
Local block optimization 

Summary 
The optimization methods described in this paper have 
been successful. The degree of optimization  has  been 
such that users have  found it unnecessary to resort to 
hand code even in the most critical parts of their systems. 
Our original goal  was to have the compiler produce code 
which  (in terms of space) was no more than 107% larger 
than hand-produced code. On several occasions, we have 
taken existing assembler code and reprogrammed it to 
demonstrate that the compiler can match hand-produced 
code for time  and space. The 10% objective has been met, 
based on the results of such exercises. 

Our results demonstrate the effectiveness of the regis- 
ter assignment  method  by  which  variables and expression 
values are assigned to registers. We also believe that the 
importance of special casing, local  block optimization, 
and other techniques described here cannot be ignored. 
No single  method  effectively optimizes all programs. For 
each technique described here, there exist modules  which 
were highly  optimized  only  when that particular tech- 
nique was implemented in the compiler. 

During the development of the compiler we made  con- 
scious efforts to implement the compiler so that it  would 
be relatively simple to support new machines. We have 
partially succeeded. We say “partially” because such 
modifications can only  be done by members of our own 
development group who are familiar  with the compiler 
implementation. 

We were pleasantly surprised at how  well the special 
register set approach handled the problem of non- 
homogeneous registers. The method as implemented has 
an obvious flaw: a relatively unprofitable item may be as- 
signed to a special register, preventing some  more  profit- 
able item from  being assigned to any register. In practice, 
this does not seem to happen often. We have inspected 

many samples of user code, and there appears to be a 
strong affinity between profitability  and special register 
desirability. We have had only two known cases in three 
years where users had code which  exhibited this problem. 
Still, we  would  be happier if we could discover a theoreti- 
cally sound solution to the nonhomogeneous register 
problem. 

The problem of  work register allocation by opti- 
mization has not been satisfactorily solved. It is possible 
that the optimization phase can assign  items to so many 
different registers that the code generation phase is  un- 
able to evaluate a particular expression because opti- 
mization  has  left  no  work registers for code generation. 
This is addressed by having the optimization phase esti- 
mate the work register requirements of the later code gen- 
eration phase. This must  be a worst-case estimate be- 
cause it is not  known at the time that this estimate is done 
whether or not various components of expression will  be 
precomputed or not. Hence, the optimization sometimes 
ends up  leaving a few registers free which it could  have 
used (given the post-code-generation aftersight that 
people  reading the code have). Arriving at the proper esti- 
mate function proved to be a delicate exercise in  fine tun- 
ing. We hope that some researcher can find a solution to 
this problem. 

We are not sure how  well the methods described would 
work on nonregister machines. Optimization techniques 
could  be  made to map noninterfering variables and ex- 
pression values onto storage instead of into registers. We 
believe that this  would  give excellent results. However, 
we have no experimental evidence to validate this be- 
cause all machines supported by this compiler were regis- 
ter machines. 
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