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Optimization and Code Generation in a Compiler for

Several Machines

This paper describes optimization techniques that have been implemented in a compiler which was designed to produce
code comparable to that produced by hand. Additional optimization methods were incorporated into successive versions
of the compiler. It was found that no single method was effective with all compiled programs but that each of the

techniques described was effective for some programs.

Introduction

This paper describes the optimization and code genera-
tion techniques which have been implemented in a com-
piler which generates code for several different machines.
The compiler was designed to produce code which, in
terms of space, is no more than 10% larger than that pro-
duced by hand. One version of the compiler has been
used extensively to produce microcode for various pe-
ripheral devices. In these cases, the target machines have
proprietary instruction sets. A second version of the com-
piler produces code for the IBM 8100, and it was used to
develop the entire multiprogramming operating system
for that machine. A description of the language of the lat-
ter version of the compiler can be found in [1].

The development of the compiler extended over a pe-
riod of several years. Periodically, a new version of the
compiler was made available to the user community, with
each successive version increasing the degree of opti-
mization. The section on ‘‘Results’’ shows how the code
size decreased with successive releases for a representa-
tive sample of programs.

The compiler achieves a high degree of optimization by
applying a number of techniques. The salient techniques
are presented below. We have chosen to present these in
the order in which they were implemented. The ‘‘Re-
sults” section gives an idea of the effectiveness of each

technique. We believe that the handling of special register
sets is unique, as is the table-driven implementation of
built-in instructions. Although well known, some of the
other methods are described in this paper because of their
significant influence on the effectiveness of the opti-
mization strategy as a whole. The language is frequently
described as a subset of pPL/1, from which it derives its ter-
minology and syntax. However, there are a number of
semantic differences which make it an improper subset.
The target machine(s) are exposed in the language by pro-
viding the REGISTER storage attribute and Built-in Instruc-
tion (see below). Furthermore, there are many restric-
tions placed on the language to prevent the generation of
cumbersome code sequences. In spirit, the language re-
sembles the programming language ¢ [2].

The structure of the compiler follows the classical
front-end, optimization, and code generation approach.
The optimization phase can be bypassed at the user’s op-
tion.

Code generation

The code generation phase performs one pass through the
program text to generate code. This phase keeps a table
describing the current register contents for scalars and
constants [3]. This form of history is limited to basic
blocks, and there is no attempt to keep interstatement his-
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Table 1 Improvement with succeeding compiler versions.

Module Size in bytes of sample programs
hame
Version Version % Version % Version %
1 2 3 4
LYNXOOP 2,000 880 56.0 872 0.9 868 0.5
LEVEL7X 800 670 16.3 596 11.0 520 12.8
TEST 112 108 3.6 84 22.2 76 9.5
XKEALSCN 3,248 3,096 4.7 2,120 31.5 2,084 1.7
XKEAINFO 1,997 1,877 6.0 1,393 25.8 1,309 6.0
XKECGADD 4,728 4,744 -0.3 3,316 30.1 3,276 1.2
HGSCIDV 1,405 1,345 4.3 1,001 25.6 969 3.2
IKT0940A 218 202 7.3 190 5.9 190 0.0
IKT09405 134 122 . 9.0 122 0.0 122 0.0
IKT00413 328 280 14.6 242 13.6 242 0.0
HANS3 356 352 1.1 240 31.8 236 1.7
HANSS 1,211 1,191 1.7 659 44.7 651 1.2
IGRMGRV2 3,172 2,772 12.6 2,412 13.0 2,380 1.3
IGARIOCS 968 848 12.4 780 8.0 696 10.8
KDBFLIH 448 364 18.8 352 33 276 21.6
BOYBLUE 448 408 8.9 408 0.0 336 17.6
TOTALS 21,573 19,259 10.7 14,787 23.2 14,231 3.8

The % column is the percentage size decrease between each version and the preceding one.

tory of expressions. There is a great deal of machine-de-
pendent special casing in this phase. We believe that such
special casing is the first step to effective optimization.

Version 1 of the compiler lacked the optimization
phase, but its code generation phase had most of the spe-
cial casing which is in the current version of the compiler.
Therefore, the version-1 column of Table 1 presented
later in ‘‘Results’’ gives a rather good measure of the best
that one can do on a single pass down the internal text.

Holding scalar variables in registers

In version 2 we introduced the optimization phase (which
grew over the next several releases). This meant that the
compiler began to take program topology into account.

Whereas in version 1 all user-declared data were
mapped into main storage, in version 2, user-declared
scalar variables were automatically mapped into registers
so that no load/stores are needed. Each variable is given a
‘*profit,”” which is a measure of the payoff for placing the
variable in a register. Assignments are done to maximize
total profit. A given variable is bound to a particular regis-
ter throughout the life of the program being compiled. If
variable activity permits, several names are bound to the
same register. The actual register assignment algorithm
used is one described by Day [4]. The version-2 column of
Table 1 gives us an idea of the benefits from this ap-
proach.
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Placing common expression computations in regis-
ters

The next compiler version treated expressions instead of
merely dealing with simple scalars. As text is read, a
‘“‘candidate table”’ of expressions found in the text is con-
structed. This table shows where a given expression is
referenced or killed. By using techniques described by
Ernst [5], we are able to determine the program points at
which each expression value must be reestablished or can
simply be used. Each entry in the expression candidate
table is then treated as if it were a user-declared scalar,
and it is assigned to a register using the same methods as
are used for scalars. Expression candidates and scalar can-
didates vie for the same register. The internal text and
dictionary are then modified to make it appear to the code
generation phase as if the original user program were
written in terms of user-written variables. The version-3
column of Table 1 reflects this addition.

Special register sets

The optimization techniques described so far are ma-
chine-independent. The detection of expression or vari-
able usage, the counting of profit, and the tracing of can-
didate activity have little or nothing to do with a particu-
lar machine. Machine dependence is simply reflected in a
table which lists the available registers.

Machine dependence is introduced by the fact that
some of the supported machines have nonhomogeneous
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registers. For example, although bits can be tested in any
register, it is, on one machine, more efficient to test bits if
the datum is in register number 2. Several such machine-
dependent register characteristics were implied by the in-
struction sets.

This problem was addressed by introducing the notion
of special register sets. All registers sharing a particular
property (e.g., ‘‘able-to-do-fast-bit-test’’) are marked as
being in a special register set. (Some register numbers
may be in several special register sets.) While reading
text, an occurrence of a particular candidate for assign-
ment is checked to determine whether this occurrence
would imply that inclusion in a given register set is desir-
able. If so, the candidate is marked as being **desirable to
place in special register set n.”’

When candidates are actually assigned to registers, the
special register sets are tried first using only those can-
didates which are so marked. This tends to put candidates
into register numbers which allow the code generation
phase to exploit the use of special registers. Note that a
marked candidate which fails to be assigned to the pre-
ferred special register set may still be assigned to a regis-
ter not in that set. Also, unmarked candidates may be as-
signed to a special register set when no marked candidate
is active at the particular program points at which the un-
marked candidate is active.

Pre-optimization transforms

We then introduced machine-dependent transforms at the
start of optimization. This can be viewed as recoding the
original program so that features of the subsequent opti-
mization and code generation phases tend to be exploited.
We have incorporated a number of such transformations
in the compiler, but the one described below should give
an idea of the approach.

DCL C(4) FIXED(15) BASED;
DCL PT POINTER;

PT—CQJ) = 0;

The compiler’s front end converts the subscript ex-
pression into a byte offset expression. This can be repre-
sented as

PT-C[(J¥2)-2] = 0;

where [(J%2)-2]is the offset to add to PTto address PT—C(J).

If we are compiling for a machine which has index reg-
isters, this is a good form for internal text. The opti-
mization phase will tend to assign PT to a base register,
and [(J*2)—2] can be assigned to an index register. How-
ever, sometimes we are compiling for a machine which
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lacks index registers. In this case the text is transformed
to look like the following:

(PT+((J*2)=2))—C = 0;

This exposes the full addressing calculation to opti-
mization and allows the expression (PT+((J»2)—2)) to be as-
signed to a single register. When the text transformation
phase encounters a bit assignment statement where the
source is a bit constant, it checks whether the previous
statement was a bit assignment that refers to the same
byte or halfword. If this is the case, the previous state-
ment is deleted and a single character operation is pro-
duced which combines the effects of the two statements.
This process is repeated until this bit history is terminated
by the occurrence of any statement which is not a bit as-
signment referring to the same byte or halfword.

The following examples illustrate the effect of bit com-
moning:

DCL 1 S BDY(HWORD) BASED(PT),
2 SA BIT(8),
3(S1,82,53,54) BIT(1),
3 S5678 BIT(4),
2 SB BIT(8),
3 59TO16 BIT(8);
Si='I'B;
S2='1"B;
S3='1"B;
S4="1"B;
$5678(1:2)="00"B;
S9TO16(5:8)="1111'B;

This sequence of statements would be transformed to the
single character operation

SA = (SA & ‘F3FF’X) | ‘FOOF’X;

Bit testing

In order to help the code generation phase to exploit par-
ticular instructions for testing bits in a byte, a further
transformation is performed for those bit-testing opera-
tions which are one byte long. This involves the use of
four special internal operators:

BON—Test specified bits equal to ‘I'B
BOF—Test specified bits equal to ‘0'B
NBON—Test specified bits not equal to ‘1I'B
NBOF—Test specified bits not equal to ‘0’B

Each of these operators specifies the name of the byte
under test and a bit mask which indicates which bit(s) are
to be tested. This makes it simple for the code generation
phase to produce the appropriate ‘‘test with mask’ in-
structions.
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Consecutive bit tests which address the same byte can
be combined. For example, assume that the following
statement appears for the data as declared above:

IF S1="1'B & S2="0'B & S3='I'B
& S4="0'B & S5678(1:3)="101'B - - -

These consecutive bit tests would be combined as fol-
lows:

IF (SA BON ‘10101010’B) & (SA BOF '01010100’B) - - -

which allows us to test by merely issuing two of the spe-
cial bit testing instructions.

Jump optimization

Some of the supported machines contain short jump in-
structions which allow a backwards or forwards branch to
a point near the current location. A branch which must go
a greater distance must be done with a long branch.

The compiler optimizes for time and space by gener-
ating short jumps whenever the target is in range. This is
performed by the *‘goto-optimization’’ phase, which runs
after the code generation phase. This phase operates on a
table containing all the branch instructions and labels to-
gether with their displacements from the start of gener-
ated code. The current displacement is incremented by
the size of each instruction generated. All branch instruc-
tions are initially assumed to be ‘‘short.”

An iterative process then operates on the table, and any
branch which is out of short jump range is marked
*‘long.”” This umay cause existing short jumps to become
‘“‘long’’ and so on. The process continues until all jump
instructions have been determined to be either ‘‘long’’ or
“‘short.”

The following pseudo-code illustrates the basic al-
gorithm for goto optimization:
/* all “‘gxx’’ entries in the goto table
are initialized to ‘‘short’ =/
DO UNTIL one complete pass with no change;
DO over goto table;
IF table entry is of type *‘gxx” &
entry is “‘short” &
displacement needs long THEN
DO;
mark this *'gxx’’ entry as ‘‘long’’;
increment displacements of all following table
entries by the difference in size between a
short jump and a long jump;
END;
END;
END;
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A further function performed by this phase is jump-to-
jump optimization. This is applicable when optimizing for
space rather than execution time.

For each branch which cannot be achieved with a short
jump:

1. Determine whether there is a branch instruction within
short jump range which causes control to (eventually)
reach the desired target. If so, insert a label in front of
it and change the initial branch target to be this label.

2. If there is no such branch within the range of a short
jump, find a suitable place to insert an intermediate
jump instruction (e.g., after an unconditional branch).
Then change the initial branch to be the label on the
intermediate jump.

Access to built-in machine instructions

The compiler has a language feature called Built-In In-
structions (BII's). This allows the user to code any in-
struction available on the hardware as a statement. The
user codes full expressions as the instruction’s argu-
ments, and the compiler generates code as needed to per-
form necessary housekeeping such as loading and storing
registers.

The instructions are viewed as in-line routines which
require expressions with particular attributes as oper-
ands. This leads to a table-driven implementation tech-
nique which makes it possible to support all of the in-
structions on the target machine with little compiler im-
plementation cost.

We defined a table structure which allows one to en-
code a description of any machine instruction. An in-
struction entry has information such as the instruction
name; the number of operands required; the permissible
attributes for each operand; the number and type of regis-
ters required for each operand; an indication of which op-
erands are inputs to the instruction; an indication of
which operands are outputs from the instruction.

A macro processor was used to provide a ‘‘language’’
which can be used to write these instruction descriptions.
Persons who know little or nothing about the internal
characteristics of the optimization or code generation
phases can define and modify these tables.

For example the load-byte instruction of the IBM 8100
is described as follows:

BII (L) /* A BII DEFINITION - MNEMONIC=""L" */
FORM (RS) /* AREGISTER - STORAGE FORM #/
SEQFLOW /* "FALLS THROUGH” TO NEXT INSTR. */

NONEEDCC /+* DOESN'T DEPEND ON CONDITION CODE */
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NOSETSCC  /+ITDOESN'T SET THE CONDITION CODE  */

SIZE(4); /+* NUMBER OF BYTES IN INSTRUCTION */
?BIIARG /* DESCRIPTION OF FIRST ARGUMENT */
ATTR( /* MUST HAVE ONE OF THESE ATTRIBUTES #/

FIXED(8),CHAR(1),BIT(8))
REGTYPE(BYTE,PRIMARY) /+ TYPE OF REGISTER REQUIRED */
ACCESS(VALUE) /+* VALUE OF ARG IS IN REGISTER +/
OUTPUT; /* REGISTER IS SET BY INSTRUCTION %/

IBIIARG /* DESCRIPTION OF SECOND ARGUMENT %/
ATTR  (FIXED(8), CHAR(1),BIT(8) )/* PERMITTED ATTRS +/
REGTYPE(FULLWORD,NOTZERO) /+ REGISTER TYPE IS

ANY FULLWORD SAVE
REGISTER ZERO  */
ACCESS(BASEDISP) /+ BASE-DISPLACEMENT FORM WHICH
MEANS THAT THE ARGUMENT NAMED
ACTUALLY RESIDES IN STORAGE AND
THE REGISTER IS TO GET A BASE

ADDRESS */
DISP(—32768:32767) /+ PERMISSIBLE DISPLACEMENT

RANGE %/
INPUT; /+ ARG IS NOT CHANGED BY INSTRUC'N #/

When a built-in instruction appears in the text, the BII
module is called. This module interprets these tables and
calls the expression handling routines as needed to prop-
erly process the user’s statement. There is one such Bil
module for each phase of the compiler. There is only one
copy of the tables, which is used in a read-only manner by
all phases.

Local block optimization

Before emitting the code for a basic block, the code gen-
eration phase makes a pass against the code which it has
just generated to determine whether any final opti-
mizations based on the peculiarities of the target instruc-
tion set can be done. The individual optimizations are de-
fined by means of macros. These macros generate tables
which are interpreted by the local block optimization
module. The macros allow new optimizations to be added
very easily.

Since the process is iterative, some optimizations to-
gether can have a dramatic effect. Consider the following
(nonoptimized) sequence of code which would be appli-
cable for the IBM 8100:

* X=X—1;
SUBTRACT | FROM BYTE
REGISTER X"

SRI X,1

* IF X=0 THEN

RL X0 ROTATE **X”’ SIMPLY TO SET
CONDITION CODE

JZ  @RF00001 JUMP ON PROPER CONDITION
CODE
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*GOTO  P—BLAB;
BR P BRANCH UNCONDITIONALLY
USING ADDRESS IN REGISTER
wpr
@RF00001 DS OH

Following are the local block optimizations performed on
this sequence:

First the RL is removed since it follows SRI, which has
already set the condition code according to the value of x.

* X=X-1;

SRI X,1
* IF X=0 THEN

JZ  @RF00001
* GO TO P—BLAB,;

BR P
@RF00001 DS O0H

Then, the JZ/BR/@RF - - - sequence is changed to BNZR P.

* X=X-1;
SRI X,1
* IF X=0 THEN
*  GOTO P—BLAB;
BNZR P
@RF00001 DS OH

Finally, the SRUBNZR sequence is changed to BCTR.

* X=X—-1; SUBTRACT 1 FROM BYTE REGISTER
* IF X7=0 THEN X THEN BRANCH IF RESULT NOT
* GO TO P-»BLAB; ZERO

BCTR X,P
@RF00001 DS OH

Thus the four instructions are eventually transformed to
one BCTR.

Results

Table 1 shows the results of compiling a set of programs
using different versions of the compiler. Combined with
Table 2, this gives us an idea of the degree of improve-
ment from the various optimization methods.

The results in Table 1 are the size (in bytes) of the re-
sulting object code of each program. This includes both
executable instructions and static data for literals and the
like. (We have made sure that the programs do not have a
large amount of user-declared static data because this
would have distorted the results; e.g., ‘*DCL X CHAR (8000)
STATIC;”’ cannot be optimized.
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Table 2 Four versions of the compiler and the optimization
methods added in each version.

Version Optimization methods

1 No optimization (except for code generation
special casing)

2 Scalar variables kept in registers

3 Common expressions kept in registers
Jump optimization
Special register sets

4 Pre-optimization transformations
Bit assignment commoning
Bit testing commoning

Local block optimization

Summary

The optimization methods described in this paper have
been successful. The degree of optimization has been
such that users have found it unnecessary to resort to
hand code even in the most critical parts of their systems.
Our original goal was to have the compiler produce code
which (in terms of space) was no more than 10% larger
than hand-produced code. On several occasions, we have
taken existing assembler code and reprogrammed it to
demonstrate that the compiler can match hand-produced
code for time and space. The 10% objective has been met,
based on the results of such exercises.

Our results demonstrate the effectiveness of the regis-
ter assignment method by which variables and expression
values are assigned to registers. We also believe that the
importance of special casing, local block optimization,
and other techniques described here cannot be ignored.
No single method effectively optimizes all programs. For
each technique described here, there exist modules which
were highly optimized only when that particular tech-
nique was implemented in the compiler.

During the development of the compiler we made con-
scious efforts to implement the compiler so that it would
be relatively simple to support new machines. We have
partially succeeded. We say ‘‘partially’’ because such
modifications can only be done by members of our own
development group who are familiar with the compiler
implementation.

We were pleasantly surprised at how well the special
register set approach handled the problem of non-
homogeneous registers. The method as implemented has
an obvious flaw: a relatively unprofitable item may be as-
signed to a special register, preventing some more profit-
able item from being assigned to any register. In practice,
this does not seem to happen often. We have inspected
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many samples of user code, and there appears to be a
strong affinity between profitability and special register
desirability. We have had only two known cases in three
years where users had code which exhibited this problem.
Still, we would be happier if we could discover a theoreti-
cally sound solution to the nonhomogeneous register
problem.

The problem of work register allocation by opti-
mization has not been satisfactorily solved. It is possible
that the optimization phase can assign items to so many
different registers that the code generation phase is un-
able to evaluate a particular expression because opti-
mization has left no work registers for code generation.
This is addressed by having the optimization phase esti-
mate the work register requirements of the later code gen-
eration phase. This must be a worst-case estimate be-
cause it is not known at the time that this estimate is done
whether or not various components of expression will be
precomputed or not. Hence, the optimization sometimes
ends up leaving a few registers free which it could have
used (given the post-code-generation aftersight that
people reading the code have). Arriving at the proper esti-
mate function proved to be a delicate exercise in fine tun-
ing. We hope that some researcher can find a solution to
this problem.

We are not sure how well the methods described would
work on nonregister machines. Optimization techniques
could be made to map noninterfering variables and ex-
pression values onto storage instead of into registers. We
believe that this would give excellent results. However,
we have no experimental evidence to validate this be-
cause all machines supported by this compiler were regis-
ter machines.
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