658

PREFACE

Preface

Programming languages have been the media for commu-
nicating our requirements to computers throughout the
history of digital data processing. The basic goals for
these languages, and for the processors that produce the
corresponding executable programs, have changed sur-
prisingly little over the years.

On the user’s side of the user-computer interface, the
fundamental goal for the past quarter century has been to
make powerful computational facilities accessible to com-
puter users, including those whose primary interest is not
data processing. At one extreme, machine language cod-
ing is too arduous to be practical. At the other extreme,
the inherent ambiguities of natural language make precise
expression of complex algorithms exceedingly difficult.
Between the extremes, language designers are confronted
with a variety of desires and requirements. High-level
languages are desirable for professional programmers to
increase their productivity as well as the readability and
quality of their programs, but these users continue to ex-
press concern about losing direct control over machine
facilities. Easy-to-learn languages may be attractive to
the beginning programmer but may be too limiting for
large, complex programs. And the user who has acquired
skill in one language may resist learning a new language
that may be much more suitable for his applications.

On the computer’s side of the interface, program exe-
cution speed was always a significant concern. Indeed, a
feared sacrifice in speed may have accounted for some
early resistance to high-level languages. Although com-
pilers were demonstrated to incur only limited penalties
in execution speed, efforts have continued throughout the
history of high-level languages to further reduce that cost.
Despite dramatic increases in processor speed, opti-
mization of execution time continues to be important be-
cause of the existence of huge programs and because of
real-time applications. Equally important, the trend to-
ward higher-level languages increases the burden on com-
pilers to produce efficient code. Space optimization also

continues to be significant despite the availability of
cheap, large main memories. One reason is the limited
space available in the small processors used, for example,
in networks. Space is important also because of its rela-
tionship to speed; very large programs overflow main
storage and are forced onto slower secondary storage me-
dia, reducing overall execution speed.

The papers in this issue of the IBM Journal of Research
and Development sample some current results in the elu-
sive search for an appropriate avenue of communication
between creative, imaginative, but dissimilar human beings
and tremendously fast but inflexible computer hardware.
Four of the papers are on the language side of the inter-
face and six on the processor side.

Most but not all of the emphasis in the papers on the
processor side is on optimization of the object programs
produced by compilers. The first paper, by Scarborough
and Kolsky, reports some impressive improvements in
the output of an already good optimizing compiler. The
new optimization techniques resulted not from theoretical
considerations but from careful examination of the output
of the existing compiler.

The next paper, by Boyle et al., describes the opti-
mization techniques used in a compiler designed to pro-
duce code for several different machines. The opti-
mization methods are intended primarily to save space. In
successive versions of this processor, additional opti-
mizations were incorporated, providing some indication
of the effectiveness of specific optimization methods.

The paper by Marks also reports new results in space
optimization. In this case the most significant results are
achieved through use of a software interpreter created dy-
namically for an individual program.

The final paper dealing exclusively with optimization is
by Cocke and Markstein. This Communication reports a

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. 6 & NOVEMBER 1980




strength reduction optimization for division and modulo
operations as applied in accessing arrays in a multilevel
store.

An experimental compiler is described in the paper by
Allen et al. The objective of this work is to produce a
compiler skeleton that can be tailored to a wide class of
programming languages, as well as to different target ma-
chines. The compilers can produce highly optimized out-
put if desired. To achieve this flexibility, a fundamentally
different approach to compiler design has been devised.

Extensions to PASCAL, previously reported by La-
fuente and Gries, were intended to facilitate the definition
of user-computer interactions to take place via an alpha-
numeric display terminal. Implicit in that approach was
the requirement of processing nonprocedurally specified
rules governing complex interdependencies in these inter-
actions. The current paper describes techniques to cope
with this problem, a strategy which is applicable to a vari-
ety of interactive systems.

The first paper in the language group, by Denil, de-
scribes a system designed specifically for small business-
men. The user is provided with application programs,
which he can tailor, if needed, to his particular require-
ments. Essential information about the program is com-
municated to the user via a display screen, and the user is
guided by the system in modifying his program.

IBM J. RES. DEVELOP. » VOL. 24 @ NO. 6 ¢ NOVEMBER 1980

Another specialized language is that described by
Sauer et al.; its purpose is to produce queuing network
models. The current system provides significantly ex-
tended capabilities over an earlier one by the same re-
searchers.

Becerril et al. introduce the concept of g-chains. One
result is that they have been able to extend and formalize
work originally reported by Urschler on the automatic
structuring of programs.

Finally, Lomet describes a data definition facility that
enables users to define their data in a way that is consis-
tent with a value-oriented storage model used for the
primitive data of the base language. This value-oriented
storage model is a refinement of the model that Lomet
believes intuitively underlies such familiar languages as
FORTRAN and PL/I.

The order chosen for presenting the papers was influ-
enced somewhat by the amount of specialized knowledge
required of the reader. Thus, the paper by Scarborough
and Kolsky provides entry into the following papers re-
lated to optimization. The final two contributions in the
issue are somewhat more theoretical.

S. S. Husson
Editor

659

PREFACE




