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Integral  Point-Matching  Method  for  Two-Dimensional 
Laplace  Field  Problems  with  Periodic  Boundaries 

An integral  point-matching  technique is applied  to  two-dimensional  Laplacianfields  between  periodic  boundaries. This 
formulation  leads  to  an  algorithm  that  reduces  the  size of the  matrix,  economizing on computer  workspace  and  inversion 
time.  Several  example  problems  solved on an APL terminal  system  are  included. 

Introduction 
Extensive  literature  exists  on various  techniques for field 
computations which are  associated with the  equations of 
Laplace  and Poisson. For example, in a recent group of 
papers  devoted  to  LSI packaging analyses, a survey was 
included on computational techniques  as applied to  the 
field problems in integrated circuits [I]. In addition to 
wide coverage in the bibliography of this paper,  some top- 
ics  included in the  same  issue  are finite element methods 
[ 2 ]  and  matrices resulting from symmetric field problems 
[3]. Elsewhere [4], reviews and comparisons are  made 
among various  algorithms used in direct methods.  In  the 
finite difference methods,  the partial differential equations 
are solved on subsectioned networks of regular and irreg- 
ular  regions [5, 61. Similarly, in finite element methods 
the field must  be  discretely  lumped in grids and nodal 
points so that  the  conservation laws can be applied at 
each nodal  point [2]. All of the grid  information is a part of 
the  data  to be  handled in the numerical computations. 

In  another  approach, integral equations, instead of par- 
tial differential equations, may be  used to  develop  numer- 
ical techniques [7, 81. The integrands of these  equations 
consist of known  kernels and generally  unknown source 
charges; determination of the  source charges is the  essen- 
tial part of the numerical solutions. 

In  the  absence of distributed  sources  (or charges) in a 
field with  known boundary conditions  (the Laplace  prob- 
lem), the only source  charges to be determined are bound- 

ary  charges.  Therefore, in an integral method, only sec- 
tioned parts  are  the  boundaries, regardless of the field 
size. This means far less data  need be  handled in compu- 
tation compared  to  either  the finite difference method  or 
finite element method. This  makes  the integral methods 
attractive  for small computer  systems including inter- 
active terminals which offer smaller  storage capacities but 
almost instant  turnaround  output. 

In  practical  situations, many field problems  involve 
lengthy  boundaries that  are  periodic, such as magnetic 
fields between  toothed poles of stepping motors [9] and 
electric fields between  conductors regularly spaced in in- 
tegrated circuit boards.  If, in a straightforward manner, 
enough periods  are  to be taken in the analysis so that  end 
points  do  not affect central  periods, a large number of ele- 
ments would be required, resulting in a large matrix. 

A better  approach is to  incorporate  the periodic nature 
of the solution into  the formulation and  reduce  the result- 
ing matrix corresponding  to  one period of the  boundary. 
This not  only  facilitates use of an interactive  terminal  but 
also gives  more accurate  results, making the  technique 
also  suitable  for medium-size computers. Basically, there 
are  two  approaches  to  take.  In  the first,  only one period is 
taken in the integral formulation. Since  the  ends of this 
period  must  be  included in the closed path of the line in- 
tegral, this results in added boundaries to be sectioned, 
and therefore  added conditions (which are periodicity 
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conditions). In  the  second  approach, general formulations 
are  carried out to many periods. And then, periodic  con- 
ditions are imposed on  the  surface charges. This  avoids 
introducing fictitious boundaries  and results in a reduced 
matrix  size  corresponding to  the number of elements in 
one  period without end lines. 

In this paper,  the previously  mentioned  more general 
formulations [lo] are modified for such  special appli- 
cations  to achieve  reductions in data  and in required  stor- 
age capacity.  Several  examples  are  presented  to  indicate 
the usefulness of the formulation. 

Formulation 
There  are several  known approaches  for numerical solu- 
tions of integral equations [7, 81. For  Laplace  problems, 
the  methods essentially determine  the surface charges 
from the boundary  conditions [lo]. In  one  method,  the 
surface charge in each  sectioned boundary  element is  as- 
sumed constant  over  the  element. This allows for  each 
integration to be carried out  on  the kernels  only over  the 
small element.  Then,  these unknown  surface charges, 
each representing an  average value over  the  respective 
element,  are determined  through matrix inversion. The 
detailed  general  formulation is provided in Appendix  A. 
In this section,  an  extension  to periodic  boundaries is dis- 
cussed. 

Figure 1 shows a field between periodic boundaries. 
The  two opposing  boundaries may not be similar and may 
not have a vertical line about which  the field and bounda- 
ries are symmetric. But we assume  that  there is a com- 
mon periodicity, P ,  so that  the solution also  has  the  com- 
mon period, P .  The  ends of boundaries may meet to form 
a field between two loops,  as in motors, or ends may ex- 
tend to infinity, in which case  the  ends  are regarded as 
joined  at infinity. 

A  straightforward computational technique to  solve  pe- 
riodic boundaries requires  that we take several periods 
for  computation.  Then we use the solution of the  central 
periodic section, which is least influenced by the  end 
points. For simple geometries this  technique may be sat- 
isfactory. However,  for many practical geometries,  the 
technique  requires a large number of data points. As a 
result, it requires much  computation  time, even with a 
large computer  system.  Also,  the  accuracy of the  data be- 
comes questionable due  to round-off errors  and  the ef- 
fects of the end-point sources, which are usually large. 

We avoid  the above  problems by making use of the pe- 
riodicity of the boundary  sources and boundary condi- 
tions.  Returning to Fig. 1 ,  let us designate the periodic 
sections by Pa, P,,, P,, . . a ,  with Po being the  central one. 
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Figure 1 Periodic boundaries. 

Positive subscripts indicate those sections to  the right of 
the  central  section; negative subscripts indicate those  to 
the  left.  In  each  period,  the boundaries are divided into N 
sections AC,, AC2, . . ., AC,, of which some (AC,, . . ., 
ACJ are  on  one side  and the  others (AC,,,, . . ., ACN) on 
the  opposite  boundary.  Note  that it is not necessary  to 
have  an  equal number of sections  on both boundaries. 

We note  that  the boundary  conditions are periodic  with 
common period, P ,  so that  the solution is also  periodic. 
This  means  that values of ai, pi, and y i  of Eqs. (A12) and 
(A13)  of Appendix A in period Pa repeat  the  patterns in all 
other  periods. More  significantly,  the boundary  sources 
ui in Po also  repeat  the  pattern in other  periods.  There- 
fore, 
uIo' = u;*l) - ( 5 2 )  - 

- " '  
i = 1 , 2 , .  . . N ,  (1)  

where  the  superscripts designate the periodic sections. 

It can  be easily shown  that  the N independent equa- 
tions for u are, from (A14) and (A16), 

uj = yi i = 1 ,  2, . . ., N ,  (2) 

where,  from (A21), 

Thus,  the matrix is reduced  from  the size of many  peri- 
ods  to  that  corresponding  to  one period. Note  that  once 
the matrix elements e t )  corresponding  to  the  central  sec- 
tion Po have  been computed,  subsequent matrix elements 

follow immediately with translation of zj and zj+, by 
mP.  In  particular, if boundaries  are periodic in the x 
coordinate, only xj and x*+] are translated by mP,  which 
are  real  components of z's. 
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Figure 3 Parallel plate capacitor. 

Although in Eq. ( 2 )  the  inner summation is  shown  to 
extend  to infinity, in practice a finite sum is sufficient. The 
terms with nonzero integers of the sum index, rn, repre- 
sent effects of charges  placed outside  the  central  period. 
Thus,  the higher the  integer,  the lower the value of the 
terms,  and  the summation may be terminated at a reason- 
able  number. A practical way of determining  this terminal 
integer, of course, is to  check  the incremental change 
with  a stepped summation. It  is noted that  the size of the 
summation  does not affect the matrix  size and  has  no ef- 
fect  on  the inversion time. 

It is also noted that  these effects of charges outside the 
central period can be eliminated by introducing boundary 
lines on  both  ends of the  central period. The  equivalent 
charge distributions  are  obtained by imposing on  these 

boundaries  the periodic (or matching)  potentials and de- 
rivatives. The  charge  equation corresponding to  Eq. ( 2 )  
takes  the  form 
N+2K 1 eijuj = y i  i = 1, 2 ,  . ’ -, N ,  
i=1  

N+2K 

e;ui = 0 

1 t’iiUj = 0 

j=1 

N+2K i = N + 1, N + 2 ,  * . ., N + 2 K ,  ( 5 )  

j=1 

e ,  = ty, 

e ;  = *Jii) - q i i f K ) ’  

a*. a*. 
an an 

e‘;, = 2 (ii) - 3 (2i+K)’ 

where K is the  number of sections in each of the  end lines 
and in Eq. (5) indices j and j + K designate the  corre- 
sponding elements facing each  other having common po- 
tential and derivative due  to  the periodicity. Note  that 
this  yields a matrix  size  larger than  that of Eq. (2) by 2 K .  

Once  boundary  charges, u ’ s ,  are  determined, (A7) 
through (A10) are used to  compute field quantities,  where 
the  summation integer extends  to all charges  inside and 
outside  the  central  periods. Again, in these  computations, 
the  summation would be  truncated  at  the  reasonable dis- 
tances  as  the following examples will show. 

Examples 
In  order  to  demonstrate significant features,  the method 
developed in the  previous  two  sections was  programmed 
usihg APL [I  I]. The program flow is shown in Fig. 2 .  
First  the  computer terminal requests input data:  bound- 
ary  points and boundary  conditions.  The input data  are 
used to  solve  for  sources, u’s (A23) .  With the knowledge 
of source  values, we are then able  to determine  potential 
and field quantities  at  any specified  point using Eqs. (A7)- 
(A10). 

Example I :  a  parallel plate capacitor 
Figure 3 shows a section of an infinitely large  parallel 
plate capacitor.  This  example  was  chosen  because  its so- 
lutions are well known, enabling us to gain insight into  the 
simplicity of data input and  the  rate of convergence. 

We consider  the plate to  consist of infinite numbers of 
periodic sections of the unit element shown in Fig. 3. We 
want to find out how many  such  elements  are  required  to 
obtain  reasonably  accurate  results.  For  the  example,  the 
unit element was  divided into  ten  equal segments (five on 
the  top plate and  the  other five on  the lower plate).  There- 
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Figure 4 (a) Potential  distribution along x = 0.5 of parallel plate capacitor  (Fig. 3) with various numbers of elements in unit length 
(period). (b) Electric fields d+/ax along x = 0.5 of parallel plate capacitor. (c)  Electric field d+/dy along x = 0.5 of parallel plate capacitor. 
(d) Capacitance of parallel plate capacitor  as a  function of element numbers in unit  length (period). 

fore,  only 12 coordinate  points, I O  boundary  values  and a In Figs.  4(a),  (b),  and  (c)  we  show  values  for  potential 
little  other  input  information,  are  entered  into  the  corn- and  electric  fields  at x = 0.5 as  a function of the  number  of 
puter.  The  top  plate is set  at a potential of 0.5 unit  and  the periods, N,, used in the  computation.  This  line is chosen 
lower  plate  at -0.5 unit. because  this is the  worst-case  situation. In Fig.  4(a)  the 625 
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Figure 5 Cylindrical  conductors  above  ground  plane. 
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Figure 6 Effect of ground-conductor  separation ( L ) .  

deviation of potential is significant with the  central period 
only ( N ,  = 1 or M = O), which is the condition for a finite 

626 plate.  However, with increasing N ,  the potential  value 

quickly converges  to  the  true  one (4 = y - 0.5). Figures 
4(b) and 4(c) show the x and y components of the  electric 
field. As  can be  seen,  the  convergence is not as rapid as in 
the  case  for  the potential. This is expected since the elec- 
tric field is a  potential gradient.  For N ,  greater  than 7, 
both  components  approach  the  true  values (E ,=  0 and 
E, = -1). 

For  the potential as well as  the  electric fields, the  accu- 
racy  is  poorer  near  sources. This is so because the  source 
at  each segment is assumed  to  be  constant  instead of a 
continuously  varying  value. Therefore, we expect  that 
field values will be more sensitive  to approximations near 
the  boundaries. Figure 4(d) shows  the  capacitance of the 
unit element  as a function of N,. The  capacitance  con- 
verges  rapidly to  the  true  one (C = 1) .  With N ,  equal  to 
only 3 elements,  the  capacitance  deviates from 1 by less 
than 0.007. 

0 Example 2 :  resistance  calculation 
Figure 5 shows a series of cylindrical conductors  above a 
ground  plane.  Both the  conductors and the  ground  are 
placed  in  a  resistive  medium. We want to  compute  the 
resistance  between  one of the  conductors  and  the ground 
when a unit  potential is applied to all of the  conductors. 
We also  want  to find out  the effect of the  conductor- 
ground  separation  on  the  resistance. 

A  straightforward conventional  approach  requires  that 
at  least  three  conductor  boundaries  and a section of the 
ground above  the  three  conductors  be  used in the compu- 
tation. Then  the  resistance of the  center  conductor (de- 
fined here  as  the  inverse of the  net  current flow from the 
conductor) must be  computed.  Obviously,  this  approach 
requires a large number of boundary  points resulting in a 
large matrix for  inversion. Also, the  accuracy of the  re- 
sulting solution is open to question. 

Using the  technique  presented in this paper,  however, 
the number of boundary points required is significantly 
reduced  since we  need  to specify the  boundary points of 
only one period. Therefore,  our  technique  enables prob- 
lems of this  complexity to be  solved  with a smaller com- 
puter  workspace.  Also,  the  data  input  becomes simpler, 
making it more attractive  to  users. 

Figure 6 shows  the effect of ground-conductor separa- 
tion (L)  on  the  resistance.  For L greater  than I ,  the resis- 
tance  is very much a linear  function of L. Its value is sig- 
nificantly different from  that of a single conductor  above a 
ground  plane, the solution for which is well known. If we 
had used the  latter value to  approximate  the periodic 
problem discussed in the  example,  there would have  been 
a  serious error. 
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A feature of our technique is that  once  the  source 
charge is obtained, field parameters  are easily  obtained by 
simple computation. Figure  7 shows  the  current density 
distribution around  the  conductor with L equal  to 3. This 
is obtained using Eq. (A10). 

For this example,  we  have divided the ground  plane 
and  conductor  into 26 and 40 equal  segments, respec- 
tively, resulting in a  matrix  size of 66 by 66. Eleven peri- 
ods  are used for the  computation,  and  the  CPU time to 
obtain  the  source  charges was 58 seconds with the IBM 
Systed370 VW168 system. 

Discussion 
As the previous examples have demonstrated,  the  APL 
algorithm in conjunction with the  computational method 
presented in this paper provides a convenient means to 
solve many practical  periodic boundary problems of arbi- 
trary  geometry.  The algorithm is interactive, and the 
amount of input data is small since  only boundary points 
and  boundary conditions need  be specified. It  can handle 
multiple boundaries which are  either closed or open. 
Since the  boundaries of only one period have  to  be  en- 
tered,  the size of matrix  to be  solved is significantly re- 
duced. 

Although the  examples  presented  happen  to be sym- 
metric as well as periodic, symmetry is not  prerequisite 
for  the  present  formulation. Figures 8 and 9 show a modi- 
fied conductor  and a step-motor configuration showing 
asymmetries. If,  as  an alternative to this method, only 
one period is used in the  formulation, additional  side 
boundaries  must be introduced  with  periodic  conditions. 
As shown in Eqs. (4) and (5 ) ,  this increases  the matrix 
size and  introduces  errors near the  ends. Our present for- 
mulation circumvents  such  daculties. 

The amount of workspace required to  invert a matrix of 
size N is about 25 N 2 .  Therefore,  the reduction of the 
boundary  points by a factor of 3 implies an  order of mag- 
nitude  reduction in matrix  size. Therefore,  the  CPU time 
is considerably less,  and the workspace size  requirement 
is less  severe. We have found that many practical  prob- 
lems could be solved using less than 100 boundary seg- 
ments with satisfactory results. Unfortunately, in order  to 
invert  a  matrix of this size,  the  active  workspace still has 
to be at least 250K bytes. This limits the  technique  to only 
those who  have access  to large computers.  However, 
with the  accelerating  computer  technology, more  people 
will be able  to afford or to  access a large system in the 
future. 

The graph in Fig. 10 shows  some  indication of the  CPU 
time  required to  obtain  source  charges  for a given number 
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Figure 7 Current  density distribution around  conductor. 

Figure 8 Cylindrical conductors  above  uneven ground  plane. 

Figure 9 Stepping motor  teeth  at  nonsymmetric displacement. 627 
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Figure 10 Computation time on an APL system for inversion of 
N X N size matrix. 

Figure A1 Coordinates for two-dimensional Laplace  problems. 

of boundary elements.  This  requires a number of matrix 
operations including  matrix  inversion. For  example, it 
took 65 seconds  for  the  APL  system  on  the IBM 370/168 
to obtain source  charges  for a  problem whose boundary 
was divided into 70 segments.  Because of this  reasonable 
CPU time, many practical problems  can be  handled 
within a day or two,  and  we have been  able  to  assist prac- 
ticing engineers  with a quick  diagnosis of a  problem, 
pointing out a  key  design parameter in optimization work. 
Some of the design problems  that we have  encountered 
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are in the  area of stepping  motors  and print heads used in 
nonimpact printers. 

For the  future, we note  the proliferation of small port- 
able computer  systems having limited workspace but  pro- 
viding plenty of CPU  time.  In  order  to  adapt  the al- 
gorithm to  such  systems,  we need to incorporate a mathe- 
matical technique  such  as  the matrix  partitioning  method. 
This reduces  the  workspace  requirement  at  the  expense 
of computation time. However, this is not a problem  with 
a standalone  system  dedicated to one problem at a time. 
Another  area of future  work is to  extend  the algorithm to 
handle multiple dielectric  boundaries  and  Poisson’s  equa- 
tion. 

Appendix  A: Mathematical  formulation 
Although the  mathematical formulation is fully given else- 
where [12], a review is  presented  here  for  completeness 
and  convenience in extending  the method to  the  present 
application. 

The partial  differential equation and  typical  boundary 
conditions that define the  Laplace fields are 

$4 = 0 (All 

and 

along the  boundary. 

Typically, +(x, y ,  z) represents  the field potential  and 
v+(x, y ,  z) the  gradient  vector with a+/an indicating the 
gradient  normal to a boundary surface.  The boundary 
condition  (A2)  includes the Dirichlet  condition (a = 1, 
p = 0), Neumann  condition (a = 0, p = l),  and imped- 
ance condition (a  = 1, y = 0). 

Alternative to  (Al),  the field can be expressed in an 
integral form  with  equivalent boundary  sources (or 
charges). Thus  the  potential at  position vector r is given 
by 

where u is the  source (or charge) density along the bound- 
ary defined by  position vector r’ and G is the kernel or 
Green’s function with the surface  integral  extending over 
the  whole boundary.  In  particular,  for two-dimensional 
problems (Fig.  AI), 

K 
+(x, y )  = 1, u(x’, y ’ )  In dc , 

4 (x - X ’ y  + ( y  - y ’ y  
(A41 
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tegral. The  condition imposed in the a priori unknown 
boundary source u(x', y ' )  is  that (A4) must satisfy a 
boundary  condition such  as (A2). 

In general, an  exact solution for u(x', y ' )  is not always 
possible. However, if the line integral is replaced  by  a 
Riemann sum,  an  approximate solution can be  obtained in 
a straightforward manner.  To this end,  boundary C is first 
sectioned into ACl, AC,, . . ., AC and, assuming u is con- 
stant  over  the small subsections (Fig. A2), 

+(x, Y )  = 2 uTi In dc 
v K 

i = l  /Act .\/ (x - x')2 + ( y  - y ' ) 2  

= 1 UiTi(X? Y ) ,  
i = l  

where ui is  the  value at the midpoint of AC. 

Evaluation of line integral 

K 
TJx, y )  = In dc L 4 (x - x'), + (y - y'), 

is achieved  through  complex  variables  z(x, y )  and  func- 
tion W ( z )  defined by 

K 
, dz' 

1 

'i 

= - [ ( z  - ziC1) In ( z  - zi+J - ( z  - z i )  In ( z  - z i )  

+ (z i+] - zJ(1 + In K)1, (A61 

where ui is  the unit vector parallel to AC, which extends 
from zi  to on the complex z-plane. With the function 
W J z )  defined as  above, it can  be  shown  that [13] 

4(x, Y )  = 1 u i q i ( x ,  Y )  = 1 ui Re [ W i ( z ) l ,  (A71 

where Re [ ] stands  for  the real part of a complex func- 
tion.  Similarly, 

v Y 

i= l  i=1 

Here ui is normal to n as shown in Fig. A2. Im [ ] signi- 
fies  the imaginary part,  and 

aw.(z) 1 z - z i f l  
az  

- In ___ 
ui z - zi 

I" 
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Figure A2 Sectioned boundary on complex plane. 

The boundary condition (A2), when rewritten  for  the 
sectioned boundaries, is 

ai+i + pi- - yi  i = 1 ,  2, . . ., N ,  (A121 

where 4i = 4(ii), and ii is the midpoint of ACi or ii = 

1/2(zi + zi+,). Thus,  the  source mi's are determined  ap- 
proximately by substituting (AS) or (A7) and (A10) into 
(A12), giving 

a+, - 
an 

or 

or, in  matrix form, 

[e16 = 7 or 

6 = [e]-'y, 
where 

e, = CuiTj(ii) + pi " (i i j ,  
av. 
an 

629 
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The terms 5 and 7 are column matrices ( u ~ ,  uz, . . ., u,,,) 
and (yl, yz ,  . . ., yN), respectively. The  complex functions 
Wj and, aWj/az are given by (A6) and (A1 1) and it is note- 
worthy that 

Wj(ii) = W{i ;  zj, zj+l}, 

a w. aw - (ii) = - {ii; Zj, zj+l}, 
az az 

e, = e{ii; zj, zj+l}. 

Once u;s have  been  determined,  the potential c$ and 
gradients &$/ax and ac$/dy are  obtained  from (A7),  (A@, 
and (A9). 

The  above  formulation  has  been  incorporated into a set 
of compact APL programs  which cover a  broad range of 
two-dimensional problems with arbitrary boundaries [lo]. 
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