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Fleshing Out Wire  Frames 

Given  a  polyhedral  object, its wire  frame is the set of its edges and  vertices. I n  this  paper we present an  algorithm  which 
discovers all  objects  with  a given wire  frame.  This  algorithm,  which has a number of applications  to  mechanical design 
besides being of mathematical  interest, has been implemented  and has performed well  on complex objects. 

1. Introduction 
The application of computers  to problems in mechanical 
design was first recognized over  twenty  years ago [I]. 
Since that time much  work has been done  on  the develop- 
ment of production systems both for  the  entry of a design 
into a computer  data  base and for  the  use of a mechanical 
design data  base in design  analysis and in manufacturing. 

In the field of data  base  entry,  computer drafting sys- 
tems allow a  designer to  interact with a  display or tablet 
to  produce drawings of objects, generally in the classic 
manner of two-dimensional  projections of the edges of the 
three-dimensional object. Some systems  also provide the 
capability of representing  data in three  dimensions;  for 
example,  depth  coordinates may be added  to  the  elements 
of a two-dimensional  view,  corresponding features in 
each of several  views may be related,  and  isometric views 
may be constructed.  These  computer drafting systems 
have been engineered to very high levels of performance 
and can greatly enhance  the productivity of a designer. 
As well as producing  drawings of the  edges of objects, 
computer drafting systems exist which allow  the  descrip- 
tion of the surfaces of objects  as  smooth  curves  or 
patches splined together  at their boundaries; in general 
these  surfaces  are  represented by means of a discrete 
mesh  superimposed on  the surface. 

for  example,  heat flow [4 ] ,  the  constraints  between ob- 
jects can be derived  and mechanisms can be  simulated 
[5 ] ,  numerically controlled machine tool  tapes  can be gen- 
erated  to allow manufacture of a part [6], and  robot mo- 
tions to assemble parts  can be generated [7, 81. In general 
the full automation of these applications of the design 
data base  requires  three-dimensional  volumetric informa- 
tion about  an  object,  rather than just a  description in 
terms of edges and surface  mesh facets. At present  the 
volumetric  form of the  data  base is considered  to be 
rather diflicult and  expensive  to  acquire,  and  the analysis 
data  are  generated in a  computer-assisted manner.  For 
example, in the  case of numerically controlled  machine 
tools, the  path of the  cutter may be entered  over a draw- 
ing at a graphics terminal. 

This  paper  presents  an algorithm for automatically 
bridging the  gap between these  two fields of computer ge- 
ometry,  that  is,  from  an object  described in terms of its 
edges (a wire  frame) to a volumetric  description in terms 
of solid material, empty  space, and the topology of sur- 
faces and edges.  In its present  form,  the algorithm is re- 
stricted  to  objects whose  edges are straight  lines  and 
whose faces  are  planar; since the algorithm is a topologi- 
cal algorithm, it could be adapted  to nonplanar surfaces. 

Computer-based systems  are also  used in the analysis Quite apart  from  its practical applications,  the problem 
of designs and in the manufacture and assembly of ob- is of some  theoretical  interest. An edge  description does 
jects.  For  example,  parts can  be checked  for interference not necessarily represent a  unique object,  and an al- 
[2, 31, finite element methods may be used for analysis  of, gorithm  should  be able  to  detect ambiguities, enumerate 
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solutions,  and  accept  user decisions as  to which solution 
is required.  As with many  geometrical problems,  the 
simple cases  are straightforward and  the complex cases 
are extremely difficult; for example,  many pathological 
cases can exist-vertices and  edges contacting  faces, and 
coplanar opposing faces meeting with edge contact. 

Although the  literature on geometric modeling is exten- 
sive [9] and  growing rapidly, few authors  have chosen to 
represent  objects  formally. They are  therefore generally 
unable to prove the  correctness of their  methods,  to 
handle  the full range of pathological cases  and ambiguities 
that  occur in practice,  or even to  describe  objects pre- 
cisely. However,  the PADL project [IO] is based on point 
set topology and its architects  are  able  to  prove the  cor- 
rectness of algorithms for computing the  set  operations of 
union,  intersection,  and difference between polyhedra. 
Other workers have used  Euler operators [9] to  ensure 
correctness of topology as an object is constructed.  Ide- 
sawa [ 1 I ,  121 describes a  wire  frame  reconstruction 
scheme  as part of the general problem of constructing sol- 
ids from many 2-D projections.  The method  used is based 
on finding sets of coplanar edges  and fitting them  together 
to form solid objects;  however,  the  reconstruction 
method is not based on a formal description of objects 
and  does not handle  ambiguities or many of the pathologi- 
cal cases.  Experience in modeling has taught us that  even 
though pathological  relationships among  faces,  edges, 
and vertices may not  be physically realizable, they do oc- 
cur frequently in the stylized world of geometric mod- 
eling,  and  a general-purpose modeling system should be 
able to handle them.  Lafue [I31 also describes a program 
for  generating  solids  from 2-D projections, but  requires 
that  objects be described in terms of faces  rather than 
edges;  further,  faces  are described in a stylized manner 
with extra edges to permit  description of holes. 

Other  authors  have considered the machine vision 
problem of recognizing  polyhedral objects from in- 
complete edge descriptions [14-161. In this  situation local 
ambiguities can exist  and  are  resolved, if possible, by 
global propagation. The propagation is performed by la- 
beling areas,  whereas  the algorithm described in this pa- 
per  handles  ambiguities in terms of volume  regions. The 
use of volumes rather than areas leads to a much  simpler 
handling of the process of labeling. 

This  paper is divided into four sections. Section 2 gives 
formal definitions of the  concepts needed in order  to be 
able to explain the algorithm and describes  some of their 
consequences.  Some  standard topological notation is dis- 
cussed in the  appendix. Hocking  and  Young [ 171 may be 
used as a reference  for these  terms. Section 3 describes 
the  stages of the algorithm,  which has been coded and has 

performed well even on complex objects.  Section 4 gives 
a  number of examples which illustrate the  performance of 
the algorithm. 

2. Basic concepts 
The  concepts defined in this  section are based on some 
fundamental  topological  ideas which are  described in de- 
tail in [17] and to a lesser  extent in the appendix. 
Throughout the  paper  the  standard topology in I R 3  and  the 
induced topology on  subsets of R3 are  assumed. Vertices 
refer to points in I R 3  and edges  refer to line segments de- 
fined by  two points in IR3 .  The  approach  used in this sec- 
tion is to define faces,  objects, and  wire frames, and  then 
describe  the  consequences of these  definitions. 

De&nition I 
A fuce,  f, is the  closure of a nonempty,  bounded,  con- 
nected,  coplanar,  open (in the relative  topology) subset of 
I R 3  whose boundary  (denoted by af) is the union of a finite 
number of line segments. P, is used to  denote  the unique 
plane which contains  f. 0 

Dejinition 2 
An object, 0, is the closure of a nonempty,  bounded, 
open subset of I R 3  whose  boundary  (denoted by do) is the 
union of a finite number of faces. 0 

The wire frame algorithm uses many geometric  facts 
about  objects.  However,  rather than define an object as 
being a set of points satisfying a long list of properties, we 
have preferred to offer a  very simple definition of an ob- 
ject and then  prove  that it has all the desired  properties. 
Thus from the definitions above it  is easy  to  see  that  the 
“cube,” {x, y ,  z E IR‘IO 5 x 5 1 ,  0 5 y 5 1 ,  0 5 z 5 I} is 
an  object and that {( 1 ,  y ,  z )  E R310 5 y 5 1, 0 5 z 5 l}  is 
one of its “square”  faces. Starting off with  open sets 
means that faces  and  objects  have nontrivial  interiors. 

Notice that it is not assumed  that  an  object is the clo- 
sure of a connected  set. This allows objects  that consist of 
disjoint “solids”  or  even  objects which intersect in edges, 
etc. One can argue that this  last case, illustrated in Fig. 1,  
does not represent a “real”  object, but in practice all 
sorts of strange objects can appear.  Thus, we decided to 
handle  the  most  general case possible. Furthermore, this 
generality does not exact any penalty other than  creating 
a larger number of solutions. 

Another point worth noticing is that Definitions 1 and 2 
allow many different representations of the boundaries of 
faces and objects by line segments and  faces (respec- 
tively). However, canonical representations of the 
boundaries  can be defined which correspond  to one’s in- 
tuitive  notions about  such things. To get to  these repre- 
sentations it is necessary  to introduce several additional 
concepts. 583 
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example, it  is not clear  that V(0) is finite. The  reason for 
keeping the definitions so general is that it  is fairly easy  to 
check  whether  the  concepts  here include a particular 
class of entities. 

It can be shown that  V(f),  E(f),  V(0),  and  E(0)  are all 
finite. V(f) and E(f) yield the intuitive representation o f f  
which will be described more fully below. V(0)  and E(0) 
do not quite  represent 0, since the  faces of 0, which have 
not  been defined so far,  are  needed. Before  getting  into 
the definition of the  faces of 8, the  nature of faces is first 
described in somewhat  greater detail. To do this an addi- 
tional concept is needed. 

Dejinition 4 
A Z-cycle is a  collection of coplanar line segments  {el, 
. . ., ek}  in R3 having the following  properties: 

1. The intersection of two  distinct  elements  e,  and e j  is 
either  the  empty  set  or a  point  which is an  endpoint of 
both line segments; 

2 .  Every point of I R 3  is the endpoint of a nonnegative, 
even number (in most cases 0) of the  ei. 0 Figure 1 An object exhibiting various kinds of intersections. 

In  order to be able to give a complete definition of a face, 
it is necessary only to  describe what is meant by the in- 
side and outside of a 1-cycle.  A 1-cycle has an inside (out- 
side) if there is a bounded  (unbounded),  connected,  open 
set  whose boundary is the given  1-cycle.  A  1-cycle may 
lack an inside or an outside,  or may have them both. 

Dejinition 3 
(a)  Let f be a face.  The vertices off ,  V(f), are defined to 

be the  set of all points  for which two noncollinear line 
segments,  contained in df, can be found  whoze  inter- 
section is the given point. 

(b) Let f be a face.  The edges off ,  E(f),  are defined to be 
the  set of all line segments  e, contained in df, satis- 
fying the following conditions: 
1 .  The endpoints of e  belong to V(f); 
2 .  No interior  point of e belongs to V(f). 

I (c) Let 0 be an  object.  The vertices of 0, V(6),  are de- 

f, C d 0  can be found such  that fl n f, n f, and Pfl n P, 
n Pfs are both exactly  the single point p. 

(d)  Let 0 be an  object.  The edges of 0, E(0), are defined 
to be the  set of all line segments e, contained in d 0 ,  
satisfying the following conditions: 
1. The  endpoints of e  belong to  V(0); 
2 .  No interior  point of e  belongs to  V(0); 
3 .  For  every point p of e ,  two  noncoplanar faces  can 

be found,  f,, f, d o  such  that p E f, n f,. 
(e) Let 0 be an  object.  The wire frame of 0, WF(0), is 

~ fined to be the  set of all points  p for which faces f,, f2, 

584 defined to be the  ordered pair [V(0), E(B)]. 0 

Some  examples are  discussed following Theorem 5. 
Whenever a point is said to be  inside  (outside)  a  1-cycle, 
U,  it  is meant that U has  an inside  (outside) and  that  the 
point in question belongs to  some bounded (unbounded), 
connected,  open  set whose boundary is %. Actually, if a 
1-cycle, Ce, has an inside (outside),  there is a component 
of the complement of V whose  boundary is U and which 
contains all other  bounded  (unbounded),  connected,  open 
sets whose  boundary is Ce. 

Theorem 5 
Let f be a face.  Then 1-cycles, U,, Ul, . . ., (ek ( k  2 01, 
contained in d f  can be found such  that 

2 .  Face f consists of all points  inside U, and outside 
k 

Ui (i 2 l) ,  and the  points of u (ei; 
i=0 

3 .  The 1-cycles are all disjoint. 0 

A  typical face is pictured in Fig. 2 .  Note  that  the bound- 
ary  can  intersect itself at various  points such  as  v,,  vI6, 
and v18. The  face in Fig. 2 can be defined in terms of three 
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I-cycles: Eo (traced out by following the  sequence of ver- " I O  

tices  vlvB . . . vsv,,v,v,,v,,v,,v,), %, (traced  out by 
~ 1 4 ~ 1 5 ~ 1 6 ~ l l ~ 1 8 v 1 9 ~ z o ~ l s v 1 6 v 1 4 ) '  and g, (traced out by v21v22 
. . . vz8vZ1). Thus  the  face in Fig. 2 consists of all points in 
the inside of Z0 and in the  outsides of E, and gZ, plus the 
points actually belonging to go, %,, and EZ. Note  that  the 
points vB,  vl, and v,, are  collinear, but by the definition of 
E(B), and v,V,, actually  belong to  E(B),  but vzvll 
does  not.  Note  also  that not every I-cycle  has an inside 
(%,, for  example, fails the  connected  set  requirement). 
Similarly,  not every I-cycle has  an outside (Z0, for  ex- 
ample, again fails the  connected  set  requirement). "3 

"9 

The  faces of an object  are now defined. Again, the defi- 
nition turns out to be rather straightforward, and it can be 
shown that  the  faces defined in this way actually turn  out 
to be the things one would like to call faces  anyway. From 
the following definition it  is clear  that  the  faces of an  ob- 
ject  are really determined by the object rather  than by any 
particular representation of the  object or its boundary. 

"4 

Dejinition 6 
Let  o'be an object.  Thefaces of 0, F(B),  are defined to be Figure 2 A typical face 

the closures of the connected  components of a 0  - 
UE(0). 0 

A  number of results hold true  for  the  faces of an  object. 
Some of the  important relationships are summarized in 
the following theorem. 

Theorem 7 
Let 8 be an object  and F(0) = {f,, . . ., f,}. Then A primitive object is an  object whose  interior is con- 

To give the  reader  an idea of what objects look like in 
this model, two additional concepts  are needed. 

Dejinition 8 

1. 

2. 

3.  

4. 

5 .  

Ill 

ao = U fi; 
i = l  

Ill u E(fi) G E(8)  U r, where r is the  set consisting 

of  all line segments which are unions of elements of 
E(O); 

i = l  

,n u V(fi) c V(C); 
i=l  

Any face f C a 0  for which E(f) C E(0) U r, where r is 
as in (2)  above, is the union of elements of F(O); 
The intersection of two distinct elements of F(8) is a 
union of elements of E(0) and subsets of V(0). 0 

nected. 0 

The key point of Definition 8 is to  prevent problems 
caused by the peculiar types of intersections  illustrated in 
Fig. 1. In that figure, there  are  three primitive  objects: a 
cube and two  triangular  prisms. In general,  an object  can 
be decomposed  into primitive objects which do not have 
any  2-dimensional  intersections between  any two of 
them. 

Dejinition 9 
A 2-cycle is a  collection of faces  {fl, . . ., f,} in IR3 having 
the following properties: 

1. The intersection of two distinct elements fi and fj  is the 
union of the elements of E(fi) n E(fJ and a finite num- 

A few brief remarks about  (2) and (3) above  are in or- 
ber of points; 

der. Vertices of an object need not be  vertices of any 
face; r . g . ,  in Fig. 1 point  A is  in V(0) but is not a vertex of 

nt 

2. Every  element of u E(fi) belongs to  an  even number 
i=, 

any face of 8. Thus  the corresponding edges must be bro- of distinct faces. 0 
ken up into  smaller line segments  when  considered as 
edges of 0, but this  division  does  not occur if any  face is With all of these  concepts a  description of primitive ob- 
considered separately.  jects can  be  given in terms of 2-cycles. From this one  can 

. .  
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Figure 3 A typical primitive object. 

extrapolate to  objects in general. Note how similar the 
description is to  the  one given for  faces.  The definitions of 
inside and outside  are similar to  those defined for  l-cy- 
cles. 

Theorem 10 
Let 0 be a primitive object.  Then 2-cycles go, . . ., Yk 
(k 2 0)  contained in a 0  can be  found such  that 

1. aa= %,u (xl u . . . u (xk ;  

2. B consists of all points inside and  outside %; ( i  2 1) 
k 

and  the points in u ( e i ;  
i=O 

3. The 2-cycles are all disjoint. 0 

The term cycle is used below in situations  where it is 
clear from the  context  whether a 1-cycle or a 2-cycle is 
intended. Furthermore,  the  comment made to  the effect 
that not all 1-cycles have a well-defined inside or outside 
applies as well to 2-cycles, where inside  and  outside are 
defined in a  similar  manner.  It will be seen in the next 
section  that to  recover B from WF(6) it will be necessary 
to decompose  primitive objects  further. 

Figure 3  illustrates a typical object which is represented 
by two cycles  and Z1, The  exterior  cycle, %,, consists 
of 11 faces, while the interior cycle, E,, has 6. The identi- 
fication of the  faces is left to  the  reader. 

3. The  wire  frame  algorithm 
The goal of the wire  frame  algorithm is to  construct all 
objects which have a given  wire frame. It is a fairly elabo- 
rate algorithm with quite a few distinct stages.  The key 
stages of the algorithm are outlined  first below, followed 

586 by a more detailed description. 

Stages  of  the  algorithm 
1. Checking  input  data The input data  are  assumed  to 
be a valid wire frame,  that  is,  the  ordered pair of vertices 
and  edges [V(O), E(O)] (Definition 3(e), above). In this 
stage  the  input data may be checked  for various  kinds of 
errors,  such  as  nondistinct vertices and  edges.  The choice 
of actual  tests  performed is based on  the  source of the 
input data  and  the  expected  types of errors. 

2. Finding planar  graphs All planes  are found which 
contain at  least  two intersecting edges. For each distinct 
plane  a  canonical  normal is defined and a graph of copla- 
nar  edges formed.  For  each  vertex lying in a  plane, a cir- 
cular list of edges meeting that  vertex is created and or- 
dered  counterclockwise with respect  to  the canonical nor- 
mal. 

3 .  Calculation  of  I-cycles  and  virtual  faces In each 
planar  graph the  set of partitioning cycles is uncovered 
(bridges are ignored). The nesting relationships  among 
these  cycles  are  then  determined,  and all candidates  for 
faces found. These  candidates  are called virtual faces. 

4. Checking for  illegal  intersections  between virtual 
faces Two virtual faces  can  intersect illegally, i.e., so 
that both cannot be faces of the  real  object, in only two 
ways. These  intersections  are  detected in this stage  and 
appropriate  action taken: 

A type I intersection  occurs when an  interior point of an 
edge of one  pierces  an interior  point of the  other.  The 
former virtual face is deleted. 

A type I1 intersection  occurs when there is no  type I inter- 
section,  yet a vertex of one is in the plane of the  other 
and  there  exists a point that is interior  to  both. A 
decision on  the  faces  cannot  be made at this stage, 
and temporary additional edges called cutting  edges 
are  introduced.  These cutting edges  cut  some of the 
virtual faces  discovered in Stage 3 into  new, smaller, 
virtual faces. 

5.  Calculation  of  2-cycles  and virtual blocks For  each 
edge a circular list of the virtual faces containing that edge 
is created.  This list is ordered radially around  the edge. 
These lists are  used  to find all partitioning cycles of the 
virtual  face graph;  the nesting  relationships  among these 
cycles  are found and used to  uncover all candidates for 
solid regions. These  candidates  are called virtual blocks. 
Virtual  blocks are  bounded by virtual faces  and partition 
IR3. Any virtual face which does not  belong to  two dif- 
ferent virtual blocks is dropped. 

6. Constructing all solutions  for  the wire frame A deci- 
sion tree,  based  on virtual  blocks and using a  few  basic 
tests, assigns solid or hole state  to all virtual  blocks and 
thereby constructs all possible objects having a given 
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wire  frame. In this  decision process,  edges  and cutting 
edges are  treated  separately; cutting edges  are sub- 
sequently removed. 0 

The  reader should keep in mind that  the  above descrip- 
tion and the  one below are designed for  easy  comprehen- 
sion. As a result descriptions of each of the stages are 
given without  describing every detail of the  data struc- 
tures and  algorithms  used.  A  more  detailed  description of 
the various stages follows. 

Stage I :  checking  input  data 
The input to  the wire frame algorithm must be a valid wire 
frame, that  is,  the  ordered pair of vertices and  edges 
[V(6), E(O)] (Definition 3(e), above). This  input is as- 
sumed to be in the  form of a list of vertices with their 3- 
dimensional coordinates  and a list of pairs of vertices  to 
represent edges.  The wire  frame  algorithm  described in 
the following sections  requires  that  the input data repre- 
sent a valid wire frame,  that  is, a wire frame  that satisfies 
the definitions of edges  and vertices  given in Section 2. In 
this  stage tests  are performed to  check  the validity of the 
input data  and  to  obtain information to be used in later 
stages. The  exact  choice of which tests  to include de- 
pends on  the  characteristics of the input data and  per- 
formance trade-offs between  the  cost of performing a test 
first, the usefulness of information generated  for  later 
stages, and the desirability of reporting errors before in- 
curring the  cost of executing  the algorithm. These issues 
are not considered  further here. 

Two fairly straightforward tests  check  that vertices and 
edges are distinct and correctly  defined. Furthermore, 
throughout the  rest of the paper it is assumed  that  each 
vertex  and  edge has a  unique index. 

Another test  ensures  that  every  vertex belongs to  at 
least three  edges  (this is a consequence of the definitions). 
This test is organized so that a table is generated showing 
which edges belong to which vertex. This  table is impor- 
tant  and will be used below. 

A test which might also be performed at this  point con- 
sists of checking that  edges  intersect only at  endpoints, 
i.e., in elements of V(6'). Since two line segments can in- 
tersect only if they are  coplanar, this test  can also  parti- 
tion line segments into  coplanar  sets.  Furthermore, it can 
even  produce a list of edges which intersect a given plane. 
A  test  designed to  work  on  the idea just  put  forth could be 
fairly expensive in terms of computer time (worst  case 
O[E(B)']). Alternate tests  are possible which are  quicker 
but yield less information. 

Depending on  the  operating  environment,  one can omit 
any of the  above  tests or substitute  others if necessary. 

Stage 2: jnd ing  planar  graphs 
In this  stage all planes which contain  at  least  two inter- 
secting edges  are  found,  and  for  each plane  a  graph is 
constructed of the  edges and vertices in that plane. For 
each  vertex in W F ( 0 ,  a list is formed of the edges for 
which the  vertex  is  an  endpoint. For each noncollinear 
pair of edges in the  list,  the plane  containing the edge  pair 
is computed and a list  formed of distinct  planes at  the 
vertex (each  plane in IR3  is specified uniquely once a nor- 
mal and a distance  from  the origin along that normal are 
given). For each  distinct plane at a vertex, a list is formed 
of edges in the plane for which the  vertex is an  endpoint, 
and  the edges are  sorted  around  the normal in a counter- 
clockwise direction.  It is now straightforward to match up 
planes at  vertices  and, for each globally distinct  plane, to 
form graphs of the  edges and vertices  contained in the 
plane. In  practice,  the  number of edges  at a vertex is quite 
small so the  above  procedure  works  quickly. 

Thus,  the  output of this stage is a list of plane equations 
and,  for  each  plane,  graphs of the  edges  and vertices in 
the plane. 

Stage 3: calculation  of  I-cycles  and virtual faces  
In this  stage each  planar edge and  vertex graph is pro- 
cessed  to find all subgraphs  that could represent  faces in 
accordance with Definitions 1 and 3. These subgraphs are 
candidates for  faces of the  object  and  are called virtual 
faces. 

From the discussion in Section 2, it is clear  that virtual 
faces can  be located by finding 1-cycles and determining 
the various  nesting  relationships among  these I-cycles. 
To make the  discussion  clearer,  assume a  plane P and a 
graph  formed from  the edges  and vertices of B which lie in 
P. The  edges of the graph are of two  types: bridges  and 
nonbridges. An edge  is a nonbridge if and only if it lies on 
some cycle.  In principle,  bridges  must be removed. The 
remaining edges  can  then be  divided up  into 1-cycles 
which partition the plane  into  regions so that  any  face of B 
lying in P is one of the regions. In practice 1-cycles are 
found  and  bridges removed in the  same  operation. 

The algorithm proceeds by uncovering the  cycle  struc- 
ture of the  edges in P. The methods  used are now de- 
scribed.  It can be shown  that  the  complement of the  edges 
in P, r, is an  open  set with a finite number of open con- 
nected components.  The  number of connected  com- 
ponents is the  same if the bridges are  removed.  Every 
edge which is not  a  bridge  belongs to  the  closures, in fact 
boundaries, of two  distinct  components of r. Since the 
edges are  to  be used to form 1-cycles to  bound  the various 
components of r, some  conventions  are needed for con- 
necting edges  and  the  components  they belong to.  For  the 
time being bridges are ignored. 587 
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Figure 4 A typical graph in a plane. 

Let e = be  an  edge.  There  are  two ways to  traverse 
e: either from vi to  vj  or from vj  to vi. Suppose i < j ,  and 
write +e  to  denote e traversed  from vi to  vj and -e to 
denote e traversed  from  vj  to vi. Since P has a  normal 
defined on  it,  whenever  an edge is traversed in some di- 
rection, left and right sides of the edge can be defined as if 
one  were walking in the  same direction above  the plane in 
the positive  normal direction. 

Let rl and r2 be the  two  components of r whose 
boundaries (denoted by dr, and dr,) contain e. r, is de- 
fined to be on  the  left, traversing  e from  vi  to  vj if +e € 

dr,. In this case  -e E dr,. Similarly, if +e E dr,, then  -e 
E dr,. This is the  notation of algebraic  topology. 

At this  point it is probably helpful to illustrate  some of 
these ideas.  Figure 4 shows a  typical graph in a  plane. 
This particular graph  consists of 19 vertices  and 23 edges. 
The only bridges are e,,  e,,, and e,,. Note  that  the bridges 
are in the  closure of exactly  one  component and are  thus 
not in the  boundary of any  component.  In this case r has 
6 components  and  the following relations hold: 

ar, = +e,-e,,-e,-e,-e,-e2+ell-el,-e8-e7; 

dr, = -e,+ez+e,+e,+e,+e,,-e,,+e,,-e15-elg-e,,; 

dr, = +e2,+e,,+e,9+e,5+e16-e18-e17-el,; 

dr4 = +e17+e18-e1,; 

dl-, = +e,+e,-e,,; 

5aa dr, = +e,+e,,-e,,+e,,-e,. 

Now  consider  the  various algorithmic steps needed to 
determine  the information above.  First pick an  ordered 
edge, i.e., an  edge  and a direction,  say  +e,; now attempt 
to discover the  component, Ti, for which +el E dri, i.e., 
try  to  complete a cycle starting from v,. Start  at  v, and 
move to v,, pick the "next" (in a clockwise direction) 
edge at v,, which is -el3. At v5 pick +e,,  then  +e,,, then 
-e1,, then -e8, then  -e7,  then -e,. Edges are checked 
off as they are  added  to a cycle; if an  edge  occurs twice in 
the  same  cycle,  then a bridge exists (in this case  eJ. 

Whenever a bridge is found,  there is a cycle between  its 
two occurrences (in this  case  +ell-el2-eS-e7). This 
cycle (%,) is set  aside  and  the  search  resumed  at v,, ignor- 
ing e, which is removed from the  graph.  The  sequence  is 
now +e,-e,,-e,+e,,-e,,. The bridge detector now spots 
e,, as a bridge and  removes  it.  The  cycle  between  the  two 
occurrences is the  empty  cycle, so the  search is resumed 
at v,. Another cycle (%J is found as +e1-e13-e5-e4-e3-e2. 

Each cycle is now  examined to  see  whether  the com- 
ponent it bounds is inside  or  outside of it, i.e., every point 
of the  component  is inside or  outside  the  cycle.  In this 
case rl is outside  both %, and %,. This information is re- 
corded in the  cycle  tree described  below.  Also, for  each 
vertex  encountered,  the  cycles  to which it belongs are re- 
corded,  and  for  each  edge  used,  the  sense in which it is 
used. 

Now pick any  other edge which has not  been traversed 
in both directions and  start all over again. Suppose -e2, is 
picked now, giving the  sequence -e,,+e,+e, (e,, has al- 
ready  been  eliminated) +el3-el+e2+e3+e,,,  at which 
point the bridge e,, is eliminated, leaving the cycle 
+e,+e,+e,,-e,+e,+e,, which bounds a  bounded (inside) 
component. Data  are  recorded as  before and  the  process 
repeated  with another edge  which has not yet been  used 
in both senses.  In this  way the following cycles  are found: 

%,(out) = +e,,-e,,-e,-e,; 

%,(out) = +e1-el3-e5-e4-e3-e2; 

%,(in) = +e,+e,+e,,-el+e2+e,; 

%,(out) = +e,,-e,,-e,,-e,,-e,,; 

%,(in) = -e14+ezl+ezo+e19+e15+el,-e18-e17; 

%,(in) = -el6+el7+els; 

%,(in) = +e,+e,-e,,; 

%,(in) = -e,+e,+e,,-e,,+e,,. 

The notation "(in)" above shows that  when  the  cycle is 
traversed in the  direction indicated, the unique connected 
component of the complement in P of the  cycle, which 

GEORGE MARKOWSKY AND MICHAEL A. WESLEY IBM J .  RES. DEVELOP. VOL. 24 NO. 5 SEETEMBER 1980 



P always  lies to  the  left, is bounded.  Similarly,  “(out)”  de- 
notes the  case  when  the  cycle is unbounded. 

The  amount of checking  that  must  be  done may be  re- 
duced.  Suppose  that a bridge or generalized bridge ( i . e . ,  a 
connected sequence of bridges) runs  between  two dif- 
ferent  cycles % and %’ (the  sense of the bridge  must  agree 
with that of the  cycles).  Then  at  least  one of them is an 
(out) cycle.  Also, if (e is  an  (out)  cycle  and %’ is a  distinct 
cycle which intersects (e ( i . e . ,  has at  least a vertex in com- 
mon),  then it must  be an (in) cycle. 

Thus in the  above  example,  once VI and E2 are  both 
found to be  (out) cycles,  the  senses of the  other cycles are 
determined if they  are derived in the  sequence shown. In 
particular, (e3 is an (in) cycle  because it intersects (e2.  V4 is 
an (out) because it is joined by a bridge (ezz)  to  the (in) 
cycle (e3. (es and g6 are both (in) cycles  because they in- 
tersect  the (out) cycleg4, while V7 and V8 are  both (in) 
cycles because  they  intersect  the  (out)  cycle (e,. 

At this stage  the  cycles in P have  been  found, and will 
be  used to find candidates  for  faces, ; . e . ,  virtual  faces. 
The description of a face given in Section 2 and  the  con- 
cepts introduced here show that a face is given by its 
outer boundary  which is an (in) cycle, q0, and some finite 
number of disjoint (out)  cycles, VI, ( e 2 ,  * . ., (ek which are 
contained in the inside of eo and  have  the additional  prop- 
erty  that if any of them is contained  in the inside of any 
other (in) cycle V’, then (eo is contained in the inside of V‘ 
as well. This  leads  to consideration of the following tree 
structure. 

The  root is labeled  by P. A cycle is a descendant of an 
(in) cycle, V, if and only if it is contained in the inside of 
V. A  cycle is a descendant of an  (out)  cycle, V, if and only 
if it is contained in the complement of the outside of (e. 
The  tree  structure  for  the  cycles  derived  from Fig. 4 is 
given in Fig. 5. 

A  few observations aid in the  construction of the  tree. 
Any cycle which intersects  an (out) cycle is automatically 
an (in) cycle and  a son of the given cycle in the  tree.  Fur- 
thermore,  at  the finish (in) and (out)  cycles must  alter- 
nate.  From  the  tree it is easy to  determine  that  there  are 
exactly five virtual faces  at this  stage: the regions 
bounded by (es, V6, (e7,  and V8; the region inside of (e3 and 
outside of (e4. 

There is another point which is appropriate  to bring up 
here.  The wire frame algorithm has  the  property  that if it 
fails to find an  object having a given  wire frame, then no 
such  object  exists.  In practice, one  works with wire 
frames of objects  that  exist.  Thus if lhe final results of the 

Figure 5 Tree of I-cycles. 

algorithm indicate that  no  such  objects  exist, it is prob- 
able  that  some  error was made in the  input wire  frame. 
Thus  at  the  various  stages  there  are a number of simple 
checks which can  be performed to  determine  whether or 
not the wire frame  is valid. At the  end of Stage 3 one  can 
check  to  see  whether  each edge  belongs to  at  least  two 
noncoplanar  faces  and  that  each  vertex belongs to  at  least 
three  faces which lie in planes  whose intersection is exactly 
the  vertex.  Failure  to meet any of these conditions  would 
indicate  the  existence of an  error  at this  point. 

Stage 4:  checking for  illegal  intersections  between virtual 
faces 
The description of objects in Section  2 is based on 2-cy- 
cles, which have  the  property  that  the  faces belonging to 
them intersect only at boundary  points of the faces. Two 
virtual faces  intersect illegally when there  exists a  point in 
the intersection that is internal to  both.  In this case it is 
not possible for  both  to be real faces of the  object. Illegal 
intersections can  occur in either of two  ways: 

I .  An interior point of an  edge of one contains an  interior 
point of the  other; 

11. The  above  type of intersection  does not occur,  yet a 
vertex of one is in the  plane of the  other,  and  there 
exists a  point that  is  interior  to both faces. 

These illegal intersections, which are  known  as  type I and 
type I1 intersections,  respectively,  are  detected in this 
stage, and appropriate action taken. 589 
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Figure 6 A regular octahedron exhibits many type I1 intersec- Figure 7 A regular octahedron after Stage 4 with cutting edges 
tions. inserted. 

A type I intersection  occurs  when  any inside  point of 
any virtual face  is  an inside  point of any element of E(Q. 
If such a condition is found,  the virtual face is dropped 
from the list of virtual faces  because it is impossible for it 
ever  to be a face.  To  see  this, note that  the  edges of 0 
belong to  actual  faces. If a  virtual face  intersects edges as 
described above, it would have  to  intersect  the  corre- 
sponding faces.  Such  an  intersection would produce at 
least  one  edge  emanating from an inside point of a face, 
which would be  impossible. [A type I intersection is 
shown  later in Table l(d).] 

Two ways are  proposed  to handle the  second  case.  The 
second method, which is  the preferred method,  also sug- 
gests a quick means  for checking for  type I1 intersections. 

The first method of handling type I1 intersections is to 
pick maximal subsets of virtual faces which  lack  a  type I1 
intersection and  to  proceed through the remaining stages 
of the wire frame algorithm to  uncover all possible solu- 
tions under  those  assumptions. In some  cases  one  can use 
any solutions found  to resolve the  true  nature of type I1 
intersections. In  other  cases it might be necessary to go 
through the remaining stages of the algorithm  with several 
different maximal subsets lacking a type I1 intersection. 
For many practical  objects,  type I1 intersections  are rela- 
tively rare  (they  arise  from high degrees of symmetry), so 
this solution is quite a practical one.  It  also  has  the advan- 
tage that it simplifies the decision procedure in Stage 6 ,  
since there is only one kind of edge to consider. 

The  second  method is based on  the  observation  that a 
type I1 intersection consists of a finite number of line seg- 
ments,  the  endpoints of which are  elements of V(0). To 
see  this, let f,  and f, be  faces  that  have  type I1 inter- 
section.  Let & = Pfl n P,. Let p E f, n f, be an interior 
point of both f, and f,. Let p1 and p2  be the points of & 
which give the maximal line segment  containing  p and 
contained in f, n f,. Since f, and f, are  compact, i . e . ,  
closed  and bounded, p1 and p, belong to af, U af,. Since 
no boundary point of f, is an inside  point of f, and vice 
versa,  p,, p, E af, fl af,.  If the  edges of f,  and f, which 
contain p1 (p,) are  collinear, then f, and f, must be copla- 
nar  and must overlap in nontrivial ways.  This is impos- 
sible in view of the  tests performed in Stage 3. Thus p1 
and p, belong to  two noncollinear edges which can only 
intersect in an  element of V(0). To help  visualize the pre- 
ceding argument, look at Fig. 6 .  Here f, is given by 
vlvzv3v4vl and f, by  v2v6v4v5v2, p1 is v,, and p, is v,. This 
gives a quick test for type I1 intersections: visit each ver- 
tex in turn and see if any of the virtual faces containing 
that  vertex  intersect. 

Suppose  that f, and f, are  two virtual faces having a 
type I1 intersection;  introduce  the line segments of inter- 
section as new edges, called cutting edges .  Also in- 
troduce all the  necessary  points of intersection.  The new 
vertices and  edges  are marked to distinguish them from 
the original vertices  and edges. In  general,  these new ver- 
tices  and  edges will partition  some of the virtual faces into 
smaller  virtual faces. Using the algorithms described  ear- 
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lier, all those  cutting  edges which are bridges in a particu- 
lar  virtual face having type II intersections  are identified. 
All virtual faces which  induce these bridges are  dropped, 
since they cannot possibly separate solid matter  from 
empty  space. Of course,  after  dropping some  virtual 
faces, some of the  type I1 intersections may disappear. 

Since type II intersections  are mostly the result of sym- 
metry, we consider  one of the most  symmetrical cases 
possible, that  shown in Fig. 6. After the regular octahe- 
dron of Fig. 6 passes through  Stage 3, 11 faces will have 
been  found: the  usual 8 faces plus the 3 given by 
v1v,v3v4vl, v,vjv4v6v,, and v1v5v3v6vI. The last  3  virtual 
faces (pairwise) have  type II intersections.  Each of the 
last  3 faces partitions each of the  others  into smaller vir- 
tual faces, which are all kept, ending up with 7 vertices, 
18 edges,  and 20 faces.  The new wire frame  is illustrated 
in Fig. 7. 

Stage 5:  calculation of 2-cycles  and virtual blocks 
In this  stage  virtual faces  are fitted together  to  form  can- 
didate objects called  virtual  blocks. From  the definition 
and discussion in Section 2, it  is clear  that  objects  can be 
found by calculating all 2-cycles and finding the nesting 
relationships among  them. This 3-D process is a close  an- 
alog of the 2-D process of fitting edges  together  to form 
virtual faces.  However,  the definition of a 2-cycle is in 
terms of F(O), and at this stage of the algorithm only the 
virtual faces  VF(0)  are  available, where F(0) VF(O). 
Thus,  VF(0) can  contain elements which are not faces of 
0' and are known as pseudo-faces. Pseudo-faces arise 
through chance alignments of edges  and may occur in two 
forms: 

I .  The interior of the virtual face is empty  space; 
11. The interior of the virtual face is interior  to solid mate- 

rial. 

It will be seen  that  type I pseudo-faces  are always  re- 
jected and that  type I1 may either be  rejected or be used 
to partition a primitive  object into smaller subobjects. 

Some tests  that  detect pseudo-faces have been seen in 
Stage 4. An intersection of type I shows  that  the virtual 
face involved is really a  pseudo-face.  Similarly, an inter- 
section of type II indicates that  at  least  one of the virtual 
faces involved is a pseudo-face. Note  thal not every 
pseudo-face is involved in an illegal intersection of one of 
these two types.  Another kind of pseudo-face that is de- 
tected in this  stage is the 2-bridge, i . e . ,  a virtual face which 
does not belong to any 2-cycle. After detecting and  han- 
dling all of these pseudo-faces, the remaining  virtual faces 
naturally break  up  into 2-cycles. These 2-cycles partition 
all of IR3  into  connected  components in much the  same 
way that  the 1-cycles  partition the  planes.  In  fact,  the re- 
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Figure 8 An example of a pseudo-face. 

mainder of this  stage is very similar to  the virtual face 
creation  algorithm of Stage 3. However,  since this is in 3- 
dimensional space, no new types of intersections  can oc- 
cur and no new tests  are  necessary. As  in  Stage  3  some 
conventions are  needed for describing the relationship be- 
tween  virtual faces and the  components of an object 
which they bound. 

Let B, and B, be  the  two  components of an object B* 
whose  boundaries (denoted by dB, and dB,) both contain 
given virtual faces  f. If the canonical  normal  (introduced 
in Stage 2) erected  at  any interior  point o f f  points away 
from (into) B,,  then  +f E dB, (-f E dB,). Clearly, +f E 
dB, (-f E dB,)  iff  -f E dB, (+f E dB,). The goal is to find 
the  various components of  B* because  the original object 
can be built out of them. 

Before proceeding further,  consider a simple  example. 
An object  can have I-cycles  which  result  accidentally; in 
Fig. 8,  the virtual face, v5v6v7vgv5, is a pseudo-face, be- 
cause it is not an  actual boundary between  empty  space 
and solid material. However, this cannot be detected until 
the object is considered globally, i . e . ,  when virtual faces 
are being found in the  various  planes,  there  is  no way of 
distinguishing between  faces  and pseudo-faces. Only 
when the  construction of the  complete  object in Fig. 8 is 
attempted is v5v6v7v8v5 seen to be a pseudo-face. 591 
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Figure 9 Tree of 2-cycles. 

This  problem of pseudo-faces is handled by working 
with virtual blocks, i.e., 2-cycles which do not  contain 
any  nonbridge,  virtual faces in their  interior.  Thus, virtual 
blocks are  the primitive building blocks for dissection of 
an  object by pseudo-faces. The  object in Fig. 8 has three 
virtual blocks associated with  it: 

1. The  closure of the unbounded component of B*; 
2. The  closure of the bounded component of B* lying 

3.  The closure of the bounded component of B* lying be- 
above v5vsv7vsv5; 

low V5V,ViV8V5. 

To  describe the boundaries in terms of the notation in- 
troduced above,  assume  that in Fig. 8 the origin is  in the 
middle of the  cube defined by v,,v,,v,,v,,v,,v,,v,, and v8, 
and that all plane  positive  normals radiate  outward, giving 

dB, = -fl-f,-f,-f4-f5-f,-fi-f8-fg-fll; 

dB, = f,+f,+~,+f,+f,-f,,; 

dB, = f5+f,+f,+fs+flo+fll; 

where 

f, is the face defined by v,v,vlovgv5; 
f, is the  face defined by vsvivllvlovs; 
f:, is the  face defined by v7vsv12v11v,; 
f, is the  face defined by v8v5vgvl2v8; 
f, is the  face defined by v1v2vsv5v1; 
f, is the face defined by v2v3v7vsv2; 
f, is the face defined by v,v4vsv7v3; 
f, is the  face defined by v4v1v5v8v4; 
f, is the  face defined by v9v,,v,,v,,v9; 
f,, is the  face defined by v5vsv7v8v5; 
f,, is the  face defined by v1v2v3v4v1. 

Note that  just  as  there were (in) and  (out) 1-cycles, 
there are (in) and  (out) 2-cycles. In the  case  above, dB, is 

592 an (out) 2-cycle, while dB, and dB, are  both (in) cycles. 

As the  reader  probably  suspects  at  this  point, a tree of  2- 
cycles, similar to  the  one  for 1-cycles, is constructed  for 
an  object.  In  fact, all the rules  given for constructing a 1- 
cycle tree hold for 2-cycle trees. Virtual  blocks are de- 
rived from this tree in the  same way that virtual faces 
were  derived from  the 1-cycle tree.  In this case  the  tree is 
represented in Fig. 9. 

Before  describing the  procedure  for finding 2-cycles, 
consider the  case of the regular octahedron (Figs. 6 and 
7). Because the  octahedron  is so symmetrical, it has  three 
pseudo-faces each of which intersects  the  other  two. 
Since there is no a priori method to eliminate any of them, 
either all possibilities can  be tried or cutting  edges can be 
introduced.  Thus  the  octahedron of Fig. 7 decomposes 
into nine 2-cycles-one  (out) and eight (in) 2-cycles. 

The algorithmic steps  to  discover all 2-cycles and 2- 
bridges are now described.  For  each edge  e of 0, a circular 
list is formed of all virtual faces which have e contained in 
their boundary.  The  faces  are  ordered in the  same way as 
the corresponding edges were ordered in Stage  2,  that is 
they are  ordered radially around  the  edge.  The search for 
2-cycles now proceeds very  much like the  search  for 1- 
cycles. Pick a virtual  face with an  orientation, i.e., +f or 
-f,  and attempt  to find a virtual  block  containing  it. Pro- 
cess edges one  at a time by adding the  appropriate  face 
with the  correct  orientation, and  maintain  information on 
the number of times  the edge is used  and  the  sense of each 
use.  Choosing an  orientation  for a virtual face is equiva- 
lent  to assuming that solid material lies on a particular 
side of the virtual face.  Thus  an  edge is processed by 
seeing which oriented  faces  contain it and picking those 
oriented faces which are neighbors  through the solid ma- 
terial. Figure 10 illustrates  this  point by giving an edge- 
on view of the  process.  Suppose  that  the virtual faces 
f,, f,, f,, and f, have been selected  to be in 2-cycles with 
the orientations  suggested in the figure by the normals 
and  the shading. Since f, and f, are neighbors  through 
solid material, they  can  both be dropped from further 
consideration.  To find a virtual  block both f, and f, would 
need to  be  added  to  the proposed 2-cycle with the in- 
dicated orientation.  Note  that it would be impossible for 
f, to belong to  the 2-cycle because  each  edge  can only 
belong to  an  even  number of faces. If a  virtual face is 
found which would need to be incorporated  into  the  same 
2-cycle twice  (it will turn  out  that it is with opposite orien- 
tations), then  that virtual face is a bridge and is deleted 
from  the list of virtual faces.  The partial results  are  saved 
and  the  process  continued until the 2-cycle is completed. 
At the  end of this process all bridges have been  eliminated 
and  every remaining  virtual face belongs to  exactly  two 
distinct  virtual blocks.  Furthermore,  the interiors of the 
virtual  blocks are  exactly  the  components of the com- 

GEORGE MARKOWSKY A N D  MICHAEL A. WESLEY IBM J. RES. DEVELOP. VOL. 24 NO. 5 SEPTEMBER 1980 



plement of the remaining  virtual faces.  The original object 
must  be a union of some of these virtual blocks,  thus 
showing that in principle the problem has been  reduced to 
a problem which  involves only a finite number of possi- 
bilities. The  next  stage handles this  last problem effi- 
ciently. 

It only  remains to mention one complication  which  can 
arise. In  some  cases,  several edges of 0 are collinear and 
can be  combined into a single line segment.  In this case it 
is possible for  one  face  to have as  an  edge a line segment 
which contains  edges  from  other  faces  as subedges. In 
this case,  there  are a number of straightforward modifica- 
tions which must  be  made to  the 2-cycle finding al- 
gorithm. 

Stage 6:  constructing all solutions for  the  wire  frame 
In this  stage  virtual  blocks are fitted together  to  generate 
all objects with  a  given wire frame.  Basically, each virtual 
block may have solid or hole state  and,  when a state  as- 
signment has been made to each  virtual block,  an object is 
obtained. However,  not all assignments of solid and  hole 
yield the  desired wire frame. An assignment of solid or 
hole to  the virtual blocks yields an  object with the  correct 
wire  frame iff 

1. Every element e E E(0) belongs to  two noncoplanar 
virtual faces f, and f, each of which  belongs to  one 
virtual block assigned solid state  and  one assigned 
hole state; 

2. No cutting  edge  belongs to  two  noncoplanar virtual 
faces  f, and f, each of which belongs to  one virtual 
block assigned solid state and one assigned  hole state, 
i . e . ,  every cutting edge must be inside  material. 

A  decision tree is constructed by  growing those  edges 
having the smallest  number of unassigned  virtual  blocks 
containing them.  The unique infinite virtual block is al- 
ways  assigned the  empty  state. Condition ( I )  is not al- 
ways used to make choices  between  states;  the  necessary 
condition that  every  edge belong to a solid block  and to a 
hole block is also  used.  However, conditions (1) and (2) 
are  the  ones  that  must be  satisfied. To illustrate  this pro- 
cess  consider  the regular octahedron of Fig. 7 .  

There  are nine blocks: 

B,-the infinite virtual  block; 
B,-the virtual  block  determined  by  vzv1v7v5; 
B,-the virtual  block  determined  by v,v,v,v,; 
B,-the virtual  block  determined by v4v3v7v,; 
B,-the virtual  block  determined  by v,v,v,v,; 
B,-the virtual  block determined by v2vIv7vs; 
B,-the virtual  block  determined  by  v1v4v7vs; 
B,-the virtual  block  determined  by v4v3v7vs; 
B,-the virtual  block determined by v3vzv7v,. 

Figure 10 Finding  virtual blocks-an edge’s perspective. 

Each  edge of 0 now belongs to  two virtual  blocks of unde- 
termined status while each  cutting edge belongs to  four 
virtual  blocks of undetermined  status.  The  state hole is  as- 
signed to B,. An edge is picked,  say e = v1v5, and  the  de- 
cision tree begun. 

- 

Note  that e already  belongs to a  block  with  hole state, 
so solid state  must  be assigned to  some block.  Figure 11 
shows the  decision  tree in this case.  Notice  that  each time 
the  state of one of the Bi (i  2 2)  is set  to hole  a con- 
tradiction is quickly found. If  B, has hole state, then B, 
and B, must  be  given solid state  because v,V, and v2vg 
must belong to  at  least  one solid block and  there is only 
one  candidate  for  this.  However, if  B, has hole state, and 
B, and B, solid state,  the  faces v1v5v7v1 and  v2v5v7v2  con- 
tradict condition (2) for edge %. Similar contradictions 
arise  whenever  any Bi ( i  2 2) is treated  as being empty. 
Notice  that  after a few  assignments the  subsequent 
choices are  determined and exponential growth of the 
tree is avoided. 

In some cases,  there is an  exponential  number of  dif- 
ferent  objects having the  same wire frame, so exponential 
growth cannot be  entirely avoided.  However, if the tree is 
grown for  depth,  some  object  can be  found having the 
given wire frame.  In  practice, this stage is completed 
fairly quickly since  the geometry  generally takes  over 
once several assignments  have  been  made.  In complex 593 
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contradicts condition ( 2 )  f o r F 7  

B3 empty mplles B, solid which contradicts 
B, aolrd condition ( 2 ) f o r T p 7  

/' B4 empty, contradicts condrtion ( 2 )  f o r v p 7  

B, solrd 

B, solid 

B, solid 

B, solid 

Bo solid 

B9 

Figure 11 A decision tree for the regular octahedron 

objects it is often  the  case  that many edges  on  the  outer 
boundary  belong to  exactly  one virtual  block which can 
be marked solid. In  particular, any vertex belonging to 
exactly three  elements of E(0) belongs to  exactly  two vir- 
tual  blocks. Thus if one of them is empty,  the  other  one 
must  be  solid. 

Stage  6 feeds  into  an  output module  which puts  the out- 
put together in forms which can be understood by the 
user of the system.  The following section  shows a number 
of examples in detail. 

4. Examples 
In this  section are  described a number of examples  cho- 
sen  to illustrate particular  features of the algorithm. The 
examples are illustrated in Table 1. 

Table l(a)  shows a double  tetrahedron.  Seven tri- 
angular  virtual faces  are found-the six  outside  faces  and 
the internal area bounded by the  waist of the figure. Three 
virtual  blocks are  found;  the  decision  process assigns 

594 solid state  to (1) and (2); block ( 3 )  is the  unbounded vir- 

tual block; (1) and (2) are combined to  produce  the  output 
object. 

Table  l(b)  shows  an object  with l-D bridges on  the 
faces containing abcd  and kmnp. The plane  graphs  con- 
tain three bridges ef,  kl, and op,  none of which appear in 
the virtual faces  for  the planes shown.  Two virtual  blocks 
are  found,  one  the  output  object  and  one  the unbounded 
virtual block. 

Table  l(c)  shows  four  cubes positioned on  two levels 
with  four shared  vertices enclosing a rectangular area 
abcd;  abcd is found  to be  a  virtual face,  but in the virtual 
block building process  is  detected  to  be a 2-D bridge (i.e., 
it is assigned opposite directions in the  same virtual block 
to become  a zero  thickness  sheet)  and is not  used in the 
output objects. 

Table l(d)  contains  an  octahedron  extended by a cube 
and pierced by a vertical  square prism. The  two plane 
graphs  containing abcd and efgh have  type I intersections 
with'the vertical sides of the hole and  therefore  are not 
viitual faces. Six virtual blocks are found and assigned 
states  as  shown. 

Table l(e)  shows  the  object of Table  l(d) without the 
piercing hole.  Four  face graphs  with type I1 intersections 
occur and are  shown  as virtual faces with  cutting  edges 
inserted. Thirteen virtual  blocks are  found  and assigned 
states  as  shown. 

Table l(f)  shows a well known  ambiguous  wire  frame 
[18]; eight virtual blocks  are  found,  and  the decision pro- 
cess  enumerates  three valid solutions: one pair of oppos- 
ing blocks [(l, 2), (3, 4), or (5, 6)] must  have hole state, 
the  center block (7) always  has hole state. 

Table  l(g) shows  another ambiguous  wire frame  that 
could well occur in practice.  Nine virtual  blocks are 
formed;  the decision process finds that block (8) can  have 
hole or solid state. 

Figure 12(a) shows a more complicated wire  frame  with 
1256 edges  and 850 vertices.  In  the  course of the recon- 
struction  process  the wire frame algorithm  finds 93 virtual 
blocks, most of them being window  holes and enclosed 
volumes  inside tubular members of the  structure, and 
generates  the  volumetric  representation  shown in Fig. 
12(b). Figures 12(c) and (d) show a cross  section of the 
reconstruction with the  nested  interiors of tubular mem- 
bers  correctly  represented. 
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Table 1 Examples  of the wire frame algorithm. 

Wire frame Plane graphs of interest Virtual faces of interest Virtual blocks Virtual block Object 
decision states 
(s=solid,h=hole) 

1 

2M % 0 ( a )  Double tetrahedron 

m ( b )  1-D bridges 

( c )  2-D bridges 

n u  
abcd and efgh 
have type I 
intersections 
and  are not 
virtual faces 

( d )  Type I ~ntersections 

8 1-12 = s  
1 3 = h  

( c ) Type I I  interesections 

With cutting 
edges inserted 

1 ( g )  Ambiguity I1 

2 
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Figure 12 (a) Wire frame with 1256 edges and 850 vertices; (b) volumetric representation of wire  frame; (c)  cross  section  of volumetric 
representation; and (d)  close-up view of tubular members. 

providing the ambiguous example of Table l(g), and to T. 6. Appendix A: Topological  concepts 
Lozano-Perez for his contributions to early discussions A brief introduction is given to those standard topological 

596 on the problem. concepts used in this paper. For more details, see [17]. 
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Definition A .  1 
Let x E IR3 and r be a positive number. B,(x) is used to 
denote  the  set of all points of I R 3  whose Euclidean  dis- 
tance from  x is less  than r. B,(x) is called the open  ball  at 
x of radius r .  0 

Definition A.2 
A subset X c I R 3  is said to be open if, for all x E X, there 
exists r > 0 such  that B,(x) C X. A subset Y c IR3 is said 
to be closed if IR3 - Y is open.  Note  that  open balls are 
open and that 0 and I R 3  are  both  open  and closed. 0 

Definition A.3 
Let X c Y C I R 3 .  Then X is said to be open in Y in the 
relative  (induced)  topology [or open in the relative (in- 
duced)  topology for  short] if, for all x E X, there  exists r 
> 0 such  that B,(x) n X = B,(x) f l  Y .  X is closed in the 
relative  topology if Y - X is relatively open. 0 

In  the  cases most of interest here, i . e . ,  subsets of a 
plane in IR3, being relatively open  means containing open 
disks (the  intersection of a plane and  an  open ball). The 
following definitions will be stated only for  the standard 
topology of I R 3  (Definition A.2) and  the  reader should ver- 
ify that they  make sense  for any  relative  topology. 

Definition A .4 
The closure, X ,  of a subset X of I R 3  is the  set {x E R31 for 
all r > 0, B,(x) n X # 0). In particular, X c X. 0 

It  can be shown  that X is a  closed set  and  that a subset 
Y c IR3 is closed if and only if Y = y .  

Dejinition A S  
The boundary, ax, of a set X c IR3  is the  set X f l  
( IR3  - X). 0 

Thus a point,  x, is in ax if and  only if there  are points of 
both X and I R 3  - X arbitrarily close  to x. 

Dejinition A.6 
A subset X of IR3 is said to be connected if two nonempty 
open  subsets U,, U, of I R 3  cannot be  found such  that U, n 
U, = 0, U, n X # 0 # U, n X, and X G U, u U,. 0 

In  the  case of I R 3  and its subplanes, all connected  open 
subsets  have  the  property  that  any  two points in a  given 
subset  can be connected by a path which  lies  entirely in 
the given set. 

Definition A .7 
Let X C IR3. A connected  component of X is a subset Y of 
X which is connected  and such  that for any other  con- 
nected subset Z c IR”, either Z c Y or Z n Y = @. 0 

Any set in I R 3  can be written as  the disjoint union of its 
components. 

Definition A.8 
A subset X of I R 3  is said to  be bounded (unbounded) if 
there  exists  for all r > 0 a point  p E IR3  such  that X C 
B,(P) [X B,.(p)l. 
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