582

Fleshing Out Wire Frames

George Markowsky
Michael A. Wesley

Given a polyhedral object, its wire frame is the set of its edges and vertices. In this paper we present an algorithm which
discovers all objects with a given wire frame. This algorithm, which has a number of applications to mechanical design
besides being of mathematical interest, has been implemented and has performed well on complex objects.

1. Introduction

The application of computers to problems in mechanical
design was first recognized over twenty years ago [1].
Since that time much work has been done on the develop-
ment of production systems both for the entry of a design
into a computer data base and for the use of a mechanical
design data base in design analysis and in manufacturing.

In the field of data base entry, computer drafting sys-
tems allow a designer to interact with a display or tablet
to produce drawings of objects, generally in the classic
manner of two-dimensional projections of the edges of the
three-dimensional object. Some systems also provide the
capability of representing data in three dimensions; for
example, depth coordinates may be added to the elements
of a two-dimensional view, corresponding features in
each of several views may be related, and isometric views
may be constructed. These computer drafting systems
have been engineered to very high leveis of performance
and can greatly enhance the productivity of a designer.
As well as producing drawings of the edges of objects,
computer drafting systems exist which allow the descrip-
tion of the surfaces of objects as smooth curves or
patches splined together at their boundaries; in general
these surfaces are represented by means of a discrete
mesh superimposed on the surface.

Computer-based systems are also used in the analysis
of designs and in the manufacture and assembly of ob-
jects. For example, parts can be checked for interference
[2, 3], finite element methods may be used for analysis of,

for example, heat flow [4], the constraints between ob-
jects can be derived and mechanisms can be simulated
[5], numerically controlled machine tool tapes can be gen-
erated to allow manufacture of a part [6], and robot mo-
tions to assemble parts can be generated [7, 8]. In general
the full automation of these applications of the design
data base requires three-dimensional volumetric informa-
tion about an object, rather than just a description in
terms of edges and surface mesh facets. At present the
volumetric form of the data base is considered to be
rather difficult and expensive to acquire, and the analysis
data are generated in a computer-assisted manner. For
example, in the case of numerically controlled machine
tools, the path of the cutter may be entered over a draw-
ing at a graphics terminal.

This paper presents an algorithm for automatically
bridging the gap between these two fields of computer ge-
ometry, that is, from an object described in terms of its
edges (a wire frame) to a volumetric description in terms
of solid material, empty space, and the topology of sur-
faces and edges. In its present form, the algorithm is re-
stricted to objects whose edges are straight lines and
whose faces are planar; since the algorithm is a topologi-
cal algorithm, it could be adapted to nonplanar surfaces.

Quite apart from its practical applications, the problem
is of some theoretical interest. An edge description does
not necessarily represent a unique object, and an al-
gorithm should be able to detect ambiguities, enumerate

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

IBM J. RES. DEVELOP. e VOL. 24 ¢ NO. 5 « SEPTEMBER 1980

solutions, and accept user decisions as to which solution
is required. As with many geometrical problems, the
simple cases are straightforward and the complex cases
are extremely difficult; for example, many pathological
cases can exist—vertices and edges contacting faces, and
coplanar opposing faces meeting with edge contact.

Although the literature on geometric modeling is exten-
sive [9] and growing rapidly, few authors have chosen to
represent objects formally. They are therefore generally
unable to prove the correctness of their methods, to
handle the full range of pathological cases and ambiguities
that occur in practice, or even to describe objects pre-
cisely. However, the PADL project [10] is based on point
set topology and its architects are able to prove the cor-
rectness of algorithms for computing the set operations of
union, intersection, and difference between polyhedra.
Other workers have used Euler operators [9] to ensure
correctness of topology as an object is constructed. Ide-
sawa [11, 12] describes a wire frame reconstruction
scheme as part of the general problem of constructing sol-
ids from many 2-D projections. The method used is based
on finding sets of coplanar edges and fitting them together
to form solid objects; however, the reconstruction
method is not based on a formal description of objects
and does not handle ambiguities or many of the pathologi-
cal cases. Experience in modeling has taught us that even
though pathological relationships among faces, edges,
and vertices may not be physically realizable, they do oc-
cur frequently in the stylized world of geometric mod-
eling, and a general-purpose modeling system should be
able to handle them. Lafue [13] also describes a program
for generating solids from 2-D projections, but requires
that objects be described in terms of faces rather than
edges; further, faces are described in a stylized manner
with extra edges to permit description of holes.

Other authors have considered the machine vision
problem of recognizing polyhedral objects from in-
complete edge descriptions [14-16]. In this situation local
ambiguities can exist and are resolved, if possible, by
global propagation. The propagation is performed by la-
beling areas, whereas the algorithm described in this pa-
per handles ambiguities in terms of volume regions. The
use of volumes rather than areas leads to a much simpler
handling of the process of labeling.

This paper is divided into four sections. Section 2 gives
formal definitions of the concepts needed in order to be
able to explain the algorithm and describes some of their
consequences. Some standard topological notation is dis-
cussed in the appendix. Hocking and Young [17] may be
used as a reference for these terms. Section 3 describes
the stages of the algorithm, which has been coded and has

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 5 ¢« SEPTEMBER 1980

performed well even on complex objects. Section 4 gives
a number of examples which illustrate the performance of
the algorithm.

2. Basic concepts

The concepts defined in this section are based on some
fundamental topological ideas which are described in de-
tail in [17] and to a lesser extent in the appendix.
Throughout the paper the standard topology in IR® and the
induced topology on subsets of IR® are assumed. Vertices
refer to points in IR® and edges refer to line segments de-
fined by two points in IR®. The approach used in this sec-
tion is to define faces, objects, and wire frames, and then
describe the consequences of these definitions.

Definition 1

A face, f, is the closure of a nonempty, bounded, con-
nected, coplanar, open (in the relative topology) subset of
IR® whose boundary (denoted by af) is the union of a finite
number of line segments. P, is used to denote the unique
plane which contains f. [J

Definition 2

An object, 0, is the closure of a nonempty, bounded,
open subset of IR* whose boundary (denoted by 90) is the
union of a finite number of faces. [

The wire frame algorithm uses many geometric facts
about objects. However, rather than define an object as
being a set of points satisfying a long list of properties, we
have preferred to offer a very simple definition of an ob-
ject and then prove that it has all the desired properties.
Thus from the definitions above it is easy to see that the
“cube,” {x,y,zERI=x=1,0=y=<1,0=z=Il}is
an object and that {(1, y,z) EIRRI0 =y =<1,0=z = 1} is
one of its “‘square’” faces. Starting off with open sets
means that faces and objects have nontrivial interiors.

Notice that it is not assumed that an object is the clo-
sure of a connected set. This allows objects that consist of
disjoint **solids’” or even objects which intersect in edges,
etc. One can argue that this last case, illustrated in Fig. 1,
does not represent a ‘‘real’”’ object, but in practice all
sorts of strange objects can appear. Thus, we decided to
handle the most general case possible. Furthermore, this
generality does not exact any penalty other than creating
a larger number of solutions.

Another point worth noticing is that Definitions 1 and 2
allow many different representations of the boundaries of
faces and objects by line segments and faces (respec-
tively). However, canonical representations of the
boundaries can be defined which correspond to one’s in-
tuitive notions about such things. To get to these repre-
sentations it is necessary to introduce several additional
concepts.

583

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

584

Figure 1 An object exhibiting various kinds of intersections.

Definition 3

(a) Let f be a face. The vertices of f, V(f), are defined to
be the set of all points for which two noncollinear line
segments, contained in df, can be found whose inter-
section is the given point.

(b) Let f be aface. The edges of f, E(f), are defined to be
the set of all line segments e, contained in df, satis-
fying the following conditions:

1. The endpoints of e belong to V(f);
2. No interior point of e belongs to V(f).

(c) Let O be an object. The vertices of 0, V(O), are de-
fined to be the set of all points p for which faces f,, f,,
f, C 90 can be found such that f, N f, N £, and Pfl N sz
N P are both exactly the single point p.

(d) Let O be an object. The edges of O, E(0), are defined
to be the set of all line segments e, contained in 40,
satisfying the following conditions:

1. The endpoints of e belong to V(0);

2. No interior point of ¢ belongs to V(0);

3. For every point p of ¢, two noncoplanar faces can
be found, f,, f, C 40 such that p € f, N {,.

(e) Let O be an object. The wire frame of €, WF(0), is
defined to be the ordered pair [V(0), E(0)]. O

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

The concepts have been defined, but some work is re-
quired to show that things fit together as expected. For
example, it is not clear that V(©) is finite. The reason for
keeping the definitions so general is that it is fairly easy to
check whether the concepts here include a particular
class of entities.

It can be shown that V(f), E(f), V(0), and E(O) are all
finite. V(f) and E(f) yield the intuitive representation of f
which will be described more fully below. V(O) and E(0)
do not quite represent O, since the faces of 0, which have
not been defined so far, are needed. Before getting into
the definition of the faces of @, the nature of faces is first
described in somewhat greater detail. To do this an addi-
tional concept is needed.

Definition 4
A I-cycle is a collection of coplanar line segments {e,,
c et in R? having the following properties:

1. The intersection of two distinct elements e, and ¢, is
either the empty set or a point which is an endpoint of
both line segments;

2. Every point of IR’ is the endpoint of a nonnegative,
even number (in most cases 0) of the e;. O

In order to be able to give a complete definition of a face,
it is necessary only to describe what is meant by the in-
side and outside of a 1-cycle. A 1-cycle has an inside (out-
side) if there is a bounded (unbounded), connected, open
set whose boundary is the given 1-cycle. A 1-cycle may
lack an inside or an outside, or may have them both.
Some examples are discussed following Theorem 5.
Whenever a point is said to be inside (outside) a 1-cycle,
%€, it is meant that € has an inside (outside) and that the
point in question belongs to some bounded (unbounded),
connected, open set whose boundary is €. Actually, if a
1-cycle, €, has an inside (outside), there is a component
of the complement of € whose boundary is € and which
contains all other bounded (unbounded), connected, open
sets whose boundary is €.

Theorem 5
Let f be a face. Then 1-cycles, €, €,,
contained in df can be found such that
I.of=%6,U €U U%E;
2. Face f consists of all points inside ¢, and outside
k
€, (i = 1), and the points of U €
i=0
3. The 1-cycles are all disjoint. O
A typical face is pictured in Fig. 2. Note that the bound-

ary can intersect itself at various points such as v, v,
and v .. The face in Fig. 2 can be defined in terms of three

IBM 1. RES. DEVELOP. & VOL. 24 ¢ NO. 5 « SEPTEMBER 1980

l-cycles: €, (traced out by following the sequence of ver-
tices v,v, - vy v.v vovev), € (traced out by

ViV1eVi6V17V1sV1oYa0Y 18V 16V 1e)» aNd €, (traced out by v, v,,

* V,.V,.). Thus the face in Fig. 2 consists of all points in
the inside of €, and in the outsides of €, and €,, plus the
points actually belonging to €,, €,, and €,. Note that the
points v,, v, and v, are collinear, but by the definition of
E(0), v,v, and v,v , actually belong to E(0), but v,v,,
does not. Note also that not every 1-cycle has an inside
(€,, for example, fails the connected set requirement).
Similarly, not every 1-cycle has an outside (€, for ex-

ample, again fails the connected set requirement).

The faces of an object are now defined. Again, the defi-
nition turns out to be rather straightforward, and it can be
shown that the faces defined in this way actually turn out
to be the things one would like to call faces anyway. From
the following definition it is clear that the faces of an ob-
ject are really determined by the object rather than by any
particular representation of the object or its boundary.

Definition 6

Let O be an object. The faces of O, F(0), are defined to be
the closures of the connected components of 40 —
VE(0).

A number of results hold true for the faces of an object.
Some of the important relationships are summarized in
the following theorem.

Theorem 7
Let 0 be an object and F(0) = {f,, - - -, f }. Then

2. U E() C E(©) U I', where T is the set consisting
i=1
of all line segments which are unions of elements of
E(0);

3. U vi) c vy,
i=1

4. Any face f C 40 for which E(f) C E(0) U T, where I'is
as in (2) above, is the union of elements of F(0);

5. The intersection of two distinct elements of F(O) is a
union of elements of E(0) and subsets of V(0). O

A few brief remarks about (2) and (3) above are in or-
der. Vertices of an object need not be vertices of any
face;e.g., in Fig. 1 point A is in V(O) but is not a vertex of
any face of 0. Thus the corresponding edges must be bro-
ken up into smaller line segments when considered as
edges of 0, but this division does not occur if any face is
considered separately.

IBM J. RES. DEVELOP. ¢ VOL. 24 e NO. 5 ¢ SEPTEMBER 1980

Figure 2 A typical face.

To give the reader an idea of what objects look like in
this model, two additional concepts are needed.
Definition 8
A primitive object is an object whose interior is con-
nected. [

The key point of Definition 8 is to prevent problems
caused by the peculiar types of intersections illustrated in
Fig. 1. In that figure, there are three primitive objects: a
cube and two triangular prisms. In general, an object can
be decomposed into primitive objects which do not have
any 2-dimensional intersections between any two of
them.

Definition 9
A 2-cycle is a collection of faces {f,, - - -, f }in IR® having
the following properties:

1. The intersection of two distinct elements f; and f; is the
union of the elements of E(f,) N E(f) and a finite num-
ber of points;

2. Every element of U E(f)) belongs to an even number
i=1

of distinct faces. O

With all of these concepts a description of primitive ob-
jects can be given in terms of 2-cycles. From this one can

585

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

586

Figure 3 A typical primitive object.

extrapolate to objects in general. Note how similar the
description is to the one given for faces. The definitions of
inside and outside are similar to those defined for 1-cy-
cles.

Theorem 10
Let O'be a primitive object. Then 2-cycles €, €,, - - -, €,
(k = 0) contained in 30 can be found such that

1. 30=%,U %€ U---U%;
2. O consists of all points inside 6, and outside €, (i = 1)
k
and the points in U €,
i=0

3. The 2-cycles are all disjoint. [

The term cycle is used below in situations where it is
clear from the context whether a 1-cycle or a 2-cycle is
intended. Furthermore, the comment made to the effect
that not all 1-cycles have a well-defined inside or outside
applies as well to 2-cycles, where inside and outside are
defined in a similar manner. It will be seen in the next
section that to recover O from WF(0) it will be necessary
to decompose primitive objects further.

Figure 3 illustrates a typical object which is represented
by two cycles €, and €,. The exterior cycle, 6,, consists
of 11 faces, while the interior cycle, €, has 6. The identi-
fication of the faces is left to the reader.

3. The wire frame algorithm

The goal of the wire frame algorithm is to construct all
objects which have a given wire frame. It is a fairly elabo-
rate algorithm with quite a few distinct stages. The key
stages of the algorithm are outlined first below, followed
by a more detailed description.

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

& Stages of the algorithm

1. Checking input data The input data are assumed to
be a valid wire frame, that is, the ordered pair of vertices
and edges [V(0), E(0)] (Definition 3(e), above). In this
stage the input data may be checked for various kinds of
errors, such as nondistinct vertices and edges. The choice
of actual tests performed is based on the source of the
input data and the expected types of errors.

2. Finding planar graphs All planes are found which
contain at least two intersecting edges. For each distinct
plane a canonical normal is defined and a graph of copla-
nar edges formed. For each vertex lying in a plane, a cir-
cular list of edges meeting that vertex is created and or-
dered counterclockwise with respect to the canonical nor-
mal.

3. Calculation of l-cycles and virtual faces In each
planar graph the set of partitioning cycles is uncovered
(bridges are ignored). The nesting relationships among
these cycles are then determined, and all candidates for
faces found. These candidates are called virtual faces.

4, Checking for illegal intersections between virtual
faces Two virtual faces can intersect illegally, i.e., so
that both cannot be faces of the real object, in only two
ways. These intersections are detected in this stage and
appropriate action taken:

A type I intersection occurs when an interior point of an
edge of one pierces an interior point of the other. The
former virtual face is deleted.

A type Il intersection occurs when there is no type I inter-
section, yet a vertex of one is in the plane of the other
and there exists a point that is interior to both. A
decision on the faces cannot be made at this stage,
and temporary additional edges called cutting edges
are introduced. These cutting edges cut some of the
virtual faces discovered in Stage 3 into new, smaller,
virtual faces.

S. Calculation of 2-cycles and virtual blocks For each
edge a circular list of the virtual faces containing that edge
is created. This list is ordered radially around the edge.
These lists are used to find all partitioning cycles of the
virtual face graph; the nesting relationships among these
cycles are found and used to uncover all candidates for
solid regions. These candidates are called virtual blocks.
Virtual blocks are bounded by virtual faces and partition
IR®. Any virtual face which does not belong to two dif-
ferent virtual blocks is dropped.

6. Constructing all solutions for the wire frame A deci-
sion tree, based on virtual blocks and using a few basic
tests, assigns solid or hole state to all virtual blocks and
thereby constructs all possible objects having a given

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 5 & SEPTEMBER 1980

wire frame. In this decision process, edges and cutting
edges are treated separately; cutting edges are sub-
sequently removed. O

The reader should keep in mind that the above descrip-
tion and the one below are designed for easy comprehen-
sion. As a result descriptions of each of the stages are
given without describing every detail of the data struc-
tures and algorithms used. A more detailed description of
the various stages follows.

Stage 1: checking input data

The input to the wire frame algorithm must be a valid wire
frame, that is, the ordered pair of vertices and edges
[V(0), E(0)] (Definition 3(e), above). This input is as-
sumed to be in the form of a list of vertices with their 3-
dimensional coordinates and a list of pairs of vertices to
represent edges. The wire frame algorithm described in
the following sections requires that the input data repre-
sent a valid wire frame, that is, a wire frame that satisfies
the definitions of edges and vertices given in Section 2. In
this stage tests are performed to check the validity of the
input data and to obtain information to be used in later
stages. The exact choice of which tests to include de-
pends on the characteristics of the input data and per-
formance trade-offs between the cost of performing a test
first, the usefulness of information generated for later
stages, and the desirability of reporting errors before in-
curring the cost of executing the algorithm. These issues
are not considered further here.

Two fairly straightforward tests check that vertices and
edges are distinct and correctly defined. Furthermore,
throughout the rest of the paper it is assumed that each
vertex and edge has a unique index.

Another test ensures that every vertex belongs to at
least three edges (this is a consequence of the definitions).
This test is organized so that a table is generated showing
which edges belong to which vertex. This table is impor-
tant and will be used below.

A test which might also be performed at this point con-
sists of checking that edges intersect only at endpoints,
i.e., in elements of V(0). Since two line segments can in-
tersect only if they are coplanar, this test can also parti-
tion line segments into coplanar sets. Furthermore, it can
even produce a list of edges which intersect a given plane.
A test designed to work on the idea just put forth could be
fairly expensive in terms of computer time (worst case
O[E(0)*)). Alternate tests are possible which are quicker
but yield less information.

Depending on the operating environment, one can omit
any of the above tests or substitute others if necessary.

IBM J. RES. DEVELOP. e VOL. 24 e NO. 5 « SEPTEMBER 1980

Stage 2: finding planar graphs

In this stage all planes which contain at least two inter-
secting edges are found, and for each plane a graph is
constructed of the edges and vertices in that plane. For
each vertex in WF(0), a list is formed of the edges for
which the vertex is an endpoint. For each noncollinear
pair of edges in the list, the plane containing the edge pair
is computed and a list formed of distinct planes at the
vertex (each plane in IR? is specified uniquely once a nor-
mal and a distance from the origin along that normal are
given). For each distinct plane at a vertex, a list is formed
of edges in the plane for which the vertex is an endpoint,
and the edges are sorted around the normal in a counter-
clockwise direction. It is now straightforward to match up
planes at vertices and, for each globally distinct plane, to
form graphs of the edges and vertices contained in the
plane. In practice, the number of edges at a vertex is quite
small so the above procedure works quickly.

Thus, the output of this stage is a list of plane equations
and, for each plane, graphs of the edges and vertices in
the plane.

Stage 3: calculation of 1-cycles and virtual faces

In this stage each planar edge and vertex graph is pro-
cessed to find all subgraphs that could represent faces in
accordance with Definitions 1 and 3. These subgraphs are
candidates for faces of the object and are called virtual
faces.

From the discussion in Section 2, it is clear that virtual
faces can be located by finding 1-cycles and determining
the various nesting relationships among these l-cycles.
To make the discussion clearer, assume a plane P and a
graph formed from the edges and vertices of ¢ which lie in
P. The edges of the graph are of two types: bridges and
nonbridges. An edge is a nonbridge if and only if it lies on
some cycle. In principle, bridges must be removed. The
remaining edges can then be divided up into 1-cycles
which partition the plane into regions so that any face of 0
lying in P is one of the regions. In practice 1-cycles are
found and bridges removed in the same operation.

The algorithm proceeds by uncovering the cycle struc-
ture of the edges in P. The methods used are now de-
scribed. It can be shown that the complement of the edges
in P, I', is an open set with a finite number of open con-
nected components. The number of connected com-
ponents is the same if the bridges are removed. Every
edge which is not a bridge belongs to the closures, in fact
boundaries, of two distinct components of I'. Since the
edges are to be used to form 1-cycles to bound the various
components of I', some conventions are needed for con-
necting edges and the components they belong to. For the
time being bridges are ignored.

587

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

588

V2

Figure 4 A typical graph in a plane.

Lete = V;v, be an edge. There are two ways to traverse
e: either from v, to v, or from v, to v,. Suppose i <, and
write +e to denote e traversed from v, to v; and —e to
denote e traversed from v, to v,. Since P has a normal
defined on it, whenever an edge is traversed in some di-
rection, left and right sides of the edge can be defined as if
one were walking in the same direction above the plane in
the positive normal direction.

Let T', and I', be the two components of I' whose
boundaries (denoted by dI', and oI',) contain e. I', is de-
fined to be on the left, traversing ¢ from v, to v, if +e €
al',. In this case —e € 4I',. Similarly, if +e € 9T, then —e
€ oI',. This is the notation of algebraic topology.

At this point it is probably helpful to illustrate some of
these ideas. Figure 4 shows a typical graph in a plane.
This particular graph consists of 19 vertices and 23 edges.
The only bridges are e, e,,, and e,,. Note that the bridges
are in the closure of exactly one component and are thus
not in the boundary of any component. In this case I" has
6 components and the following relations hold:

al—‘1 = te,—e, 7€, 7€, 7€, 7€, Te,, 7€, 76T,

GFZ = —e,te,te,te,te te ,—e, e, €78y

ara = te, e tetete e e e

8F4 = te,te 7€,

al'y = +e,+e,—ey;

ars = tegte,—e, e e,

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

Now consider the various algorithmic steps needed to
determine the information above. First pick an ordered
edge, i.e., an edge and a direction, say +e,; now attempt
to discover the component, I, for which +e, € T, i.e.,
try to complete a cycle starting from v,. Start at v, and
move to v, pick the “‘next’” (in a clockwise direction)
edge at v,, which is —e,,. At v, pick +eg, then +e,, then
—e,,, then —e,, then —e,, then —e,. Edges are checked
off as they are added to a cycle; if an edge occurs twice in
the same cycle, then a bridge exists (in this case ¢).

Whenever a bridge is found, there is a cycle between its
two occurrences (in this case +e,,—e¢,,—e;,—¢,). This
cycle (€,) is set aside and the search resumed at v, ignor-
ing e, which is removed from the graph. The sequence is
now +e,—e,,—e,+e,,—e,,. The bridge detector now spots
e,, as a bridge and removes it. The cycle between the two
occurrences is the empty cycle, so the search is resumed
at v,. Another cycle (€,) is found as +e,—e ;—e;—e,~¢;—¢,.

Each cycle is now examined to see whether the com-
ponent it bounds is inside or outside of it, i.e., every point
of the component is inside or outside the cycle. In this
case I'| is outside both €, and €,. This information is re-
corded in the cycle tree described below. Also, for each
vertex encountered, the cycles to which it belongs are re-
corded, and for each edge used, the sense in which it is
used.

Now pick any other edge which has not been traversed
in both directions and start all over again. Suppose —e,, is
picked now, giving the sequence —e,,+e,+€, (€,, has al-
ready been eliminated) +e —e, +e,te,+e,,, at which
point the bridge e,, is eliminated, leaving the cycle
+e,Te,te ,—e +e,+e,, which bounds a bounded (inside)
component. Data are recorded as before and the process
repeated with another edge which has not yet been used
in both senses. In this way the following cycles are found:

€ (out) = te, —e,~e;7e;

€ (out) = +te —e —e.,—e,~e,T€,;

€(in) = te,te;te e te,tey;

€, out) = +e ,~€,.—€ "€ TC,;

€ in) = —e,te, e, te te e, ey Te
€in) = —ete,te

€ (in) = te,te,me)

<6S(in) = —e9+e8+e12—eu+ew.

The notation ‘‘(in)’’ above shows that when the cycle is
traversed in the direction indicated, the unique connected
component of the complement in P of the cycle, which

IBM J. RES. DEVELOP. @ VOL. 24 & NO. 5 &« SEPTEMBER 1980

always lies to the left, is bounded. Similarly, ‘‘(out)’”’ de-
notes the case when the cycle is unbounded.

The amount of checking that must be done may be re-
duced. Suppose that a bridge or generalized bridge (i.e., a
connected sequence of bridges) runs between two dif-
ferent cycles € and €’ (the sense of the bridge must agree
with that of the cycles). Then at least one of them is an
(out) cycle. Also, if € is an (out) cycle and €’ is a distinct
cycle which intersects 4 (i.e., has at least a vertex in com-
mon), then it must be an (in) cycle.

Thus in the above example, once €, and €, are both
found to be (out) cycles, the senses of the other cycles are
determined if they are derived in the sequence shown. In
particular, €, is an (in) cycle because it intersects €,. €, is
an (out) because it is joined by a bridge (e,,) to the (in)
cycle €,. €, and € are both (in) cycles because they in-
tersect the (out) cycle (54, while €, and %, are both (in)
cycles because they intersect the (out) cycle €.

At this stage the cycles in P have been found, and will
be used to find candidates for faces, i.e., virtual faces.
The description of a face given in Section 2 and the con-
cepts introduced here show that a face is given by its
outer boundary which is an (in) cycle, €, and some finite
number of disjoint (out) cycles, €,, €,, * - -, €, which are
contained in the inside of €, and have the additional prop-
erty that if any of them is contained in the inside of any
other (in) cycle €, then € is contained in the inside of ¢’
as well. This leads to consideration of the following tree
structure.

The root is labeled by P. A cycle is a descendant of an
(in) cycle, €, if and only if it is contained in the inside of
€. A cycle is a descendant of an (out) cycle, €, if and only
if it is contained in the complement of the outside of €.
The tree structure for the cycles derived from Fig. 4 is
given in Fig. 5.

A few observations aid in the construction of the tree.
Any cycle which intersects an (out) cycle is automatically
an (in) cycle and a son of the given cycle in the tree. Fur-
thermore, at the finish (in) and (out) cycles must alter-
nate. From the tree it is easy to determine that there are
exactly five virtual faces at this stage: the regions
bounded by €., €,, €., and €,; the region inside of €, and
outside of €,.

There is another point which is appropriate to bring up
here. The wire frame algorithm has the property that if it
fails to find an object having a given wire frame, then no
such object exists. In practice, one works with wire
frames of objects that exist. Thus if the final results of the

IBM J. RES. DEVELOP. & VOL. 24 & NO. 5 ¢ SEPTEMBER 1980

N\

¢, (out) &, (out)
/\
&, (in) Cg (in) G (in)
€, (out)
s (out) Cg (out)

Figure 5 Tree of 1-cycles.

algorithm indicate that no such objects exist, it is prob-
able that some error was made in the input wire frame.
Thus at the various stages there are a number of simple
checks which can be performed to determine whether or
not the wire frame is valid. At the end of Stage 3 one can
check to see whether each edge belongs to at least two
noncoplanar faces and that each vertex belongs to at least
three faces which lie in planes whose intersection is exactly
the vertex. Failure to meet any of these conditions would
indicate the existence of an error at this point.

Stage 4: checking for illegal intersections between virtual
faces

The description of objects in Section 2 is based on 2-cy-
cles, which have the property that the faces belonging to
them intersect only at boundary points of the faces. Two
virtual faces intersect illegally when there exists a point in
the intersection that is internal to both. In this case it is
not possible for both to be real faces of the object. Illegal
intersections can occur in either of two ways:

I. Aninterior point of an edge of one contains an interior
point of the other;

I1. The above type of intersection does not occur, yet a
vertex of one is in the plane of the other, and there
exists a point that is interior to both faces.

These illegal intersections, which are known as type I and
type II intersections, respectively, are detected in this
stage, and appropriate action taken.

589

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

590

M

AN

Ve

Figure 6 A regular octahedron exhibits many type II intersec-
tions.

A type I intersection occurs when any inside point of
any virtual face is an inside point of any element of E(O).
If such a condition is found, the virtual face is dropped
from the list of virtual faces because it is impossible for it
ever to be a face. To see this, note that the edges of ¢
belong to actual faces. If a virtual face intersects edges as
described above, it would have to intersect the corre-
sponding faces. Such an intersection would produce at
least one edge emanating from an inside point of a face,
which would be impossible. [A type I intersection is
shown later in Table 1(d).]

Two ways are proposed to handle the second case. The
second method, which is the preferred method, also sug-
gests a quick means for checking for type Il intersections.

The first method of handling type II intersections is to
pick maximal subsets of virtual faces which lack a type 11
intersection and to proceed through the remaining stages
of the wire frame algorithm to uncover all possible solu-
tions under those assumptions. In some cases one can use
any solutions found to resolve the true nature of type II
intersections. In other cases it might be necessary to go
through the remaining stages of the algorithm with several
different maximal subsets lacking a type II intersection.
For many practical objects, type II intersections are rela-
tively rare (they arise from high degrees of symmetry), so
this solution is quite a practical one. It also has the advan-
tage that it simplifies the decision procedure in Stage 6,
since there is only one kind of edge to consider.

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

Vs

V2

v
3
V7

Vi
Va

Ve

Figure 7 A regular octahedron after Stage 4 with cutting edges
inserted.

The second method is based on the observation that a
type II intersection consists of a finite number of line seg-
ments, the endpoints of which are elements of V(0). To
see this, let f, and f, be faces that have type II inter-
section. Let £ = P, N P,. Let p € f, N f, be an interior
point of both f, and f,. Let p, and p, be the points of ¢
which give the maximal line segment containing p and
contained in f, N f,. Since f, and f, are compact, i.e.,
closed and bounded, p, and p, belong to df, U df,. Since
no boundary point of f, is an inside point of f, and vice
versa, p,, p, € of, N of,. If the edges of f, and f, which
contain p, (p,) are collinear, then f, and f, must be copla-
nar and must overlap in nontrivial ways. This is impos-
sible in view of the tests performed in Stage 3. Thus p,
and p, belong to two noncollinear edges which can only
intersect in an element of V(0). To help visualize the pre-
ceding argument, look at Fig. 6. Here f, is given by
v,v,v.v,v, and f, by v,v.v vy, p, is v,, and p, is v,. This
gives a quick test for type II intersections: visit each ver-
tex in turn and see if any of the virtual faces containing
that vertex intersect.

Suppose that f, and f, are two virtual faces having a
type 1I intersection; introduce the line segments of inter-
section as new edges, called cutting edges. Also in-
troduce all the necessary points of intersection. The new
vertices and edges are marked to distinguish them from
the original vertices and edges. In general, these new ver-
tices and edges will partition some of the virtual faces into
smaller virtual faces. Using the algorithms described ear-

IBM]. RES. DEVELOP. & VOL. 24 & NO. 5 & SEPTEMBER 1980

lier, all those cutting edges which are bridges in a particu-
lar virtual face having type II intersections are identified.
All virtual faces which induce these bridges are dropped,
since they cannot possibly separate solid matter from
empty space. Of course, after dropping some virtual
faces, some of the type II intersections may disappear.

Since type Il intersections are mostly the result of sym-
metry, we consider one of the most symmetrical cases
possible, that shown in Fig. 6. After the regular octahe-
dron of Fig. 6 passes through Stage 3, 11 faces will have
been found: the usual 8 faces plus the 3 given by
vV, V,v.v,v, v,vv v, and v,v.v,vev.. The last 3 virtual
faces (pairwise) have type II intersections. Each of the
last 3 faces partitions each of the others into smaller vir-
tual faces, which are all kept, ending up with 7 vertices,
18 edges, and 20 faces. The new wire frame is illustrated
in Fig. 7.

Stage 5: calculation of 2-cycles and virtual blocks -

In this stage virtual faces are fitted together to form can-
didate objects called virtual blocks. From the definition
and discussion in Section 2, it is clear that objects can be
found by calculating all 2-cycles and finding the nesting
relationships among them. This 3-D process is a close an-
alog of the 2-D process of fitting edges together to form
virtual faces. However, the definition of a 2-cycle is in
terms of F(©), and at this stage of the algorithm only the
virtual faces VF(0) are available, where F(O) C VF(0).
Thus, VF(0) can contain elements which are not faces of
O and are known as pseudo-faces. Pseudo-faces arise
through chance alignments of edges and may occur in two
forms:

I. The interior of the virtual face is empty space;
II. The interior of the virtual face is interior to solid mate-
rial.

It will be seen that type I pseudo-faces are always re-
jected and that type 1I may either be rejected or be used
to partition a primitive object into smaller subobjects.

Some tests that detect pseudo-faces have been seen in
Stage 4. An intersection of type [shows that the virtual
face involved is really a pseudo-face. Similarly, an inter-
section of type II indicates that at least one of the virtual
faces involved is a pseudo-face. Note thai not every
pseudo-face is involved in an illegal intersection of one of
these two types. Another kind of pseudo-face that is de-
tected in this stage is the 2-bridge, i.e., a virtual face which
does not belong to any 2-cycle. After detecting and han-
dling all of these pseudo-faces, the remaining virtual faces
naturally break up into 2-cycles. These 2-cycles partition
all of IR® into connected components in much the same
way that the 1-cycles partition the planes. In fact, the re-

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 5 ¢« SEPTEMBER 1980

&

Va

V2

M

Figure 8 An example of a pseudo-face.

mainder of this stage is very similar to the virtual face
creation algorithm of Stage 3. However, since this is in 3-
dimensional space, no new types of intersections can oc-
cur and no new tests are necessary. As in Stage 3 some
converiions are needed for describing the relationship be-
tween virtual faces and the components of an object
which they bound.

Let B, and B, be the two components of an object B
whose boundaries (denoted by 4B, and 9B,) both contain
given virtual faces f. If the canonical normal (introduced
in Stage 2) erected at any interior point of f points away
from (into) B,, then +f € 4B, (—f € 3B)). Clearly, +f €
oB, (—f € oB)) iff —f € 9B, (+f € 6B,). The goal is to find
the various components of B+ because the original object
can be built out of them.

Before proceeding further, consider a simple example.
An object can have 1-cycles which result accidentally; in
Fig. 8, the virtual face, v v v,v,v,, is a pseudo-face, be-
cause it is not an actual boundary between empty space
and solid material. However, this cannot be detected until
the object is considered globally, i.e., when virtual faces
are being found in the various planes, there is no way of
distinguishing between faces and pseudo-faces. Only
when the construction of the complete object in Fig. 8 is

attempted is v, v,v,v v, seen to be a pseudo-face.

591

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

592

2B, (out)

3B, (in) 3B, (in)

Figure 9 Tree of 2-cycles.

This problem of pseudo-faces is handled by working
with virtual blocks, i.e., 2-cycles which do not contain
any nonbridge, virtual faces in their interior. Thus, virtual
blocks are the primitive building blocks for dissection of
an object by pseudo-faces. The object in Fig. 8 has three
virtual blocks associated with it:

1. The closure of the unbounded component of Bx;

2. The closure of the bounded component of B* lying
above v, v v,V v,

3. The closure of the bounded component of B lying be-
low vyvev vy,

To describe the boundaries in terms of the notation in-
troduced above, assume that in Fig. 8 the origin is in the
middle of the cube defined by v,,v,,v,,v,,v_,V,,V,, and v,,
and that all plane positive normals radiate outward, giving
oB, = —f —f,—f—~f, —f—f—f—f—f—f;

1

B

2 f1+f2+f3+f4+f9_f10;

B, = £+ +f +f +f +f ;
where

f, is the face defined by v_v,v, v.v.;

f, is the face defined by vov.v, v v

f, is the face defined by v,v,v v, v.:

f, is the face defined by v v, v,v v

f; is the face defined by v v,v.v_v ;

f, is the face defined by v,v v_v.v,;

f, is the face defined by v,v,v,v.v,;

f, is the face defined by v,v,v.v,v,;

f, is the face defined by vyv, v, v,,v
f,, is the face defined by v v v v,v,;

6°7°8°5
f,, is the face defined by v v,v,v,v

2737417

Note that just as there were (in) and (out) l-cycles,
there are (in) and (out) 2-cycles. In the case above, B, is
an (out) 2-cycle, while 9B, and 4B, are both (in) cycles.

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

As the reader probably suspects at this point, a tree of 2-
cycles, similar to the one for 1-cycles, is constructed for
an object. In fact, all the rules given for constructing a 1-
cycle tree hold for 2-cycle trees. Virtual blocks are de-
rived from this tree in the same way that virtual faces
were derived from the 1-cycle tree. In this case the tree is
represented in Fig. 9.

Before describing the procedure for finding 2-cycles,
consider the case of the regular octahedron (Figs. 6 and
7). Because the octahedron is so symmetrical, it has three
pseudo-faces each of which intersects the other two.
Since there is no a priori method to eliminate any of them,
either all possibilities can be tried or cutting edges can be
introduced. Thus the octahedron of Fig. 7 decomposes
into nine 2-cycles—one (out) and eight (in) 2-cycles.

The algorithmic steps to discover all 2-cycles and 2-
bridges are now described. For each edge e of 0, a circular
list is formed of all virtual faces which have e contained in
their boundary. The faces are ordered in the same way as
the corresponding edges were ordered in Stage 2, that is
they are ordered radially around the edge. The search for
2-cycles now proceeds very much like the search for 1-
cycles. Pick a virtual face with an orientation, i.e., +f or
—f, and attempt to find a virtual block containing it. Pro-
cess edges one at a time by adding the appropriate face
with the correct orientation, and maintain information on
the number of times the edge is used and the sense of each
use. Choosing an orientation for a virtual face is equiva-
lent to assuming that solid material lies on a particular
side of the virtual face. Thus an edge is processed by
seeing which oriented faces contain it and picking those
oriented faces which are neighbors through the solid ma-
terial. Figure 10 illustrates this point by giving an edge-
on view of the process. Suppose that the virtual faces
f, f,, f,, and f, have been selected to be in 2-cycles with
the orientations suggested in the figure by the normals
and the shading. Since f; and f, are neighbors through
solid material, they can both be dropped from further
consideration. To find a virtual block both f, and f, would
need to be added to the proposed 2-cycle with the in-
dicated orientation. Note that it would be impossible for
f, to belong to the 2-cycle because each edge can only
belong to an even number of faces. If a virtual face is
found which would need to be incorporated into the same
2-cycle twice (it will turn out that it is with opposite orien-
tations), then that virtual face is a bridge and is deleted
from the list of virtual faces. The partial results are saved
and the process continued until the 2-cycle is completed.
At the end of this process all bridges have been eliminated
and every remaining virtual face belongs to exactly two
distinct virtual blocks. Furthermore, the interiors of the
virtual blocks are exactly the components of the com-

IBM J. RES. DEVELOP. » VOL. 24 & NO. 5 & SEPTEMBER 1980

plement of the remaining virtual faces. The original object
must be a union of some of these virtual blocks, thus
showing that in principle the problem has been reduced to
a problem which involves only a finite number of possi-
bilities. The next stage handles this last problem effi-
ciently.

It only remains to mention one complication which can
arise. In some cases, several edges of O are collinear and
can be combined into a single line segment. In this case it
is possible for one face to have as an edge a line segment
which contains edges from other faces as subedges. In
this case, there are a number of straightforward modifica-
tions which must be made to the 2-cycle finding al-
gorithm.

Stage 6: constructing all solutions for the wire frame

In this stage virtual blocks are fitted together to generate
all objects with a given wire frame. Basically, each virtual
block may have solid or hole state and, when a state as-
signment has been made to each virtual block, an object is
obtained. However, not all assignments of solid and hole
yield the desired wire frame. An assignment of solid or
hole to the virtual blocks yields an object with the correct
wire frame iff

1. Every element ¢ € E(O) belongs to two noncoplanar
virtual faces f, and f, each of which belongs to one
virtual block assigned solid state and one assigned
hole state;

2. No cutting edge belongs to two noncoplanar virtual
faces f, and f, each of which belongs to one virtual
block assigned solid state and one assigned hole state,
i.e., every cutting edge must be inside material.

A decision tree is constructed by growing those edges
having the smallest number of unassigned virtual blocks
containing them. The unique infinite virtual block is al-
ways assigned the empty state. Condition (1) is not al-
ways used to make choices between states; the necessary
condition that every edge belong to a solid block and to a
hole block is also used. However, conditions (1) and (2)
are the ones that must be satisfied. To illustrate this pro-
cess consider the regular octahedron of Fig. 7.

There are nine blocks:

B,—the infinite virtual block;
B,—the virtual block determined by v,v,v.v_;
B,—the virtual block determined by v, v

4V7V5;
B,—the virtual block determined by v,v,v.v,;
B,—the virtual block determined by v,v,v.v;

B;—the virtual block determined by v,v,v.v,;

B,—the virtual block determined by v v, v.v;
B;—the virtual block determined by v, v,v,v;

B,—the virtual block determined by v,v,v.v,.

IBM J. RES. DEVELOP. e VOL. 24 e NO. 5 « SEPTEMBER 1980

G
<IH

...,
e
il

-
&
o

Figure 10 Finding virtual blocks—an edge’s perspective.

Each edge of @ now belongs to two virtual blocks of unde-
termined status while each cutting edge belongs to four
virtual blocks of undetermined status. The state hole is as-
signed to B,. An edge is picked, say e = V,v_, and the de-
cision tree begun.

Note that ¢ already belongs to a block with hole state,
so solid state must be assigned to some block. Figure 11
shows the decision tree in this case. Notice that each time
the state of one of the B, (i = 2) is set to hole a con-
tradiction is quickly found. If B, has hole state, then B,
and B, must be given solid state because Vv, and V,v;
must belong to at least one solid block and there is only
one candidate for this. However, if B, has hole state, and
B, and B, solid state, the faces v,v,v,v, and v,v.v.v, con-
tradict condition (2) for edge v_v_. Similar contradictions
arise whenever any B, (i = 2) is treated as being empty.
Notice that after a few assignments the subsequent
choices are determined and exponential growth of the
tree is avoided.

In some cases, there is an exponential number of dif-
ferent objects having the same wire frame, so exponential
growth cannot be entirely avoided. However, if the tree is
grown for depth, some object can be found having the
given wire frame. In practice, this stage is completed
fairly quickly since the geometry generally takes over
once several assignments have been made. In complex

593

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

594

Solid Empty

B, solid B, empty implies By and B, solid which

contradicts condition (2) for \I3Z}

B, empty implies B, solid which contradicts

B, solid condition (2) forvs v,
B, empty, contradicts condition (2) for V5V,
By solid
\ Bg empty, contradicts condition (2) for v v,
By solid

\

B empty, contradicts condition (2) for \AZ
B solid

B7 empty, contradicts condition (2) for Ve ¥y

B, solid

\

By solid

\

B, empty, contradicts condition (2 for \AZ

Bg empty, contradicts condition (2) for 73]

By

Figure 11 A decision tree for the regular octahedron.

objects it is often the case that many edges on the outer
boundary belong to exactly one virtual block which can
be marked solid. In particular, any vertex belonging to
exactly three elements of E(0) belongs to exactly two vir-
tual blocks. Thus if one of them is empty, the other one
must be solid.

Stage 6 feeds into an output module which puts the out-
put together in forms which can be understood by the
user of the system. The following section shows a number
of examples in detail.

4. Examples

In this section are described a number of examples cho-
sen to illustrate particular features of the algorithm. The
examples are illustrated in Table 1.

Table 1(a) shows a double tetrahedron. Seven tri-
angular virtual faces are found—the six outside faces and
the internal area bounded by the waist of the figure. Three
virtual blocks are found; the decision process assigns
solid state to (1) and (2); block (3) is the unbounded vir-

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

tual block; (1) and (2) are combined to produce the output
object.

Table 1(b) shows an object with 1-D bridges on the
faces containing abcd and kmnp. The plane graphs con-
tain three bridges ef, k1, and op, none of which appear in
the virtual faces for the planes shown. Two virtual blocks
are found, one the output object and one the unbounded
virtual block.

Table 1(c) shows four cubes positioned on two levels
with four shared vertices enclosing a rectangular area
abced; abed is found to be a virtual face, but in the virtual
block building process is detected to be a 2-D bridge (i.e.,
it is assigned opposite directions in the same virtual block
to become a zero thickness sheet) and is not used in the
output objects.

Table 1(d) contains an octahedron extended by a cube
and pierced by a vertical square prism. The two plane
graphs containing abcd and efgh have type I intersections
with the vertical sides of the hole and therefore are not
virtual faces. Six virtual blocks are found and assigned
states as shown.

Table 1(e) shows the object of Table 1(d) without the
piercing hole. Four face graphs with type II intersections
occur and are shown as virtual faces with cutting edges
inserted. Thirteen virtual blocks are found and assigned
states as shown.

Table I{f) shows a well known ambiguous wire frame
[18]; eight virtual blocks are found, and the decision pro-
cess enumerates three valid solutions: one pair of oppos-
ing blocks [(1, 2), (3, 4), or (5, 6)] must have hole state,
the center block (7) always has hole state.

Table 1(g) shows another ambiguous wire frame that
could well occur in practice. Nine virtual blocks are
formed; the decision process finds that block (8) can have
hole or solid state.

Figure 12(a) shows a more complicated wire frame with
1256 edges and 850 vertices. In the course of the recon-
struction process the wire frame algorithm finds 93 virtual
blocks, most of them being window holes and enclosed
volumes inside tubular members of the structure, and
generates the volumetric representation shown in Fig.
12(b). Figures 12(c) and (d) show a cross section of the
reconstruction with the nested interiors of tubular mem-
bers correctly represented.

5. Acknowledgments
Our thanks are due to D. D. Grossman for encouraging us
to tackle the wire frame reconstruction problem and for

IBM J. RES. DEVELOP. & VOL. 24 4 NO. 5 ¢ SEPTEMBER 1980

Table 1 Examples of the wire frame algorithm.

Wire frame Plane graphs of interest ~ Virtual faces of interest Virtual blocks Virtual block Object
decision states
(s =solid, h=hole)

(PNl
I
e ow

1
(a) Double tetrahedron —_— 4

klcﬁm f po = m: 1 &l""

e Y e— 2

e = ﬂﬁrﬁgﬂba 1%

(b) 1-D bridges

S
&

2 1=s
u
3=s
- 1 4=s
(c) 2-D bridges D pau
§=h
O]
g=h
abcd and efgh ;f:
have type 1 3:5
(d) Type I intersections intersections 4 — s
and are not 5:h
virtual faces 6;11
(¢) Type Il interesections J— 1-12=s
13=h
With cutting
edges inserted
1
1=ssh
2=ssh
3 =hss
4=hss
(f) Ambiguity [— P 5=shs 2
6=shs
7=hhh
g=hhh
3
1=ss
igui —_— — 2=hh
(g) Ambiguity IT 3=hh
4=hh
5=hh
6=hh
7=hh
g=hs
9=hh

[

595

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 5 ¢ SEPTEMBER 1980 GEORGE MARKOWSKY AND MICHAEL A. WESLEY

=

i

/

1

|

11
|

I
\

|

\
\

(a) (b)

r—

i
B —
A

sl

(¢) (d)

Figure 12 (a) Wire frame with 1256 edges and 850 vertices; (b) volumetric representation of wire frame; (c) cross section of volumetric
representation; and (d) close-up view of tubular members.

providing the ambiguous example of Table 1(g), and to T. 6. Appendix A: Topological concepts
Lozano-Pérez for his contributions to early discussions A brief introduction is given to those standard topological
596 on the problem. concepts used in this paper. For more details, see [17].

GEORGE MARKOWSKY AND MICHAEL A. WESLEY 1BM J. RES. DEVELOP. & VOL. 24 & NO. 5 & SEPTEMBER 1980

Definition A.l

Letx € R’and rbe a positive number. B (x) is used to
denote the set of all points of R®> whose Euclidean dis-
tance from x is less than r. B (x) is called the open ball at
x of radius r. O

Definition A.2

A subset X C IR® is said to be open if, for all x € X, there
exists r > 0 such that B (x}) C X. Asubset Y C R® s said
to be closed if R® — Y is open. Note that open balls are
open and that & and IR® are both open and closed. O

Definition A.3

Let X C Y C IR®. Then X is said to be open in Y in the
relative (induced) topology [or open in the relative (in-
duced) topology for short] if, for all x € X, there exists r
> 0 such that B, (x) N X = B,(x) N Y. X is closed in the
relative topology if Y — X is relatively open. [J

In the cases most of interest here, i.e., subsets of a
plane in IR®, being relatively open means containing open
disks (the intersection of a plane and an open ball). The
following definitions will be stated only for the standard
topology of IR® (Definition A.2) and the reader should ver-
ify that they make sense for any relative topology.

Definition A 4
The closure, X, of a subset X of IR® is the set {x € R®| for
all » > 0, B(x) N X # &}. In particular, X C X. (J

It can be shown that X is a closed set and that a subset
Y C IR%is closed if and only if Y = Y.

Definition A.5
The boundary, 08X, of a set X C IR® is the set X N
(R® — X). O

Thus a point, x, is in ¢X if and only if there are points of
both X and R® — X arbitrarily close to x.

Definition A.6

A subset X of IR? is said to be connected if two nonempty
open subsets U, U, of IR® cannot be found such that Uu,n
U=, UnX#g=U,NX,and X CU UU,O

In the case of IR and its subplanes, all connected open
subsets have the property that any two points in a given
subset can be connected by a path which lies entirely in
the given set.

Definition A.7

Let X C IR®. A connected component of X is a subset Y of
X which is connected and such that for any other con-
nected subset Z C IR*, either ZC YorZNY =¢. O

Any set in IR can be written as the disjoint union of its
components.

IBM). RES. DEVELOP. @ VOL. 24 @« NO. 5 « SEPTEMBER 1980

Definition A8

A subset X of IR® is said to be bounded (unbounded) if
there exists for all » > 0 a point p € IR® such that X C
B,(p) [X & B,(p)].

References

1. L. E. Sutherland, ““SKETCHPAD: A Man-Machine Graph-
ical Communication System,”” Proc. SJCC 23, 329 (1963).

2. J. Boyse, ‘‘Interference Detection among Solids and Sur-
faces,”” Commun. ACM 22, 3-9 (January 1979).

3. M. A. Wesley, T. Lozano-Pérez, L. 1. Lieberman, M. A.
Lavin, and D. D. Grossman, ‘‘A Geometric Modeling Sys-
tem for Automated Mechanical Assembly,”” IBM J. Res. De-
velop. 24, 64-74 (January 1980).

4. B. E. Brown, ‘‘Modeling of Solids for Three-Dimensional
Finite Element Analysis,”” Ph.D. Dissertation, Department
of Computer Sciences, University of Utah, Salt Lake City,
UT, June 1977.

5. R. H. Taylor, ‘*A Synthesis of Manipulation Control Pro-
grams from Task Level Specifications,”” Report No. STAN-
CS-76-560, Stanford Artificial Intelligence Laboratory,
Computer Sciences Department, Stanford University, Palo
Alto, CA, July 1976.

6. T. C.-H. Woo, *‘Computer Understanding of Design,”” Ph.D.
Thesis, University of Illinois at Urbana-Champaign, 1975.

7. S. Udupa, ‘*Collision Detection and Avoidance in Computer
Controlled Manipulators,”” Ph.D. Thesis, California Insti-
tute of Technology, Pasadena, CA, 1977.

8. T. Lozano-Pérez and M. A. Wesley, ‘*An Algorithm for
Planning Collision-Free Paths Among Polyhedral Objects,”
Commun. ACM 22, 560-570 (October 1979).

9. A. Baer, C. Eastman, and M. Henrion, ‘‘Geometric Mod-
eling: a Survey,”” Computer Aided Design 11, 253-272 (Sep-
tember 1979).

10. A. G. Requicha and R. B. Tilove, ‘‘Mathematical Founda-
tions of Constructive Solid Geometry: General Topology of
Closed Regular Sets,”” Tech. Memo. No. 27, Production Au-
tomation Project, University of Rochester, New York,
March 1978.

11. M. Idesawa, ‘*A System to Generate a Solid Figure from a
Three View,”’ Bull. JSME 16, 216-225 (February 1973).

12. M. Idesawa, T. Soma, E. Goto, and S. Shibata, ‘* Automatic
Input of Line Drawing and Generation of Solid Figure from
Three-View Data,”” Proceedings of the International Joint
Computer Symposium 1975, pp. 304-311.

13. G. Lafue, ‘‘Recognition of Three-Dimensional Objects from
Orthographic Views,” Proceedings 3rd Annual Conference
on Computer Graphics, Interactive Techniques, and Image
Processing, ACM/SIGGRAPH, July 1976, pp. 103-108.

14. D. A. Huffman, ‘‘Impossible Objects as Nonsense Sen-
tences,”” Machine Intelligence 6, B. Meltzer and D. Michie,
Eds., Edinburgh University Press, Edinburgh, Scotland,
1971, pp. 295-324.

15. M. B. Clowes, ‘*On Seeing Things,"’ Artificial Intelligence 2,
79-116 (1971).

16. D. Waltz, ‘‘Understanding Line Drawings of Scenes with
Shadows,”” The Psychology of Computer Vision, P. H. Win-
ston, Ed., McGraw-Hill Book Co., Inc., New York, 1975,
pp. 19-91.

17. J. G. Hocking and G. S. Young, Topology, Addison-Wesley
Publishing Co., Reading, MA, 1961.

18. H. B. Voelker and A. A. G. Requicha, “‘Geometric Mod-
eling of Mechanical Parts and Processes,”” Computer, 48-57
(December 1977).

Received February 21, 1980; revised April 15, 1980

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

597

GEORGE MARKOWSKY AND MICHAEL A. WESLEY

