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Estimation of State  Probabilities  Using  the  Maximum 
Entropy  Principle 

A simple method is derived for computing  state probabilities of a  system when the probabilities of certain  aggregate 
states are known. The method is based on maximizing  the system entropy.  It is shown that the results obtained  by the 
method  satisfy  certain  assumptions on statistical  independence  between events. The method is applied to  a problem 
arising in computer  performance  analysis. 

Introduction 
The method of maximum entropy  has long  been used to 
determine state probabilities in fields such  as statistical 
mechanics [I], queuing  theory [ 2 ] ,  and  computer perform- 
ance analysis [3]. The method and many of its appli- 
cations  are  discussed in [4]. Use of the method is usually 
justified in information-theoretic terms, since the maxi- 
mum entropy solution introduces  the minimum possible 
extraneous information  beyond what is implied in the 
problem formulation.  In large population  combinatorial 
problems, the maximum entropy solution can  also be jus- 
tified as being the distribution  which can  be realized in 
overwhelmingly more ways than  others.  It  is interesting, 
however,  to  see  what  the maximum entropy solution 
means in purely  probabilistic terms,  without reference to 
information or sampling  theories. 

We shall attempt  to apply the method to  the estimation 
of discrete  state probabilities when  the probabilities of 
certain events (i.e., aggregate states)  are known. The 
problem arises  because  the  number of unknown state 
probabilities  often exceeds  the  number of given event 
probabilities, thus leaving the  former indeterminate. We 
shall justify the maximum entropy  procedure by  showing 
that, in many important  cases,  the  estimated probabilities 
satisfy certain  assumptions of statistical  independence. 
We shall then use  the method to  solve a  problem relating 
to  the performance of peripheral storage  devices  for com- 
puters. In that  problem,  one knows the probabilities that 

given access  paths  are  free, and one  seeks  the probability 
that a given path is free  when a  device is ready  to receive 
data. 

Definitions 
Consider  a stochastic  system Q which may assume any 
one of a set of mutually exclusive  and  exhaustive  states 
S,, S,, . . ., S,. Let pi be the probability that  the system is 
in state Si.  

An event E is defined as a specified aggregate of states. 
The probability of event E is 

4 = c Pi. 
iIS,EE 

Event E is said to cover state Si if Si E E. Apartition of 
the system is a set of mutually exclusive  and  exhaustive 
events.  Two  partitions  are orthogonal if every  event in 
one partition has a nonempty intersection with every 
event in the  other partition. 

Let E,,  E,, . . ., E,  be a set of not  necessarily  exclusive 
or exhaustive  events.  Let S,, S,, . . ., S, be the minimal 
set of states  required  to  represent  these  events; i.e., any 
two  states  covered by  identical subsets of events  have 
been  amalgamated into a single state. We shall assume 
henceforth that  we  are always  dealing  with a minimal set 
of states relative to  the defined events. We say in this case 
that  the Si comprise  the partition of Q induced  by the Ej. 
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Figure 1 Two-event example. 

Problem statement 
Given a set of defined events E,, E,, . . ., E,  with  known 
probabilities q , ,  q,, . . ., q,, let SI, S,, . . ., S, be the 
partition of Q induced by the Ej.  Assume  that  events  are 
statistically independent  as  far  as possible. Compute  the 
vector of state probabilities p = [ p , ,  p,, . . ., p,]. 

Notes: 
1. The  independence assumption has been left deliber- 

ately  vague at  this point. We shall proceed  to formu- 
late  a solution,  then  discuss  what  independence  as- 
sumptions it actually  satisfies. 

2 .  Among the defined events  one must  include the uni- 
versal event which covers all states  and  has probabil- 
ity 1. 

Solution 
Let F(p) be the negative entropy  function, i .e. ,  

n 

F(P) = c Pi 1% P i .  
i= l  

Find the  value of p which minimizes F(p) subject to  the 
constraints 

pi  z 0 i = 1, 2 ,  . . ., n ,  

p i = q j  j =  1 , 2 ; . . , m .  
iIS,EE, 

Minimizing F( p) is equivalent  to minimizing G( p) = F( p) 
- 1 = c(pi log p i  - p i ) .  Following standard  procedures, 

564 we form the Lagrangian 

U P )  = G(P) - cvj ( i,zEJ p i  - q j  ’ 
\ 1 

where  the uj are  unknown Lagrange  multipliers. We 
equate  to  zero  the  derivatives aL/8pi: 

from which we  get 

pi  = n uj i = 1, 2 ,  . * ., n, 

where uj = exp (vj). Now  the  constraints 
IISIEEJ 

1 ( n u k ) = q j  j = l , 2 , . . . , m  (2) 
ilSIEE, klSI€Ek 

yield equations  to be  solved for  the m unknown uj. The 
latter  can  then  be  substituted in (1) to  evaluate  the re- 
quired pi. In  words,  the  procedure  can be described as 
follows: 

1. Associate an  unknown ui with each defined event E,. 
2 .  The probability p i  of state S i  is the  product of all the uj 

for  events Ej that  cover Si. 
3. Substitute these  expressions  for  the p i  in the  equations 

defining the probabilities qj. 
4. Solve for  the uj and  substitute in the  expressions for 

the pi  to evaluate  the  latter. It should be  noted  that  the 
equations are usually  nonlinear, and finding their solu- 
tions may be a nontrivial task. 

-~ 

Before  justifying this  procedure,  we illustrate with the 
simplest  possible  nontrivial case (Fig. 1): There  are only 
two  events E, and E, for which the  states SI = -E,  n 
-E,, S, = E, n -E,,  S, = -E, n E,, and S, = E, n E,all 
have finite probabilities. In addition, there is the universal 
event E, = SI U S, U S, U S,, with q, = 1 .  There  are  three 
constraints: 

E,: P2  + P4 = q, ,  

E,: P ,  + P4 = q,’ 

E,: P I  + P ,  + P ,  + Pq = 1. 

Then 

p ,  = u, (because p 1  appears only in E,), 

p 2  = u,u3 (because p ,  appears only in E ,  and  EJ, 

P3 = up,’ 

P4 = ~ , U Z U 3 ’  

so that 

u,(l + U2b3 = q , ,  

u,(l + UI)U, = q,’ 

( I  + u1 + u, + UIUZ)U,  = 1. 
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'The third equation may be rewritten as ( 1  + u,)(  1 + u2)u3 
= 1 .  Multiplying the first equation by 1 + u 1  and dividing 
by the  third,  one finds u1 = ql(l  + u l ) ,  or 

41 u 1  = -. 
1 - 4, 

Analogously, 

up = - 4 2  

1 - q2 

and 

so that p 4  = u1u2u3 = qlqz. This solution,  then,  renders E ,  
and E, statistically independent. 

The  existence  and uniqueness of the maximum entropy 
solution are well known  (see  for  example [SI). All that 
remains  to be done is to  show what  statistical indepen- 
dence  assumptions  are satisfied by the maximum-entropy 
solutions. It should be made clear  that  the  choice of inde- 
pendence assumptions which can  be made in the formula- 
tion of problems of this nature is not at all unique. For 
example, in the  case  shown in Fig. 2 we  can demand that 
E, and E, be independent, or we can  demand  that they  be 
independent  conditionally on  the  occurrence of E,. In  the 
first case, Pr (E ,  n E,) = q,qb. In  the second case,  the 
requirement is that  Pr (E ,  n E,IE,) = Pr (EalEc) Pr (E,IE,), 
which reduces  to Pr (E ,  n E,) = q,qb/4,. We feel that  the 
latter condition is the more  natural one,  and  are not sur- 
prised to  discover  that this is the  one satisfied by the max- 
imum-entropy solution,  as  demonstrated in the following. 

Theorem 1 
Let Ea,  E,, and E, be events satisfying the following con- 
ditions: 

1 .  The  sets U ,  = ( - E ,  n -E,) n Ec, U2 = (E ,  n -E,) n 
E,, U,  = ( -E ,  n E,) n E,, and U4 = (E ,  n E,) n E, 
are all nonempty. 

2 .  The  four  sets U, ,   U2 ,  U3,  U4 are partitioned by all 
other defined events in identical manners.  That  is,  for 
every  state Sij E Uj ,  j = 1, 2 ,  3, 4, there  exist unique 
states Si, E U,, k # j ,  such  that  the  sets of defined 
events  other  than E,,  Eb, and E, covering each of the 
four Si, are  identical. 

Then, in the maximum-entropy solution, Ea and E, are 
statistically independent conditionally on E,. In  other 
words, Pr (E,  n E,lE,) = Pr (EalEc) Pr (EbIEc), which in 
this case is equivalent  to 

Pr (u4) = Pr (U2 u U4) Pr (U ,  u UJ/qc. 

Figure 2 Three-event  example. 

Notes: 
1 .  Condition 2 essentially states  that knowledge of 

whether any  other  event  has  or  has  not  occurred con- 
veys no information on  whether E,, E,, andor  E, have 
occurred. 

2 .  The  events E,, E,, andlor E, need  not be among the Ej 
whose  probabilities are given a priori. For suppose q, 
is not given. We can solve the problem using all given 
events,  then  evaluate q, from the  computed  state 
probabilities, then  append E, to  the list of Ej using the 
computed 4,. The solution of the new problem is obvi- 
ously  identical to  that of the old one. We may, then, 
assume  without loss of generality that E,,  E,, and E, 
are among the  events with specified probabilities. 

Proof 
Let Si,, i = 1 ,  2 ,  . . e ,  r ,  be the  set of states included in Uk, 
k = 1 ,  2 ,  3, 4. Let Qi = Pr ( U J .  Then,  for  instance, 

Q, = p I 1  + p P 1  + . . . + p r l ,  

where p i ,  = Pr ( S J .  Since U ,  n Ea = 0 and U ,  n Eb = 0, 
the  expressions  for  the p i ,  in terms of the uj do not  contain 
either ua or u,. Now, by assumption,  the  coverage of Si, 
differs from the  coverage of Si,  only  by also including E,. 
Hence pi2 = uapi, ,  i = 1, 2 ,  . . ., r .  We conclude,  then, 
that 

Q2 = .,e,. (3) 

Similar arguments  lead to 

Q3 = ubQly (4) 

' 2 4  = uaubQl. ( 5 )  

The  constraint  imposed by q, may be written  as 565 
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Q, + Q, + Pr (Ea n -Ec) = 4, Theorem 2 

or 
Let (E,. ,  Ez., . . ., E,..) and (E,,,   E.,,  . . ., E.J be two  sets  of 
events which partition Q orthogonally, i .e.,  

Ei. n EJ = 0 (i  z j ) ,  Q, + Q, = Qat (6) 

where Q ,  = Pr (Ea n E,)  = q, - Pr (Ea f l  -Ec).  Similarly, 

e, + Q4 = Qb,  (7) 

where Q, = Pr (Eb f l  E,) = q, - Pr (E,  n -E,); and 

Q, + Q, + Q3 + Q4 = 4,. (8) 

E . ~  n E . ~  = 0 (i # j ) ,  

u Ei, = Q ,  

u E,j = Q ,  
Substituting (3), (4), and (5) into (6), (7), and (8) we find j 

Ei. n E,, # @ (all i,.j). 

Let  the  event probabilities p i ,  = Pr ( E i )  and p,i = Pr (E,J 
be given,  and let the probabilities p ,  of states S, = Ei. n 
E,i be  unknown. Then, in the maximum entropy solution 
for  the p i j ,  the  events Ei. and E,j are independent for all i ,  
j .  In  other  words, 

Ql'a(1 ub) Q a ,  
Pij = Pi.P.,. . 

Note: In this theorem,  the pi .  and P . ~  play the role of the 

The  constraints  that  the pi, must  satisfy are 

Qlub(l + Ua) = Q b ,  

Q l ( 1  + U a ) ( l  + 'b) = 9,. qj in the general case,  and  the p i j  play the role of the pi. 

Multiplying the first equation by 1 + ua and substituting 
from the third equation yields p i .  = 1 and P . ~  = 2 p i j  . 

z.e., 

ua = -. Qa 
q c  - Qa 

Analogously, 

.I z 

Proof 
We associate  the variables ui, and u , ~  with the  events Ei, 
and E,, respectively.  Equation (2) for this case then re- 
duces  to 

p . .  = ui.u.j. 

Hence, 

p i .  = 2 p i j  = ui. 1 u.j ; i .e. ,  ui. = pi.,/'2 u.j , 

p., = 1 pij = u.j ui. ; i .e. ,  u.j = p . , / ?  ui.. 

Now, 

j j j 

1 1 

Corollary 
If E,  and E ,  are  events  such  that V ,  = -Ea n -E,, V,  = 

Ea r l  -Eb, V, = -E, n E,, and V, = Ea n E, are all 
nonempty and  are all identically  partitioned by all other 
defined events, then the maximum-entropy  solution  ren- 
ders Ea and E, statistically independent. 

Proof 
Take E, to be the  entire  system, so that q, = 1, Q, = q,, 
Q, = q,, Q4 = Pr (V4). Then  Eq. (9) becomes Pr (E, n E,) 

566 = q,qb.  Q.E.D. 

1 

Q.E.D. 

Remarks: 
1. The proof is easily extended  to  the  case  where  the par- 

tition is not of the  entire  system Q ,  but  only of some 
event E .  In this case,  independence is conditional on 
E .  

2 .  The proof is easily extended  to any  number of orthog- 
onal  partitions. 
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3. An immediate  application is the estimation of contin- 
gency  table entries when  only the margins are known 
[6, 71. All cases  discussed in [6] are  covered.  Theorem 
2 states that if the maximum entropy principle is used 
to fill in the  empty slots in a contingency table,  the 
result is as though the marginal distributions  were as- 
sumed to be independent of each  other. 

Discussion 
The maximum entropy principle is usually applied in the 
following form: maximize the entropy, given the  expected 
values of certain observable  quantities. Such  conditions 
translate into linear constraints on the state probabilities. 
Conversely, any linear  function of the  state probabilities 
can be viewed as  an  expectation of a certain random vari- 
able.  For  example, in our  case,  the probability of an  event 
E is the  expected value of a random variable  which takes 
the value one in states  covered by E ,  and  zero  elsewhere. 
Thus,  our problem is a  special case of the maximum en- 
tropy formalism. 

In solving maximum entropy problems, it is common 
practice to omit the universal event from the  set of ex- 
plicit constraints.  Instead,  one normalizes by changing (1) 
into 

While this  reduces the  number of unknowns by one,  the 
form of the  equations  becomes more  complicated, and ex- 
plicit solutions are more difficult to  derive. 

Application 
We now provide an example which constitutes a non- 
trivial application of the  method.  The example is sufii- 
ciently  intractable to make calculation of the required 
probability by direct methods beyond  the author's  capa- 
bilities. For more details,  see [8]. The following analysis 
is presented in a somewhat simplified form. 

A computer  system wishes to  transfer  data to and from 
several  peripheral storage devices. A data transmission 
path from the  system  to a  device (actually,  to a  string of 
devices) consists of a channel and a control  unit. There 
may be  several control units connected  to  each  channel, 
and several devices  to  each  control unit. Conversely, a 
device may be attached  to  several  control  units, and a 
control unit to  several channels. A possible configuration 
is depicted in Fig. 3. 

Assume that  the  data flow rate  over  each  path is given. 
That is, we are  told  what fraction of the time each chan- 
neVcontrol unit  combination is busy  transmitting data  to 
each device. Any component  (channel,  control unit, or 
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4 Device 1 

Channel 1 
Device 2 

~ p u  Channel 2 

Channel 3 
Devlce 3 

Device 4 

Figure 3 Sample UO configuration. 

Table 1 System  states. 

System 
state  no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 

Channel 
state 

0 
Y 
Y 
Y 

Y 
X 

X 

X 

Y 
Y 
Y 
0 
0 
0 
0 

Control  unit 
state 

Y 
0 
Y 

0 
0 

2 

X 

Y 

Y 

0 

X 

2 

X 

Y 
0 

Device X 

state 

0 
0 
0 
0 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

0 

Key: 

x: Component serving device x. 
0 Component free. 

y :  Component serving device y .  
z :  Component serving device I .  
(Norr: y and z represent any distinct devices other than x.) 

device)  can  be transmitting  for only one  path  at a time. In 
order  to  evaluate  the performance of this  system,  one 
must  be able  to  answer  the  question: given that a speci- 
fied device is free  (not busy),  what is the probability that a 
given  path to it is free? 

For  our  purposes, we concentrate  on a specific path, 
consisting of a specific channel,  control  unit,  and device. 
We neglect the fine structure of events not relating to  the 
selected path.  Let x designate the specific device,  and let 
y and z designate any  other distinct devices.  Then we can 
distinguish  fifteen  different states, which are listed in 
Table 1. Referring to Fig. 3, suppose  channel 2 ,  control 
unit 2 ,  and  device 2 are  the specific components.  Then, 567 
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for example, in state S, the  control unit (CU2) is trans- 
mitting for  another  channel (channel 1 or 3) and another 
device  (device 1 or 3). In  state S,, the  channel  and control 
unit are  each  serving a separate  device  other  than x ( i . e . ,  
channel 2 is serving  device 4 via CU3, and CU2 is serving 
device 3 via channel 3 ,  while device 2 is being served by 
CU1 via channel I). 

The path  utilization data  are  expressible  as probabili- 
ties  for  the following events: 

E,: channel is busy. 
E,: control  unit is busy. 
ED: device is busy. 
ECti: channel and  control unit are busy  serving same  de- 

EeD: channel is busy  serving specified device. 
EuD: control  unit is busy  serving specified device. 
E,,,: channel and  control unit are serving specified de- 

vice. 

vice. 

In  terms of the  states defined in Table I ,  the  event proba- 
bilities are 

and, of course, 

15 

1 = 2 pi. 
i = l  

Through a set of simple  linear transformations  one  can 
reach  a somewhat simpler  but equivalent  set of events 
whose  probabilities can be computed directly  from the 
given probabilities: 

q 3  = q D  - 4 C D  - q t i D  + q C U D  

= P s  + Pl0 + Pll + P12 + P14' 

q 4  = qUD - 4CUD = P9 + P13l 

q 5  = q C D  - qC"D = P5 + Pg, 

q 6  = 4," - qC,D = P 3  + 

q 7  = I - q,, - 4 C D  - q"D + 2qCl.JD 

= P1 + P2 + P4 + P6 + Pi1 + + P I 4  + P15' 

In addition, the  value of p ,  is known  directly (= qcua). To 
apply our algorithm, we associate  the variables ul, u2, 
. . ., u ,  with the  above  constraints  and obtain the follow- 
ing expressions  for  the  state probabilities: 

P1 = up7'  P g  = u1'4, 

P2 = 1111179 PI0  = *3'6, 

P ,  = '63 P I 1  = UlL'2'3'7, 

P 4  = U1U2117. P12 = u3147' 
P ,  = M5.  

P6 = U1U3M7' P14 = U2U3U7' 

Ps = U p 5 '  

For  instance,  the  expression  for p, can be  derived  from 
Eq, ( 1 )  by noting that p ,  appears only in the  equations  for 
q2 and q,. The  constraints  are now transformed  into 

- 
P13 - 114' 

- 
p15 - '7. 

u1(u7 + u p ,  + u3u7 + u2u3u7 + U*)  = q , ,  

U&L7 + u1u7 + u5 + U1U3U7 + M3M7) = q2, 

U3(M,U7 f Us + U l U 2 U 7  + U ,  + U2U7)  = q3, 

U4(U1 + 1) = q4, 

U5(U2 + 1 )  = q5, 

Us(", + 1 )  = 4 6 ,  

u7(l + M ,  + u1 + U 1 M 2  + U l U 3  + u1u*u3 + u3 + U 2 U 3 )  = q7. 

The first equation  can be factored  into 

U , U , ( l  + U J ( 1  + u3) + M1U4 = ql. 

Multiply by I + u1 and  substitute  from  the  fourth  equation 

u,u,(l + U J l  + U J ( l  + u3) + u1q4 = ( 1  + ul)q,. 

The  seventh  equation  can also  be factored  into 

u,(l + U J ( 1  + U , ) ( I  + u3) = q7. 

Substituting  this into  the previous expression yields 

u1q7 + u1q4 = (1 + " , k 1  7 

which has  the  solution 

41 u1 = 

From the  fourth  equation,  then, 

- - 4 C  - q C U  - q C D  + qCUD . 
q7 + q q  - 4, 1 - 4, 
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1 .  

2. 

A precisely formulated  complete  set of independence 
conditions for which the maximum-entropy  method 
provides  the unique solution. 
A set of conditions under which the  constraint equa- 
tions have a rational  solution, as in all the  cases exam- 
ined in this paper. 

IBM J. RES. DEVELOP. VOL. 24 NO. 5 SEPTEMBER 1980 

3 .  A systematic  algorithm for solving the  constraint  equa- 
tions,  other  than general  nonlinear-equation  solution 
algorithms such  as  the  Newton-Raphson method. For 
a discussion of that method in the maximum-entropy 
context, with a proof of convergence,  see [ 5 ] .  

Even without  specialized  algorithms, the maximum-en- 
tropy method provides  an easily  implemented  systematic 
method for solving problems which often baifle an analyst 
who attempts  to  use  direct  methods. 
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