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Estimation of State Probabilities Using the Maximum

Entropy Principle

A simple method is derived for computing state probabilities of a system when the probabilities of certain aggregate
states are known. The method is based on maximizing the system entropy. It is shown that the results obtained by the
method satisfy certain assumptions on statistical independence between events. The method is applied to a problem

arising in computer performance analysis.

introduction

The method of maximum entropy has long been used to
determine state probabilities in fields such as statistical
mechanics [1], queuing theory [2], and computer perform-
ance analysis [3]. The method and many of its appli-
cations are discussed in [4]. Use of the method is usually
justified in information-theoretic terms, since the maxi-
mum entropy solution introduces the minimum possible
extraneous information beyond what is implied in the
problem formulation. In large population combinatorial
problems, the maximum entropy solution can also be jus-
tified as being the distribution which can be realized in
overwhelmingly more ways than others. It is interesting,
however, to see what the maximum entropy solution
means in purely probabilistic terms, without reference to
information or sampling theories.

We shall attempt to apply the method to the estimation
of discrete state probabilities when the probabilities of
certain events (i.e., aggregate states) are known. The
problem arises because the number of unknown state
probabilities often exceeds the number of given event
probabilities, thus leaving the former indeterminate. We
shall justify the maximum entropy procedure by showing
that, in many important cases, the estimated probabilities
satisfy certain assumptions of statistical independence.
We shall then use the method to solve a problem relating
to the performance of peripheral storage devices for com-
puters. In that problem, one knows the probabilities that

given access paths are free, and one seeks the probability
that a given path is free when a device is ready to receive
data.

Definitions

Consider a stochastic system Q which may assume any
one of a set of mutually exclusive and exhaustive states
S,,8,, -+, §,. Let p, be the probability that the system is
in state §,.

An event E is defined as a specified aggregate of states.
The probability of event E is
q= Z py-

i1S,€E

Event E is said to cover state S, if S, € E. A partition of
the system is a set of mutually exclusive and exhaustive
events. Two partitions are orthogonal if every event in
one partition has a nonempty intersection with every
event in the other partition.

LetE, E,, - - -, E, be a set of not necessarily exclusive
or exhaustive events. Let S|, S,, - - -, S, be the minimal
set of states required to represent these events; i.e., any
two states covered by identical subsets of events have
been amalgamated into a single state. We shall assume
henceforth that we are always dealing with a minimal set
of states relative to the defined events. We say in this case
that the S, comprise the partition of Q induced by the E,.
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Figure 1 Two-event example.

Problem statement

Given a set of defined events E, E,, * - -, E, with known
probabilities q,, q,, * - -, q,,, let S, S,, - -+, §, be the
partition of Q induced by the E,. Assume that events are
statistically independent as far as possible. Compute the
vector of state probabilities p = [p,, p,, - - -, p, ).

Notes:

1. The independence assumption has been left deliber-
ately vague at this point. We shall proceed to formu-
late a solution, then discuss what independence as-
sumptions it actually satisfies.

2. Among the defined events one must include the uni-
versal event which covers all states and has probabil-
ity 1.

Solution
Let F(p) be the negative entropy function, i.e.,

F(p) = 2 p,log p,.
i=1

Find the value of p which minimizes F(p) subject to the
constraints

p,ZO i=1’2,"'yna
S op=q, j=1,2m
iISEF,

Minimizing F(p) is equivalent to minimizing G(p) = F(p)
- 1= Z(pi log p, — p,). Following standard procedures,
we form the Lagrangian
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um=am—2%(2 m—Q,
J ingeE\,
where the v, are unknown Lagrange multipliers. We
equate to zero the derivatives dL/op;:
L

—=logp,— >, v,=0 i=1,2,---,n,
ap, ' SRy ’

from which we get

pi= Il w5 i=12---n, M
ISEE,

where u; = exp (v;). Now the constraints

> (H uk)=qj j=1,2,--m )
iIS,€E; \ KIS, €Ey

yield equations to be solved for the m unknown u, The
latter can then be substituted in (1) to evaluate the re-
quired p,. In words, the procedure can be described as
follows: -

1. Associate an unknown ; with each defined event E,.

2. The probability p, of state S, is the product of all the «;
for events E; that cover .

3. Substitute these expressions for the p, in the equations
defining the probabilities g;.

4. Solve for the #, and substitute in the expressions for
the p, to evaluate the latter. It should be noted that the
equations are usually nonlinear, and finding their solu-
tions may be a nontrivial task.

Before justifying this procedure, we illustrate with the
simplest possible nontrivial case (Fig. 1): There are only
two events E, and E, for which the states §, = ~E N
~E,,S,=E N~E, S, =~E NE,and S, =E NE,all
have finite probabilities. In addition, there is the universal
event E, =5, US,US,US,, with g, = 1. There are three
constraints:

E:p,tp, =4,

E2: Dy + Py = 4y
Eip,+p,tpy+p, =L
Then

p, = u, (because p, appears only in E,),

p, = uu, (because p,appears only in ‘El and E,),
Py = UU,,

p4 = uluzus,

so that

u (1l + uu, = q,,
u,(1 + uju, = q,,

A+ u, + u, + wuu, = 1.
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The third equation may be rewritten as (1 + u,)(1 + u,)u,
= 1. Multiplying the first equation by 1 + « and dividing
by the third, one finds u, = ¢, (1 + u,), or

49,

u, = —i—
1—-qI

1

Analogously,

9,
l—q2

and

_ 1

u, = m =(1-4)1-gq,),

so that p, = u 1,u, = q,q,. This solution, then, renders E,

and E, statistically independent.

The existence and uniqueness of the maximum entropy
solution are well known (see for example [5]). All that
remains to be done is to show what statistical indepen-
dence assumptions are satisfied by the maximum-entropy
solutions. It should be made clear that the choice of inde-
pendence assumptions which can be made in the formula-
tion of problems of this nature is not at all unique. For
example, in the case shown in Fig. 2 we can demand that
E, and E, be independent, or we can demand that they be
independent conditionally on the occurrence of E,. In the
first case, Pr (E, N E) = 4,4, In the second case, the
requirement is that Pr (E, N E,|E,) = Pr(E_|E ) Pr (E,|E ),
which reduces to Pr (E, N E,) = q,4,/q,. We feel that the
latter condition is the more natural one, and are not sur-
prised to discover that this is the one satisfied by the max-
imum-entropy solution, as demonstrated in the following.

® Theorem |
Let E, E,, and E_ be events satisfying the following con-
ditions:

1. Thesets U, = (~E,N~E)NE,U,=(E,N~E)N
E,U=(~E,NE)NE,and U = (E,NE)NE,
are all nonempty.

2. The four sets U,, U,, U,, U, are partitioned by all
other defined events in identical manners. That is, for
every state S;; € U, j = 1, 2, 3, 4, there exist unique
states §,, € U,, k * j, such that the sets of defined
events other than E_, E,, and E_ covering each of the
four §,, are identical.

Then, in the maximum-entropy solution, E, and E, are
statistically independent conditionally on E_. In other
words, Pr (E, N E |E) = Pr (E |E) Pr (E,|E ), which in
this case is equivalent to

Pr(U) = Pr (U,U U,) Pr (U,U U,)/q,.

IBM J. RES. DEVELOP. & VOL. 24 & NO. 5 & SEPTEMBER 1980

Figure 2 Three-event example.

Notes:

1. Condition 2 essentially states that knowledge of
whether any other event has or has not occurred con-
veys no information on whether E,, E,, and/or E_have

occurred.

2. The events E,, E,, and/or E_need not be among the E;
whose probabilities are given a priori. For suppose g,
is not given. We can solve the problem using all given
events, then evaluate g, from the computed state
probabilities, then append E, to the list of E; using the
computed g,. The solution of the new problem is obvi-
ously identical to that of the old one. We may, then,
assume without loss of generality that E, E|, and E_

are among the events with specified probabilities.

Proof
LetS,,i=1,2,--

Qi =p, Pyt o,

", I, be the set of states included in U,
k=1,2,3,4. Let Q, = Pr(U). Then, for instance,

wherep, =Pr(S,).Since U NE, =ZJand U NE, =,
the expressions for the p,, in terms of the «; do not contain
either u, or u,. Now, by assumption, the coverage of S,
differs from the coverage of S, only by also including E.

Hence p, = u,p,,, i = 1,2, - -+, r. We conclude, then,
that

Q,=uQ0,. (3
Similar arguments lead to

Q, = u,0,, 4
0,= uaule. (5)

The constraint imposed by g, may be written as
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0, +Q,+Pr(E,N~E) =gq,

or
Q,+0, =0, (6)
where Q, = Pr(E,NE,) = q, — Pr(E, N ~E,). Similarly,
o, +0,=0, Y))
where O, = Pr(E, N E) = q, — Pr (E, N ~E_}; and

0,+t0,+0,+0,=gq. ®)

Substituting (3), (4), and (5) into (6), (7), and (8) we find
Qu, + Quu, = 0,

Qu, + Quu, = Q.

Q +Qu, +Qu +Quu =q.

These equations may be factored into

Qu,(1 +u)=0,

Qu(l +u)=Q,

Q0 +u)1 + u)=q,.

Multiplying the first equation by 1 + «, and substituting
from the third equation yields

w,qg, = (1+u)Q,;

ie.,
-9
u, = —=—,
*q. -0,
Analogously,
“ -0,
and
0 - a, _ 4.~ Q)4 ~ Q)
V(4w + uy) q, ’
so that
Q, = U@, = 00, _©10)0,70) )

q, q,
as was to be shown.

Corollary

If E, and E, are events such that V, = ~E, N ~E,, V, =
E,N~E,V,=~E NE,and V, = E N E, are all
nonempty and are all identically partitioned by all other
defined events, then the maximum-entropy solution ren-
ders E, and E, statistically independent.

Proof

Take E_ to be the entire system, so thatg, = 1, Q, = q,,
Q, = 4q,, Q,=Pr(V,). Then Eq. (9) becomes Pr (E, N E,)
= q,4,- @-E.D.
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® Theorem 2
Let(E ,E,, -, E)and (E ,E,, - -, E)betwo sets of
events which partition Q orthogonally, i.e.,

ENE =@ (i)
ENE,=3 (i#)),

UE, =0,

UE =0

E.NE,#¢7 (alli))

Let the event probabilities p, = Pr (E,) and p; = Pr (E )
be given, and let the probabilities p,; of states S, = E, N
E; be unknown. Then, in the maximum entropy solution
for the p,;, the events E, and E , are independent for all i,
J. In other words,

pij = pi.p.j .

Note: In this theorem, the p, and p, play the role of the
g, in the general case, and the p,; play the role of the p,.
The constraints that the p,; must satisfy are

p.= 2 pyand p= > py.
J i

Proof

We associate the variables u, and u; with the events E,
and E , respectively. Equation (2) for this case then re-
duces to

by = u ;.

Hence,

I

u; Z u,; ie., u, = pi./z u;,
j i
p;= 2 Py = ”.52 U, le,u,= P.,-/Z, u, .
i i i

b, = Zpij
3

Now,

1= 3n=3n-Ta3n

Therefore,

Py = ;= ﬁ’;— =p.p,.
i ]

Q.E.D.

Remarks:

1. The proof is easily extended to the case where the pér-
tition is not of the entire system @, but only of some
event E. In this case, independence is conditional on
E.

2. The proof is easily extended to any number of orthog-
onal partitions.
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3. An immediate application is the estimation of contin-
gency table entries when only the margins are known
[6, 7]. All cases discussed in [6] are covered. Theorem
2 states that if the maximum entropy principle is used
to fill in the empty slots in a contingency table, the
result is as though the marginal distributions were as-
sumed to be independent of each other.

Discussion

The maximum entropy principle is usually applied in the
following form: maximize the entropy, given the expected
values of certain observable quantities. Such conditions
translate into linear constraints on the state probabilities.
Conversely, any linear function of the state probabilities
can be viewed as an expectation of a certain random vari-
able. For example, in our case, the probability of an event
E is the expected value of a random variable which takes
the value one in states covered by E, and zero elsewhere.
Thus, our problem is a special case of the maximum en-
tropy formalism.

In solving maximum entropy problems, it is common
practice to omit the universal event from the set of ex-
plicit constraints. Instead, one normalizes by changing (1)
into

P = Il u; 2 H Uy -

iIS€E; k JIScEE;
While this reduces the number of unknowns by one, the
form of the equations becomes more complicated, and ex-
plicit solutions are more difficult to derive.

Application

We now provide an example which constitutes a non-
trivial application of the method. The example is suffi-
ciently intractable to make calculation of the required
probability by direct methods beyond the author’s capa-
bilities. For more details, see [8]. The following analysis
is presented in a somewhat simplified form.

A computer system wishes to transfer data to and from
several peripheral storage devices. A data transmission
path from the system to a device (actually, to a string of
devices) consists of a channel and a control unit. There
may be several control units connected to each channel,
and several devices to each control unit. Conversely, a
device may be attached to several control units, and a
control unit to several channels. A possible configuration
is depicted in Fig. 3.

Assume that the data flow rate over each path is given.
That is, we are told what fraction of the time each chan-
nel/control unit combination is busy transmitting data to
each device. Any component (channel, control unit, or
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Device 1
CU1
Channel 1 Device 2
CPU Channel 2 cuz
Device 3
Channel 3
CU3
Device 4
Figure 3 Sample I/O configuration.
Table 1 System states.
System Channel Control unit Device x
state no. state state state
1 0 y 0
2 y 0 0
3 y y 0
4 y z 0
5 x 0 x
6 y 0 X
7 X x X
8 x y X
9 y X x
10 y y x
11 y z X
12 0 0 x
13 0 x X
14 0 y x
15 0 0 0
Key:

0: Component free.

x: Component serving device x.

y: Component serving device y.

z: Component serving device z.

(Note: y and z represent any distinct devices other than x.}

device) can be transmitting for only one path at a time. In
order to evaluate the performance of this system, one
must be able to answer the question: given that a speci-
fied device is free (not busy), what is the probability that a
given path to it is free?

For our purposes, we concentrate on a specific path,
consisting of a specific channel, control unit, and device.
We neglect the fine structure of events not relating to the
selected path. Let x designate the specific device, and let
y and z designate any other distinct devices. Then we can
distinguish fifteen different states, which are listed in
Table 1. Referring to Fig. 3, suppose channel 2, control
unit 2, and device 2 are the specific components. Then,
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for example, in state S, the control unit (CU2) is trans-
mitting for another channel (channel 1 or 3) and another
device (device 1 or 3). In state S|, the channel and control
unit are each serving a separate device other than x (i.e.,
channel 2 is serving device 4 via CU3, and CU2 is serving
device 3 via channel 3, while device 2 is being served by
CUI via channel 1).

The path utilization data are expressible as probabili-
ties for the following events:

E.: channel is busy.

E: control unit is busy.

E,. device is busy.

E.,: channel and control unit are busy serving same de-
vice.

E_.,: channel is busy serving specified device.

E,,: control unit is busy serving specified device.

E_ . channel and control unit are serving specified de-
vice.

In terms of the states defined in Table 1, the event proba-
bilities are
e =P, ¥ py T p,+ P, D TP,
+p,+pytpy TPy
CIU=P1+P3+P4+P7+Pg+P9
+t Pt Pyt Py T Py
q, =Pyt pgt p,t Pyt Pyt Dy,
TPyt Py TPy T Dy
doy =Py T D, + Dy
Gep = Ps TP, t Py
Gup = P; + Py t Py

qCUD = p7’

and, of course,

-
1= Z Py
i=1

Through a set of simple linear transformations one can
reach a somewhat simpler but equivalent set of events
whose probabilities can be computed directly from the
given probabilities:

4, = dc ~ dee ~ 4ep T dewp
:P2+P4+P6+P9+P11’
4y = dy ~ 9y~ 9yp T Yewn

=[)1—‘rpzl_’_pB‘Fpll_’>p14’
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43 = 49y ~ 9 ~ 9up T dewp
=SPgt Pyt Py, TP TPy

9, = dyp ~ dewp = Pyt Pryp>

95 = 4dep ~ Gepp = Ps T Py

95 = ey ~ 9eup = Ps T P

4 =1~ dey = dep ~ dup * 2dewp

=p1+p2+p4+ps+pn+p12+p14+p15.

In addition, the value of p, is known directly (= g;)- To
apply our algorithm, we associate the variables u,, u,,

« -, u_ with the above constraints and obtain the follow-
ing expressions for the state probabilities:

pl = I/l2u7, p9 = u1u4’

p, = u i, P = M3Ll6,

p3 = uﬁ’ pll = u1u2u3u7’
p4 = ulu2u7’ p12 = u3u7’

p5 = u5’ p13 = u4’

pS = ulu:iu'!’ pl4 = u2u3u7’
p8 = u2u5’ p15 = 147.

For instance, the expression for p, can be derived from
Eq. (1) by noting that p, appears only in the equations for
q, and g,. The constraints are now transformed into

Ml(“7 + uu, + Uyu, + Uyl i, + “4) =4,

uyu, + wu, + ou, + uun, + ui) = q,,

ufuae, +u, v ouu, *ou, uu) = q,,

uu, + 1) = q,,

ufu, +1) = q,,

uflu, + 1) = g,

w1+, +u +up, wy, T ot uH) = g
The first equation can be factored into

w1+ w )l + u) + wu, = q,.

Multiply by 1 + u, and substitute from the fourth equation
wu(l + u)(1 + w1+ u) +uqg, =10+ ug,.

The seventh equation can also be factored into

u (1 + w1+ u)(l +u) =q,

Substituting this into the previous expression yields
ug, tug, = a1+ ul)q1 s

which has the solution

u = q, :qC_qCU_qCD+qCUD.

Y'og,ta, - q, 1~ g,

From the fourth equation, then,
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yo= 95 _ (@yp — Gl — ap)
! I+ u, 1= Gy = dep * dew

Analogous procedures yield

u = 49, _ 9y~ 9cu ~ 9w + dew
4, taq,—4q, 1 - g,

u = 93 _ 9 " 490 ~ 9w t dew
gt 4, g 1-gq,

N ep — 9ot — 9

5 s
1+ u, 1= 4qcy = Gup * dew

wo= 95 _ Gy ~ el — 4p)
’ 1+ u l_qcnﬂqun_'_qcun’

and

u, = ik
T+ a1+ w1+ o)

From these expressions, all the state probabilities may be
computed. We are specifically interested in the probabil-
ity of the path being free, given that the device is free.
This probability is

Pis 4 4

T g TT—q, (U= q)( +ap(l + w1 + )

(1 = qey ~ Gep = dyp + 2qcm))(1 g0 - q)

(1= gey = Gep + de)l = ey — Qup + G ~ e ~ Gup + dew) '

Validation of the results of this analysis against observed
data is presented in [8].

Conclusion
The foregoing discussion is incomplete in several re-
spects. Principally, we are lacking the following:

1. A precisely formulated complete set of independence
conditions for which the maximum-entropy method
provides the unique solution.

2. A set of conditions under which the constraint equa-
tions have a rational solution, as in all the cases exam-
ined in this paper.
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3. A systematic algorithm for solving the constraint equa-
tions, other than general nonlinear-equation solution
algorithms such as the Newton-Raphson method. For
a discussion of that method in the maximum-entropy
context, with a proof of convergence, see [5].

Even without specialized algorithms, the maximum-en-
tropy method provides an easily implemented systematic
method for solving problems which often baffle an analyst
who attempts to use direct methods.
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