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Procedures  for  the  Study of the  Flexible-Disk  to  Head 
Interface 

The  response of a  rotating  flexible disk interacting  with  a  read-write  head is analyzed.  The disk deflection  due  to  an 
arbitrary  distributed  normal  pressure  is  coupled  with  the  Reynolds  lubrication  equation for  the  disk-to-head air bearing. 
Procedures  which  considerably  reduce  the  computation  time  necessary  for  obtaining  a  converged  solution  are  described. 
A parameter  study  is  then  discussed  and its results  presented. 

Introduction 
Flexible disks, used extensively  as a means of magneti- 
cally storing digital information, have a typical  configura- 
tion consisting of a thin  mylar disk rotating in close  prox- 
imity to a stationary  and rigid base plate. Due  to  the hy- 
drodynamics involved, the  presence of the  base plate 
beneath  the  disk  causes  the  disk to deform downward  to- 
ward the  plate, resulting in a stabilizing effect on its trans- 
verse motion.  Protruding through a radial  slot in the  base 
plate is a magnetic read-write head which penetrates up- 
ward toward  the  disk.  This  causes a  thin air bearing to be 
induced  between  the disk and head  which locally stabi- 
lizes the disk  deflections. The problem is that in order  to 
achieve high data bit density it is desirable to maintain an 
extremely thin  air  bearing. However, if the resulting “fly- 
ing height” is too small, intermittent  contact or collapse 
of the  air bearing  can occur, resulting in excessive disk 
wear. 

The first analysis  directed  toward  the mechanics of this 
problem was made  by  Pelech  and Shapiro [I]. They  deter- 
mined the deformed shape of the spinning disk due  to  the 
presence of the  base plate without a magnetic head.  This 
axisymmetric problem was solved by coupling the me- 
chanics of the flexible disk,  as described by thin mem- 
brane  theory, with the fluid dynamics of the air film sepa- 
rating  the  disk  from  the  base  plate.  The problem of a sta- 
tionary nonaxisymmetric  load  distribution acting  on a 
rotating disk was studied by Benson and Bogy [2]. They 
found  that  the  membrane  operator  was singular so that 
the effect of bending  stiffness, no  matter how small, still 
had to be  included in the problem  formulation. Chang [3] 

solved  this  problem using plate theory in which  bending 
stiffness was included. Some  further refinements of the 
method  were  made by Greenberg  and Chang [4]. Then 
Greenberg [ 5 ]  coupled the  procedure of [4] with the Rey- 
nolds equation describing the fluid mechanics of the disk- 
to-head air  bearing. In [6], Greenberg  uses a similar cou- 
pling procedure  to  solve a head-tape interaction problem. 
A d a m  [7] includes the effect of the  base plate  and foun- 
dation stiffness. While the  methods described in the  pre- 
ceding papers provide a procedure  for solving the flexible 
disk problem,  convergence problems  exist and  these 
methods  are impractical to use for a parameter  study be- 
cause of the  excessive  amount of computation  time  nec- 
essary.  Even  for  the simplest case,  that of a  spherical 
contour  head,  over  ten  hours of CPU time on  an IBM 3701 
168 is necessary in order  to  obtain a converged solution. 
In  order  to study the effects of such  parameters  as head 
contour, head position,  penetration, and  head  dimen- 
sions, it is necessary to solve  the problem  much more  rap- 
idly. It is the  purpose of this  paper to show how this can 
be accomplished and to  present  the results obtained in 
that  manner. 

Problem  formulation 
The  problem considered requires  the simultaneous solu- 
tion of an elasticity problem  and a fluid mechanics  prob- 
lem.  The  fourth-order partial differential equation relating 
the  unknown  transverse deflection w(r,  8, t )  of the flexible 
disk to the  unknown  pressure q(r, 0, t)  which acts in the 
air  bearing between  the disk and  the read-write  head  (Fig. 
1) is given  by 
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where 

p = mass  per unit volume (kg/m3), 
h = thickness of the disk (m), 

Eh3 
D =  

12(1 - u') 
(N-m), 

u = Poisson's ratio, 
E = Young's elastic modulus (N/m2), 
K = elastic foundation  constant (N/m3), 
C = damping constant (N-s/m3). 
w = angular  velocity of the disk (radh), 
a = inner  radius of the disk (m), 
b = outer radius of the disk (m), 

cr, go = in-plane stresses (N/m'), with 

- ( 1  - v)y  -J" , and "'"I 
(3  + u)b2 - ( 1  + v)a' 
( 1  + v)b2 + ( 1  - v)a' 

Y =  ' 

Note  that  the disk-to-head  air-bearing pressure is given 
by q(r ,  0, t ) ,  whereas  the  air  pressure  due  to  the  presence 
of the  base plate is accounted  for by the  term K .  

The boundary conditions  are  that  the disk is clamped at 
its  inner radius 

and  free  at its outer  radius 

In (1) the first term is  from inertia, the  next  two  come 
from in-plane membrane  stresses  due  to  rotation,  the 
fourth is from bending  stiffness, the fifth term is an  elastic 
foundation  parameter,  the sixth is from damping, and  the 
last  term  is the  loading from the  air bearing. 
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Figure 1 Rotating flexible disk penetrated by a read-write 
head (taken from Reference [7], copyright 1980 by the ASME; 
reprinted with permission).  (Note: 0 and 4 are the body-fixed 
and space-fixed angular coordinates,  respectively.) 

Proceeding as in [ 3 ] ,  we transfer from the body-fixed 
coordinates ( r ,  0) to  the space-fixed system ( r ,  4). Consid- 
ering  steady-state  solutions this  becomes 

4 = 0 + ot. (6) 

Then,  expanding  both  the  pressure load and  the  trans- 
verse deflection as a Fourier series in the circumferential 
direction, 

leads  to  an infinite set of fourth-order ordinary differential 
equations  for  the  Fourier  components of the deilection 

L,R,(r) = 5 e,(.), p = --cc to a, (10) 

with 

1 

h d' 
I + 2p' + - r2mr(r) - 

D ] dr' 

h 
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Figure 2 Coupling  scheme. (Note: k is  the  relaxation  factor  and 
RP, is  the  Reynolds pressure.) 

Each of these  ordinary differential equations  is  solved us- 
ing a five-point finite difference scheme [8], subject  to 
boundary conditions obtained from (2)-(5) with (9). The 
disk deflection at any  point is given by 

co 

w(r, 4) = X O ( d  + 2 1 [Xp(r., cos (P4) 
p=1 

- Y p ( 4  sin (P4)19 
where 

Rp(r)  = Xp(r )  + iYp(r ) .  

The method just outlined  gives us a procedure  for  deter- 
mining the disk  deflection for an arbitrary  prescribed 
pressure. 

Considering slip flow due to molecular  effects, we write 
the stea.dy-state  Reynolds  equation for gas-lubricated 
bearings in rectangular coordinates, nondimensionalized 
with respect  to head length,  as [9, 101 

subject  to  atmospheric  boundary conditions  along the 
edges of the head. In (12), q and H are  the normalized 
pressure and spacing, respectively, m is the  Knudsen 
number (ratio of molecular  mean  free path  to minimum 
spacing), and A is the  gas bearing  number. The spacing 
between  the disk  and  head is the difference between  the 
disk deflection, obtained from the disk  dynamics equa- 
tions, and the head contour, which is fixed. The spacing is 
then prescribed in (12), which is solved for  the  pressure 
using finite differences  along with Gauss-Seidel  relaxa- 
tion,  and  requires a 51 x 51 grid in the air bearing. 

The elastohydrodynamic  system  describing the inter- 
action  between  the read-write  head  and the flexible disk 

51 4 requires  the simultaneous  solution of (1) and (12). Unfor- 

tunately, a  direct analytic combination of the  two  equa- 
tions would be impractical. The method used in [5] is out- 
lined in  Fig.  2. As previously  noted in the  Introduction, 
the solution  obtained  using  this procedure  takes  over ten 
hours of CPU time on a 370/168 system  for  the simplest 
head  geometry-that of a spherical head, and in order for 
the solution to be usable, a quicker numerical procedure 
is necessary. 

Improved  numerical  method 
The solution of the coupled  elastohydrodynamic  problem 
requires  the solutions of both (1) and (12) for each itera- 
tion (Fig. 2). Since the  Reynolds equation is nonlinear, its 
solution also requires an  iterative  procedure.  It  has  been 
found  that, in order  for  convergence  to be achieved,  an 
extremely  accurate solution of the lubrication equation is 
necessary (the pressure residual  must  be of order 10W). 
Since  the solution of (12) requires  an initial pressure  guess 
followed by iteration until convergence is obtained, it fol- 
lows  that an excellent pressure guess for  the  Reynolds 
equation solution  can significantly reduce  computational 
time.  This initial pressure distribution is found  by extrap- 
olation of the last two  Reynolds equation solutions and 
reduces computational  time for  the lubrication equation 
by an  average  factor of three.  The time  savings are partic- 
ularly significant when the coupled equations  are near 
convergence, since the  Reynolds equation  solution does 
not change appreciably  from one iteration to  the  next. 

It  has  also been  found that  an extremely accurate solu- 
tion of the elasticity equations  is necessary in order  for a 
converged solution to  be  obtained.  In general this re- 
quires  about 200 Fourier modes and 500 radial  grid  points. 
The main reason for this accuracy problem is  that  the 
disk-to-head  spacing is the difference between  the disk 
deflection  and the head contour.  Since  these  two  values 
are nearly equal, small errors in the elasticity equations 
can  lead  to significant errors in the spacing. 

The solution of our elasticity equations  requires solving 
linear  equations with a given number of modes and grid 
points.  Since solution of linear equations  requires a fixed 
number of operations, it might seem  that a substantial re- 
duction of computation  time would not be possible.  How- 
ever, we will show how to  take  advantage of the linearity 
of the elasticity equations in order  to  develop a method 
which  eliminates the need for a complete  solution  during 
each  iteration.  Let A P  be the  change in disk pressure from 
one  step  to  the  next,  and  let Aw be the  corresponding 
change in disk deflection (which is also  equal  to  the 
change in spacing). Then (1) can  be solved  with the pres- 
sure increment A P  prescribed, which yields the deflection 
increment Aw. The  advantage is that A P  is generally 
much smaller than P, so that  these  equations  can be 
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solved with much less  accuracy.  The spacing increment 
Aw is then added to  the  previous value of the spacing. In 
order  to avoid a possible  accumulation of errors, a  calcu- 
lation  with  the actual  value of P is made after  every five 
iterations. Additional time can  be  saved by starting with 
fewer modes  and grid points,  then gradually  increasing 
them  as  the disk-to-head  spacing decreases.  These meth- 
ods result in reducing the  computation time  by almost a 
factor of two. 

The  procedures described thus  far  are effective because 
they  reduce  the time  required to solve each of the  two 
equations ( I )  and (12). We now focus  our  attention  on  the 
scheme used to couple these  two problems.  As already 
mentioned, a  direct  analytical  combination of the  two 
equations would be desirable,  yet is impracticable to  ob- 
tain.  The coupling scheme (Fig. 2) represents a weak 
combination of the  two  systems  as it requires  the com- 
plete  solution of each  problem separately.  The method 
developed here  involves  a direct combination of both 
equations which can be most  readily  accomplished  when 
they  are written in numerical form.  Let us symbolically 
represent  the elasticity  solution in numerical form by 

w(ri,  +j) = W ( r i ,  +j)l> (13) 

where L[ ] is the linear operator representing the solution 
procedure obtained  using Fourier series  along  with finite 
differences.  The  Reynolds  equation of lubrication in nu- 
merical  form can  be written as 

R[P(r i ,  +J, W r i ,  +Jl = 0 ,  ( 14) 

where R[ ] is the nonlinear operator  representing (12). 
Since  the deflection w is related to  the spacing H through 
the  head  contour R, Eqs. (13) and (14) can be directly 
combined  to give 

Equation (15) now has only one unknown ( P )  and  can be 
solved by Gauss-Seidel  relaxation in the  same way that 
(12) was solved.  This  method still requires the solution of 
the elasticity equations through L[ 1, but the need to 
solve the Reynolds equation during each  iteration  step is 
eliminated.  Also, the relaxation factors  can now be  raised 
from approximately 0.01 with the old method to  about 0.5 
with  this  scheme. The result is to  cut  the  computation 
time in half. 

Other techniques have also  proved  effective. Subrou- 
tines  have been written which detect oscillations  and 
other potential problems in an  attempt  to optimize con- 
vergence. When oscillation is detected,  the relaxation 
factor is automatically decreased.  Local  inaccuracies 
sometimes  develop  due  to  the calculation of spacing in- 
crements using fewer modes and grid points. If this  condi- 

I r l b  

Figure 3 Flying height v s .  radial head position for different Val- 
ues of the head radius. 

tion is diagnosed, the  number of modes  and grid points 
during  incremental  calculations is automatically in- 
creased. If,  during iteration,  the disk is moving rapidly 
toward  the  head,  then  the relaxation factor is temporarily 
reduced in order  to avoid a head crash. A good initial 
guess  has been  developed  which  also speeds  the  process. 
This initial guess is automatically  scaled in order  to begin 
with a reasonable value of the minimum spacing. 

An attempt  to  further  reduce computation  time  was 
made by using the incompressible  Reynolds equation of 
lubrication. However, since the  procedure developed 
here uses iteration, no additional time savings  was real- 
ized by making this simplification. Furthermore,  at  close 
spacings the incompressible  assumption would be less 
valid. 

Results and  discussion 
Using the  procedure  outlined, convergence  time was re- 
duced from ten  hours  to  about thirty minutes. Solutions 
were  obtained for all cases  studied, including high-pene- 
tration  configurations  (although  computation  times  were 
greater  for  such cases). Figure 3 shows the variation of fly- 
ing height with radial  head  position for different values of 
the head radius. Note  that  even though the relative  pene- 
tration  increases with increased radius (an axisymmetric 
disk  deflection is produced  due  to the presence of the 
base plate [7]), the flying height increases sharply. This is 
because  the  greater disk flexibility at larger  values of the 
radius is more important  than  the difference in the relative 
penetration.  Increased head  radius  generally corresponds 
to  greater flying heights.  This causes the pressure  to be 
distributed  over a  larger area of the head and  avoids  the 
high pressure  gradients  near  the head apex, resulting in 
the disk-to-head  spacing being more  nearly  uniform.  A 
similar effect is produced  when the overall  head  dimen- 51 5 
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Figure 4 Flying  height vs. head penetration. 
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Figure 5 Flying  height vs. radial  head  position for different  disk 
thicknesses h ,  where h, < h, < h,. 
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Figure 6 Pressure  contours  between  disk  and  head. 

sions  are  increased.  The effect of head penetration  on fly- 
ing height is shown in Fig. 4. As could be expected,  the 
flying height decreases with  increased penetration  but ap- 
pears  to level off as  the  penetration  becomes large. This is 
because  the disk tends  to  “wrap  around”  the  head  to a 
greater  extent,  thereby reducing the average  value of the 
disk-to-head  spacing but  not changing  its minimum value 
significantly. The  location of the point of minimum spac- 
ing does shift somewhat in the  downstream  direction.  The 
net  force acting on  the disk  through the air  bearing does 
increase with penetration,  as  do  the  corresponding pres- 
sures  and  pressure  gradients.  The most pronounced effect 
on flying height comes  from  the disk thickness (Fig. 5). 
This is because  the disk  stiffness  varies as  the  cube of its 
thickness, requiring a much greater  resultant  force  to  act 
on  the  disk.  The local  bending of the disk becomes  very 
small as  the  thickness  increases. This also  causes a very 
steep  pressure gradient and a significantly lower mini- 
mum spacing near  the head apex. 

Pressure  contours  for a typical case  are  shown in Fig. 
6. The  results  show positive pressures  upstream  and neg- 
ative  downstream with a steep  pressure gradient near  the 
head apex.  The  steepness of the  pressure  gradient is af- 
fected by  head curvature, head  dimensions, penetration, 
and  disk  thickness.  The disk-to-head  spacing contours 
shown in Fig. 7 are nearly  circular. Although it is  not  at 
first obvious,  these  agree with the profile plots of Figs. 8 
and 9. Note  that  the disk  deflection is nearly symmetric in 
the radial direction,  but very asymmetric circum- 
ferentially. This is due  to  the coupling of the disk dynam- 
ics with the lubrication theory  as well as  the  foundation 
damping.  As the  disk  thickness  increases,  the spacing 
contours  are  due principally to  the head curvature,  rather 
than  to  the local  bending of the disk.  Finally, Fig. 10 
shows  the disk  deflection throughout  the  entire disk  with 
the standing-wave pattern  near  the trailing edge.  The 
presence of these  waves indicates the  importance of the 
dynamic effects  included in the first term in (1). The re- 
sults  shown  are in good  qualitative  agreement  with exper- 
iments  conducted using white-light interferometry. 
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