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Procedures for the Study of the Flexible-Disk to Head

Interface

The response of a rotating flexible disk interacting with a read-write head is analyzed. The disk deflection due to an
arbitrary distributed normal pressure is coupled with the Reynolds lubrication equation for the disk-to-head air bearing.
Procedures which considerably reduce the computation time necessary for obtaining a converged solution are described.

A parameter study is then discussed and its results presented.

Introduction

Flexible disks, used extensively as a means of magneti-
cally storing digital information, have a typical configura-
tion consisting of a thin mylar disk rotating in close prox-
imity to a stationary and rigid base plate. Due to the hy-
drodynamics involved, the presence of the base plate
beneath the disk causes the disk to deform downward to-
ward the plate, resulting in a stabilizing effect on its trans-
verse motion. Protruding through a radial slot in the base
plate is a magnetic read-write head which penetrates up-
ward toward the disk. This causes a thin air bearing to be
induced between the disk and head which locally stabi-
lizes the disk deflections. The problem is that in order to
achieve high data bit density it is desirable to maintain an
extremely thin air bearing. However, if the resulting ‘‘fly-
ing height’’ is too small, intermittent contact or collapse
of the air bearing can occur, resulting in excessive disk
wear.

The first analysis directed toward the mechanics of this
problem was made by Pelech and Shapiro [1]. They deter-
mined the deformed shape of the spinning disk due to the
presence of the base plate without a magnetic head. This
axisymmetric problem was solved by coupling the me-
chanics of the flexible disk, as described by thin mem-
brane theory, with the fluid dynamics of the air film sepa-
rating the disk from the base plate. The problem of a sta-
tionary nonaxisymmetric load distribution acting on a
rotating disk was studied by Benson and Bogy [2]. They
found that the membrane operator was singular so that
the effect of bending stiffness, no matter how small, still
had to be included in the problem formulation. Chang [3]

solved this problem using plate theory in which bending
stiffness was included. Some further refinements of the
method were made by Greenberg and Chang [4]. Then
Greenberg [5] coupled the procedure of [4] with the Rey-
nolds equation describing the fluid mechanics of the disk-
to-head air bearing. In [6], Greenberg uses a similar cou-
pling procedure to solve a head-tape interaction problem.
Adams [7] includes the effect of the base plate and foun-
dation stiffness. While the methods described in the pre-
ceding papers provide a procedure for solving the flexible
disk problem, convergence problems exist and these
methods are impractical to use for a parameter study be-
cause of the excessive amount of computation time nec-
essary. Even for the simplest case, that of a spherical
contour head, over ten hours of CPU time on an IBM 370/
168 is necessary in order to obtain a converged solution.
In order to study the effects of such parameters as head
contour, head position, penetration, and head dimen-
sions, it is necessary to solve the problem much more rap-
idly. It is the purpose of this paper to show how this can
be accomplished and to present the results obtained in
that manner.

Problem formulation

The problem considered requires the simultaneous solu-
tion of an elasticity problem and a fluid mechanics prob-
lem. The fourth-order partial differential equation relating
the unknown transverse deflection w(r, 8, f) of the flexible
disk to the unknown pressure g{r, 8, ) which acts in the
air bearing between the disk and the read-write head (Fig.
1) is given by
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where

p = mass per unit volume (kg/m®),

h = thickness of the disk (m),
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v = Poisson’s ratio,

E = Young’s elastic modulus (N/mz),

K = elastic foundation constant (N/m®),

C = damping constant (N-s/m®).

o = angular velocity of the disk (rad/s),

a = inner radius of the disk (m),
b = outer radius of the disk (m),
o,, 0, = in-plane stresses (N/mz), with
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Note that the disk-to-head air-bearing pressure is given
by g(r, 8, 1), whereas the air pressure due to the presence
of the base plate is accounted for by the term K.

The boundary conditions are that the disk is clamped at
its inner radius
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In (1) the first term is from inertia, the next two come
from in-plane membrane stresses due to rotation, the
fourth is from bending stiffness, the fifth term is an elastic
foundation parameter, the sixth is from damping, and the
last term is the loading from the air bearing.
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Stationary

Figure 1 Rotating flexible disk penetrated by a read-write
head (taken from Reference [7], copyright 1980 by the ASME;
reprinted with permission). (Note: 8 and ¢ are the body-fixed
and space-fixed angular coordinates, respectively.)

Proceeding as in [3], we transfer from the body-fixed
coordinates (r, 9) to the space-fixed system (r, ¢). Consid-
ering steady-state solutions this becomes

b =6+ wt. (6)

Then, expanding both the pressure load and the trans-
verse deflection as a Fourier series in the circumferential
direction,
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leads to an infinite set of fourth-order ordinary differential
equations for the Fourier components of the deflection
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Figure 2 Coupling scheme. (Note: & is the relaxation factor and
RP, is the Reynolds pressure.)

Each of these ordinary differential equations is solved us-
ing a five-point finite difference scheme [8], subject to
boundary conditions obtained from (2)-(5) with (9). The
disk deflection at any point is given by

e, 8) = X +2 S [X,0) cos (o)

T -y sin (o), an
where
R(r) = X,(r) + iY, ().

The method just outlined gives us a procedure for deter-
mining the disk deflection for an arbitrary prescribed
pressure.

Considering slip flow due to molecular effects, we write
the steady-state Reynolds equation for gas-lubricated
bearings in rectangular coordinates, nondimensionalized
with respect to head length, as [9, 10]

A ), 2 e
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a
= Aa—g (qH], (12)

subject to atmospheric boundary conditions along the
edges of the head. In (12), ¢ and H are the normalized
pressure and spacing, respectively, m is the Knudsen
number (ratio of molecular mean free path to minimum
spacing), and A is the gas bearing number. The spacing
between the disk and head is the difference between the
disk deflection, obtained from the disk dynamics equa-
tions, and the head contour, which is fixed. The spacing is
then prescribed in (12), which is solved for the pressure
using finite differences along with Gauss-Seidel relaxa-
tion, and requires a 51 X 51 grid in the air bearing.

The elastohydrodynamic system describing the inter-
action between the read-write head and the flexible disk
requires the simultaneous solution of (1) and (12). Unfor-

tunately, a direct analytic combination of the two equa-
tions would be impractical. The method used in [5] is out-
lined in Fig. 2. As previously noted in the Introduction,
the solution obtained using this procedure takes over ten
hours of CPU time on a 370/168 system for the simplest
head geometry—that of a spherical head, and in order for
the solution to be usable, a quicker numerical procedure
is necessary.

Improved numerical method

The solution of the coupled elastohydrodynamic problem
requires the solutions of both (1) and (12) for each itera-
tion (Fig. 2). Since the Reynolds equation is nonlinear, its
solution also requires an iterative procedure. It has been
found that, in order for convergence to be achieved, an
extremely accurate solution of the lubrication equation is
necessary (the pressure residual must be of order 107%).
Since the solution of (12) requires an initial pressure guess
followed by iteration until convergence is obtained, it fol-
lows that an excellent pressure guess for the Reynoids
equation solution can significantly reduce computational
time. This initial pressure distribution is found by extrap-
olation of the last two Reynolds equation solutions and
reduces computational time for the lubrication equation
by an average factor of three. The time savings are partic-
ularly significant when the coupled equations are near
convergence, since the Reynolds equation solution does
not change appreciably from one iteration to the next.

It has also been found that an extremely accurate solu-
tion of the elasticity equations is necessary in order for a
converged solution to be obtained. In general this re-
quires about 200 Fourier modes and 500 radial grid points.
The main reason for this accuracy problem is that the
disk-to-head spacing is the difference between the disk
deflection and the head contour. Since these two values
are nearly equal, small errors in the elasticity equations
can lead to significant errors in the spacing.

The solution of our elasticity equations requires solving
linear equations with a given number of modes and grid
points. Since solution of linear equations requires a fixed
number of operations, it might seem that a substantial re-
duction of computation time would not be possible. How-
ever, we will show how to take advantage of the linearity
of the elasticity equations in order to develop a method
which eliminates the need for a complete solution during
each iteration. Let AP be the change in disk pressure from
one step to the next, and let Aw be the corresponding
change in disk deflection (which is also equal to the
change in spacing). Then (1) can be solved with the pres-
sure increment AP prescribed, which yields the deflection
increment Aw. The advantage is that AP is generally
much smaller than P, so that these equations can be
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solved with much less accuracy. The spacing increment
Aw is then added to the previous value of the spacing. In
order to avoid a possible accumulation of errors, a calcu-
lation with the actual value of P is made after every five
iterations. Additional time can be saved by starting with
fewer modes and grid points, then gradually increasing
them as the disk-to-head spacing decreases. These meth-
ods result in reducing the computation time by almost a
factor of two.

The procedures described thus far are effective because
they reduce the time required to solve each of the two
equations (1) and (12). We now focus our attention on the
scheme used to couple these two problems. As already
mentioned, a direct analytical combination of the two
equations would be desirable, yet is impracticable to ob-
tain. The coupling scheme (Fig. 2) represents a weak
combination of the two systems as it requires the com-
plete solution of each problem separately. The method
developed here involves a direct combination of both
equations which can be most readily accomplished when
they are written in numerical form. Let us symbolically
represent the elasticity solution in numerical form by

w(ri, ¢;) = LIP(ri, $;)], (13)

where L[ ]is the linear operator representing the solution
procedure obtained using Fourier series along with finite
differences. The Reynolds equation of lubrication in nu-
merical form can be written as

R[P(ri, ¢;), H(ri, $;)] = 0, (14

where R[ ] is the nonlinear operator representing (12).
Since the deflection w is related to the spacing H through
the head contour H, Egs. (13) and (14) can be directly
combined to give

RIP(ry, $,), LIP(ry $)] ~ Hiry, $)} = 0. (15)

Equation (15) now has only one unknown (P) and can be
solved by Gauss-Seidel relaxation in the same way that
(12) was solved. This method still requires the solution of
the elasticity equations through L[ ], but the need to
solve the Reynolds equation during each iteration step is
eliminated. Also, the relaxation factors can now be raised
from approximately 0.01 with the old method to about 0.5
with this scheme. The result is to cut the computation
time in half.

Other techniques have also proved effective. Subrou-
tines have been written which detect oscillations and
other potential problems in an attempt to optimize con-
vergence. When oscillation is detected, the relaxation
factor is automatically decreased. Local inaccuracies
sometimes develop due to the calculation of spacing in-
crements using fewer modes and grid points. If this condi-
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Figure 3 Flying height vs. radial head position for different val-
ues of the head radius.

tion is diagnosed, the number of modes and grid points
during incremental calculations is automatically in-
creased. If, during iteration, the disk is moving rapidly
toward the head, then the relaxation factor is temporarily
reduced in order to avoid a head crash. A good initial
guess has been developed which also speeds the process.
This initial guess is automatically scaled in order to begin
with a reasonable value of the minimum spacing.

An attempt to further reduce computation time was
made by using the incompressible Reynolds equation of
lubrication. However, since the procedure developed
here uses iteration, no additional time savings was real-
ized by making this simplification. Furthermore, at close
spacings the incompressible assumption would be less
valid.

Results and discussion

Using the procedure outlined, convergence time was re-
duced from ten hours to about thirty minutes. Solutions
were obtained for all cases studied, including high-pene-
tration configurations (although computation times were
greater for such cases). Figure 3 shows the variation of fly-
ing height with radial head position for different values of
the head radius. Note that even though the relative pene-
tration increases with increased radius (an axisymmetric
disk deflection is produced due to the presence of the
base plate [7]), the flying height increases sharply. This is
because the greater disk flexibility at larger values of the
radius is more important than the difference in the relative
penetration. Increased head radius generally corresponds
to greater flying heights. This causes the pressure to be
distributed over a larger area of the head and avoids the
high pressure gradients near the head apex, resulting in
the disk-to-head spacing being more nearly uniform. A
similar effect is produced when the overall head dimen-

515

G. G. ADAMS




12 sions are increased. The effect of head penetration on fly-

ing height is shown in Fig. 4. As could be expected, the
flying height decreases with increased penetration but ap-
sk pears to level off as the penetration becomes large. This is
because the disk tends to ‘‘wrap around’’ the head to a
s greater extent, thereby reducing the average value of the
disk-to-head spacing but not changing its minimum value
4 significantly. The location of the point of minimum spac-
ing does shift somewhat in the downstream direction. The
net force acting on the disk through the air bearing does
) | | | increase with penetration, as do the corresponding pres-
MY 2.0 25 3.0 3.5 sures and pressure gradients. The most pronounced effect
i on flying height comes from the disk thickness (Fig. 5).
Penetration (m X 10 ) This is because the disk stiffness varies as the cube of its
Figure 4 Flying height vs. head penetration. thickness, requiring a much greater resultant force to act
on the disk. The local bending of the disk becomes very
small as the thickness increases. This also causes a very
steep pressure gradient and a significantly lower mini-
mum spacing near the head apex.

Flying height (m X 10
o
T

Pressure contours for a typical case are shown in Fig.
6. The results show positive pressures upstream and neg-
ative downstream with a steep pressure gradient near the
head apex. The steepness of the pressure gradient is af-
fected by head curvature, head dimensions, penetration,
and disk thickness. The disk-to-head spacing contours
shown in Fig. 7 are nearly circular. Although it is not at
first obvious, these agree with the profile plots of Figs. 8
and 9. Note that the disk deflection is nearly symmetric in

-~—1 1 L 1 the radial direction, but very asymmetric circum-

0.4 0.5 0.6 0.7 0.8 . .. . .
ferentially. This is due to the coupling of the disk dynam-
/b ics with the lubrication theory as well as the foundation
damping. As the disk thickness increases, the spacing
contours are due principally to the head curvature, rather
than to the local bending of the disk. Finally, Fig. 10
shows the disk deflection throughout the entire disk with
the standing-wave pattern near the trailing edge. The
presence of these waves indicates the importance of the
dynamic effects included in the first term in (1). The re-
sults shown are in good qualitative agreement with exper-
iments conducted using white-light interferometry.

——6)

Flying height (m X 10

Figure 5 Flying height vs. radial head position for different disk
thicknesses h, where h, < h, < h,.
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Figure 8 Profile of disk and head (radial direction).
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Figure 10 Disk deflections with standing-wave pattern (taken
from Reference [7], copyright 1980 by the ASME; reprinted
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