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Optimal Accelerometer Layouts for Data Recovery in
Signature Verification

Current experimental use of pen acceleration data for signature verification has prompted the mathematical theory of our
recent paper on the subject, expounding motion recovery techniques for a special pen with imbedded accelerometers.
This continuation seeks to optimize the instrument layout as a mechanical filter which serves to extract the kinematic
observables from the experimental noise. Our early sections, through various algebraic postulates, determine a simplest
Sfunction of the layout geometry expressing the relative desirability of an accelerometer configuration. Any nontrivial
layout demands some off-axial instruments, but natural ‘‘feel’’ requires few such placements. Hence, our middle sections
prove mathematical results under various geometric assumptions which yield optimal layouts with one, two, or three off-
axial instruments. Our final sections discuss the further constraint that all accelerometers measure just three directions.
They assume not more than two off-axial instruments and obtain the best configurations of these tridirectional types.

Introduction

The usual, intuitive methods for signature verification
compare the visual characteristics of handwritten sam-
ples, but some modern approaches to the problem ob-
serve various physical quantities during the pen motion
[1-5]. Indeed, Herbst and Morrissey [6] have patented
verification techniques via pen acceleration data, while
Herbst and Liu [7, 8] have achieved high selectivity
through imbedded accelerometers. Also, Liu, Herbst,
and Anthony [9] describe additional tests with still more
accurate results. Our work provides a mathematical the-
ory for kinematic measurements [10] and specifically re-
lates pen motion to accelerometer readings. Its develop-
ment includes possibie shortcuts in trajectory computation
[11] and even suggests instrument layouts for maximum
sensitivity [12]. This continuation seeks to optimize the
accelerometer layout as a mechanical filter which serves to
recover the kinematic observables from the experimental
noise. Some previous authors study particular instrument
layouts [13, 14], but our present arguments furnish the besr
configurations. A recent note outlines our mathematical
procedure [15], and our latest disclosure amplifies the de-
sign specifications [16]. However, no planned IBM prod-
uct uses the resulting configurations.

This work contains two distinct parts, which reinforce
one another. Sections 2 and 3 constitute the first part;
they marshall several plausible arguments to choose a
particular design function which ranks all accelerometer
layouts. Sections 4 through 11 constitute the second part;
they assume just six accelerometers and find all optimal
layouts which have certain natural symmetries. Thus the
earlier choice justifies the later optimization, while the
outcome of the later special case shows the value of the
earlier general theory. The second part treats the most
interesting case, but other designs may need greater gen-
erality; so the first part considers n accelerometers. These
two tasks require wholly different methods. Indeed, the
first part invokes possibly unfamiliar results from in-
variant theory, algebraic geometry, and matrix theory,
but it applies this information in a fairly direct way; the
second part involves mostly standard results from convex
analysis, linear algebra, and Euclidean geometry, but it
exploits these theorems in a somewhat nontrivial way.
Hence some repeatedly used facts from linear algebra are
called “‘lemmas’’ for convenient reference, and the most
important conclusions toward our pen designs are called
“theorems’’ for the same reason.
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An accelerometer fixed in a moving rigid body mea-
sures the local acceleration projected on some constant
internal direction [17, p. 17]. If a layout comprises # such
instruments, then its geometry defines an # X 6 matrix A.
Thus Section 2 proposes a design function 8(A) which ex-
presses the desirability of a configuration, and invariant
theory describes the most general such function which
yields the same results under all relevant symmetries.
Scale invariance, in Section 3, excludes two candidates
for this function. Then a further plausible remark speci-
fies the zero set of 8(A), and a powerful recent theorem
[18] isolates a unique simplest choice with these zeros:

8(A) = [det (A"A)]'? (T = transpose). )

But the layouts with worst possible 3(A) include all those
with no off-axial instruments. Therefore, our earlier dis-
closure [12] supplied an additional site for some accel-
erometers, namely, an attached ring circling the pen at its
nonwriting end.

Convexity arguments, at the outset of Section 4, limit
instrument locations to the pen point, the far end, and this
ring. Moreover, 8(A) = 0 unless n = 6. Hence the second
part assumes just six accelerometers and tries various
fixed locations. Then the detailed analysis includes all
reasonable placements and finds the optimal directions.
To locate maximizing values for six unknown unit vectors
demands some ingenuity beyond mere partial dif-
ferentiation. But some instruments may have coincident
locations, and the chosen 8(A) is a multilinear function;
while our ‘‘lemmas’’ will eliminate some unknowns either
when several accelerometers have the same position in-
side the pen or when 8(A) is a singular bilinear form in
some two vectors. The ‘‘theorems’ in Sections 5, 6, 7
treat all layouts with at most four distinct locations; their
resuits, in Section 8, are the best configurations with at
most three off-axial instruments, assuming that acceler-
ometers on the ring take positions with equiangular spac-
ing. The tridirectional arrangements of Section 9 restrict
all measured components to three directions, the ordered
multiplicities for these directions being either (3, 2, 1) or
(2, 2, 2) for nontrivial layouts. Section 11, through further
auxiliary theorems, finds the best tridirectional arrange-
ments with one or two off-axial instruments. The (3, 2, 1)
arrangements achieve the prior maxima; the (2, 2, 2) ar-
rangements suffer the constant handicap

max 8(A,,, . )/max 8(A.. ) = 33/3/8 = 0.64952. )

2,2,2) (3.2,1)

This analysis retains our prior notation. Let R be the
real number field, with elements p, o, 7, * - -. Indeed, for
the time variable 7, let (-)' indicate the derivative. Let E’
be real Euclidean 3-space, with elements a, b, ¢, - - -.
Moreover, for some orthonormal basis (e, e,, e,}, let
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a=(a, a0) . b=(8,,8,.8)" ¢= (7,7
3)

represent the vector components. Here the superscript T
signifies the transpose, or real adjoint. Also a - b denotes
the inner product, or ‘‘dot product,”” of two vectors;
while a X b denotes the outer product, or ‘‘cross prod-
uct,”” of these vectors [19, pp. 181, 227]. The inner prod-
uct defines the standard Euclidean norm: |a] = (a - a)'®.
The standard product identities [10, Section 3], for any
parallel a, b, yield the following useful relation among

otherwise arbitrary vectors:

det(a Xr,b Xs,¢eXt)=det(a,r,s) det(b,c, t). (4)

For a moving pen, conceived as a general rigid body,
we refer positions to an internal coordinate system, fixed
in the body itself, and we relate this to an external coordi-
nate system, fixed in the surrounding environment [20,
Chapter 4]. Specifically, we introduce a right-handed or-
thonormal basis (e,, e,, e,) for the internal coordinates,
where we align the vector e, up the pen axis. Moreover,
we locate the coordinate origin at the pen point, and we
assign the vector displacement y to an arbitrary internal
position. If p is the external vector displacement of the
pen point and q is the external vector displacement of the
point y, then the basic relation

q(7) = p(7) + Ulny o)

connects the internal with the external description, where
the orthogonal transformation U(r) carries internal to ex-
ternal vectors. This orthogonal matrix U(r) defines a
skew-symmetric matrix W(r) by

U' = UW for all times 7. (6)

The resulting matrix W(7) defines an angular velocity w(r)
by

We = w X ¢ for all vectors c. (7

2. Invariance properties of design function

Here we suppose a design function for instrument lay-
outs, and we describe its invariance properties under
symmetry transformations. Let a pen contain fixed linear
accelerometers at internal positions y,. - - -, y,. Let these
instruments measure respective acceleration components
along unit vectors u,, - - -, u,. If the vector V=, -
dzn)'l' represents the corresponding measurements (1)
and the vector ® = (¢, - - -, ¢,)" concatenates the quad-
ratic forms ¢,(w) = (y, X w) - (u; X w), then the kinematic
variables p, p’, U, w obey the basic system [10]

AV"’(p wf g) - O(w) + U(r). ®)
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where the n X 6 matrix A and the 6 X 6 matrix V have the
particular forms

AT= u, I u,
y1 x ul’. : "yn X un

|oovo =" @

Here the constant vector g denotes the external gravita-
tional field. Also, a unique solution for the trajectory p(r)
requires the full rank of the matrix A:

n = rank (A) = 6; (10)

and a least-squares combination of measurements pro-
vides a system of normal equations:
. "

A“‘Av“‘(" wf g) = A"O(w) + A"V(). (1

Clearly, the matrix A must contain the essential geome-
try of the layout, and the ideal geometry should offer the
most accurate solution of (11). Therefore, the matrix A
should produce our criterion for an optimal layout, and
this unknown criterion must refine the nondegeneracy as-
sertion of (10). However, (10), by standard theorems [19,
pp. 78-80], requires simply the existence of (A"A)™". Also
a measurement error AW, by (11), produces a change

( ﬁp,) = V(A"A)'ATAY (12)
W

in p” and w’, while the orthogonal matrix V of (9) pre-
serves the Euclidean norms of Ap” and Aw’. Thus a desir-
able instrument configuration should yield a *“small’’ gen-
eralized inverse (A"A)"'A". To compare accelerometer
layouts for different matrices A, we express their desir-
ability via a real-valued design function 8(A). We cannot
rigorously isolate a unique 8(A), but we shall so delimit
the possibilities that we can finally distinguish a unique
simplest choice. Here we broaden the domain of the ma-
trix A, and we deduce some restrictions from various
symmetries. Specifically, we permit accelerometers with
different sensitivities, yielding measurements with dif-
ferent weights. Accordingly, we allow matrices A as argu-
ments having vectors u, of arbitrary magnitude.

Sensitivity and distance admit independent units and
measurements. Thus a change of sensitivity scale yields a
transformation y, = y,, u, — ou,, for all i, which implies a

mapping
A — oA for some positive a. (13)

Also a change of distance scale yields a transformation y,
— ay,;, u, — u, for all i/, which implies a mapping

A — A -diag (1, 1, 1, &, , @) for some positive «. (14)

However, these scalings should not invert the relative de-
sirability of any two layouts, whence each mapping

should simply multiply 8(A) by a corresponding power o,
The design function 8(A), in other words, should be a ho-
mogeneous function of either the u, or the y,. If we trans-
late the internal origin, then we do not alter the directions
u,. Still, we take all y, into y;, + a, for an arbitrary 3-vector
a, and we map

I S(a))

A—>A(
0 I

(15)

for a corresponding 3 X 3 skew matrix S(a). Specifically,
the origin may thus become any y,; moreover, these trans-
lations should not affect 8(A); hence, the design function
caninvolve only differences y, — y,. Alternatively, the ori-
gin for the internal coordinates may be, more symmetri-
cally, the average (y, + - - - + y,)/n of the displacements
y;- Our further remarks assume this last normalization.

If we renumber the n accelerometers in a different or-
der, then we map

A — (n X n permutation matrix) - A. (16)

If we reverse the direction u, of the jth instrument, then
we map

A — diag (1, - - -, 1, —1(jth position), 1, - - -, 1) - A,
amn

Clearly this yields a layout with identical capabilities, be-
cause it changes only the sign of the jth measurement. If
we rotate the basis (e, e,, e,) via a proper orthogonal U,
then we multiply all y; and u, by this same transformation
U. Moreover this takes y, X u, into U(y, X u,), whence it
maps

(18)

1
A—»A(U 0) .

0 v

If we reverse all u,, via (17), then A becomes —A; if we
reverse all y; and u,, then A becomes A - diag (-1, —1,
—1, 1, 1, 1). However, the replacement (18), together
with the last two possibilities, generates all mappings

19

N

0 xU

with two independent * signs. All these transformations
preserve the values 8(A).

The symmetries of the last paragraph form a compact
group of transformations. Thus a sufficient goal for our
investigation is a complete set of polynomial invariants.
Indeed, any invariant function 8(A) under the mappings
(16)-(19) is simply an arbitrary function of the polynomial
invariants 8 (A), - - -, §,(A) (21, 22]. Moreover, the col-
umns of A" contain the vectors u,, y; X u, for all in-
struments, and the action of (19) produces all images Uu,,
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U(y, X u,) under the full orthogonal group. The invariant
combinations of these images involve only generic prod-
ucts of the forms [23, pp. 52-56]

(w, xw), (y,xu) wu, (y,Xu)-(y,xu). (20)

Also, the independent * signs on the expression (19) re-
quire even numbers of the factors (y, X u,) - u; and our
discussion of (13) and (14) imposes homogeneity in the y,
and the u,. Indeed, reversals of individual u, imply even
numbers of each single u,, and relabeling of accelerome-
ters demands symmetry in all indices. Collectively, these
symmetries restrict the form of any function 8(A), though
our remarks permit the construction of many invariant
polynomials.

3. Systematic choice of design function

Here we impose some plausible requirements beyond the
stated invariance properties, and we discern a *‘simplest’’
design function under these combined hypotheses. Thus,
the unknown 8(A) is specifically a real-valued function,
and we can choose its sign so that 8(A) becomes larger as
(A"A) 'A" becomes **smaller.”’ Also, a noninvertible A"A
is clearly worse, and we can add a constant so that

8(A) = 0 when rank (A) < 6. 21)

Indeed, any nonsingular A"A is presumably better,
whence we may sharpen (21) so that

8(A) > 0 when rank (A) = 6. (22)

Now, linear algebra suggests three candidates for the de-
sign function, where the preceding remarks guide our nor-
malization in each case. One measure of a “‘small”’ in-
verse (A"A) ' is the denominator in Cramer’s formula [ 19,
p. 112]:

8,(A) = det (A"A). (23)

This determinant, of course, is the product of the eigen-
values. Another possibility is

8,(A) = smallest eigenvalue of A"A, (24)

since its reciprocal is the subordinate ¢* norm of (A"A)™",
and this norm bounds the ¢° error amplification in (12)
(19, p. 201; 24, p. 56]. A third alternative is

8,(A) = smallest eigenvalue/largest eigenvalue, (25)

since its reciprocal is the condition number of A"A, and
this quantity reflects the computational difficulty of in-
version [24, p. 89].

Clearly, all candidates are unitary invariants of A"A,
whence these functions have the required behavior under
(13) and (16)-(19). However, another symmetry excludes
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the last two alternatives. The matrix A, under the map-
ping (14), takes the form A(a) = AQ(«a), with

Qa) = diag (1, 1, 1, o, a, ). (26)

Hence, the largest eigenvalue of A(a)'Ale) =
Q(w)A"AQ(a) is approximately constant for small a, and
asymptotically (const.)a” for large « [24, Chapter 2]. The
inverse matrix, with the reciprocal eigenvalues, has the
form [A(a)"A(@)]” = Qo )[A"A]'Q(a™) by direct com-
putation. Thus the smallest eigenvalue of A(a)"A(a) is ap-
proximately constant for large « and asymptotically
(const.)a’ for small . Therefore, the functions 8,(A) and
8,(A) lack the required homogeneity in «, whereas the ex-
pressions (14) and (15) yield the desired behavior for
8,(A). Again, these arguments permit other, less plau-
sible, alternatives, but the following results support fur-
ther the special choice §,(A).

® Lemma l

Let A be a square matrix; thatis, n = 6. Ifu,, - * -, u, y,,
- -+, ¥, have independent complex variables as com-
ponents, then det (A) is an irreducible polynomial over
the complex numbers.

Proof

The polynomial det (A), by definition (9), is a linear func-
tion of each (u,, y, X u). Hence, if this polynomial has
nontrivial factorization 7 (A) - - - 7, (A), then necessarily
only one factor can involve each pair (u,, y, X u,). How-
ever, all permutations of the indices {1, - - -, 6} preserve
det (A) up to a sign, so that all relabelings of the vectors
u,, y, express det (A) as a nontrivial product. Moreover
any complex polynomial must have unique irreducible
factors [25, pp. 70-74); therefore, the polynomial det (A)
can have no nonlinear irreducible factors. Thus, symme-
try under permutations requires

6
det (A) = constant - [ [a-u, +b -y, X u] 27
i=1
for some complex vectors a, b; and sign reversal of all y,
produces a similar formula with corresponding factors [a -
u, — b -y, X u], whence unique factorization of det (A)
implies

a‘u,—b-y Xuy=yla-u+b-y Xu]l (28)

for some complex constants y,. Putting y, = 0, we obtain
v, = 1; letting y, be arbitrary, we find b = 0. Hence the y,
do not affect (27), and this independence provides a con-
tradiction. [

® Theorem |
Let n = 6 for the matrix A and 8(A) satisfy (21)-(22) for
real arguments. If 3(A) is an analytic function of u,, - - -,
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u,,y,, Y, forallu,y, sufficiently near zero, then 8(A)
is the product of some nonnegative analytic function with
det (A"A) = [det (A)]".

Proof

The function det (A), arbitrarily near A = 0, takes both
positive and negative values for real u, and y,. Moreover
this function, by Lemma 1, can have no nontrivial ana-
lytic factors over the complex numbers; otherwise the
leading terms of their power series would yield a non-
trivial polynomial factorization of det (A). If det (A) = 0
for any real arguments, then §(A) = 0 by assumption (21).
Therefore, det (A), by a suitable Nullstellensatz [18,
Proposition 4.2], divides the function &(A); while
8(A)/det(A), by assumption (22), takes positive or nega-
tive values according as det (A), at the same point, takes
positive or negative values. But the zero set of det (A)
includes no open subset of matrices. Hence 8(A)/det (A)
= 0 when det (A) = 0. Thus 8(A)/det (A), by the same
Nullstellensatz, again has det (A) as a factor. U]

Clearly Theorem 1, for six accelerometers, offers a new
fact supporting 8 (A); namely, this polynomial, even with-
out symmetry restrictions, provides the ‘‘simplest’ func-
tion satisfying (21)-(22). Also, Theorem 1 implies a
weaker result when n > 6. Given any subset J = {j,, - - -,
Jgpof {1, - - -, n}, define the submatrix A of A" by taking
the six columns with indices j,, - - -, j,. If some 8(A), for
any admissible n, is a polynomial of least total degree,
then each A” with only six nonzero columns yields an ex-
pression constant - [det (A J)]Z for some set J. Thus 8(A) =
constant - X [det (A J)]Z + (other terms) by permutation
symmetry, while

8,(A) = det (A"A) = 3 [det (A )T (29

by the Binet-Cauchy formula [26, p. 9]. Hence the *‘sim-
plest’” possibility is again § (A), though a higher-degree
alternative is, similarly, §,(A) = X [det (A J)]". Here, de-
spite this nonuniqueness, we prefer 8 (A) and, for analyti-
cal convenience, we define

3(A) = 8,(A)'” = [det (ATA)]'". (30)

® Theorem 2

Any one of the following implies the vanishing of 8(A): (1)
the y, describe collinear positions; (2) the u, span a two-
dimensional subspace; (3) some # — 2 of the y, are equal;
(4) some n — 2 of the u, are parallel.

Proof
Shifting the origin in some cases, we find rank (A) < 6 by
inspection. O

4. Auxiliary results for eventual optimization
Here we describe the variable domains, to specify our op-
timization problem; and we apply some convexity theo-

rems to circumscribe the admissible locations. Then we
restrict further study to six-instrument layouts, and we
collect some auxiliary facts for convenient reference. The
chosen 8(A), in particular, is a linear function of each |u|.
Hence we may specialize our problem to its original form,
and we shall consider only vectors u, of unit length.

Also, nontrivial maxima, by Theorem 2, Part 1, de-
mand some accelerometers off the pen axis, whereas out-
lying instruments near the pen point impede the natural
flow of handwriting motion. Thus we have proposed en-
circling the pen axis at its far end by a ring, and we have
envisioned attaching this ring to the shaft by fins or
spokes [12]. But the domain D for any vector y, is the
space available for instruments; and the set D, after this
enlargement, is the pen volume together with the ring. If
co (D) denotes the closed convex hull of D and ex (D)
comprises the extreme points of co (D), then co (D), fora
finite pen, is clearly a compact set in E*, and ex (D), by a
standard result [27, p. 165], is already a subset of D. In-
deed ex (D), by the Krein-Milman theorem [27, p. 166],
has co (D) as its closed convex hull. However 8 (A), by
(29), is a convex function of each y,, because [det (A J)]Z,
by inspection, is a convex function for each J. Hence our
8(A)?, for each y,» will assume its maximum on ex (D),
though nonextremal points may also furnish maxima [27,
p. 343]; and our search for optimal y, may suppose their
locations in ex (D). This preferred subset of the total do-
main includes the ring together with the pen point; a later
limitation on off-axial instruments supplements these two
possibilities with the far end. Thus we may try succes-
sively these few locations for the y,, and we need seek
only the best directions for the u,.

Unfortunately, the last problem, for n accelerometers,
probably exceeds the resources of purely analytical meth-
ods. However, explicit results in a special case nicely dis-
play the potential of our theory. Moreover, the limited
volume inside a pen clearly justifies the fewest accele-
rometers as the most interesting case. Hence all further
discussion assumes n = 6, and various detailed argu-
ments, each labeled a ‘‘theorem,’’ yield optimal layouts.
Now A is a square matrix and

8(A) = [det (A)]. €29)

The following lemmas include some well-known facts,
but their formal statement permits convenient later refer-
ences. If w(v) represents any real-valued function of the
vector v, then ¢ denotes a generic point with maximal
w(v).

® Lemma 2

If a is an arbitrary 3-vector and w(v) = |a - v|, then

{a-vilv| = 1} = [—|al, +lal] (32)
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and max {w(v):lv| = 1} = [a|. If a = 0, then ¥ is any unit
vector. If a # 0, then ¥ = *a/[a].

Proof
Obvious. O

o Lemma 3

Ify, =y, for any distinct j, k, then 8(A) involves u, u,
only through u xu. Hence the vectors ﬁj, i, for a non-
constant function 8(A), are any orthogonal unit vectors
with the correct normal.

Proof

We may take j = 5, kK = 6 by an index permutation. We
may put y, =y, = 0 by translation-invariance. The La-
place expansion of a determinant implies

det (A} = det (u,, u, u,)det(y, X w,, y, X u, y, Xu,)
— det (u,, ug, u,) det (y, X u,y, X u;, y, X u)
+ det (u, u,, w) det (y, X v, y, X u,, y, X u,)
— det (u,, ug, u,) det (y, X u, y, X u,, y; X uy)

= (u, X uy) - f(u,, u, u, u) (33)

for a vector f [19, p. 110]. Thus 4, x a,, by Lemma 2,
must parallel f (4, @,, &, a,) for nontrivial §(A); and a,
X ﬁe|, by inspection, must equal unity for maximal

det (A). O

o Lemma 4

Ify, =y, =y, forany distinct i, j, k, then 8(A) involves u,,
u, u, only through det (u;, u;, u,). Hence the vectors 4,
ﬁj, G, for a nonconstant §(A) are any orthonormal basis
for the space E°.

Proof

Wemay takei=4,j =35, k=6 Wemayputy, =y, =y,
= 0. The Laplace expansion [19, p. 110] implies

det (A)

= ~det (y, X u,y, X u,, y, X u,)det (u, u, u).

(34)

1

However |det (u,, u_, u/)| takes its maximum value when
(u,, v, u) is any orthonormal basis. (1

® Lemma 5

If B is any real 3 X 3 matrix and v,, v, are any real 3-
vectors, then max {(v|Bv,)%|v,| = |v,| = 1} is the largest
eigenvalue of B'B, and this eigenvalue is the largest
root of det (\ — B"B). If rank (B) < 3, then A divides det
(A — B"B), and the maximum of this lemma is the larger
root of the quotient.

Proof
Lemma 2 yields these known facts; indeed
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max {(leBv2)2:|vl| =1} = |Bv2|2 = v:BTsz. O (35)

The subspace (a,, - - , a,,), for any vectors a,, will be
the subset {Z,0a,:p, € R} of the space E®. If a, b are any
nonzero vectors in E°, then (a), (b) are undirected
straight lines through the origin. Also if a, + b, # 0,
where

a, = a/la, b, =b//bl, (36)

then clearly (a, + b,) bisects ~(a, b). Therefore, the bi-
sectors of the pair {a, b} will be the unit vectors *e in the
line (a, + b,). However, the intersection of the lines (a),
(b) vields two pairs of opposite angles. Accordingly, the
principal bisectors for this pair of undirected lines will be
the unit vectors along all bisectors of nonobtuse angles:
either two pairs of opposite vectors for perpendicular
lines or one pair of opposite vectors in other cases, hence
one pair, in the obvious directions, for coincident lines.
Thus, if sgn (a - b) = a - b = 0, then all four bisectors of
{a, +b} are principal bisectors of {{a}, (b)}, while, if sgn (a
- b) = & # 0, then the two bisectors of {a, eb} are the
principal bisectors of {a), (b)}.

® Lemma 6
If a, b are arbitrary 3-vectors and w(v) = |(a - v)(b - v)|,
then

2@ - v)b - vy = 1}

=[a'b—la-|b,a-b+|a - |b]] 37

and max {w(v):]v| = 1} = (la - b| + |a] - |b})/2. If either a or
b is zero, then v is any unit vector. If both a and b are
nonzero, then ¥ is any principal bisector of (a), (b).

Proof

If a, b are linearly dependent, then these results are obvi-
ous. If a, b are any independent vectors and a,, b are the
unit vectors (36), then (a - v)(b - v) = v'Cv, where

2C = ab" + ba' = |a| b| {a,b; + b,a,}- (38)

The matrix C has eigenvectors a, X b, a, * b; an ex-
tremizing v must parallel some eigenvector. [

5. Accelerometer layouts with three positions

The assumption n = 6 yields the simplification 8(A) =
|det (A)l. Now, further plausible constraints will provide
analytical solutions, though unrestricted maxima may de-
mand numerical techniques. Indeed, Section 4 so limits
admissible locations that several y, probably take coinci-
dent values. The unknown §,, by Theorem 2, Part 1, must
include three noncollinear points; no four §,, by Theorem
2, Part 3, may occupy the same point. Hence any optimal
six instruments admit the following location multi-
plicities:
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[1’ 27 3]’ [2’ 27 2]’
[1’ 1’ 27 2]’

(1,1, 1,3],
[1’ l’ 1’ 1’2]7 [1’ 17 19 1’ 1’ 1]'

Here, Theorem 3 covers all [1, 2, 3] configurations, and
Theorem 4 treats all [2, 2, 2] configurations.

® Theorem 3

For a six-instrument layout, assume y, = y, = y,, and, by
translation-invariance, let this common point be the ori-
gin. In these coordinates, suppose y, X y, = 0, but, in
other respects, let y,, y,, y, be arbitrary vectors. Then

i

max {8(A):all ju| = 1} = |y, X y,| - ly,|- (39)

If either y, X y, = O or y, = 0, then the §, are any unit
vectors. Otherwise i, = +y, Xy, /ly, X y,|, and 0, 0, are
any orthogonal unit vectors such that 4, X i, = *y,/ |y3|;
while (d,, 0, G.) is any orthonormal basis.

Proof
Relations (34) and (4) imply

det (A) = (u, -y, X y)u, X u, - y)(u, - u, X uy). (40)

Hence the results are trivial when either y, X y, ory, is
zero. Otherwise, Lemma 2 yields the stated 1, ,, 0;
and Lemma 4 yields the stated a,, 0., @, Finally, sub-
stitution produces (39). O

® Theorem 4
Let the instrument locations form a {2, 2, 2] configura-
tion. Specifically, let

Y=Y, =2, Y, =Y, T4, y;=Yy,=a,; (C3]

and let the vertices a,, a,, a, define a triangle A. Then

max {8(A):all ju| = 1} = (area of A)(perimeter of A).
(42)

Also, the W, are any unit vectors when the triangle area is
zero. Otherwise (4,, 4,), (4,, 0 ), (4, G,) are pairs of or-
thogonal unit vectors, and if

U X, v, Fu X, v, =u,; X g, (43)

then each ¥, parallels the angle bisector at the correspond-
ing a,.

Proof

If the area is zero, then the y, are necessarily collinear,
and the result is trivial since 8(A) is identically zero. Oth-
erwise, by translation-invariance, suppose a, = 0, and, in
this coordinate system, define

b, =a/lal, b,=ay/a,l, n=a xa/la Xa,,
y = (a,|/la,)"".

Now (a,, a,) is the plane of the triangle, and n is the nor-
mal to this plane. Also Lemma 3 implies that (&,, @), (ii,,

(44

ii,). (G, @) are orthogonal pairs, whence maximal 5(A)
requires that ¥, ¥,, ¥, be unit vectors. Moreover, we can
obtain directly

det (A) = |a, X a,| (|a,| - [a,])"*e(A),

e(A) = (1/y)(b, - v))(m X v, - vy) = (b, - v,)(m X v, - v;)
(45)

by relations (33) and (4). Therefore, we need only maxi-
mize |e(A)| for unit vectors v,, v,, and v,.

But ¥,, by Lemma 2, is orthogonal to n; so ¥, by (44),
is contained in (a,, a,). Thus we may restrict the variable
vector v, to this plane, and we may consider the rotated
vector v, = v, X n in the same plane. If we introduce
the bisector b, of {b,, b,} and we define the unit vector
f(#) = bycos® + (n X by)siné in (a,, a,), then
b, = f(=¢,), b, = f(+¢,) for some given ¢, while v, =
f(¢) for some unknown ¢. Actually, the permutation
symmetry of v, v,, v, permits assuming all three variable
vectors in (a,, a,). Moreover, we can eliminate the un-
known v, v, by Lemma 5, because

e(A) = v'Bv,, B = (1/y)byv, — yv,b; (46)

indeed, we need only calculate the largest eigenvalue of
B"B, where

BB = 772V0V':; + ')’2b2sz — cos (¢ + d)o)[vobl + bzvz].
, 47

If a vector in the plane (a, a,) has the form &v) + nb,,
then its image under the mapping B'B has the form
£,v, + m,b,, where (£, m,)" = M(£, 1)", and

v cos (¢ — ) — cos (p + d)o))A
¥’ — cos (§ + &,) cos (¢ — ¢,)

43)

_ (¥ cos (¢ + &) cos (¢ — by)
( ¥ cos (¢ — ;) — cos (& + )

Hence the nonzero eigenvalues satisfy the equation 0 =
det (A — M), and this quadratic equation has the roots

L= ta)+p+o) 2+ )+ a)”

p=0"-v/4, o,=sin’p, o=sin"¢. (49)

To obtain the maximum of the largest eigenvalue A,
clearly demands the largest value, unity, of the variable
o. Thus v is orthogonal to b, or ¥, is parallel to b,. Geo-
metrically, each ¥,, by permutation symmetry, is there-
fore a bisector of the corresponding angle.

Now define the triangle A by its vertices a, a,, a_, and
locate the intersection of its angle bisectors by the vector
a,. Also assume the outward sense for the unit bisectors

A 2

Vi, Yy, Yy, and denote the interior angles at the same

points by the quantities §,. The auxiliary triangle A with
vertices a,, a,, a, has interior angles 6,/2, 6,/2 at the last
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two listed points. But the remaining angle is £(¥,, V,),
whence this angle is = — (8, + 6,)/2; and the 6, have sum
, whence

l'l‘V2><V3

= sin ((m + 0,)/2) = cos (6,/2) =b, - V..
(50)

A similar argument yields the cycled identity

n- ¥, X ¥ =sin (@ +6,)/2) = cos (6,/2) = b, - ¥,
(51

while the triangle A has area |a, X a,|/2. These identities
imply (42), because (45) becomes

max|det (A)| = |a, X a,] {la| (b, - ¥ )(m - ¥, X V)
+ |a,| (b, - \AICER AP S}
= (area of A){la | (1 + cos §)) + |a,| (1 + cos 6,)}

= (area of A){[a | + |a,| + |a, —a}. O (52)
6. General results for [1, 1, 1, 3] configurations

The next two sections optimize four-position layouts.
Specifically, Theorem 5 treats nondegenerate [1, 1, 1, 3]
configurations, whereas Theorem 3 includes the remain-
ing possibilities. The forthcoming theorem requires a pre-
liminary normalization. Any unit vectors z,, z,, z, define

relative angles 6 ,, 6,., 8., by

z;:z,

= cos 6, with 0 < 0 = 0y =m. (53)

Any nonzero vectors y,, y,, A define unit vectors z,, Z,
z,, unique up to signs, with each z, in(y). However, we
can choose these signs, when we have any such y,, so that

012 + 023 =, 0, + 031 =, 031 + 012 =m.

(54)

Indeed, if we change z, — —z,, where i, j, k are distinct
indices, then clearly we map 0= 0, but 0,—>m—0,.0,
8,.- Either we can eliminate all obtuse relative
angles by such reversals, or, if this reduction is impos-
sible, then we can eliminate all acute relative angles in
this way. But we can immediately satisfy (54) in the first
case; while, if angle 6, is minimal, then we need only
reverse z, in the second case.

—_ 7 —

® Theorem 5

Given any pairwise independent vectors y,, y,, y,, but

taking y, = y, = y, = 0, choose the normalized unit vec-

tors z , z,, z, to make the relative angles satisfy (54). Now,
then

if o = 0, + 0, +0,,

max {3(A):all |u| = 1}/ly,| - Iy,| - ly,| = sin (¢/2) or 1,
(55

accordingas 0 <o <7 orw = o < 27. Also, (i, 4,, 0,),
in either case, is any orthonormal basis for E®. If ¢ < 77,
and (i, j, k) is any permutation of (1, 2, 3), then @, bisects
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{Zu’ z,}, where z,=12, X I, for short. If o > 7, then i, a,
i, do not have unique alignments.

Proof
L.emma 4 already implies an arbitrary orthonormal basis
(4,, G, a). Relation (34) therefore entails

max | det (A)] = ly,|- |y,| - |y,

- max {|det (z, X u,, z, X u,, z, X w)l:all ju| = 1}.
(56)

But the last determinant equals w, - r(u,, u,), where

r(a, u,) = [(z, X u) X (z, X )] X z,. 57

Thus 1, parallels r(f,, 4,) by Lemma 2, and 1, - z, = 0 by
(57), whence all &, - z, = 0 by symmetry, and each z; X 1§,
has unit length as a result. Also z,, # 0 for distinct j, &,
and [z,| = [sin 6| by definition (53). However, these facts
suggest the orthonormal basis

f,=12,, f =21,/lz, f =f xXf; (58)
and Lemma 2 offers the additional reduction
[max 8(A)T*/ly, Iy, Iy,
= max {r(u,, w)*[w,| = Jn,| = 1}
= max {(z,, - u )’ + (z,, - w,)’
= 2z, - 0)(z,, - W)z, - w):fu| = |u| =1}
= max {(z,, - u)’ + u,Cu,:ju | = |u,| = 1}. (59)

Here we have abbreviated z, = (z, X u,) X z,; and we
have introduced

C = [sin®8,, — 2(z,, - u)(z,, - 2, f]

T T
— (z,, - u )z, X z,, - I[EL, + £ ].

2714

(60)

Now, the maximum (59) over the unit vector u, yields
the largest eigenvalue of C, and the representation (60) in
the basis {f;} gives a 3 X 3 matrix for C. The third row and
column of this matrix have no nonzero entries, by defini-
tion (60). Thus the nonzero eigenvalues A, satisfy the
characteristic equation for the nontrivial 2 X 2 block, and
the maximal eigenvalue A, produces the further sim-
plification

2r(u,, 0,)* = 1 + cos §,, - 2w — cos 6,,)

+ Isin 6] - [1 — Qw — cos 6,,)"1",  (61)
23 23

with w(w,) = (z,, - u,)(z,, - u,). The derivation of (61) en-
tails the reality of the square root. Hence some real angle
y(u,) satisfies cos y(u,) = cos 6,, — 2w0(u,), and the rela-
tion (61) becomes

2Ir(u,, &,)]> = 1 — cos y cos 6,, + |sin y sin 6, (62)

However, Lemma 6 proves that
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Range [20(u,)]

= [(ZZI ) zal) - |221| : |z31|’ (221 : zal) + |z21| : |z31|]’ (63)

while definitions imply z,, - z,, = cos 6,, — cos #,, cos §
and relations (54) show that |,, —
whence substitution produces

317
031' =0,+ 0, =m

Range (cos y(u )] = [cos (6,, + 6,,), cos |8, — 6,,[]. (64)

Clearly (62) can become 2, and (55) be unity, precisely
when cos y can become cos (7 — 8,,) = —cos 8,,, or
when |0, — 0| =7 — 6,, <60, + 6,,. Moreover (54)
already insures the first inequality; therefore the con-

clusion requires only 7= < o. If we let

u, = [£,(2, X z,,) + £,(z, X z,))]/det (z,, 2,, Z,) (65)

for some ¢,, ¢,, and we use |6 |* = 1, w(@,) = cos 6
we find

43> then

. . 2 -2 2 . 2
(&, sin @, + g&, sin § " = sin” @ , + sin"§ , — sin'0,,

— 2gsin 6, sin 6,, cos 4,
(66)

with ¢ = *=. This quadratic pair of equations has two dis-
tinct pairs of solutions.

If ¢ <, then [r(d,, ﬁ2)| < 1. Therefore, cos y(@,) must
be an endpoint of the range (64), because (62) can have no
smooth maximum in the variable cos y(u,). Indeed, the
smallest cos v, by trial, yields the largest Jr|; and the cor-
responding @, by Lemma 6, bisects {z, , z, }; while the
resulting (55), by calculation, is the stated sin (¢/2). O

& Remarks

Each line (y) determines an orthogonal plane through the
origin, and these three planes define four opposite pairs of
solid angles. Moreover the points z,, z,, z,, on the unit
sphere, specify the vertices of a spherical triangle, and
pairwise intersections of the orthogonal planes contain
the vertices of its polar triangle [28, p. 112]. Both the po-
lar triangle and its opposite have vertex angles = — 6, and
area 2m — o [28, pp. 112-114]. Hence the remaining solid
angles have total measure 20, and these traditional geo-
metric concepts yield a dual condition: ¢ < 7 precisely
when some solid angle exceeds #. If we take the cosine of
the equivalent statement 6, + 6, =< 7 — 6,,, and we
square the result, in the modified form sin 6 ,sin 6, =
cos 0, cos g, + cos 8, then we find an algebraic ver-
sion of this requirement:

1=(z,-2) + (z,-2)° + (z,- 2)°

+ 2z, - 2)(z, - z)(z, - Z,)

I

2 2 2
cos" 6, + cos 6, + cos 0,

+ 2cosf,cos b, cosb,. (67)

The homogeneity of relation (67) obviates our normal-
ization of the z,. If we reverse any z,, then we change
nothing.

7. Special results for [1, 1, 2, 2] configurations

The one theorem of this section optimizes a restricted
family of [1, 1, 2, 2] configurations. This special result,
with Theorem 5, covers the relevant layouts with four dis-
tinct positions. Some remarks at the end explore the
problem of further extensions.

& Theorem 6

Ify, =-y,=b,y,=y,=a,y, =y, = 0, where a, b are
arbitrary vectors, then

max {8(A):all [u| = 1} = 2|a| - |a X bj (68)
wherever b| < [a|. If a X b = 0, then the 1, are arbitrary
unit vectors. If a X b # 0 and f, = a X b/|a X b|, then &,
ii, are unit vectors both parallel to f , and (&,, §,), (4,, 6,)

are any orthonormal pairs respectively perpendicular to
a,f.
> 7o

Proof

All these statements are trivial when a X b = 0, because
the y, are collinear, and 8(A) = 0. Otherwise (&,, @ ), (4,
i) are orthonormal pairs by Lemma 3; and if v, = u, X u,,

, = W, X u,in (33), then

—det (A)/|a X b| = det (b, u, u,) det (f, v,, v,)
+ (- v)lv, - u)(f - u,) + (£ - u)v, - uw)] (69)

by (4). If we define x = |b| det (f,, v, v,)/(a - v,) and in-
troduce

f =a/ja, f,=fxf, f,=b/b|, f,=f xf,

(70
then we rewrite (69), and obtain
—det (A)v/|a X bl =(a- vz)uTlBuZ,
B=fv +vf +«ff —ff] (70

Thus max {5(A)*/]a X bf*a - v)*u| = |u| = 1}, by
Lemma 5, is precisely the largest eigenvalue of B'B. But
(71), in the orthonormal basis (f,, f,, f,), gives a matrix for
B, and the roots of the characteristic polynomial det (A —
B'B) are the eigenvalues of B'B. Also rank (B) = 2,
whence one root is zero. Now the other roots, by direct
calculation, are

A, =k v )= 2| v )+ K- K v )T
72)

and relation (71), via this reduction, yields
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max {8(A)°/|a X bf*Ju,| = fu,| = 1}
=(a-v) L+ (£ - v)’] + |b*(v, - v, X £)°
+ 2a - v,[{(a- vz)z(fo . "1)2
+ v, - v, X £)71 - (- v’}
< {la- v, + [(@- v)XE, - v)" + bfv, - v, x £)*]""
(73)
Here our manipulations, for convenience, have assumed

nonzero a - v,, but the result (73), by continuity, does not
require this.

The expression (a - v,)(f, - v,)* + [b*(v, - v, x f,)" in the
last bracket is a quadratic form in v . Indeed, max {(a -
v,)%, [bl*lv, x £’} is its maximum value, because f, and v,
x f, are orthogonal vectors. But (73) becomes 4[a|* when
v, = xf v, = £f_ . Thus the square root of (73) implies

2a| = max {8(A):all Ju] = 1}
< la- %)) + max {fa - ¥/, [bf [, X £}
< max {2ja - ¥, |a - 9, + ]} (74)

by definition. Therefore, ¥, = =f_, whenever |b| < |a]; and
if we insert this value, then we obtain

4 < max {5(A)*/|a[’la x b|*:all |u| = 1}

IA

IA

1+ (f, - 9" + (bl/ja)*(E_, - ¥)°
+ 2{(€, - 99 + (bl/]a)*(€_, - 9)TL = (& - 9 )P

=< {1 + [, - )" + (bl/la)*E_, - v)7T""}" 75)
Therefore, ¥, = +f whenever |b| < |a|. However, if |b| =

[a and E = £f] + f_f,, then

—g'—9

4 < max {8(A)*/[al’la x b[*:all [u| = 1}
=1+ B9 + 2{E9,[" — (F - 9)%E, - 9)%"™ (76)
whence E¥, = ¥, and either f_, - ¥, = 0orf -V =0

Clearly, v , in the first case, is orthogonal to{f_,f_,), and
¥,, in the second case, is orthogonal to(f_,, f,) = (a, b),
whence ¥, in either case, is parallel to f,. If we use these
values in (71), then we find

2 =< max {8(A)/|a| - |a x bj:all Ju| = 1}
= 2f, -4 - If, - &), (77)

by (74). Hence, 8(A) attains its maximum when 4, and 4,
parallel f,. O

® Remarks

All stated conclusions fail when |b| > |a|; some optimal
directions change, and max 8(A) > 2la| - |a X b|. Indeed,
let v, = f cos 8 + f_, sin 0, rather than f;; but put v, =
=f_,, as in Theorem 6. The value of |b/|a| does not affect
the truth of (73). Hence, from this specialization we ob-
tain
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max {8(A)*/la[*la x b[*u,| = [u,| = 1, v, = =f_}

B |

=2+ po + 21 + po - vo' ],

u = (bl/la)* = 1, v = (b|/ja)*(f, - £_)*, o = sin®0; (78)
and, for small ¢, we expand

max {8(A)*/la]*[a X b/*:- - -} = 4 + 2uc + O(0?). (79)

If |bj > |a|, then p > 0. Thus small perturbations of the
foregoing ¥ yield a larger quantity than the stated
max 8(A), and new values of some @, give the global max-
imum under this condition. The required analysis seems
to involve further special cases.

8. Optimal layouts with natural “feel”

Here the foregoing theorems, combined with certain ob-
vious remarks, yield the optimal layouts permitted by all
relevant considerations. Section 4 requires some off-axial
accelerometers. Thus our proposed configurations [12]
situate some instruments on the attached ring, where this
suggested ring encircles the pen axis at its nonwriting
end. Indeed, the possible locations, by Section 4, can
only be the pen point, the far end, and this ring. Hence o
and B3, throughout this section, will, respectively, be the
effective pen length and the ring radius. However, a re-
cording pen with natural ‘‘feel’”” demands relatively un-
changed moments of inertia, since an applied torque on
any rigid body affects its angular motion through these
moments [20, Chap. 5]. This does not preclude off-axial
accelerometers, but it urges relatively few such in-
struments. It also suggests a small ratio 8/«, and this fur-
ther motivates optimal measurement directions. (Natural
“‘feel”” still leaves considerable freedom to the designer;
the local Radio Shack uses a special pen with triangular
cross-section.) Our successive paragraphs will allow first
one, then two, then three off-axial instruments; the ulti-
mate choice must reflect some further practical circum-
stance.

Moreover, optimal solutions will plausibly exhibit high
symmetry, and symmetric locations will obviously facili-
tate normal writing. Therefore, the analysis of this section
assumes another constraint, with no further justification,
namely, that any accelerometers on the ring occupy posi-
tions with equiangular spacing. But a desire for the fewest
instruments entails a layout with precisely six accele-
rometers, and Theorem 2, Part 3, for nonzero 8(A), per-
mits at most three instruments in any one spot. Let the
symbol [¢, m>>, for any integers ¢ and m, denote a layout
with ¢ end, and m point, accelerometers. Qur proposed

three cases, and the last few remarks, imply
0=¢=3,0=m=3,3=s¢+m=>5. (80)

Our discussion employs the pen coordinate system,
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Figure 1 Optimal layouts with one ring accelerometer.

which places the origin at the pen point; it recalls the im-
bedded orthonormal basis (e,, e,, e,), which aligns e, up
the pen axis.

A single off-axial instrument admits two possibilities:
[3,2> and [2, 3>. Theorem 3, in each subcase, yields the
same maximum for 8(A):

= o’B.
The one accelerometer off the pen axis has a direction
along the ring tangent. The coincident pair have any or-
thogonal directions whose common normal is the pen

axis. The remaining three parallel any orthonormal basis.
Figure 1 depicts these alternatives.

max 3(A,,.) = max 8(A 81

[2,3>)

Any two ring instruments must take opposite positions,
and the resulting layouts will have three types: [3, 1>,
[2,2>,[1, 3>. Theorems 5 (twice) and 6 yield

max 8A, ) = af’,

max 8(A, ,.) = max 8(A ) = 2a°8. (82)

2,2> [1.3>

Hence the last two provide optimal configurations, and
their ring accelerometers measure tangential com-
ponents. The end direction in the [1,3> subcase parallels
the straight line between the ring instruments; any ortho-
normal basis, by Lemma 4, offers the best directions at
the pen point. The end directions in the [2, 2> subcase
are any orthonormal vectors in the accelerometer plane;
any orthonormal pair both perpendicular to the axis give
best point directions for the arrangement. Figure 2 depicts
these alternatives.

Three ring instruments with equally spaced positions
admit all layouts of four types: [3, 0>, [2, 1>, [1, 2>,
[0, 3>. Taking the origin at the far end, we obtain max
(AL ,.) = B* by Theorem 5; expanding det (A) on one
row, we conclude max 8(A[2,1>) = const.aB2 for some
constant. To evaluate the last subcase, we specify the
ring locations:

y, = ae, + Be, ¥,, = ae, — (B/2e, = (BV3/2e,. (83)

The angles 6 ,, 6,.. 0,, of Theorem 5 have a common value

#, by symmetry. However,

(@ + g% cos b=y, y, =a - (8°/2) (84)
by (83), and o = 36 by definition, whence
2sin®(0/2) =1 —cos30=1+3cos 6 —4cos 0

= (1 — cos §)(1 + 2 cos 6)° (85)
by standard formulas, and
max 8(A,,.) = (33/3/2)a’B = 2.59808 o*8 (86)

by Theorem 5. Again the ring accelerometers measure
tangential components, and any orthonormal basis pro-
vides point directions. If this orthonormal basis includes
the vector *e,, and the corresponding instrument as-
sumes an end location, then the resulting S(A[m)) repro-
duces the value (86). Rotational symmetry suggests the
conjecture that optimal [1, 2> layouts have axial end di-
rections. If this is true, then the preceding construction
gives another optimal layout. Figure 3 depicts these al-
ternatives.
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Figure 2 Optimal layouts with two ring accelerometers.
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Figure 3 Optimal layouts with three ring accelerometers.

9. General properties of tridirectional arrangements
Some designs by previous investigators [13, 14] employ
just two of six accelerometers to measure each of three
vector components. Hence this section generalizes such
layouts, because coincident u, generate useful sim-
plifications. Indeed, subtraction within (8) immediately
yields equations without U(r). If u, = u, = v, for example,
while y, and y, are arbitrary locations in the pen, then

VX (y,—y) w + vxw [y, —y) X wl

T ahy(r) = (1) = 0 87

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 4 ¢ JULY 1980

for this configuration. Clearly, three independent rela-
tions like (87) allow the recovery of w(7), and subsequent
integration of (6) provides the values of U(r). Any non-
singular A, of course, permits such a block-tri-
angularization [10], but accelerometers with coincident u,
offer a particularly direct reduction. This simple reduc-
tion demands at least three independent equalities within
the set {u,, - - -, u.}; thus it allows at most three distinct
vectors among the u,. The rank condition (10) requires at
least three independent vectors within this same set; thus
it implies precisely three linearly independent vectors
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V,, V,, v, among the chosen u,. An accelerometer layout
with this property will be called a tridirectional arrange-
ment in this discussion.

If we consider the matrix A" for any such arrangement,
then we can relabel the six accelerometers in some order
for whichu, = v, u, = v,, u, = v,. If we subtract the first
three columns from suitable others, then we can reduce
A" to a block-triangular matrix with the form

Vi, A v,

y1 x vl’ y2 x V2’ y3 x v3

ALy = ( 0 ) (88)

AO
Here A, is a 3 X 3 matrix, and

+8(A) = det (A) = det (A,,,)) = det (v, v,, v,) det (A).

(89)

red

Indeed, we can label the six accelerometers so that the
vectors u, include these v, v,, v, with nonincreasing fre-
quency. Therefore, we can classify all tridirectional ar-
rangements, in that the resulting multiplicities admit just

three possible sequences, by direct enumeration:
“4,1,1)63,2,D; 2,2,2). (90)

However, this analysis may ignore (4, 1, 1) arrangements,

because Theorem 2, Part 4, implies vanishing 8(A<4,1,1>)'
Also, for a (3, 2, 1) arrangement
A, = (2, X v, 2, X vz, X V,), 1)

wherez, =y, —y.,2, =y, — ¥,.2, =y, — ¥,; and thus, by

@,
+8(A,, ) = det (A)
= (v, X v, V) (v, X v, -z )(v, -z, XZ). 92)
Finally, for a (2, 2, 2) arrangement,
Ay =(z, X v, 2, X v, 2, X V); 93)

wherez, =y, —y,,z, =y, —¥,,2Z, = ¥, — ¥,; and thus, by
(89),

+8(A ) = det (A)

(2,2,2)

= det (v, v,, v,) det (z, X v,z, X v, z, X v,).

94

We fix the differences z, and seek optimal directions
Vs Vy, V.
® Theorem 7
If z, z,, z, are any given vectors, then
max {8(A, ):v,l = Iv,| = |v,) = 1}

= (1/2) {|lz, X z,| - |z,} + |(z, X z,) X z]}. (95)

If either z, X z, or z, is zero, then all ¥, are arbitrary unit

vectors. If both z, X z, and z, are nonzero, then v, = n,
where n is any unit vector normal to{z, X z,,z,), and ¥, =
=¥, X ¥,, where v, is any principal bisector of{z1 X zz)
and (n X z,).

Proof

We need treat only nonzero z, X z, and z,; otherwise
these results are all trivial. We must then have nonzero v,
X ¥,; otherwise 8(A, , ) is identically zero. Hence, given
v, and ¥,, we find ¥, = =¥, X ¥,/|¥, X ¥,| by Lemma 2;
and, given v, and V., we note

max S(A(3,2,l)) = |‘A'1 X ‘A'zizl(es cz)(V, 2, X z2)| (96)

by computation. Thus [V, X ¥,/ must be unity, and the v,
must be orthonormal. If E is the orthogonal projection
onto (V,, V,), then

max 8(A = [(¥, - Ez,)(¥, - E(z, X 2,))| )

(3,2,1))

by (96). However, maximality of (97) implies z, X z,, z,
contained in (v,, ¥,), whence orthogonality of the ¥, re-
quires ¥, perpendicular to(z, X z,, z)). Thus ¥, is the de-
fined n, and

max 8(A,,,) = |(¥, - n X z)(V -z X z)| (98)

Now Lemma 6 determines v,, and (37) produces (95). O

10. Partial analysis of (2, 2, 2) arrangements

The present section, on (2, 2, 2) arrangements, finds an
analytical solution only for two parallel z,. Later, this par-
tial conclusion offers sufficient design guidance, although
the complete problem poses unexpectedly greater diffi-
culties. Indeed, the best (3, 2, 1) arrangements, by Theo-
rem 7, require orthonormal ¥, for any nontrivial z,, while
the best (2, 2, 2) arrangements, by unpublished results,
admit such v, only for orthogonal z,. A preliminary result
bounds the optimal 6(A).

® Theorem 8
Let#,,,0,, 0., asin Theorem 5, be the normalized angles
between nonzero vectors z,, z,, z,. If either 0 = o < 7 or

m =0 =27, whereo =0 ,+ 6, +6,,then, respectively,

2 sin (o/2) or 2

v

2 - max {8(A,,,)/Iz| z,] [z,]:all |v| = 1}

v

= max (sin 8,,, sin 6,,, sin 8,)

+ det (z,, z,, 2,)/12,| [z, z,].
Proof

If we weaken our requirements, then we obtain the upper
bound (55). The relations

99

Xf, =f

z, = [z |f, f Xz,=1f Xzlf,, £ xf=1£f, (100

1

in the given order, define an orthonormal basis from any
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vectors z,. If v, = f, and v, = f,, then vector identities
produce

8(Ag2s) = (v, - 2)(v, - 2, X 2,)] 101)
and Lemma 6 asserts
2 - max 8(A,,,)

=2 - max {|(v, - z)(v, -z, X z)|:|v,| = 1}

=z, X 2, " z,| + |z, - |z,] - |z} sin 0,. O (102)
® Theorem 9
If z , z, are arbitrary vectors but z, X z, = 0, then
max {8(A,,, V)| = [v,| = |v,| = 1}

= (3V3/8) lz, X z,| - [z,). (103)

If either z,, z, are parallel vectors or some z, = 0, then the
¥, are arbitrary unit vectors. Otherwise, if z,, z,, z, are
nonzero noncollinear vectors, and (f,, f,, f,) is the right-

handed orthonormal basis satisfying
f,=1z,/lz,), £, =z X z,/jz, Xz, f,=f xf, (104)

then ¥, = (f, sin 2¢ + £, cos 2¢) and ¥,, ¥, are any orthog-
onal unit vectors satisfying

v, X ¥, = =(f sin ¢ + £, cos ¥), (105)
where ¢ = *=7/6.
Proof
The relation (94), for parallel z,, z,, implies
S(Atz,z,z)) = '(Vl TV, X Z3)(v1 cz, X zz)(vz X vy 23),
(106)

by relation (4). Clearly 8(A,,,) = 0 and the v, are arbi-
trary unless z, X z, # Oandz, # 0. If v, X v, = |v, X v,|v,
then |V, X ¥.| must be unity. Thus substitution yields

max 8(A,,,) = |z, X z,| - [z,] [V, - V), - £)(, - £)]
(107)
and Lemma 6 shows
max 8(A,, ,)
= (1/2) |z, X z| - |z | - [V, - £,[ {1 + ¥, - £ ]}, (108)

where ¥V, is any principal bisector of (£,), (V). Clearly, ¥,
cannot involve f,, so that ¥, may be assumed f, sin 6 +
f, cos 0; and if w(#) = [sin 6] - {1 + |cos 6]}, then

max 8(A,,,,) = (1/2) |z, X z,| - [z,] - w(6). (109)

(2,2,2))

However, w(f) is an even function with period 7, whence
its maxima on [—7, +] have locations =24, =(m — 2¢).

Moreover, we find
dw/d8 = (cos § + 1)(2 cos 8 — 1) on [0, 7/2], (110)

and we obtain 2¢s = 7 /3 from (110). Substitution produces
(103). O
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® Remark

An extra constraint in Theorem 9 provides some-particu-
lar examples of solutions. Indeed, the identity v, - ¥, =
v, - ¥, = 0 and the requirement

3 Yo
Vo=V = ¢ (111

yield the consequence ¥V, - f, = ¥, - f, = £; while the
normalization [V,] = [¥,| = 1 and the fact ¥, # ¥, add the
property v, - f, = —v, - f, = £,. Also, 0 =¥, - ¥,, so that

0=¢§-§+¢&, (112)
and ¥, = ¥, X ¥, so that

(6,/2)(e,f, — V3) = 2£,(Ef, — &),

e, = tl,g = xl. (113)

But the last two relations produce 1 = [¥,° = 4£3(&2 + £)
= 4¢,, whence the individual (113) components imply

¥, = (,/2V2(e V3, + 2, + £5,f,),
v, = (e,/2V2e V3, — 2, + egf), &, = x1.(114)

11. Optimal layouts of tridirectional type

Here we reconsider layouts with few off-axial in-
struments, and we determine optima of our tridirectional
types. The less familiar (3, 2, 1) arrangements achieve the
previous unconstrained maxima. The more intuitive (2, 2,
2) arrangements produce consistently inferior results.

Any (2, 2, 2) arrangement, by Section 9, partitions the
six accelerometers into three pairs, where each pair have
noncoincident locations, but their measurements have
identical directions. If such a layout contains one off-axial
instrument, then one pair couples this location with either
the pen point or the far end, while two pairs contain ac-
celerometers at both the pen point and the far end. The
optimal directions, by Theorem 9, yield

max 8(A,,,,) = (3V3/8)a’B (115

in either case. Moreover, each of the preceding (2, 2, 2)
arrangements becomes a layout with two off-axial in-
struments when the end accelerometer of either axial pair
assumes the ring position opposite the given off-axial in-
strument, and the hypothesized smallness of the ratio 8/«
permits only a slight increase in the maximal 8(A).

An alternative (2, 2, 2) arrangement with two opposed
ring locations would pair each ring accelerometer with a
separate end instrument, and pair another end acceler-
ometer with one point instrument. But then (3\/3_/8)01[32
is the maximal 8(A), and even (115) exceeds this value.
The final (2, 2, 2) arrangement with two opposed ring lo-
cations associates the off-axial accelerometers with each
other, and proposes two distinct pairs along the pen axis.
The optimal directions, by Theorem 9, yield
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max 8(A,,,} = 3V3/4)d’B (116)

in this last case. Therefore the best (2, 2, 2) arrangements
with one or two off-axial intruments are, respectively, the
layouts with maximal values (115) or (116). But the ac-
celerometers specify a plane, for all such layouts, and
Theorem 9 prescribes the same optimal directions in all
cases. If (e,, e,) is this plane, and ¥ = /6, then the
direction for the nonaxial pair is either unit vector of form
*(e, sin 2¢ + e, cos 2y}, while the directions for the two
axial pairs are any orthonormal vectors with cross-prod-
uct (e sin ¥ + e, cos ¥). Our previous disclosure [12]
exhibits the symmetric specialization (114).

Any (3, 2, 1) arrangement, by Section 9, includes three
noncoincident accelerometers with a common direction;
also, two other distinct instruments have the same direc-
tion, and a final accelerometer has its own direction. If
such a tridirectional arrangement contains just one off-
axial instrument, then the threefold group must occupy all
three locations, while the distinct pair covers both axial
extremes, and the singleton takes any remaining position.
The optimal directions, by Theorem 7, yield

max 8(A,,,) = a’B (117

in each case. Again we obtain corresponding layouts with
two off-axial locations when we shift the end accelerome-
ter of the threefold group to assume the ring position op-
posite the given off-axial instrument. The optimal direc-
tions, by Theorem 7, yield

max §(A = 24°8 (118)

(3,2,1))

in these cases. Any other (3, 2, 1) arrangement with two
opposed ring accelerometers can have a threefold group
with only one off-axial instrument. However, the largest
8(A) among such layouts is aB(e® + %' by Theorem 7,
because the most distant pair, under these conditions,
links the other ring location with the pen point. There-
fore, the best (3, 2, 1) arrangements with one or two off-
axial instruments are, respectively, the layouts with max-
imal values (117) or (118).

Previously, Section 8 achieved the same maxima with
no tridirectional assumption; hence a design loses no effi-
ciency through this constraint. If we compare arrange-
ments with the same positions, then we observe

max 5(A, ) = 3V3/8=0.64952  (119)

in every case. Also the (3, 2, 1) locations specify a unique
plane, and Theorem 7 prescribes the best measurements.
If this plane is (e,, e,), then the threefold direction is *e ,
while the twofold direction is *e,, and the singleton is
*e,. Our previous disclosure [12] exhibits one such lay-
out. Qur present analysis justifies this prior announce-
ment.

/max 8(A

(2,2,2)) (3,2,1)
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