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Optimal  Accelerometer Layouts for Data Recovery  in 
Signature  Verification 

Current experimental use ofpen acceleration  data for signature verijication has  prompted  the  mathematical theory of our 
recent paper on the  subject, expounding  motion  recovery techniques  for  a special pen with imbedded accelerometers. 
This continuation seeks  to optimize the instrument  layout as  a mechanical filter which  serves to extract the kinematic 
observables from  the experimental noise. Our early sections, through various algebraic postulates, determine a simplest 
function  of  the layout  geometry  expressing the relative desirability of an  accelerometer configuration. Any nontrivial 
layout demands some  off-axial  instruments, but natural ‘‘feel”  requires few such placements.  Hence, our middle  sections 
prove mathematical results  under  various  geometric assumptions which yield optimal layouts with one, two, or three off- 
axial instruments. Our final sections discuss  the  further constraint that all accelerometers  measure just three  directions. 
They assume  not  more than  two off-axial instruments and obtain  the best conjigurations  of these tridirectional types. 

Introduction 
The usual, intuitive methods  for signature verification 
compare the visual characteristics of handwritten sam- 
ples,  but  some  modern approaches  to  the problem ob- 
serve various  physical  quantities  during the pen motion 
[l-51. Indeed,  Herbst and  Morrissey [6] have patented 
verification techniques via pen  acceleration data, while 
Herbst and Liu [7, 81 have  achieved high selectivity 
through  imbedded accelerometers. Also, Liu,  Herbst, 
and Anthony [9] describe additional tests with still more 
accurate  results. Our work  provides  a  mathematical the- 
ory for  kinematic  measurements [ 101 and specifically  re- 
lates pen motion to  accelerometer readings. Its  develop- 
ment includes possible shortcuts in trajectory computation 
[ I  I] and even suggests instrument layouts for maximum 
sensitivity [12]. This  continuation  seeks to optimize the 
accelerometer layout as a mechanical filter which serves  to 
recover the kinematic observables from the  experimental 
noise. Some previous authors study particular instrument 
layouts [13, 141, but our  present  arguments furnish the best 
configurations. A recent note outlines our mathematical 
procedure [15], and our latest disclosure amplifies the de- 
sign specifications [16]. However, no planned IBM prod- 
uct uses  the resulting  configurations. 

This work contains  two distinct parts, which reinforce 
one another. Sections 2 and 3 constitute the first part; 
they marshal1 several plausible arguments  to  choose a 
particular design function which ranks all accelerometer 
layouts. Sections 4 through 11 constitute  the second part; 
they  assume just six accelerometers  and find all optimal 
layouts which have  certain natural symmetries.  Thus  the 
earlier  choice justifies  the  later optimization, while the 
outcome of the  later special case  shows the value of the 
earlier  general theory.  The second part  treats  the most 
interesting case,  but  other designs may need greater gen- 
erality; so the first part  considers n accelerometers. These 
two tasks  require wholly different methods.  Indeed, the 
first part  invokes possibly unfamiliar results from in- 
variant theory, algebraic geometry, and  matrix theory, 
but it applies this  information in a fairly  direct way; the 
second  part  involves mostly standard  results from convex 
analysis,  linear algebra, and  Euclidean geometry, but it 
exploits  these theorems in a somewhat nontrivial  way. 
Hence some repeatedly used facts  from linear  algebra are 
called “lemmas”  for convenient reference,  and the most 
important conclusions  toward our pen  designs are called 
“theorems”  for  the  same  reason. 
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An accelerometer fixed in a moving rigid body mea- 
sures the  local acceleration projected on some constant 
internal direction [ 17, p. 171.  If a layout  comprises n such 
instruments,  then  its  geometry  defines an n x 6 matrix A. 
Thus  Section 2 proposes a design function S(A) which ex- 
presses the desirability of a  configuration, and invariant 
theory describes  the most  general such function which 
yields the  same results under all relevant  symmetries. 
Scale  invariance, in Section  3,  excludes  two  candidates 
for  this  function. Then a further plausible remark  speci- 
fies the  zero  set of S(A), and a powerful recent theorem 
[ 181 isolates a unique  simplest  choice  with these  zeros: 

S(A) = [det (A”A)]”’ (T = transpose). (1) 

But the layouts  with  worst possible S(A) include all those 
with no off-axial instruments.  Therefore, our earlier dis- 
closure [I21 supplied an additional site  for some accel- 
erometers,  namely,  an  attached ring circling the pen at  its 
nonwriting end. 

Convexity arguments,  at  the  outset of Section 4, limit 
instrument  locations to  the pen point,  the  far  end, and  this 
ring. Moreover, S(A) = 0 unless n 2 6. Hence  the second 
part assumes  just six accelerometers and tries  various 
fixed locations. Then  the detailed analysis includes all 
reasonable placements and finds the optimal  directions. 
To locate maximizing values  for six unknown  unit vectors 
demands  some  ingenuity  beyond  mere  partial dif- 
ferentiation. But some  instruments may have coincident 
locations, and  the  chosen &(A) is a  multilinear  function; 
while our “lemmas” will eliminate some  unknowns either 
when several accelerometers have the  same position in- 
side the pen or when 6(A) is a  singular bilinear form in 
some two  vectors.  The  “theorems” in Sections 5, 6, 7 
treat all layouts  with at most four  distinct  locations;  their 
results, in Section 8, are the  best  configurations with at 
most three off-axial instruments, assuming that acceler- 
ometers on the ring take positions with equiangular  spac- 
ing. The tridirectional  arrangements of Section 9 restrict 
all measured components  to three directions,  the  ordered 
multiplicities for  these directions being either (3, 2, 1) or 
(2, 2, 2) for nontrivial layouts. Section 11, through further 
auxiliary theorems, finds the best  tridirectional  arrange- 
ments with one or two off-axial instruments.  The (3, 2, I )  
arrangements achieve  the prior maxima;  the (2,  2, 2) ar- 
rangements suffer the  constant  handicap 

max 6(A,,,2,,,)/max S(Ao,,,,,) = 3 d / 8  = 0.64952. (2) 

This  analysis retains our prior notation.  Let R be the 
real number field, with elements p ,  (T, T, . . .. Indeed,  for 
the time variable T ,  let (.)‘ indicate the  derivative.  Let E’ 
be real Euclidean 3-space, with elements a, b, c ,  . . .. 
Moreover, for  some  orthonormal basis (el, e2,  e3), let 

a = (a1, a 2 ,  a3IT7 b = (pl, p P ,  p31T, c = (y1, yZ, y31T 
(3) 

represent  the  vector  components.  Here  the superscript  T 
signifies the  transpose, or real adjoint. Also a . b denotes 
the inner product, or “dot  product,” of two  vectors; 
while a X b denotes  the  outer  product, or “cross prod- 
uct,” of these vectors [ 19, pp. 181, 2271. The inner  prod- 
uct  defines  the standard Euclidean  norm: la1 = (a . 
The  standard  product identities [lo,  Section 31, for  any 
parallel a, b, yield the following useful  relation  among 
otherwise arbitrary  vectors: 

det (a x r, b x s,  c x t) = det (a, r, s) det (b, c ,  t). (4) 

For a moving pen, conceived as a  general rigid body, 
we refer  positions to  an internal coordinate  system, fixed 
in the body  itself, and we relate this to  an  external coordi- 
nate system, fixed in the surrounding environment [20, 
Chapter 41. Specifically, we introduce a right-handed or- 
thonormal  basis (el,  e2, e3) for  the internal coordinates, 
where we align the  vector e3 up the pen axis.  Moreover, 
we locate the  coordinate origin at  the  pen  point, and we 
assign the vector displacement y to  an  arbitrary internal 
position. If p is the  external  vector displacement of the 
pen point and q is the  external  vector displacement of the 
point y, then  the basic  relation 

q(T) = P(T) + u(T)Y (5 )  

connects  the  internal with the external  description, where 
the  orthogonal transformation U(T) carries internal to ex- 
ternal vectors.  This orthogonal  matrix U(T) defines a 
skew-symmetric  matrix W(T) by 

U’ = uw for all times T. (6) 

The resulting  matrix W ( T )  defines an  angular velocity W ( T )  

by 

Wc = w x c for all vectors c .  (7) 

2. Invariance  properties  of  design  function 
Here we suppose a design  function for instrument  lay- 
outs, and we describe its  invariance properties  under 
symmetry transformations.  Let a  pen contain fixed linear 
accelerometers  at internal  positions y l ,  . . ., y,. Let  these 
instruments measure  respective acceleration components 
along unit vectors ul, . . ., u,. If the  vector T = . . ., 
$,)‘I represents  the  corresponding  measurements +,(T)  

and the vector = . . ., +,)I concatenates  the quad- 
ratic  forms +,(w) = (y, X w) . (ui X w), then  the kinematic 
variables p,  p‘, U ,  w obey  the basic system  [lo] 

AV’’ (’ w, = @(w) -t T(T) ,  
” + g 

(8) 
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where  the n x 6 matrix A and the 6 x 6 matrix V have  the 
particular forms 

Here  the  constant  vector g denotes  the  external gravita- 
tional field. Also,  a  unique  solution for  the  trajectory P ( T )  

requires  the full rank of the matrix A: 

n 2 rank (A) = 6; (10) 

and  a least-squares combination of measurements pro- 
vides  a  system of normal equations: 

Clearly, the matrix A must  contain the essential  geome- 
try of the layout,  and  the ideal geometry should offer the 
most accurate solution of (11). Therefore,  the matrix A 
should produce our criterion  for  an optimal layout,  and 
this  unknown criterion must refine the nondegeneracy as- 
sertion of (IO). However, (IO), by standard  theorems [19, 
pp. 78-80], requires simply the existence of (AlA)-'. Also 
a  measurement error AW, by (Il),  produces a change 

in p and w',  while the orthogonal  matrix V of  (9) pre- 
serves  the  Euclidean  norms of A p  and Awl. Thus a  desir- 
able instrument configuration should yield a "small" gen- 
eralized  inverse (A''A)-'AT. To  compare  accelerometer 
layouts for different  matrices A, we express  their desir- 
ability via a  real-valued design function S(A). We cannot 
rigorously isolate  a  unique 6(A), but we shall so delimit 
the possibilities that  we can finally distinguish  a  unique 
simplest choice.  Here we broaden  the domain of the ma- 
trix A, and we deduce some restrictions from various 
symmetries.  Specifically, we permit accelerometers with 
different sensitivities, yielding measurements with dif- 
ferent weights. Accordingly, we allow matrices A as argu- 
ments having vectors ui of arbitrary magnitude. 

Sensitivity  and distance admit independent units and 
measurements. Thus a  change of sensitivity  scale yields a 
transformation yi + y,, u, + aut, for all i, which implies a 
mapping 

A + a A  for  some positive a. (13) 

Also a  change of distance scale  yields a transformation yi 
+ ay,,  u, + u,, for all i, which implies a mapping 

A + A . diag ( 1 ,  1 ,  1 ,  a ,  a ,  a) for  some positive a. (14) 

However,  these scalings  should  not invert  the relative  de- 
498 sirability of any  two  layouts,  whence  each mapping 

should simply multiply 6(A) by  a corresponding power ak. 
The design function S(A), in other  words, should be a ho- 
mogeneous  function of either  the u, or  the y,. If we trans- 
late the internal  origin,  then we do  not  alter  the directions 
ui. Still, we take all yi into y, + a, for  an  arbitrary 3-vector 
a, and we map 

for a corresponding 3 x 3 skew  matrix S(a). Specifically, 
the origin may thus  become  any y,; moreover,  these trans- 
lations  should  not affect 6(A); hence,  the design function 
can involve  only  differences yi - yj. Alternatively, the ori- 
gin for the  internal coordinates may be, more  symmetri- 
cally,  the average (y, + . . . + y,)/n of the displacements 
yi. Our further  remarks assume  this last normalization. 

If we renumber the n accelerometers in a different or- 
der, then we map 

If we reverse the direction uj of the j t h  instrument, then 
we map 

Clearly this  yields a layout with identical  capabilities, be- 
cause it changes only the sign of the j t h  measurement. If 
we rotate  the  basis (e, ,  e2,  e3) via a proper orthogonal U, 
then we multiply all yi and ui by this same transformation 
U. Moreover this  takes yi x ui into U(y, x u,), whence it 
maps 

If  we reverse all ui,  via (17), then A becomes -A; if we 
reverse all y, and ui, then A becomes A . diag (- 1,  - 1,  
- 1, I ,  1,  1). However,  the replacement (18), together 
with the last two possibilities, generates all mappings 

with  two independent * signs. All these transformations 
preserve the  values 6(A). 

The  symmetries of the last  paragraph form a compact 
group of transformations.  Thus a sufficient goal for our 
investigation is a complete  set of polynomial invariants. 
Indeed, any invariant function 6(A) under  the mappings 
(16)-( 19) is simply an  arbitrary function of the polynomial 
invariants S,(A), . . ., 6,(A) [21, 221. Moreover,  the col- 
umns of A" contain  the  vectors u,, y, x u, for all in- 
struments,  and  the  action of (19) produces all images Uu,, 
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U(yi X ui) under  the fuU orthogonal group.  The invariant 
combinations of these images involve  only  generic  prod- 
ucts of the forms [23, pp. 52-56] 

(Ui  x Uj), (Y, x ui) . uj, (Y,  x U i )  . (Yj  x Uj). (20) 

Also, the  independent 2 signs on the  expression (19) re- 
quire  even numbers of the factors (y, x u,) . uj; and our 
discussion of (13) and (14) imposes  homogeneity in the yi  
and the ui. Indeed, reversals of individual ui imply even 
numbers of each single u,, and relabeling of accelerome- 
ters demands symmetry in  all indices.  Collectively, these 
symmetries restrict  the form of any  function S(A), though 
our remarks  permit the  construction of many invariant 
polynomials. 

3. Systematic choice of  design function 
Here we impose some plausible requirements beyond the 
stated  invariance properties, and we discern  a "simplest" 
design function under these  combined hypotheses.  Thus, 
the unknown S(A) is specifically a real-valued  function, 
and we can choose  its sign so that S(A) becomes larger as 
(A"A)"A" becomes "smaller."  Also, a noninvertible AIA 
is clearly worse,  and we can add a constant so that 

S(A) = 0 when rank (A) < 6. (21) 

Indeed, any  nonsingular A"A is presumably better, 
whence we may sharpen (21) so that 

6(A) > 0 when rank (A) = 6. (22) 

Now, linear  algebra  suggests three  candidates  for  the de- 
sign function, where  the preceding remarks guide our nor- 
malization in each  case. One measure of a "small" in- 
verse (A'IA)" is the denominator in Cramer's formula [ 19, 
p. 1121: 

S&A) = det (A'IA). (23) 

This determinant, of course, is the  product of the eigen- 
values. Another possibility is 

6,(A) = smallest  eigenvalue of A"A, (24) 

since  its  reciprocal is the subordinate f2 norm of (A'IA)-', 
and this norm bounds  the t2 error amplification in (12) 
[19, p. 201; 24, p. 561. A third alternative is 

S,(A) = smallest  eigenvalue/largest  eigenvalue, (25) 

since  its  reciprocal is the condition  number of A"A, and 
this quantity  reflects the computational difficulty of  in- 
version [24, p. 891. 

Clearly, all candidates  are unitary  invariants of A"A, 
whence these  functions have the required  behavior under 
(13) and (16)-(19). However,  another  symmetry excludes 

the  last two  alternatives.  The matrix A, under  the map- 
ping (14), takes  the form A(a) = AQ(a),  with 

Q(a) = diag ( 1 ,   1 ,  1,  a ,  a ,  a) .  (26) 

Hence,  the  largest eigenvalue of A(a)'A(a) = 

Q(a)A'IAQ(a) is approximately constant  for small a ,  and 
asymptotically (const.)a*  for large a [24, Chapter 21. The 
inverse  matrix,  with the reciprocal eigenvalues, has the 
form [A(a)"A(a)]" = Q(a")[A"A]"Q(a") by  direct com- 
putation. Thus  the smallest  eigenvalue of A(a)"A(a) is ap- 
proximately constant  for large a and asymptotically 
(const.)a*  for small a.  Therefore, the functions S,(A) and 
S,(A) lack the  required homogeneity in a ,  whereas the  ex- 
pressions (14) and (15) yield the  desired behavior for 
S,(A). Again, these arguments  permit other, less plau- 
sible, alternatives,  but the following results support fur- 
ther the  special choice S,(A). 

0 Lemma I 
Let A be a square  matrix;  that  is, n = 6. If ul, . . ., us, yl ,  
. . ., ys have independent complex  variables as com- 
ponents, then det (A) is an irreducible polynomial over 
the complex numbers. 

Proof 
The polynomial det (A), by definition (9), is a  linear  func- 
tion of each (ui, y i  X ui). Hence, if this  polynomial has 
nontrivial  factorization r , (A)  . . . rk(A) ,  then  necessarily 
only one  factor can  involve each pair (u,, yi X ui). How- 
ever, all permutations of the  indices { l ,  . . ., 6) preserve 
det (A) up to a  sign, so that all relabelings of the  vectors 
u,, yi express  det (A) as a nontrivial product. Moreover 
any complex polynomial must have unique irreducible 
factors [ 2 5 ,  pp. 70-741; therefore,  the polynomial det (A) 
can  have no nonlinear irreducible factors.  Thus, symme- 
try  under  permutations  requires 

det (A) = constant . n [a . ui + b . yi x u,]  (27) 

for some  complex vectors a, b; and sign reversal of all yi 
produces  a similar formula with corresponding  factors [a . 
ui - b . yi x u,], whence unique factorization of det (A) 
implies 

a . ui - b . yi x ui = ?,[a . ui + b . yi x ui] (28) 

for some  complex constants yi.  Putting yi = 0, we obtain 
yi = 1 ;  letting yi  be arbitrary, we  find b = 0. Hence the y i  
do not affect (27), and this independence  provides  a  con- 
tradiction. 0 

6 

i=l 

Theorem I 
Let n = 6 for  the matrix A and S(A) satisfy (21)-(22) for 
real arguments. If S(A) is an analytic  function of ul, . . ., 499 

JOHN S. LEW IBM J. RES. DEVELOP. VOL. 24 NO. 4 JULY 1980 



US? Y1? . . ., ys for all ui, yi sufficiently near  zero, then S(A) 
is the  product of some  nonnegative analytic function with 
det (A‘IA) = [det (A)]’. 

Proof 
The function det (A), arbitrarily near A = 0, takes  both 
positive and negative  values for real ui and yi. Moreover 
this function, by Lemma  1,  can  have  no nontrivial  ana- 
lytic factors  over  the complex numbers;  otherwise  the 
leading terms of their  power series  would yield a non- 
trivial  polynomial factorization of det  (A). If det (A) = 0 
for any  real arguments,  then S(A) = 0 by assumption (21). 
Therefore,  det  (A), by a suitable  Nullstellensatz [18, 
Proposition 4.21, divides the  function S(A); while 
S(A)/det(A),  by assumption (22), takes positive or nega- 
tive  values  according  as  det  (A),  at  the  same  point,  takes 
positive or negative  values.  But the  zero  set of det (A) 
includes no  open  subset of matrices. Hence S(A)/det (A) 
= 0 when det (A) = 0. Thus S(A)/det (A),  by the  same 
Nullstellensatz,  again has  det (A) as a factor. 0 

Clearly Theorem  1,  for six accelerometers, offers a new 
fact supporting S,(A); namely, this  polynomial, even with- 
out  symmetry  restrictions, provides the  “simplest”  func- 
tion satisfying (21)-(22). Also, Theorem 1 implies a 
weaker  result when n > 6. Given  any subset J = ~ , ,  . . ., 
j s}  of (1, . . ., n}, define the  submatrix A,  of  A‘r by taking 
the six  columns  with  indices j l ,  . . ., j,. If some S(A), for 
any admissible n ,  is a polynomial of least  total  degree, 
then  each AT with only  six nonzero columns yields an ex- 
pression  constant . [det (A,)]’ for some set J .  Thus S(A) = 

constant . I;,[det  (A,)]’ + (other  terms) by  permutation 
symmetry, while 

S,(A) = det (ATA) = C,[det  (A,)]* (29) 

by the Binet-Cauchy formula [26, p. 91. Hence  the “sim- 
plest” possibility is again S,(A), though a higher-degree 
alternative  is, similarly, S,(A) = X,[det (AJ)I4. Here, de- 
spite this nonuniqueness, we prefer S,(A) and,  for analyti- 
cal  convenience, we define 

S(A) = S,(A)”* = [det (ATA)]”’.  (30) 

Theorem 2 
Any one of the following implies the  vanishing of S(A): (1) 
the yi describe collinear  positions; (2) the ui span a two- 
dimensional subspace; (3) some n - 2 of the yi  are  equal; 
(4) some n - 2 of the ui are parallel. 

Proof 
Shifting the origin in some  cases, we find rank (A) < 6 by 
inspection. 0 

4. Auxiliary results for eventual  optimization 
Here  we  describe  the variable domains,  to specify our op- 

500 timization problem;  and we apply some  convexity theo- 
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rems  to  circumscribe  the admissible locations.  Then we 
restrict  further  study  to six-instrument layouts,  and we 
collect some auxiliary facts  for  convenient  reference.  The 
chosen S(A), in particular, is a linear function of each Iuil. 
Hence we may specialize  our problem to  its original form, 
and  we shall consider only vectors ui of unit  length. 

Also, nontrivial  maxima, by Theorem  2,  Part 1, de- 
mand  some accelerometers off the  pen  axis,  whereas out- 
lying instruments  near  the  pen point impede  the natural 
flow of handwriting  motion. Thus we have  proposed en- 
circling the  pen  axis  at  its  far end  by a ring, and we have 
envisioned attaching this  ring to  the  shaft by fins or 
spokes [12]. But the domain D for any vector yi is the 
space available for  instruments;  and  the  set D ,  after this 
enlargement, is the  pen volume together with the ring. If 
co (D) denotes  the  closed  convex hull of D and  ex (D)  
comprises  the  extreme  points of co (D) ,  then co (D) ,  for a 
finite pen, is clearly  a compact  set in E3, and  ex (D) ,  by a 
standard result [27, p. 1651, is already a subset of D.  In- 
deed  ex (D) ,  by the Krein-Milman theorem [27, p. 1661, 
has co (D) as  its  closed  convex hull. However S,(A), by 
(29), is a convex  function of each yi, because  [det (A,)]’, 
by  inspection, is a convex function for  each J .  Hence  our 
S(A)’, for  each yi, will assume  its maximum on  ex (D) ,  
though nonextremal  points may also  furnish maxima [27, 
p. 3431; and  our  search  for optimal yi may suppose their 
locations in ex (D) .  This preferred subset of the total do- 
main includes the ring together with the  pen  point; a later 
limitation on off-axial instruments  supplements  these  two 
possibilities with the  far  end.  Thus  we may try succes- 
sively these  few  locations  for  the yi, and we need  seek 
only the  best  directions  for  the ui. 

Unfortunately,  the  last problem, for n accelerometers, 
probably exceeds  the  resources of purely  analytical  meth- 
ods.  However, explicit results in a special case nicely dis- 
play the potential of our  theory.  Moreover,  the limited 
volume  inside a pen clearly  justifies the  fewest accele- 
rometers  as  the most  interesting case.  Hence all further 
discussion assumes n = 6,  and various  detailed  argu- 
ments,  each labeled a “theorem,” yield optimal  layouts. 
Now A is a square matrix  and 

S(A) = ldet (All. (3 1) 

The following lemmas include  some  well-known facts, 
but  their formal statement permits convenient  later refer- 
ences. If W(V) represents any  real-valued function of the 
vector v ,  then Q denotes a generic  point with maximal 
4 9 .  

Lemma 2 
If a is an  arbitrary 3-vector  and o(v)  = la . V I ,  then 

{a . v:Iv = I} = [-la[,  +la[] 
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and  max (o(v):lvl = 1) = lal. If a = 0,  then G is any unit 
vector. If a # 0 ,  then ? = ?a/lal. 

Proof 
Obvious. 

Lemma 3 
If yj = Y, for  any  distinct j ,  k ,  then 6(A) involves uj, u, 
only  through uj x u,. Hence the vectors Bj, Q,, for a non- 
constant function 6(A), are any  orthogonal  unit vectors 
with the  correct  normal. 

Proof 
We may take j = 5, k = 6 by an index permutation. We 
may put y5 = y6 = 0 by translation-invariance. The  La- 
place expansion of a determinant implies 

det (A) = det (u,, us, u,) det (Y, X u,, y3 X us, Y, X u4) 

- det (u,, us, u,) det (Y, X ul, y3 X u,, Y, X u4) 

+ det (u5, us, u3) det (Y, X u,, Y, X u2, Y, X u,) 

- det (u,, us, u,) det (Y, X u,, Y, X u,, y3 X u3) 

= (u, x us) . f b , ,  U,' U3' u4) (33) 

for a vector f [19, p. 1101. Thus u, X u,, by Lemma 2 ,  
must parallel f (ul, u,, u,, u,) for nontrivial 6(A); and 10, 
x u 6 1 ,  by inspection, must  equal  unity for maximal 
ldet (A)[. 

0 Lemma 4 
If yj = yj = yk for any distinct i ,  j ,  k ,  then 6(A) involves uj, 
u,, uk only through det (uj ,  uj, u,). Hence  the  vectors u,, 
uj, u, for a nonconstant 6(A) are  any  orthonormal basis 
for  the  space E3. 

Proof 
We may take i = 4, j = 5 ,  k = 6. We may put y4 = y, = y6 
= 0. The  Laplace  expansion [19, p. 1101 implies 

det (A) 

= -det (y,  x ul,  y, x up,  y3 x u3) det (u4. u,, us). 
(34) 

However ldet (u4, u,, us)[ takes  its  maximum  value when 
(u,, us, us) is any orthonormal basis. 0 

Lemma 5 
If B is any real  3 x 3 matrix and v,,  v2 are any  real 3- 
vectors,  then max {(v';B~,)~:~v,l = lvZl = I}  is the largest 
eigenvalue of B'B, and this  eigenvalue is the largest 
root of det (A - B'B). If rank (B) < 3, then A divides det 
(A - B'B), and  the maximum of this lemma is the  larger 
root of the  quotient. 

Proof 
Lemma 2 yields these known facts; indeed 

max { ( V T B V , ) ~ : ~ ~ , ~  = 11 = J B V , ~ ~  = V T B ~ B V , .  (35) 

The  subspace (a,, . . ., a,,,), for any vectors a,, will be 
the  subset {Z,plai:pi  E R} of the  space E3. If a, b are  any 
nonzero vectors in E3, then (a),  (b) are undirected 
straight  lines through  the origin. Also if a, + bo f 0,  
where 

a, = a/lal,  bo = b/lbl, (36) 

then clearly (a, + bo) bisects L(a,  b). Therefore,  the bi- 
sectors of the pair {a, b} will be  the unit vectors ke in the 
line (a, + bo). However,  the  intersection of the lines (a), 
(b) yields two pairs of opposite angles.  Accordingly, the 
principal bisectors for this  pair of undirected lines will be 
the unit vectors along all bisectors of nonobtuse angles: 
either  two  pairs of opposite  vectors for perpendicular 
lines or one pair of opposite  vectors in other  cases,  hence 
one  pair, in the  obvious  directions,  for coincident  lines. 
Thus, if sgn (a . b) = a * b = 0 ,  then all four bisectors of 
{a,  kb} are principal bisectors of {(a),  (b)}, while, if sgn (a 
. b) = E # 0, then  the  two  bisectors of {a, Eb} are the 
principal bisectors of {(a),  (b)}. 

0 Lemma 6 
If a, b are  arbitrary  3-vectors and w(v) = I(a . v)(b . v)l, 
then 

{?(a . v)(b . v):lvl = l} 

= [a . b - la1 . (bl, a . b + /a/ . lbl] (37) 

and  max {o(v):lvl = 1) = ([a . bl + la1 . lb1)/2. If either a or 
b is zero,  then i is any unit vector. If both a and b are 
nonzero,  then i is any principal bisector of (a),   (b) . 
Proof 
If a, b are linearly dependent,  then  these  results  are obvi- 
ous. If a, b are  any  independent  vectors  and a,,  bo are  the 
unit vectors (36), then (a . v)(b . v) = v'JCV, where 

2C = ab' + ba' = la1  Ibl {a,bz + boa:}. (38) 

The matrix C has  eigenvectors a, x bo, a, 2 bo; an  ex- 
tremizing v must  parallel some  eigenvector. 0 

5. Accelerometer  layouts with three positions 
The assumption n = 6 yields the simplification 6(A) = 

ldet (A)[. Now,  further plausible constraints will provide 
analytical solutions, though unrestricted maxima may de- 
mand numerical techniques.  Indeed,  Section 4 so limits 
admissible locations  that several 9, probably take coinci- 
dent values. The unknown i,, by Theorem 2 ,  Part 1 ,  must 
include three noncollinear points;  no  four ii, by Theorem 
2, Part 3, may occupy  the  same point. Hence any  optimal 
six instruments admit the following location multi- 
plicities: 501 
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[I, 2, 31, [2, 2, 21, [ I ,  1 ,  1, 31, 

[I, 1 ,  2, 21, [ I ,  1 ,  1 ,  1, 21, 11, 1 ,  1 ,   1 ,  1, 11. 

Here,  Theorem 3 covers all [ 1 ,  2 ,  31 configurations, and 
Theorem  4 treats all [ 2 ,  2, 21 configurations. 

Theorem 3 
For a six-instrument layout,  assume y4 = y5 = y6, and, by 
translation-invariance, let this common point be  the ori- 
gin. In these  coordinates,  suppose yz x y, = 0, but, in 
other  respects,  let y,, yz, y, be arbitrary  vectors.  Then 

max {S(A):all [u,l = 1)  = Iy, X y,I . ly31. (39) 

If either y1 x y, = 0 or y3 = 0, then  the u t  are any unit 
vectors. Otherwise ii, = *yl x yz/lyl X y21, and u,, u 3  are 
any  orthogonal  unit vectors such that u, X u 3  = *y,/Iy,l: 
while (u4 ,  u5, u6) is any  orthonormal  basis. 

Proof 
Relations (34) and (4) imply 

det (A) = (ut ’ y1 X Y2)(u2 x u3 ’ Y3)(U4 ’ x (40) 

Hence the results  are trivial when either y, X yz or y, is 
zero.  Otherwise,  Lemma 2 yields the  stated u,, u,, u,; 
and Lemma 4  yields the  stated i i 4 ,  u5, u6.  Finally,  sub- 
stitution produces (39). 0 

Theorem 4 
Let the  instrument  locations  form a [2, 2, 21 configura- 
tion. Specifically, let 

Y, = Y, = a,, y3 = y4 = a,, y5 = y6 = a,; (41) 

and  let the  vertices a,, a,,  a, define a triangle A. Then 

max {6(A):all Iuil = l} = (area of A)(perimeter of A). 
(42) 

Also, the u, are  any unit vectors when the triangle area is 
zero. Otherwise (u,, u,), (u,, u 4 ) ,  (u5, i i6)  are pairs of or- 
thogonal unit vectors,  and if 

v1 = u1 x U,’ v, = u, x u4, v3 = us x us, (43) 

then  each 8, parallels the angle bisector at the  correspond- 
ing a,. 

Proof 
If the  area is zero,  then  the y, are necessarily  collinear, 
and  the result is trivial  since S(A) is identically zero. Oth- 
erwise, by translation-invariance, suppose a, = 0, and, in 
this  coordinate system, define 

b, = al/lall, b, = a,/b,l, n = a, X a,/la, X a,l, 

Y = (Ia,I/IalI)l’z. (44) 

Now (a,, a,) is the plane of the  triangle, and n is the nor- 
mal to this plane. Also Lemma 3 implies that (ul, u,), (u,, 

ti4), (G5, u6)  are orthogonal pairs,  whence maximal S(A) 
requires  that e,, 8,, 3, be unit vectors.  Moreover,  we can 
obtain  directly 

det (A) = la, X a,l (la,l . la,l)”’E(A), 

4 4 )  = (l/y)(bl . v,)(n X vz . v,) - Y(b, . v,)(n X vl . v,) 
(45) 

by relations (33) and (4). Therefore,  we need  only maxi- 
mize (c(A)I for unit vectors v,, v,, and v,. 

But q3, by Lemma 2, is orthogonal to n; so t3, by (44), 
is contained in (a,, az). Thus we may restrict  the variable 
vector v, to this plane,  and  we may consider  the rotated 
vector v, = v3 x n in the  same plane. If we introduce 
the bisector bo of {b,, b,} and we define the unit vector 
f (0) = bocos 8 + (n X bo) sin 8 in (a,, a,), then 
b, = f (-+,,), b, = f (++,) for some  given +,, while v, = 

f (+) for  some  unknown 4. Actually, the permutation 
symmetry of v,,  v,, v, permits  assuming all three variable 
vectors in (a,, a,). Moreover, we can eliminate the un- 
known v,, v, by Lemma 5 ,  because 

&(A) = vTBv,, B = (l/y)b,v’i - yv,bT; (46) 

indeed, we need  only  calculate the largest  eigenvalue of 
B’B, where 

BTB = ~ - ~ v , V i  + y2b,b: - COS (4 + +,,)[v,b; + b,~:]. 
(47) 

If a vector in the plane (a,, a,) has  the form [v, + qb,, 
then its image under  the mapping B’B has the form 
t*v0 + q*b,, where @*, vJT = M E ,  vIT, and 

M = j  
y z  cos (4 - 43 - cos (4 + +J yz - cos i+ + +J cos (+ - 4,) 1. y-z  - cos (4 + 4J cos (4 - 4J y 7  cos (4 - +,)I - cos i 4  + 4J 

(48) 

Hence  the  nonzero eigenvalues  satisfy  the equation 0 = 

det (A - M), and  this quadratic equation  has the  roots 

To  obtain  the maximum of the largest eigenvalue A+ 
clearly demands  the largest value, unity, of the variable 
U. Thus 0, is orthogonal to bo, or 8,  is parallel to bo. Geo- 
metrically, each G,, by permutation  symmetry, is there- 
fore a bisector of the  corresponding angle. 

Now define the triangle A by its vertices a,, a*,  a3, and 
locate  the intersection of its angle  bisectors by the  vector 
a,. Also assume  the outward sense  for the unit bisectors 
0,, O,,  O,, and  denote  the  interior angles at the  same 
points by the quantities 0,. The auxiliary triangle A, with 
vertices a,,,  a,, a, has interior  angles 0,/2, 8, /2  at  the last 
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two  listed  points.  But the remaining angle is ~ ( f , ,  t,), 
whence  this angle is x - (0, + 0,)/2; and the Oi have  sum 
X ,  whence 

n . 8, X 8, = sin ( (x  + 0,)/2) = cos (0,/2) = b, . 8, .  
(50) 

A  similar  argument yields the cycled identity 

n . 8, x 8 ,  = sin ( (x  + 0,)/2) = cos (O,/2)  = b, . 8,, 
(51) 

while the triangle A has  area la, X a,//2. These identities 
imply (42), because (45) becomes 

maxldet (A)I = la, X a,(  {/all (b, . 8,)(n . 8, x 8,) 

+ la,/ (b, . f,)(n . +, x e,)> 
= (area of A){la,l ( 1  + cos 0,) + /a,l (1 + cos 0,)) 

= (area of A){la,l + la,l + la, - aJ}. 0 (52) 

6. General results for [l ,  1, 1, 31 configurations 
The next two  sections optimize  four-position layouts. 
Specifically,  Theorem 5 treats nondegenerate [ 1 ,  1 ,  1 ,  31 
configurations,  whereas Theorem 3 includes the remain- 
ing possibilities. The forthcoming  theorem  requires a pre- 
liminary normalization. Any unit vectors zl, z,, z3 define 
relative  angles O,,,  O,,,  O,, by 

zj . zk = cos 0, with 0 5 0 .  = O k j  I x .  

Any nonzero  vectors y,,  y,, y3 define unit vectors z,, z,, 
z,, unique  up to  signs, with each zi in ( y,). However, we 
can choose  these  signs, when we have any such yi, so that 

gk (53) 

012 + e,, I x ,  e,, + e,, 5 x ,  e,, + 012 I x .  (54) 

Indeed, if we change zi + - z i ,  where i ,  j ,  k are  distinct 
indices,  then clearly we map Ojk  + Ojk but O i j +  x - O i j ,  Oik  
+ x - O i k .  Either we can eliminate all obtuse relative 
angles by such  reversals,  or, if this  reduction is impos- 
sible, then we can eliminate all acute relative  angles in 
this way. But we can immediately satisfy (54) in the first 
case; while, if angle Ojk is minimal,  then we need  only 
reverse zi in the second  case. 

Theorem 5 
Given any pairwise  independent vectors y,, y,,  ys, but 
taking y4 = y5 = ys = 0 ,  choose  the normalized unit vec- 
tors z,, z,, z, to make the relative  angles  satisfy (54). Now, 
if u = 01, + e,, + e,,, then 

max {6(A):all lui/ = l}/ly,l . Iyz/ . /y,l = sin (u/2) or 1 ,  
(55)  

according  as 0 5 u I x or x s u 5 2 r .  Also, ( u 4 ,  u,, us), 
in either  case, is any orthonormal basis for E,. If u I X ,  

and (i, j ,  k)  is any  permutation of ( 1 ,  2, 3 ) ,  then ui bisects 

{zi j ,  zik) ,  where zij = zi X zj for  short. If u > X ,  then u,, u,, 
8, do not have unique  alignments. 

Proof 
Lemma 4 already implies an arbitrary orthonormal  basis 
( u 4 ,  u,, us). Relation (34) therefore entails 

max I det (All = IY,l '  l Y z I  . l Y , l  

. max {Idet (z, X u,, z2 X u,, z, X u,)I:all luil = l}. 
(56) 

But the last  determinant equals u, . r(ul, u,), where 

r(ul' uz) = [(z, x ul) x (z, x u,)l x 2,. (57) 

Thus u, parallels r(ul, u,) by Lemma 2, and u, . z3 = 0 by 
(57), whence all u i  . zi = 0 by symmetry, and each zi x u i  

has unit  length as a  result.  Also zjk # 0 for distinct j ,  k ,  
and lzjkl = lsin Ojkl by definition (53). However,  these  facts 
suggest the orthonormal  basis 

f, = 2,' f, = z32/1z32/' f, = f, x f,; (58)  

[max ~(A)12/IY1121Y2121Y31z 

and  Lemma 2 offers the additional  reduction 

= max {Ir(u,, u , )~~: /u , /  = Iu21 = 1) 

= max {(z,, . u,)' + (z,, . UJ' 

- 2b,, . U1)(Z3, . ~ , ) ( Z O Z  . uz):I~,l = I b 2 1  = 11 

- - max {(z,, . u,)' + u ~ c u , : ~ u , ~  = luzl = 1). (59) 

Here we have abbreviated zo2 = (z, X u,) X z,; and we 
have  introduced 

c = [sin' o,, - 2(z,, . u1)(z3, . zoz)]f1fT 

- (z,, . U1)(Z3* x zo2 . f,)[f,f; + f , q .  (60) 

Now,  the maximum (59) over  the unit vector up yields 
the largest  eigenvalue of C, and  the representation (60) in 
the basis {fi} gives a 3 X 3 matrix for C. The third  row  and 
column of this  matrix have  no  nonzero  entries, by defini- 
tion (60). Thus  the  nonzero eigenvalues A, satisfy the 
characteristic equation for  the nontrivial 2 X-2 block,  and 
the maximal  eigenvalue A, produces  the  further sim- 
plification 

2/r(u,, u2)/' = 1 + cos o,, . (20 - cos e,,) 

+ lsin 02,1 . [ l  - (20 - cos 023)2]1'2, (61) 

with ~ ( u , )  = (zZl . u1)(z3, . u,). The derivation of (61) en- 
tails the reality of the  square  root.  Hence some real angle 
y(u,) satisfies cos  y(u,) = cos O,, - 20(u,), and the rela- 
tion (61) becomes 

21r(u,, i i , ) 1 2  = 1 - cos y cos O,, + lsin y sin 02,1. (62) 

However,  Lemma 6 proves  that 503 
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Clearly (62) can  become  2,  and (55)  be unity, precisely 
when cos y can  become cos (T - OZ3) = -cos O,,, or 
when IO,, - 03J 5 T - O,, 5 O,, + e,,. Moreover (54) 
already insures  the first inequality;  therefore  the  con- 
clusion requires only T s a. If we let 

ut = [t,(z, x z,,) + t3(z1 x z,,)l/det (z,, 2,' 2,) (65) 

for  some t,, 6,' and we use I u 1 1 '  = 1, w(u1) = cos O,,, then 
we find 

[t, sin e,, + E t 3  sin o,,]' = sinZ e,, + sin2 el, - sin20,, 

- 2~ sin 012 sin 013 cos O,, 
(66) 

with E = 2 .  This  quadratic  pair of equations  has  two dis- 
tinct  pairs of solutions. 

If u < T ,  then Ir(u,, uJ < 1. Therefore,  cos y(u,) must 
be an  endpoint of the range (a), because (62) can  have  no 
smooth maximum in the variable cos y(u,). Indeed,  the 
smallest cos 7, by trial,  yields the largest Irl; and  the  cor- 
responding u,, by Lemma  6,  bisects {z,,,  z,,}; while the 
resulting ( 5 5 ) ,  by  calculation, is the  stated sin (a/2). 0 

Remarks 
Each line (yi) determines  an orthogonal  plane  through the 
origin,  and these  three planes define four  opposite pairs of 
solid angles. Moreover  the points z,, z2, z,, on  the unit 
sphere, specify the  vertices of a spherical  triangle, and 
pairwise intersections of the orthogonal  planes contain 
the  vertices of its polar triangle [28, p. 1121. Both the po- 
lar  triangle and its opposite  have  vertex angles T - Ojr and 
area 2~ - u [28, pp. 112-1  141. Hence  the remaining solid 
angles have  total  measure 2a,  and  these traditional  geo- 
metric  concepts yield a dual  condition: u 5 T precisely 
when some solid angle exceeds T .  If we take  the  cosine of 
the  equivalent  statement 012 + 03, 5 T - O,,, and we 
square  the  result, in the modified form sin 012 sin 031 s 
cos 012 cos e3, + cos e,,, then we find an algebraic ver- 
sion of this  requirement: 

1 5 (zl . z2)2 + (z2 ' z,), + (z, . ZJ2  

+ 2(z, . zz)(zz . z3)(z3 . z,) 

= COS' e,, + COS' oZ3 + COS' o,, 
504 + 2 cos O,, cos O,, cos 03,. (67) 

The homogeneity of relation (67) obviates our normal- 
ization of the zi. If  we reverse any z i ,  then we change 
nothing. 

7. Special  results  for [l , 1, 2, 21 configurations 
The  one  theorem of this section optimizes  a restricted 
family of [ I ,  1, 2, 21 configurations.  This  special result, 
with Theorem 5, covers  the  relevant layouts with four dis- 
tinct  positions. Some  remarks at the end explore  the 
problem of further  extensions. 

Theorem 6 
If y1 = -yz = b, y, = y4 = a,  y5 = y6 = 0 ,  where a,  b are 
arbitrary  vectors, then 

wherever Ibl s la/. If a X b = 0, then the ui are  arbitrary 
unit vectors. If a x b # 0 and f, = a x b/la X bl, then u,, 
u, are unit vectors  both parallel to f,, and (C,, u 4 ) ,  (us, us) 
are  any orthonormal  pairs  respectively  perpendicular to 
a ,  f,. 

Proof 
All these  statements  are trivial  when a x b = 0, because 
the y i  are collinear,  and 6(A) = 0. Otherwise (e,, u 4 ) ,  (us, 
u6) are  orthonormal pairs  by Lemma 3; and if v, = u5 x us, 
v, = u3 X u4 in (33), then 

-det (A)/la x bl = det (b, u,, u,) det (f,, v,, v,) 

+ (a . v,)[(v, . uJf, . u,) + (f, . ul)(vl . 4 1  (69) 

by (4). If we define K = Ibl det (f,, v,, v,)/(a . v,) and in- 
troduce 

then we  rewrite (69), and  obtain 

-det (A)/la x bl = (a . v,)uTBu,, 

B = f,V'; + V,f', + K[f,fi - fofi]. (71) 

Thus  max {6(A)'/la X b12(a . v , ) ~ : I u , ~  = luzl = l}, by 
Lemma 5 ,  is precisely the largest  eigenvalue of BTB. But 
(71), in the  orthonormal basis (f,, f,,  f,), gives a matrix  for 
B, and  the  roots of the  characteristic polynomial det (A - 
BTB) are  the eigenvalues of BTB. Also rank (B) = 2, 
whence  one  root is zero. Now the  other  roots, by direct 
calculation,  are 

and relation (71), via  this reduction, yields 

JOHN S. LEW IBM J. RES. DEVELOP. VOL. 24 NO. 4 JULY 1980 



rnax {6(A)'/(a x b12:IU,I = luz( = 1) 

= (a . v,)'[1 + (f, . v,)'] + lb(2(v, . v2 x f,J2 

+ 21a . v&(a . v,)'(f, * v,)' 

+ lb('(v, * v2 x f,)'[1 - (f, . v,)~]}'" 

I {la . v21 + [(a . v,)'(f, 1 v1)' + lbI2(v, . vz x f,) 3 } . 2 112 2 

(73) 

Here  our manipulations, for  convenience, have assumed 
nonzero a . vp, but the  result (73), by continuity,  does not 
require  this. 

The  expression ( a .  v,)'(f, . v,)' + Ibl'(v, . v, X f,)2 in the 
last bracket is a quadratic  form in v,. Indeed, rnax {(a . 
v,)',  lb1'(v2 X fol2} is its  maximum value,  because f, and v, 
x f, are orthogonal vectors. But (73) becomes 41aI2 when 
v1 = ?fo, v, = 'f-,. Thus  the  square  root of (73) implies 

21al I max {S(A):all (uil = I}  

5 la +,I + max {la . +,I, Ibl 18, x fol} 

I max (21a . i21, la . +,I + lbl} (74) 

by definition. Therefore, 8,  = &f-l whenever (bl 5 (ai; and 
if we insert this value, then we obtain 

4 5 rnax {6(A)2/la12(a x b1':all (uil = l}  

5 1 + (f, . 8,)' + ((bl/(a()2(f-2 . 8,)' 

+ 2{(f0 . 6,)' + (Ibl/lal)2(f-z . 8J2[1 - (f, . 81)2]}1'2 

I {1 + [(f, . 8,)' + (bl/lal)2(f-z . 8,) 1 1 . (75) 

Therefore, 8 ,  = +f, whenever Ibl < la/. However, if Ibl = 

la1 and E = fof: + f-,fT,, then 

4 I rnax {6(A)'/(al2~a X bI2:all lui( = 1) 

2 1/2 2 

= 1 + IE8112 + 2{1E8112 - (fl . O,)z(f-, . 81)2}1'2; (76) 

whence E?, = 8 , ,  and  either f-, . 8,  = 0 or f, . 8 ,  = 0. 
Clearly, f,, in the first case, is orthogonal to(f-,, f-,), and 
e, ,  in the  second  case, is orthogonal to(f-,, f,) = ( a ,   b ) ,  
whence 0, ,  in either  case, is parallel to f,. If we use  these 
values in (71), then we find 

2 5 max {6(A)/(a( . (a X b(:ail (ut( = 1) 

= 21f0 . u l l  . If, . u , 1 ,  (77) 

by (74). Hence, S(A) attains  its maximum when u, and u, 
parallel f,. 0 

0 Remarks 
All stated conclusions fail when (bl > (ai; some optimal 
directions  change,  and max S(A) > 21al . la X bl. Indeed, 
let v1 = f, cos 0 + f-, sin 0,  rather than f,; but put v2 = 

kf- , ,  as in Theorem 6. The value of (b(/(a( does not affect 
the  truth of (73). Hence,  from this  specialization we ob- 
tain 

max {6(A)'/la121a X b12:Iu,I = luzl = 1 ,  v2 = t-f-,} 

= 2 + pa + 2[1 + pa - va2]112, 

p = (Ibl/lal)' - 1, v = (Ib(/lal)2(fl . f-,)', u = sin'0; (78) 

and,  for small 0, we expand 

max {S(A)2//a(2 la X b(':. . .} = 4 + 2 p a  + O(a2). (79) 

If Ib/ > (a( ,  then p > 0. Thus small perturbations of the 
foregoing 0 ,  yield a  larger  quantity  than the  stated 
max S(A), and new  values of some u t  give the global max- 
imum under this condition.  The required  analysis seems 
to involve further special cases. 

8. Optimal layouts with natural "feel" 
Here  the foregoing theorems, combined with certain  ob- 
vious remarks, yield the optimal  layouts  permitted  by all 
relevant  considerations.  Section 4 requires some off-axial 
accelerometers.  Thus  our  proposed configurations [ 121 
situate  some  instruments  on  the  attached ring, where this 
suggested ring encircles  the  pen axis  at its nonwriting 
end.  Indeed,  the possible locations, by Section 4, can 
only be the pen point,  the  far  end, and this ring. Hence cx 
and /3, throughout this section, will, respectively, be the 
effective pen length and  the ring radius. However, a re- 
cording pen with natural "feel" demands  relatively  un- 
changed moments of inertia, since an applied torque  on 
any rigid body  affects its angular motion through these 
moments [20, Chap. 51. This  does not preclude off-axial 
accelerometers, but it urges relatively few such in- 
struments. It also suggests  a small ratio P/a,  and this  fur- 
ther  motivates optimal measurement directions. (Natural 
"feel" still leaves considerable  freedom to  the  designer; 
the local Radio  Shack  uses a special  pen with triangular 
cross-section.) Our successive paragraphs will allow first 
one,  then  two, then three off-axial instruments;  the ulti- 
mate choice must reflect some  further practical  circum- 
stance. 

Moreover, optimal solutions will plausibly exhibit high 
symmetry,  and symmetric  locations will obviously facili- 
tate normal writing. Therefore,  the analysis of this section 
assumes  another  constraint, with no further justification, 
namely,  that  any  accelerometers on the ring occupy posi- 
tions  with  equiangular  spacing. But a desire  for  the  fewest 
instruments entails  a  layout with precisely six accele- 
rometers, and Theorem 2, Part 3, for nonzero S(A), per- 
mits at most three  instruments in any  one spot.  Let the 
symbol [e ,  m>, for any integers e and m, denote a layout 
with f end, and m point,  accelerometers.  Our  proposed 
three  cases, and the last  few remarks, imply 

O s e s 3 , O s m 1 3 , 3 s f + m s 5 .  (80) 

Our discussion employs  the pen coordinate  system, 505 
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Any 3 
orthogonal 
drections 

Figure 1 Optimal layouts with one ring accelerometer. 

which  places the origin at the pen point;  it recalls the im- 
bedded orthonormal basis (el, e,,  e3), which aligns e3 up 
the pen axis. 

A single off-axial instrument admits  two possibilities: 
[3, 2> and [2, 3>. Theorem  3, in each  subcase, yields the 
same maximum for &A): 

max 8(A,3,2,) = max 8(A[,,3>) = a'P. (81) 

The one accelerometer off the  pen  axis  has a direction 
dong the ring tangent.  The coincident  pair  have  any or- 
thogonal directions whose  common  normal is the pen 
axis.  The remaining three parallel  any  orthonormal basis. 
Figure 1 depicts these alternatives. 

Any two ring instruments must take  opposite positions, 
and the resulting layouts will have  three  types: [3, 1>, 
[2,  2>, [ l ,  3>. Theorems 5 (twice)  and 6 yield 

max 8(A[3,1>) = CUP', 

max 8(A,',*>) = max 8(A[1,3>) = 2a'P. (82) 

Hence the last  two provide  optimal  configurations,  and 
their ring accelerometers  measure tangential  com- 
ponents. The  end direction in the [ 1,3> subcase parallels 
the straight  line between  the ring instruments;  any ortho- 
normal basis, by Lemma 4, offers the  best directions at 
the pen point. The  end directions in the [2, 2> subcase 
are any orthonormal  vectors in the  accelerometer plane; 
any  orthonormal pair both perpendicular to  the axis give 
best point directions for  the  arrangement. Figure 2 depicts 

506 these  alternatives. 

Three ring instruments with equally spaced positions 
admit all layouts of four  types: [3, O>,  [ 2 ,  1 > ,  [ 1 ,  2 > ,  
[0, 3>. Taking the origin at  the  far  end, we obtain max 
8(A,3,0J = p3 by Theorem 5; expanding det (A) on one 
row, we conclude max 8(AC2,,>) = const.ap2  for some 
constant.  To  evaluate  the last subcase, we specify the 
ring locations: 

y1 = ae3 + Be,,  y2,3 - (Ye3 - @/2)e, * ( /3d/2)e2 .  (83) 

The angles el,, eZ3, e,, of Theorem 5 have a  common value 
8, by symmetry.  However, 

- 

(a' + bZ) cos e = y, . y, = a' - (P2/2) 

by (83), and u = 38 by  definition, whence 

2 sin' (u/2) = I - cos 38 = 1 + 3 cos - 4 cos'e 

= ( 1  - COS e)(l + 2 COS e)* 

by standard  formulas,  and 

max 8(A[o,3>) = ( 3 d / 2 ) a 2 P  = 2.59808 azP (86) 

by  Theorem 5 .  Again the ring accelerometers measure 
tangential components, and  any orthonormal basis pro- 
vides point directions. If this orthonormal basis  includes 
the vector *e3, and  the  corresponding instrument  as- 
sumes  an  end  location, then the resulting 8(Ac1,'>) repro- 
duces the  value (86). Rotational symmetry suggests the 
conjecture that  optimal [ 1 ,  2> layouts have  axial end di- 
rections. If this is true, then the preceding construction 
gives another optimal layout. Figure 3 depicts  these al- 
ternatives. 
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Figure 2 Optimal  layouts with two ring accelerometers. 

I 

Figure 3 Optimal  layouts with three ring accelerometers. 

9. General  properties  of  tridirectional  arrangements 
Some  designs by previous  investigators [13, 141 employ 
just two of six accelerometers  to  measure  each of three 
vector  components.  Hence this  section  generalizes such 
layouts,  because coincident ui generate useful sim- 
plifications. Indeed,  subtraction within (8) immediately 
yields equations  without U ( T ) .  If u, = u, = v,  for example, 
while y1 and y, are  arbitrary locations in the pen, then 

v x ( Y ,  - Y , )  . w' + (v x w) . [(Y, - Y,)  x wl 

-k @,(TI - @l(T) = 0 (87) 
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for this  configuration. Clearly,  three independent rela- 
tions like (87) allow the recovery of w(T), and  subsequent 
integration of (6) provides  the values of U(T) .  Any non- 
singular A, of course, permits such a block-tri- 
angularization [ 101, but accelerometers with  coincident ui 
offer a particularly direct reduction. This simple reduc- 
tion demands at  least  three independent  equalities within 
the  set {ul, . . ., u6}; thus it allows at most three distinct 
vectors  among the ui. The  rmk condition (10) requires at 
least three  independent  vectors within this  same  set;  thus 
it implies precisely three linearly independent  vectors 
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v,,  v2, v, among  the  chosen ui. An accelerometer layout 
with this property will be called a tridirectional arrange- 
ment in this discussion. 

If  we consider the matrix AT for  any  such  arrangement, 
then we can relabel the six accelerometers in some order 
for which u, = v l ,  u, = v2, u3 = v3. If we subtract  the first 
three columns from suitable others,  then we can  reduce 
A1 to a block-triangular  matrix  with the  form 

Here A, is a 3 x 3 matrix,  and 

*6(A) = det (A) = det (Ared) = det (v, ,  v,, v3) det (A,). 
(89) 

Indeed, we can label the six accelerometers so that  the 
vectors ui include these v,,  v2,  v3 with  nonincreasing fre- 
quency.  Therefore, we can classify all tridirectional ar- 
rangements, in that  the resulting  multiplicities admit just 
three possible sequences, by direct  enumeration: 

(4, 1, 1); ( 3 ,  2 ,  1);  (2,   2,  2). (90) 

However, this analysis may ignore (4, 1 ,  1 )  arrangements, 
because  Theorem 2,  Part 4, implies vanishing 6(A(q,l,l)). 
Also, for a (3, 2 ,  1) arrangement 

A, = (z, X v,, z2 X v l ,  z3 x V J ,  (91) 

where z1 = yq - yl, z2 = y5 - y, ,  z3 = y6 - y2; and  thus, by 
(4) 3 

+W(,, , ,J = det (A) 

= -(vl  x v2 . v,) (v, x v, . z3)(v1 . 2,  x 2,). (92) 

Finally,  for  a (2, 2 ,  2 )  arrangement, 

A, = (z, X v, ,  z, X v,, z3 x v,); (93) 

where z1 = yq - y,,  z2 = y5 - y2, z3 = y6 - y,; and  thus, by 
(8919 

* W ( 2 , 2 , 2 ) )  = det (A) 

= det (v,,  v,, v3) det (z, x vl ,  z, x v2, z3 x v,). 
(94) 

We  fix the  differences zj and seek optimal  directions 
V , ’  V2’ v3. 

vectors. If both z1 x z, and z3 are  nonzero,  then i, = n, 
where n is any unit vector normal to (z, x z,, z,), and i, = 

+3 ,  X e,, where G, is any  principal  bisector of (zl X z,) 
and (n  X 2,). 

Proof 
We need treat only nonzero z1 x z2 and z,; otherwise 
these  results  are all trivial. We must  then  have  nonzero i ,  
X i2; otherwise 6(Ao,,,,,) is identically zero.  Hence, given 
i ,  and i,, we find f, = *il x +,/I+, x i,l by Lemma 2 ;  
and, given i ,  and G,, we note 

max 6(A,,,,,,,) = I+, x i 2 l Z l ( ~ ,  . z3)(i1 . z1 X z2)1 (96) 

by computation.  Thus li, x i2/ must be  unity,  and the f i  
must  be orthonormal. If E is the  orthogonal projection 
onto (i,,  i,), then 

max 6(Ao,,,,,) = 1(i3 . Ez3)(3, * E(z, X z,))l (97) 

by (96). However, maximality of (97) implies z1 x z2, z3 
contained in (i , ,  is) ,  whence  orthogonality of the ii re- 
quires $, perpendicular to ( z1 X z,, 2,). Thus 3, is the de- 
fined n, and 

max 6(A(3,2,,,) = P I  . n x z3)(9, . z1 x ZJI. (98) 

Now Lemma 6 determines i,, and (37) produces (95). 0 

10. Partial  analysis of (2, 2, 2) arrangements 
The  present  section,  on ( 2 ,  2 ,  2)  arrangements, finds an 
analytical  solution  only for two  parallel zi. Later, this par- 
tial conclusion  offers sufficient design guidance, although 
the complete  problem poses  unexpectedly  greater diffi- 
culties. Indeed,  the  best (3, 2 ,  1) arrangements, by  Theo- 
rem 7 ,  require orthonormal ii for any  nontrivial zi,  while 
the best (2, 2, 2 )  arrangements, by  unpublished results, 
admit such ii only for orthogonal zi.  A preliminary  result 
bounds the optimal S(A). 

Theorem 8 
Let e,,, e,,, as in Theorem 5 ,  be the normalized  angles 
between nonzero  vectors z,, z,,  z,. If either 0 5 u 5 TT or 
TT 5 u 5 2 r ,  where m = e,, + e,, + e,,, then, respectively, 

2 sin (u/2) or 2 

2 2 . max {S~A,,,,,,))/~z,~ b 2 1  lb31:a11 lVil = 1) 

2 max  (sin e,,, sin e,,, sin e,,) 

+ det (z19 z2, z3)/1z11 1z21 b 3 1 .  (99) 

Proof 
If we weaken our  requirements,  then we obtain the  upper 
bound (55).  The  relations 

z2 = 1z31 f,, f, x z2 = If, x z21 f2,  f, x f, = f,, (100) 

in the given order, define an  orthonormal basis  from  any 

Theorem 7 
If z,,  z2, z3 are  any given vectors,  then 

max {W,3,2,,,):Iv,/ = k,/ = Iv31 = 11 

= (1 /2 )  llz, x z21 . Iz3/ + I(zl x 2,) x z311. (95) 

If either z1 X z2 or z3 is zero, then all i ,  are  arbitrary unit 
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vectors z,. If v, = f, and v, = f,, then  vector identities Remark 
produce An extra  constraint in Theorem 9 provides  some particu- 

and Lemma 6 asserts 

(101) 
lar  examples of solutions. Indeed,  the identity i, . in = 

v, . v, = 0 and the  requirement A , .  

. .  

i ,  . f, = i, . f, = 5, 
2 . max 6(A(,,,,,,) yield the consequence i, . f, = i, . f, = 5,; while the 

2 2 . max {l(vl . z3)(v1 . z, X z , )~ : (v ,~  = I} normalization li,l = /?,I = 1 and the fact i, # i, add the 

= (z, x z, z3( + Jzl( . (z,) . (z,) sin el,. 0 (102) 
property i, . f, = -i, . f, = 6,. Also, 0 = i, . C,, so that 

0 = 5; - 5; + ti, (1 12) 
Theorem 9 

If z,, z, are  arbitrary  vectors but z, x z3 = 0, then 

max {~(A(,,,,,J:Iv,I = b , l  = /v31 = 1 1  

= ( 3 f i / 8 )  (2, x z21 . 1 ~ ~ 1 .  (103) 

If either z,, z, are parallel vectors or some z, = 0, then the 
i ,  are  arbitrary unit  vectors. Otherwise, if z,, z,, z, are 
nonzero noncollinear vectors, and (f,,  f,, f,) is the right- 
handed orthonormal basis satisfying 

f, = Z3/1Z31, f, = 2, x zz/lzl x Z21' f, = f, x f,, ( 104) 

then i ,  = (f, sin 2I4 + f, cos 2I4) and i,, i3 are  any orthog- 
onal unit vectors satisfying 

i, x i, = *(f, sin I/J + f, cos $1, (105) 

where $ = +7~/6. 

Proof 
The relation (94), for parallel z,,  z,, implies 

S(A,,,,,,,) = ((v, . v, X z3)(v1 . z, X zz)(vz X v, ' z3)1 
(106) 

by relation (4). Clearly 6(A(,,,,,J 0 and  the i ,  are arbi- 
trary unless z1 x z, # 0 and z, # 0. If v, x v, = (v, x v3(vn, 
then li, X i,l must  be unity. Thus  substitution yields 

and in = i, X i,, so that 

(E1/2)(ql - df,) = 2s;(C3fl - 

E l  = * I ,  E, = 21. (1 13) 

But the  last two  relations produce 1 = ICn12 = 45:(5: + 5:) 
= 4 c ,  whence  the individual ( 1  13) components imply 

i, = (E3/2fi)(E1d3fl + 2f2 + EIEZf.J' 

e, (E3/2fi)(E1d3f, - 2f, f ElEqf3), E, = 2 1 .  (114) 

11. Optimal layouts of tridirectional type 
Here we reconsider  layouts with few off-axial in- 
struments, and we determine  optima of our tridirectional 
types.  The  less familiar (3,  2, 1) arrangements achieve the 
previous unconstrained maxima. The more  intuitive (2 ,2,  
2) arrangements  produce  consistently inferior  results. 

Any (2, 2,  2) arrangement, by Section 9, partitions the 
six accelerometers into three pairs, where  each pair  have 
noncoincident locations, but their  measurements  have 
identical directions. If such a  layout contains  one off-axial 
instrument,  then  one pair couples this  location with either 
the  pen point or the far  end, whiie two pairs  contain ac- 
celerometers  at  both  the pen  point and  the  far  end.  The 

and Lemma 6 shows in either case.  Moreover,  each of the preceding (2,  2, 2) 
arrangements  becomes a  layout  with two off-axial in- 
struments when the  end  accelerometer of either axial pair 

where in is any principal  bisector of (f,), ( i l ) .  Clearly, i ,  strument, and the hypothesized  smallness ofthe ratio /?/. 
cannot involve f,, SO that i ,  may be assumed fl sin 0 + permits  only a slight increase in the maximal 6(A). 
f, cos 8 ;  and if ~ ( 0 )  = lsin 01 . {l  + (cos 'I}, then 

max 8(A(2,2,2J 

= (1/2) 1'1 x '21 ' 1 %  ' 1'1 ' f ~ l  + ' f , l > ?  ( Io8)  assumes the ring position  opposite the given &-axial in- 

An alternative ( 2 ,  2, 2 )  arrangement with two  opposed 

However, ~ ( 8 )  is an  even function  with  period r ,  whence separate end instrument, and  pair another end  acceler- 
its  maxima on [-r ,  +n] have locations ?2+,  k(7~ - 214). ometer with one point instrument. But then ( 3 f i / 8 ) a p 2  
Moreover, we find is the maximal 6(A), and  even (115) exceeds this value. 

The final (2, 2, 2) arrangement with two  opposed ring lo- 
= ('Os ' + cos ' - ') on ''' 7T/21' ("') cations  associates  the off-axial accelerometers with each 

and we obtain 2I4 = r / 3  from (1 10). Substitution  produces  other, and proposes  two distinct  pairs  along the pen axis. 
(103). 0 The optimal directions, by Theorem 9, yield 509 

max 6(Ao,,,,,) = (1/2) IZ, x z21 . 1z31 . 4'). (Io9) ring locations would pair each ring accelerometer with a 
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. .  

in this  last case.  Therefore  the  best ( 2 ,   2 ,   2 )  arrangements 
with one or two off-axial intruments  are,  respectively, the 
layouts with maximal values (1 15) or (1 16). But the  ac- 
celerometers specify  a plane, for all such  layouts,  and 
Theorem 9 prescribes  the same  optimal  directions in all -:- 

I wish to thank  Alan J. Hoffman for debating algebraic 
assumptions in this work, Robert H. Risch for directing 
my attention  to  Rider’s  paper, Ralph A. Willoughby for 
locating  various results of linear algebra, and Philip S. 
Wolfe for providing several  theorems from convex analy- 

cases. If ( e z ,   e , )  is this plane, and I/J = 2 ~ 1 6 ,  then  the 
direction for  the nonaxial  pair is either unit vector of form 

blS.  

*(el sin 2I/J + e,  cos 2$) ,  while the  directions for the two 
axial pairs are  any  orthonormal  vectors with cross-prod- 
uct ?(el sin I/J + e3 cos I/J). Our previous  disclosure [I21 
exhibits  the  symmetric specialization (1 14). 

Any (3, 2 ,  1) arrangement, by Section 9, includes three 
noncoincident accelerometers with  a common direction; 
also, two other  distinct  instruments  have  the same  direc- 
tion,  and  a final accelerometer  has  its  own direction. If 
such a tridirectional arrangement  contains  just  one off- 
axial instrument,  then  the threefold group must  occupy all 
three  locations, while the distinct  pair covers both axial 
extremes,  and  the singleton takes  any remaining  position. 
The optimal directions, by Theorem 7, yield 

in each case. Again we obtain  corresponding layouts with 
two off-axial locations when we shift the  end accelerome- 
ter of the  threefold group  to  assume  the ring position op- 
posite  the  given off-axial instrument. The optimal  direc- 
tions, by Theorem 7, yield 

in these  cases. Any other (3, 2 ,  1) arrangement with two 
opposed ring accelerometers can have a threefold  group 
with only one off-axial instrument.  However,  the largest 
S(A) among such  layouts is a/3(a2 + pz)l’z by Theorem 7, 
because the most distant  pair,  under  these conditions, 
links  the other ring  location with the pen  point. There- 
fore,  the  best (3, 2 ,  1) arrangements with one or two off- 
axial instruments  are,  respectively,  the  layouts with max- 
imal values (1 17) or (1 18). 

Previously, Section 8 achieved the  same maxima  with 
no tridirectional assumption; hence  a  design  loses no effi- 
ciency  through this  constraint. If we compare arrange- 
ments with the  same positions,  then we  observe 

max S(Ao ,*,* ,)/max S(A,,,2,1,) = 3*/8 -- 0.64952  (119) 

in every  case. Also the (3, 2 ,  1 )  locations specify a unique 
plane, and Theorem 7 prescribes  the  best  measurements. 
If this plane is ( e z ,  e3) , then  the threefold  direction is *e,, 
while the  twofold  direction is ?ez, and  the singleton is 
*e3. Our  previous disclosure [12] exhibits  one  such lay- 
out. Our present  analysis justifies this prior announce- 
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