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Existence of Good 6-Decodable Codes for the  Two-User 
Multiple-Access  Adder  Channel 

This  paper  dejines  a  class of Gdecodable codrs,for the  two-user  multipk-access  adder  channel with binarv  inputs.  This 
class is a  generalization of the  class of two-user codes investigated by Kasami  and  Lin (1978). Lower hounds on the 
achievable  rates of codes in this  class  are  derived. We show  that,for  a wide range  oferror correcting capability.  this  class 
contains  good  two-user  Gdecodable  codes with rates  lying  above  the  timesharing  line. 

1. Introduction 
Consider the multiple-access  communication  system 
shown in Fig. 1 in which two independent  sources  are 
attempting to  transmit  data  to  two  users  over a  common 
channel. During a  message interval,  the  two messages 
emanating  from the  two  sources  are  encoded indepen- 
dently  according to  two binary  block codes C1 and C, of 
the same length n. The  encoders  and  the  decoder  are  as- 
sumed  to maintain  bit and word synchronization.  The  two 
code  vectors  emanating from  the two  encoders  are com- 
bined by the  channel  into a single vector r with symbols 
from a certain  alphabet.  The single decoder  at  the re- 
ceiver  decodes r into  two  code  words,  one in C, and the 
other in C,, for  the  two  users. 

Block coding for  the  two memoryless  multiple-access 
channels  shown in Fig. 2 has been  investigated by Kasami 
and Lin [ 1 ,  21, Tilborg [ 3 ] ,  and Weldon [4]. The channel 
shown in Fig. 2(a) is called a noiseless  adder  channel. At 
any time, the input to  the  channel is a binary 2-tuple 
(a l ,   a2 )  with ui chosen  from  the  set {O, I}; the  output h of 
the channel is the  real sum of the two input bits a ,  and a2, 
i.e., h = u1 + a2 where + denotes real  number  addition. 
The two-dimensional capacity region of the noiseless 
two-user adder  channel is shown in Fig. 3 [S”]. The  sec- 
ond  channel model shown in Fig. 2(b) is also a  two-user 
adder channel except noise is introduced.  For this chan- 

that two  transmission errors  occur if the transition is ei- 
ther from (0,O) to 2 or from ( 1 ,  I )  to 0. For both models of 
the  two-user adder  channel,  the  two  code words  trans- 
mitted from the  two  encoders  are combined  into a single 
vector r with symbols from  the alphabet {0, 1, 2). 

Let u = ( u l ,  u2, . . ., u,) and v = ( u l ,  u p ,  . . ., u,) be two 
n-tuples in (0, I}”. Then u + v = ( u l  + u l r  u2 + u p .  . . ., u ,  
+ u,) is an n-tuple in {O, I ,  2)”. Let x = (xl ,  x2, . . ., x,) and 
y = ( y , ,  y 2 ,  . . . , y , )  be  two n-tuples in {O, 1.2)”. Define the 
L-distance between x and y, denoted by dL(x, y), as follows: 

where - denotes  real number subtraction and Ixi - yil 
denotes the absolute value of x, - y i .  

Let Cl and Cz be two binary block codes of length n 
used for the noisy two-user  adder  channel.  These  two 
codes  are referred to  as a two-user code, denoted by (C,, 
C2). A two-user code ( C , ,  C2) is said to be Gdecodable (6 
> 0) ,  if and  only if, for any  two  distinct  pairs (u, v) and 
(u’, v’) in ( C , ,  C,), dL(u + v ,  u‘ + v’) 2 6. Kasami  and Lin 
[ I ]  showed that a two-user S-decodable code is capable of 
correcting L(S - 1)/2J or fewer  transmission errors in the 
noisy two-user adder channel  where L(6 - 1)/2J denotes 

ne1 we say that a single transmission error  has  occurred if the  greatest integer equal  to or less  than (6 - l)/2. More- 
any of the following transitions  occur: ( I )  from (0,O) to l ;  over, they proved  that, if (Cl, C,) is 8-decodable,  then the 
(2) from (1, 1) to I ;  (3) from (0, 1) or (1,O) to 0 or 2. We say minimum Hamming distances of both C, and C2 must be 
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greater than or equal  to 6. Let R1 and R, denote  the  rates 
of C,  and C,, respectively. For a  given 6 and  a given code 
length n, it is desired to  construct a two-user &decodable 
code (C, ,  C,) with maximum achievable rates (R , ,  R2).  

Upper  and lower  bounds on the achievable rates of 
two-user  &decodable codes have  been  derived by Ka- 
sami and  Lin [Z] and  Tilborg [3]. Kasami  and  Lin [2] also 
introduced  a class of two-user  6-decodable codes, and 
they  showed that,  for a  certain  range of 6 / n ,  their class 
contains good two-user fi-decodable codes  (C,, C,) with 
rates (R, ,  R,) lying above the  time-sharing  line, i . r . ,  R,  + 
R, > 1 .  

In this paper, we extend Kasami and  Lin's [2] results. 
We define a class of two-user &decodable  codes which 
contains  the two-user 6-decodable codes studied by Ka- 
sami and  Lin as a subclass.  Lower  bounds  on  the achiev- 
able rates of two-user  codes in this class  are derived. We 
show that, for a wide range of s / n ,  there  exist good two- 
user 6-decodable codes in the  class with rates (R , ,  HZ) 
lying above the  time-sharing line. 

2. A class of two-user  6-decodable codes 
In this section, we define a  class of two-user  6-decodable 
codes for the noisy adder channel. In the following sec- 
tion, we show that this  class contains good two-user 6- 
decodable codes. 

Let n ,  be a  positive  integer which is divisible by 3. Let 
C,,, be an (n , .  k , )  linear code with minimum distance 
greater than 1. For simplicity, we assume  that C,,, is a sys- 
tematic code with the  generator matrix in the following 
form: 

Glo = [I~;,p,ol, ( 1 )  

where I,, is a k ,  x k ,  identity matrix and PI,, is a k ,  x ( n ,  - 
k , )  matrix over GF(2) ,  where G F  is a Galois field. Now, 
form a (2n,, A,)  linear code C,, by interleaving C,, as follows: 
a 0-digit in a code word of C, ,  is replaced by two 
0-digits, and a I-digit in  a code word of C,,, is replaced by 
two  I-digits.  That is, C , ,  is obtained  by  interleaving C,,, 
with a  degree of 2. Clearly, the  code C, ,  has minimum 
distance greater than or equal to 2t + 2. The generator 
matrix of C, ,  is of the following form: 

Figure 1 A multiple-access  communication system with two 
users. 
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Figure 2 Two-user  adder  channel models. (a) Noiseless two- 
user adder  channel; (b) noisy two-user  adder  channel. 

where PI, is a k ,  X (2n ,  - 2 k , )  matrix which is obtained 
from PI,, by repeating  each column of P,,,  twice, i .e.,  the 
(2; - I)th and the 2ith columns of P I ,  are identical to the 
ith column of PI,,  for I 5 i 5 11, - k , .  

Now, we consider a binary (2n, + n 2 ,  k ,  + k 2 )  linear 
code C, with the  generator matrix in the following form: 

where G I ,  is the k ,  x 2n, matrix given by (2); OktxZh, and 
OkIxn, are  two zero  matrices; E',, is a k ,  X (2n, - X , )  
matrix over GF(2)  such that the (2; - 1)th and the 2ith 
columns are identical for 1 5 i 5 n,  - k , ;  and P,, is a k ,  x 
(n, - k,) matrix over GF(2) .  

Let R,, and R, be the rates of C,, and C,. respectively. 
Then, we have 

0 Lemma I 
If the  parameters n , ,  n,, k , ,  A,, and t satisfy the inequality 

then there exists  a (2n, + n2,  k ,  + k 2 )  linear code C,  with 
minimum distance  greater than 2t that has a generator ma- 
trix of the form given by (3). 487 
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Proof 
Since G I ,  is a fixed matrix  and  since the (2i - 1)th column 
and  the 2ith column of P2, are alike for 1 5 i 5 n ,  - k l ,  the 
total  number of matrices of the form G ,  is 

2kz(n1+n2-k1rkd (6) 

A code  vector u generated by G ,  has 2n, + n, com- 
ponents.  The first 2n, components of u can  be divided into 
n, blocks,  with the ith block consisting of the (2i - 1)th 
and  the 2ith components of u and each block being either 
(0,O) or (1, 1). Let r denote  those  vectors of length 2n1 + 
n2 over  GF(2)  such  that 

1. The Hamming weight of each  vector in r is 2t or  less, 
2. The first n,  blocks of a vector in r are  chosen  from the 

set {(O, 01, (1, 1)). 

Clearly, r contains  the all-zero vector.  The number of 
vectors in r is 

The nonzero vectors in r can be classified into  two  types: 

1. A type-I  vector, in which the k, components from the 
( 2 5  + 1)th  position to  the ( 2 5  + k,)th position are not 
all zero. 

2. A type-I1 vector, in which the k, components  from  the 
( 2 5  + 1)th position to  the (2n, + k,)th position are all 
zero. 

Since G , ,  generates a code with minimum weight greater 
than 2t, no  nonzero  vector in r can be a linear combina- 
tion of the  first k ,  rows of GI. Therefore, a type-I  nonzero 
vector in r is  either a linear  combination of the last k, 
rows of some G ,  or a linear  combination of the first k ,  
rows and the last k, rows of some G,.  Since G , ,  is fixed,  a 
type-I  nonzero  vector in r is in exactly 

2(k2-1)(7r1+nz-k~-kz) 

codes generated  by  matrices of the  form G ,  given by (3) 
(use an argument  similar to Peterson and Weldon ([8, 
Theorem 4.9, p. 921). However, a  type-I1 nonzero  vector 
in r cannot be in any code generated by a matrix of the 
form G I .  Therefore,  the number of matrices of the form 
G ,  that  generate  codes containing nonzero  vectors from r 
is upper bounded  by 
2(k2-l)(n1+nz-k1-k-2) (Irl - 1). 

then  there  exists a ( 2 4  + n,, k ,  + k,) linear code C, with 
minimum distance  greater than 2t that  has a generator ma- 
trix GI of the  form given by (3). From (7) and (8), we 

488 obtain the inequality of (5). 0 

Now,  choose C, as a  (2n, + n,, k ,  + k,) linear  code with 
minimum distance  greater than 2t and a generator matrix 
G ,  of the form given by (3). For the next step, we want to 
define a code C, of length 2 4  + n, such  that C, and C, 
form a two-user  (2t + 1)-decodable code.  Let C,, be the 
set of all those binary vectors of length 2n, + n, such that 
the first 2n1 components consist of n1/3 (0, 0) blocks and 
2n1/3 blocks over {(O, I ) ,  (1, 0)}, and the last n, com- 
ponents  are  arbitrary binary digits. The size of C,, is 

Next, let C,, be a (2n, + n,, k,) linear code  whose gener- 
ator matrix is 

where  OkzxPn, is a k, X 2n, zero matrix, Ikz is a k, X k, 
identity  matrix, and P,, is the k, x (n, - k,) matrix given 
in (3). For any  binary vector v of length 2n, + n,, let w,(v) 
and w,(v) denote  the Hamming weights of the first 2n, 
components and the  last n, components of v,  respective- 
ly.  Now, we define C, as follows: Let C, be a maximal 
subset of C,,, such  that,  for any two different vectors v1 
and v, in C,, 

where @ denotes modulo-2 addition.  It  follows from (1 1) 
that  the minimum Hamming distance of C, is greater than 
2t. 

So far, we have defined two  codes C, and C, with mini- 
mum distances  greater than 2t. Next,  we  want  to show 
that (C,, C,) is a two-user (2t + 1)-decodable code.  This is 
given in the following theorem. 

0 Theorem 1 
Let C, be a ( 2 5  + n,. k ,  + k,) linear code with minimum 
distance  greater  than 2t that is generated  by  a  matrix G ,  
of the form given by (3). Let C, be a code of length 2n, + 
n, defined by (11) .  Then (C,,  C,) is a two-user (2t + 1)- 
decodable  code. 

Proof 
Let (u, v) and (u’, v‘) be  two  distinct  pairs in (C,, C,). 
Suppose  that v = v’ .  Then u # u’ and w(u @ u’) > 2t. It 
follows from the definition of L-distance  that 

d,(U + v ,  u’ + v‘) = w(u @ u ’ )  > 2t. (12) 

Suppose  that v # v’. Define 
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Let  us  consider  the first 2n, components of u,  u’,  v, and 
v’. We pointed out earlier that  these 2n1 components  can 
be  divided  into n,  blocks, and the  4th block consists of 
the (2f - 1)th  and  the 24th  components with 1 5 e 5 n,. 
Due to  the  structure of C,, the  eth block of a vector in C, 
is either (0, 0) or (1, I). And due  to  the  structure of C,, the 
4th block of a vector in C, is one of the three combina- 
tions (0,  0), (0 ,  l ) ,  and (1, 0). Let  u(4),  u‘(e),  v(4), and 
v‘(e)  denote the 4th blocks of u,  u’, v, and  v’, respec- 
tively, for 1 5 e 5 n,. If we compute  the  L-distance be- 
tween u(4) + v(4) and  u‘(4) + v’(4) for all the possible 
combinations of u(4),  u’(4), v(4), and v‘(e), we can show 
that, for 1 5 4 5 n , ,  

d,[U(C) + de) ,  u ’ ( 0  + V’(f)] 2 w[v(f) @ v’(4)], 

Then,  the number of vectors in C, is 
I/. I 

It  can be  shown that 

(1 8) 

The derivation of (18) is given in Appendix  A. From (91, 
(17), and (18), we obtain a lower bound on  the  number of 
vectors in C,. 

where w[v(C) 63 v’(4)] is the Hamming weight of v ( f )  @ 
v’(t‘). Therefore,  we  have 

In this section,  we  have defined a class of two-user 8- 
decodable  codes. In the  next section, we show  that this 
class  contains efficient two-user 8-decodable codes.  For 

sented here reduces  to a  two-user  8-decodable code in- 
troduced by  Kasami and Lin [2]. 

‘1 I n2 = 0 and k, = 0, the  two-user &decodable code pre- 
d‘;’(u + v,  u’ + v’) = 1 d,[u(t) + v( t ) ,  u’(t) + v’(4) 

(=I 

The requirement that n, be divisible by 3 is not neces- 
= w,(v a? v‘). (13) sary. If n, is not divisible by 3, we use Tn,/31 (which de- 

notes  the  least integer greater  than or equal  to n,/3) and 
By the definition of L-distance, we have L2n1/3J to replace n,/3 and 2n,/3 in (9) and (18). The re- 

sults will be the  same. 
d(?(U + v, u’ + v’) 2 w,(v @ v’ @ u @ u‘) 

2 min w,(v @ v’ @ w). (14) 3. Lower  bounds on the  achievable  rates 
WECn In  Section 2, we defined a class of two-user  8-decodable 

(Note  that  the last n, components of u 63 u’ are identical 
to the last n2 components of a  certain vector w in C,,.) It 
followsfrom(ll),(13),and(14)that,forv#v’,wehave 

codes. For each two-user  code (Cl, C,) in this class, C, is 
a linear  code with a generator matrix of the  form given by 
(3) and C, is defined by (11). In this section, we derive 
lower  bounds on the achievable rate of C, for various 

length,  there  exist good two-user &decodable codes with 
d,(U + v,  u’ + v’) = dl“(u + v, u’ + v’) ranges of 8. We show  that,  for arbitrarily large code 

+ d;’(u + v ,  u’ + v’) rates lying above  the time-sharing line. 

2 w,(v @ v’) + min w,(v @ v’ @ w) 
w%, 

1 2t. (15) 

From (12) and (15), we  conclude  that (C,, C,) is (2t + 1)- 
decodable. 0 

Next, we need to  determine  the size of C, defined by 
( 1  1). For this purpose,  we define the following set: For a 
vector v in CZ0, let 

C,,(v) = {x I x E C,, and w,(x @ v) 

+ min w,(x @ v a? w) 5 2t}. (16) 
WEC,, 

Define 

lC20(v)l,ax = max IC,,(v)l. 
VECm 

It was proved by Gilbert [9] and  Varsharmov [ 101 that 
for arbitrarily large n , ,  there  exists a binary (n, ,  k , )  linear 
code with minimum distance  greater than t for which the 
following inequality holds: 

where H ( x )  = -x log, x - ( I  - x) log, (1 - x). This 
bound on  code  rate is referred to as  the Gilbert-Vurshar- 
mov bound. In  our  construction of code C,, we  start with 
choosing  an (n,, k , )  linear  code C,, with minimum dis- 
tance  greater than t ;  next  we interleave C,, by  degree  2 to 
obtain a (25, k , )  code CIl; and then we form C, with mini- 
mum distance  greater  than 2t and  a generator  matrix of 
the form given by (3). The  existence of C, is guaranteed if 
its parameters satisfy the inequality given in Lemma 1. 489 
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Table 1 Upper bound on R,(I#J) [ I l l .  

0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.08 
0.10 
0.12 

1 .ooo 
0.954 
0.918 
0.885 
0.854 
0.825 
0.797 
0.744 
0.693 
0.644 

Now,  we  choose C,, as an (n , ,  k , )  linear code with arbi- 
trarily large n ,  and minimum distance greater  than t which 
meets  the  Gilbert-Varsharmov bound, i . e . ,  

k 

fl, 
R =" 

10 2- 1 - H(t/n,) .  (19) 

With this choice,  the  rate of C,, is 

1 
2 

R,, 2 - [ I  - H ( t / n , ) ] .  

Based  on  the  chosen  code C,,, we  form a (2n, + n,, k ,  + 
k,) linear  code C, with minimum distance greater  than 2t 
and a generator matrix G ,  of the form given  by (3). Let 

n = 2n, + n,, a = 2n,/n, b = n,/n, 4 = 2t/n. 

It follows from Lemma 1 that  such a code C, exists if 

2b 

where (a) z ,  2 1 and  is a root of 

and (b) o(1) approaches  zero  as n becomes large. 

The derivation of (20) is given in Appendix B. From (4) 
and (19), we have 

Based on C,  with rates satisfying (20) and (21), we  de- 
fine C, as given by (11). It follows from Theorem l that 

490 (C,, C,) is a  two-user (2t + 1)-decodable code which is 

capable of correcting t or fewer transmission errors  over 
the noisy adder  channel. It  follows from (17) that  the  rate 
R, of C, satisfies the following bound: 

1 1 
R, = - log, IC,l 2 - {log, IC,,l - log, l ~ , o ( ~ ~ l m a x ~ .  (22) n n 

From (9), (18), and (22), we obtain  the following lower 
bounds  on R, for large n and various  ranges of 4 = 2t/n 
(derivations are given in Appendix C): 

(a) For 0 5 $J 5 - + a b 

I + * '  

R, 2 
[log, 6 - (:) - 2 

1 

H 
2 

+ b[l - H(u)] - R ,  + ~ ( l ) ;  

U h a b  
(b) For - + < + 5 - + -  

1+dT 3 2 '  

a 1 
2 

R, 2 - [log,3 - 3 - 

(c) For 4 > - + - , a b  
3 2  

a 1 
R, 2 2 [log, 3 - 7 - n(:)]  - R,, 

where 

1 
2 

1. R(x) = H(x)  for 0 5 x 5 -and 

1 
2 

R(x) = 1 for - < x 1; 

4 1 
2. p = and u = - with z ,  > 1 

4 8 2 :  + 9 - 1 
z, + 1 

and  as a  root of 

4a 
b 

3 ( t / 8 z 2  + 9 - 1) z + 1 
+-=$A (26) 

For various  values of 4 and 0 5 a ,  b 5 1 with a + b = 1 ,  
the  above lower bounds  on  the achievable rates (I?,, R,) 
of two-user &decodable codes defined in Section 2 are 
plotted in Fig. 3 [R,  must  satisfy the  constraint of (20)]. 
Each line corresponds  to a specific value of I#I = 2t/n. The 
high-end point of each line corresponds to a = 1 and b = 

0, and  the low-end  point corresponds  to a = 0 and b = 1. 
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For 0 5 4 5 0.035 and for various  values of a and h ,  the 
class of two-user  &decodable codes defined in Section 2 
contains  codes  (C,, C,) with rate pairs (R,, R2)  lying 
above  the time-sharing  line, ; .e . ,  R, + R, > 1. 

It has been  proved by Kasami  and  Lin [2] that,  for (C, ,  
C,) to be a two-user (2t + 1)-decodable code,  the mini- 
mum Hamming distances of the  component  codes C,  and 
C, must be greater than or equal to 2t + 1. Therefore, for 
any given 4 = 2t/n,  the  rates R,(+) and R,(+) of C,  and C, 
must  satisfy the  upper bound B ( 4 )  derived by McEliece et 
al. [ 1 1 1 ,  i.e., 

for i = 1 or 2. For various 4, the values of B ( 4 )  are given 
in Table I .  If the code words from the  encoders  are  trans- 
mitted by using the time-sharing scheme,  the  total  trans- 
mission rate of the  system is no greater  than B ( 4 ) .  For 
various 4, time-sharing lines based on  the McEliece et al. 
upper bound B ( 4 )  are plotted in Fig. 4. We see  that,  for 
any 4 < 0.095, there  exist two-user (2t + I)-decodable 
codes (C, ,  C,) with rates [R,(+), R,(+)] lying above  the 
time-sharing line corresponding  to  the same 4, ;.e., R,($) 
+ R,(+) > B ( 4 ) .  This  indicates that  the  class of two-user 
(2t + 1)-decodable codes defined in Section 2 contains 
good two-user (2t + 1)-decodable codes. 

Consider  the special case  where a = I ,  b = 0, and I$ 5 

1/3. For this case,  the  code C, is simply obtained by inter- 
leaving C,, with a  degree of two, ;.e., C ,  = C,,. It  follows 
from (20) and (21) that we have 

[ I  - H ( 4 ) ] / 2  5 R,  5 - . 
1 
2 

From (26), we have p = 34. Thus,  the bound on R, given 
I 

I by (23) reduces  to 

j From (27), we obtain 

I 
6 I + 3l#J 

This  special case was first investigated by Kasami  and 
~ Lin [21. 

Appendix A: Derivation of (18) 
For  convenience, we repeat  the definition of C,,(v) here: 
For a vector v in C,,, let 
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Capacity region of 

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 3 Lower bounds on the achievable rates of (2t + 1)- 
decodable  code pairs for various values of 4 = (2t + l)/n. The 
high-end point for each line corresponds to a = 1 and b = 0, and 
the low-end point of each line corresponds to a = 0 and b = 1 .  

Time-sharing lines  based on the 
McEliece et al. upper bound B ($1 

Figure 4 Comparison between the lower bounds on the achiev- 
able rates of (2t + 1)-decodable code pairs  and the time-sharing 
lines obtained by using the upper  bound of McEliece et  al. [ l  11 
on the rates of the component codes for various 4. The  dots are 
the intersections of the lower bounds on [R,(d) ,  R,(9)] and the 
time-sharing lines of the same 4. 491 
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C,,(v) = {x I x E C,, and w,(x €3 v) 

+ min w,(x @ v @ w) 5 2t). (AI) 

To  determine  the size of C,,(v), we take  two  steps.  Let x 
be a vector in C,,.  We compare x and v in the first 2n1 
components.  For 1 5 i 5 n,, define the following num- 
bers: 

1 .  Let j ,  denote  the  number of blocks i such  that  the ith 
block of v is (0,O) and  the ith block of x is either (0 ,  1 )  
or ( 1 ,  0). 

2. Let j ,  denote the  number of blocks i such  that  the ith 
block of v is either (0 ,  1) or ( 1 , O )  and the ith block of x 
is (0,  0). 

3 .  Let j ,  denote  the  number of blocks i such  that  the ith 
block of v is (0,  1)  [or ( 1 ,  O ) ]  and the ith block of x is 

WEC,,  

( 1 ,  0)  [or (0 ,  111. 

Since both x and v are in C,, and  since  they have  the  same 
weight in the first 2n, components, j ,  = j ,  and the weight 
of the first 212, components of x @ v is 

w,(x CB v) = j ,  + j ,  + 2j, = 2 ( j ,  + j,). ( A 2 )  

Clearly w,(x @ v) is even. 

Let 0 5 t ,  5 t .  Let C:, (v, t l )  be  a  subset of C,, such  that 
(1) all the  vectors in C:, (v, f,) have  the  same  last n, com- 
ponents; (2) for  each  vector x in C:,(v, t ,),  w,(x CB v) 5 2t,. 
Then, we have 

Let 0 5 t ,  5 2t. Let C:,(v, t,) be  a  subset of  C,, such  that 
( 1 )  all the  vectors in C:,(v, t , )  have  the same first 2n, com- 
ponents; and (2) for  each  vector x in C:,(u, t 2 ) ,  

Then, we have 

Combining (A3),  (A4), and (A5), we obtain 

Since  the  bound on ~C,,,(v)~ given by (A6) holds for any 
v in C,,, we therefore obtain (18). 

Appendix B: Derivation of (20) 
Let n = 2n, + n2, a = 2n,/n, and b = n,/n. Taking the 
logarithm of both  sides of ( 5 ) ,  dividing it by n ,  and  re- 
arranging it, we obtain 

The binomial coefficient 

can  be bounded as follows [12]: 

\iT 
2mHw/rn) ~ (71 ~ 

JT 8 t ( m  - f?) 2.rre(m - e) 2mHw/m). 

(B2) 

Let x = 2i,/n, y = iJn,  and 4 = 2t/n. It is known in 
coding theory  that,  for  an (n ,  k )  code with minimum dis- 
tance  greater than 2t ,  we have 4 = 2t/n 5 1 / 2  except  for 
the trivial case with two  code  words.  It follows  from (B1) 
and (B2) that 

where o(l)  approaches  zero  as n becomes  large. 

Let 

with 0 < 4' 5 4. To find max f l ( x ,  y ) ,  we use  La- 

grange's  method of indeterminate  multipliers.  Consider 

g,(x, Y )  =&(x, Y )  - A,(x + Y ) .  (B5) 

Taking the first and  second derivatives of g,(x, y ) ,  we 
have 

O S S + Y C @  
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Note  that  the  second derivatives of g,(x, y )  are non- 
positive for 0 < x < a and 0 < y < b. Setting dg,/ax = 0 
and dgl/ay = 0, we have 

with x + y = 4'. Since a + b = 1 and  since 4' I 4 5 112, 
we have 

From (B8), we conclude  that A, 2 0. It follows from (B7) 
that x l a  5 112 and y l b  5 112. This implies that f,(x, y )  
takes its maximum value at 

x + y = + .  (B9) 

Let z = 2". From (B7) and (B9), we have 

: I 2  i ;I 1 
g ( z ) = z  + 1 "  z + 1 "  z + 1 " = o 0 .  

4 

Since 0 5 4 5 112, g(1) 5 0. Also, we see that 

+-+m 
lim g ( z )  = +-u. 

Therefore, g(z) has at !east one real root in the range z 2 

1.  Since g ( z )  has at most one extremal  point for z 2 1, 
then g ( z )  has exactly one real root in the  range of z 2 1. 
Let z1 be the real root of g ( z )  in the range z 2 1. Then, we 
obtain 

Combining (B3), (B4),  and (B1 l) ,  we obtain (20). 

Appendix C: Derivation of lower bounds on R, 
The  rate of C, is given by (22). For convenience, we re- 
peat (22) here: 

1 1 
n R, = ; log, IC,I 2 - {log, IC2,l - log, l ~ , , ( V ) l m a x 1 .  (C1) 

To bound R,, we need to determine log, IC2,/ and 
log, ~C,&v)~. It  follows  from (9) that 

where a = 2n,/n and h = n,/n. Bounding the binomial 
coefficient 

as  shown in (B2), (C2) becomes 
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where o(1) approaches  zero  as n becomes  large. 

It follows  from (18) that 

Let 

Upper bounding the binomial coefficients 

we have,  for large n ,  

Set z = 2 j l /n  and x = 2s/n. Since s 5 t ,  and t ,  5 t ,  we 
have x 5 4 = 2t/n. Based on the structure of C,, and 
C,,(v), we have 

2n 

3 
2s I 2t, 5 2 . 

This implies that x 5 a/3.  Now, we can  put (C6) into  the 
following form: 

The function (a/6)H(3z/a) + (x/2)H(z/x)  is convex  over 0 
5 z 5 x, and it takes its maximum value at 

z = -  ax 

3x + u 

Combining (C7) and (C8) and using the  fact H ( p )  = H( 1 - 
p ) ,  we obtain the following bound on S,: 

SI 5 ; ( 1  + H ( a _ j  + 4 1 ) .  
3x + a 

Let y = t,/n. Since t, 5 n,, we have y 5 b. Using (CS), 
(C9), and upper bounding the binomial coefficients 

as  shown in (B2), we can manipulate (C4) into the follow- 
ing form: 



The first and  second  derivatives of h(X)  are 

h ' ( X )  = - log, 
1 (2 - X)(l + X) 
2 X2 

From (C13) and (C14), we can see that h(X) increases 
monotonically as X increases from 0 to ( 1  + fi7)/4.  Let 

Since x 5 a/3, we have 3 x l a  5 1 < ( 1  + v%)/4.  There- 
fore h(3xla) increases  monotonically as x goes  from 0 to 
a/3.  Also, we note that R ( y / b )  increases  monotonically 
for 0 5 y 5 b/2,  and it is equal to 1 for  b/2 < y 5 1 .  Let 

Orxsai3 
I)-c.vcb 

Combining (ClO), (C12), (C15), and (C16), we obtain 

In the following, we determine F,(a, h, 4) for various 
ranges of +. For ( a / 3 )  + (b/2) < 4, we have 

F,(a, b ,  +) = - + h. 
2a 
3 

For 6 5 (a/3) + (b/2), we have 

(C 18) 

For this case, we use  Lagrange's method of indeterminate 
multipliers to  determine  the maximum value of f2(x ,  y ) .  
Consider 

&(x,  Y )  = & ( x ,  Y )  - + Y )  (C20) 

with constraint x + y = +. Setting ag2/ax and ag2/dy to 
zero, we obtain 

log, 
(2a - 3x)(a + 3x1 

9x2 
= 2A2, log, - - b - Y  

- A,, 
? 

with x + y = +. Since 0 5 x 5 a/3 and 0 5 y 5 b/2,  then 
494 A, 2 0. We can  also show  that  the second derivatives of 

g, (x ,  y )  are nonpositive for 0 5 x 5 a/3 and 0 5 y 5 b/2. 
Let z = 2". From (C20) and  the  constraint x + y = +, we 
find that f ,(x, y )  takes  its maximum value at 

where z2 is a  root of 

4a b 

3(4" 1 )  + 

+---=+. 

Since  the lefthand side of (C22) decreases monotonically 
for z 2 0 and is equal  to 

a ( l  + d 17) b 
12 2 

+ - > +  

at z = I ,  there exists  exactly  one root z, of (C22) such  that 
t2 > I .  If z, 2 4 3 ,  then x 5 a / 3 ,  y < b/2,  and 

a b - +  2 +. ( ~ 2 4 )  
3 1+d2 
It  follows from (C19), (C21),  and (C24) that,  for 4 5 ( a / 3 )  
+ b / (  1 + <2), we have 

However,  for  (a/3) + b/(l + 4) < 4 5 (a131 + (b/2),  
we find that 

It follows from (Cl), (C3), and (C17) that we obtain the 
following lower bound  on R,: 

R, 2 - log, 3 + b - F,(u, h, 4) - - + ~ ( l ) ,  (C27) 
a k, 
2 n 

where F,(a, b ,  4) is given  by  (C18), (C25), and (C26) for 
different  ranges of 4. Since R ,  = (k ,  + k 2 ) / n ,  (C27) 
becomes 

U k 
n 

R, 2 2 log, 3 + b - F2(a,  6, 4) - R, + + ~ ( l ) .  

(C28) 

The  term k , / n  can  be expressed in the following form: 

k , l n  = (k , /n, )  . ( n , / n )  = (a/2)Rl0. (C29) 

From (19) and (C29), we obtain 
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where R(+/a)  = H ( + / a )  for 0 5 +/a 5 1/2 and R(+/a)  = 

1 for 1/2 < + / a  5 1. Combining (C28) and (30), we obtain 

I + b - F,(a, h ,  4) - R ,  + o(1). (C3 1) 

It follows from (C31), (C18), (C25), and (C26) that we 
obtain  the lower bounds  on R,  given by ( 2 3 ) ,  (24), and 
(25). 
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