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Existence of Good 6-Decodable Codes for the Two-User
Multiple-Access Adder Channel

This paper defines a class of 8-decodable codes for the two-user multiple-access adder channel with binary inputs. This

class is a generalization of the class of two-user codes investigated by Kasami and Lin (1978). Lower bounds on the
achievable rates of codes in this class are derived. We show that, for a wide range of error correcting capability, this class
contains good two-user 8-decodable codes with rates lying above the timesharing line.

1. Introduction

Consider the multiple-access communication system
shown in Fig. 1 in which two independent sources are
attempting to transmit data to two users over a common
channel. During a message interval, the two messages
emanating from the two sources are encoded indepen-
dently according to two binary block codes C; and C, of
the same length n. The encoders and the decoder are as-
sumed to maintain bit and word synchronization. The two
code vectors emanating from the two encoders are com-
bined by the channel into a single vector r with symbols
from a certain alphabet. The single decoder at the re-
ceiver decodes r into two code words, one in C; and the
other in C,, for the two users.

Block coding for the two memoryless multiple-access
channels shown in Fig. 2 has been investigated by Kasami
and Lin [1, 2], Tilborg [3], and Weldon [4]. The channel
shown in Fig. 2(a) is called a noiseless adder channel. At
any time, the input to the channel is a binary 2-tuple
(a,, as) with a; chosen from the set {0, 1}; the output b of
the channel is the real sum of the two input bits a, and a,,
i.e., b = a, + a, where + denotes real number addition.
The two-dimensional capacity region of the noiseless
two-user adder channel is shown in Fig. 3 [5-7]. The sec-
ond channel model shown in Fig. 2(b) is also a two-user
adder channel except noise is introduced. For this chan-
nel we say that a single transmission error has occurred if
any of the following transitions occur: (1) from (0, 0) to 1;
(2) from (1, 1) to 1; (3) from (0, 1) or (1, 0) to 0 or 2. We say

that two transmission errors occur if the transition is ei-
ther from (0, 0) to 2 or from (1, 1) to 0. For both models of
the two-user adder channel, the two code words trans-
mitted from the two encoders are combined into a single
vector r with symbols from the alphabet {0, 1, 2}.

Letu = (uy, us, - - -, uy) and v = (v, vy, * * -, v,) be two
n-tuples in {0, 1}". Thenu + v = (u; + vy, us + vy, *, Uy
+ v,) isan n-tuple in {0, 1, 2}". Let x = (x, X2, * - -, X,) and
¥y = (Vi, Y2, * * *» ¥x) be two n-tuples in {0, 1, 2}". Define the
L-distance between x and y, denoted by di(x, y), as follows:

n

dyx,y) = > |xi — v,

i=

where — denotes real number subtraction and |x; —
denotes the absolute value of x; — y;.

Vi

Let C, and C; be two binary block codes of length n
used for the noisy two-user adder channel. These two
codes are referred to as a two-user code, denoted by (C,
C,). A two-user code (C,, () is said to be d-decodable (&
> 0), if and only if, for any two distinct pairs (u, v) and
(', v)in(C,, Cy), di(u + v,u’ + v') = 8. Kasami and Lin
[1] showed that a two-user 8-decodable code is capable of
correcting L(8 — 1)}/2 or fewer transmission errors in the
noisy two-user adder channel where L(8 — 1)/2] denotes
the greatest integer equal to or less than (6 — 1)/2. More-
over, they proved that, if (C,, C,) is 8-decodable, then the
minimum Hamming distances of both C, and C, must be
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greater than or equal to 6. Let R, and R, denote the rates
of C, and C,, respectively. For a given 8 and a given code
length #, it is desired to construct a two-user 3-decodable
code (C,, C,) with maximum achievable rates (R,, R.).

Upper and lower bounds on the achievable rates of
two-user 6-decodable codes have been derived by Ka-
sami and Lin {2] and Tilborg [3]. Kasami and Lin {2] also
introduced a class of two-user 6-decodable codes, and
they showed that, for a certain range of 8/xn, their class
contains good two-user 3-decodable codes (C,, C,) with
rates (R, R,) lying above the time-sharing line, i.e., R, +
R,> 1.

In this paper, we extend Kasami and Lin’s [2] results.
We define a class of two-user d-decodable codes which
contains the two-user 8-decodable codes studied by Ka-
sami and Lin as a subclass. Lower bounds on the achiev-
able rates of two-user codes in this class are derived. We
show that, for a wide range of 8/#, there exist good two-
user 8-decodable codes in the class with rates (R, Ry)
lying above the time-sharing line.

2. A class of two-user 5-decodable codes

In this section, we define a class of two-user d-decodable
codes for the noisy adder channel. In the following sec-
tion, we show that this class contains good two-user 8-
decodable codes.

Let n, be a positive integer which is divisible by 3. Let
Cy, be an (n;, k) linear code with minimum distance
greater than ¢. For simplicity, we assume that C,, is a sys-
tematic code with the generator matrix in the following
form:

Gy = [Ik,Pm]ﬂ ()

where I, isak, X &, identity matrix and P, isa &k X (n, —
k;) matrix over GF(2), where GF is a Galois field. Now,
form a (2n, k) linear code C,, by interleaving C | as follows:
a 0-digit in a code word of C,, is replaced by two
0-digits, and a 1-digit in a code word of Cy, is replaced by
two 1-digits. That is, C;, is obtained by interleaving C,
with a degree of 2. Clearly, the code C,, has minimum
distance greater than or equal to 2t + 2. The generator
matrix of C,, is of the following form:

110000 coo T
001100 ... 00 |
00001100 . . . 00 ;
G, = . | P, . (2)
|
' |
| 0000000 ny |
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Figure 1 A multiple-access communication system with two
users.
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Figure 2 Two-user adder channel models. (a) Noiseless two-
user adder channel; (b) noisy two-user adder channel.

where P, is a k, X (2n, — 2k,) matrix which is obtained
from P,, by repeating each column of P, twice, i.e., the
(2i — 1)th and the 2ith columns of P,, are identical to the
ith column of Py, for | = i = n, — k,.

Now, we consider a binary (2n, + n,, k, + k,) linear
code C| with the generator matrix in the following form:

O
G, = | —mm G TR

Okzxzk, i P21 ': Ik2 E PZZ (3)
where Gy, is the &, X 2n, matrix given by (2); Oy, xa, and
Oy xn, are two zero matrices; Py, is a k, X (2n, — 2k)
matrix over GF(2) such that the (2/ — 1)th and the 2jth
columns are identical for 1 =i =< n, — k;; and Py, is a k3 X
(ny — k,) matrix over GF(2).

Let R  and R be the rates of C, and C . respectively.
Then, we have

(1t k/k)

= R 4
Q2+ ny/ny) 10 “

1

o Lemma |
If the parameters n,, n,, k,., k», and  satisfy the inequality

2 (ill)('.lz) < mtna—ki—ks (5)
os2itiysa NI/ \ 2

then there exists a (2n, + n,, k; + k) linear code C, with
minimum distance greater than 2¢ that has a generator ma-
trix of the form given by (3).
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Proof

Since Gy, is a fixed matrix and since the (2/ — 1)th column
and the 2ith column of P,, are alike for | <i =< n, — k,, the
total number of matrices of the form G, is

Dkztnitne—k1—ka) (6)

A code vector u generated by G, has 2n, + n, com-
ponents. The first 2n, components of u can be divided into
n, blocks, with the ith block consisting of the (2i — 1)th
and the 2ith components of u and each block being either
(0, 0)or (1, 1). Let I denote those vectors of length 2xn, +
n, over GF(2) such that

1. The Hamming weight of each vectorin I"is 2¢ or less,
2. The first n, blocks of a vector in I are chosen from the
set {(0, 0), (1, D}.

Clearly, I' contains the all-zero vector. The number of
vectors in I' is

=2 G ?

The nonzero vectors in I' can be classified into two types:

1. A type-1 vector, in which the k, components from the
(2n, + 1)th position to the (2n, + k,)th position are not
all zero.

2. A type-1I vector, in which the k, components from the
(2n, + 1)th position to the (2n, + k,)th position are all
Zero.

Since G, generates a code with minimum weight greater
than 2¢, no nonzero vector in T can be a linear combina-
tion of the first k; rows of G,. Therefore, a type-I nonzero
vector in " is either a linear combination of the last &,
rows of some G, or a linear combination of the first &,
rows and the last k, rows of some G,. Since G, is fixed, a
type-I nonzero vector in I' is in exactly

2(kz-1)(n|+n2~k1—k2)

codes generated by matrices of the form G, given by (3)
(use an argument similar to Peterson and Weldon ([8,
Theorem 4.9, p. 92]). However, a type-1I nonzero vector
in I' cannot be in any code generated by a matrix of the
form G,. Therefore, the number of matrices of the form
G, that generate codes containing nonzero vectors from I
is upper bounded by

2(k2—1)("1+7l2—k1*k2)(lr| — ]).

Hence, if

2(k2—1){n1+n2—k1—k2)|rl < 21c-,,(n1+n2~Ic1—lc2)7 (8)

then there exists a (2n; + n,, k; + k,) linear code C,; with
minimum distance greater than 2¢ that has a generator ma-
trix G, of the form given by (3). From (7) and (8), we
obtain the inequality of (5). O
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Now, choose C, as a (2n, + n,, k; + k,) linear code with
minimum distance greater than 27 and a generator matrix
G, of the form given by (3). For the next step, we want to
define a code C, of length 2n, + n, such that C, and C,
form a two-user (2t + 1)-decodable code. Let Cy be the
set of all those binary vectors of length 21, + n, such that
the first 2n, components consist of n,/3 (0, 0) blocks and
2n,/3 blocks over {(0, 1), (I, 0)}, and the last n, com-
ponents are arbitrary binary digits. The size of C,, is

1y

= . 92ny/3 |, dng
|Caol (f’l1/3) 22008 . e, ©

Next, let C,, be a (2n, + n,, k,) linear code whose gener-
ator matrix is

GIZ = [Okzxznllkzpzz]’ (10)

where O, ., is a k, X 2n, zero matrix, I, is a k, X &,
identity matrix, and P,, is the k, X (n, — k,) matrix given
in (3). For any binary vector v of length 2n, + n,, let w, (v)
and wy(v) denote the Hamming weights of the first 2n,
components and the last n, components of v, respective-
ly. Now, we define C, as follows: Let C, be a maximal
subset of C,, such that, for any two different vectors v,
and v, in C,,

w, (v, ®v,) + :,2161) w,(v, v, & w)>2t, 1D

where @ denotes modulo-2 addition. It follows from (11)
that the minimum Hamming distance of C, is greater than
2t.

So far, we have defined two codes C, and C, with mini-
mum distances greater than 2¢. Next, we want to show
that (C,, C,) is a two-user (2¢ + 1)-decodable code. This is
given in the following theorem.

® Theorem 1

Let C, be a (2n, + n,, k, + k,) linear code with minimum
distance greater than 2¢ that is generated by a matrix G,
of the form given by (3). Let C, be a code of length 2n -+
n, defined by (11). Then (C,, C,) is a two-user (2f + 1)-
decodable code.

Proof

Let (u, v) and (u’, v') be two distinct pairs in (C,, C,).
Suppose that v = v’. Then u # u’ and w(u ® u’) > 21. It
follows from the definition of L-distance that

du+v,u +v)=wudu)>2. (12)

Suppose that v # v'. Define
d(l)( + ’ + r) _ 2§ |(Il + U) _ (ul + U’)|
furTv,ue Tv)= i Ty j b
=1
(2) ’ ’ Byt e ! ’
dim+v,u +v)= > W, + v) — () + V).

j=2n,+1
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Let us consider the first 27, components of u, u’, v, and
v'. We pointed out earlier that these 2n, components can
be divided into n, blocks, and the ¢th block consists of
the (2¢ — 1)th and the 2¢th components with 1 < ¢ < n,.
Due to the structure of C,, the €th block of a vector in C,
is either (0, 0) or (1, 1). And due to the structure of C,, the
¢th block of a vector in C, is one of the three combina-
tions (0, 0), (0, 1), and (1, 0). Let u{¢), u'(¢), v(¢), and
v'(¢) denote the €th blocks of u, u’, v, and v, respec-
tively, for 1 = ¢ < n,. If we compute the L-distance be-
tween u(€) + v(€) and u'(¢) + v'(£) for all the possible
combinations of u(¢), u' (¢), v(¢), and v'(£), we can show
that, for 1 = € = n,,

dfu(€) + v(£), w'(€) + v (6)] = wlv(£) © v ()],
where w{v(£) @ v'(¢)] is the Hamming weight of v(£) &
v'(¢). Therefore, we have

> du(t) + v(£),u' (&) + V()

=1

I

dPw+v,u +v)

ny

> wivie) &V ()]

=1

w, (v @ V). (13)

v

i

By the definition of L-distance, we have
dP@ +v, 0" + V)= w,v®vV Sudu)

zZ min w,(vO v S w). (14)

weC,,

(Note that the last », components of u & u’ are identical
to the last #, components of a certain vector w in C,,.) It
follows from (11), (13), and (14) that, for v # v', we have

du+v,u +v)=d’u+v,u +v)
+dPu+v,u +v)
2w(v®v)+ min w,v@v Sw)
wel,
> 21, (15)

From (12) and (15), we conclude that (C,, C,) is (2t + 1)-
decodabte. O

Next, we need to determine the size of C, defined by
(11). For this purpose, we define the following set: For a
vector v in C,, let

C,(v) = xIx € Cyy and w (x D v)

+ rrencn w,(x D v dw) =21 (16)
Define
CosWlas = X Co0).
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Then, the number of vectors in C, is

— IC‘ZOI
IC,| = “|Czo(")lmax : an

It can be shown that

lCwZO(v);max

e PRI M GE

(18

The derivation of (18) is given in Appendix A. From (9),
(17), and (18), we obtain a lower bound on the number of
vectors in C,.

In this section, we have defined a class of two-user é-
decodable codes. In the next section, we show that this
class contains efficient two-user d-decodable codes. For
n, = 0 and k, = 0, the two-user d-decodable code pre-
sented here reduces to a two-user d-decodable code in-
troduced by Kasami and Lin [2].

The requirement that #, be divisible by 3 is not neces-
sary. If n is not divisible by 3, we use 'n,/37 (which de-
notes the least integer greater than or equal to n,/3) and
L2r, /3] to replace n,/3 and 2n,/3 in (9) and (18). The re-
sults will be the same.

3. Lower bounds on the achievable rates

In Section 2, we defined a class of two-user 8-decodable
codes. For each two-user code (C,, C,) in this class, C, is
a linear code with a generator matrix of the form given by
(3) and C, is defined by (11). In this section, we derive
lower bounds on the achievable rate of C, for various
ranges of 8. We show that, for arbitrarily large code
length, there exist good two-user 8-decodable codes with
rates lying above the time-sharing line.

It was proved by Gilbert [9] and Varsharmov [10] that
for arbitrarily large n,, there exists a binary (n,, k,) linear
code with minimum distance greater than ¢ for which the
following inequality holds:

kl

== 1 - Hi/n),

nl

where H(x) = ~xlog,x — (I — x)log, (1 — x). This
bound on code rate is referred to as the Gilbert-Varshar-
mov bound. In our construction of code C,, we start with
choosing an (n,, k) linear code C,; with minimum dis-
tance greater than #; next we interleave C,, by degree 2 to
obtain a (2n,, k) code C,; and then we form C, with mini-
mum distance greater than 2¢ and a generator matrix of
the form given by (3). The existence of C, is guaranteed if

its parameters satisfy the inequality given in Lemma 1.
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Table 1 Upper bound on R(¢) [11].

¢ = 2t/n B(¢)
0.00 1.000
0.01 0.954
0.02 0.918
0.03 0.885
0.04 0.854
0.05 0.825
0.06 0.797
0.08 0.744
0.10 0.693
0.12 0.644

Now, we choose C, as an {n,, k) linear code with arbi-
trarily large n, and minimum distance greater than ¢ which
meets the Gilbert-Varsharmov bound, i.e.,

k
R, = n—‘ =1- H(t/n). (19

1

With this choice, the rate of C,, is
1
R, = S [1 = H(t/n)]

Based on the chosen code C,, we form a (2n, + n,, k, +
k,} linear code C, with minimum distance greater than 2¢
and a generator matrix G, of the form given by (3). Let

n=2n +n,a=2n/nb=n/n ¢=2t/n

It follows from Lemma 1 that such a code C, exists if

k, + Kk, 1
R, =~ <1-——1+H(———
n 2 zl+1

22y ‘]— 1 2
(2_1—1) o(1), 20)

a 1

1 and is a root of

a 1
+(1——)z+1——,
o] ¢

and (b) o(1) approaches zero as n becomes large.

where (a) z, =

g(z)=z3+(1 —g)zz

The derivation of (20) is given in Appendix B. From (4)
and (19), we have

a

5 (I + k/k )1 — H$/a)], @n

[\

where equality holds for ¢ = 0.

Based on C, with rates satisfying (20) and (21), we de-
fine C, as given by (11). It follows from Theorem 1 that
(C,, C,) is a two-user (2t + 1)-decodable code which is

SHU LIN ET AL.

capable of correcting ¢ or fewer transmission errors over
the noisy adder channel. It follows from (17) that the rate
R, of C, satisfies the following bound:

log, |C,,(v)] (22)

max

1 1
R, = - log, |C,| = - {log, |C,,| —

From (9), (18), and (22), we obtain the following lower
bounds on R, for large # and various ranges of ¢ = 2t/n
(derivations are given in Appendix C):

a b
(a) For0=¢ = — +

N )

a — (P 2 o
R=2g6- AL -ZH(2
2>2{1°g2 (a) 3 (2)

B +p)H(1ip)]

+ b1 - H@)] - R, + o(1); 23)
a b a b
b)For -+ —<¢=-+—,
1+V2 32
a 1_ f
S
+b{1— 3"’“ } R +o(l); (@4
© Forg>2+2
C or 3 27
a _l_ ¢
R, z{mgzs : H(aﬂ R, @5)
where
1
1. Hx) = )for0<x<5and

— 1
H(x) =1for5<xsl;

2.p= 4 do=
. p anoz+

V8 +9 -1 2

with z, > 1
1

and as a root of

da

3(\/822+9—1)+z+1=¢' (26)

For various values of p and 0 < a, b < 1 witha+ b =1,
the above lower bounds on the achievable rates (R, R,)
of two-user 6-decodable codes defined in Section 2 are
plotted in Fig. 3 [R, must satisfy the constraint of (20)].
Each line corresponds to a specific value of ¢ = 2¢/n. The
high-end point of each line correspondstoa = 1 and b =
0, and the low-end point corresponds to a = Oand » = 1.
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For 0 = ¢ = 0.035 and for various values of a and b, the
class of two-user 8-decodable codes defined in Section 2
contains codes (C,, C,) with rate pairs (R, R,) lying
above the time-sharing line, i.e., R, + R, > 1.

It has been proved by Kasami and Lin [2] that, for (C,,
C,) to be a two-user (2t + 1)-decodable code, the mini-
mum Hamming distances of the component codes C, and
C, must be greater than or equal to 2¢ + 1. Therefore, for
any given ¢ = 2t/n, the rates R (¢) and R,(¢) of C, and C,
must satisfy the upper bound B(¢) derived by McEliece et
al. [11], i.e.,

R() = B($)

for i = 1 or 2. For various ¢, the values of B(¢) are given
in Table 1. If the code words from the encoders are trans-
mitted by using the time-sharing scheme, the total trans-
mission rate of the system is no greater than B(¢). For
various ¢, time-sharing lines based on the McEliece et al.
upper bound B(¢) are plotted in Fig. 4. We see that, for
any ¢ < 0.095, there exist two-user (2t + 1)-decodable
codes (C,, C,) with rates [R (¢), R,(¢)] lying above the
time-sharing line corresponding to the same ¢, i.e., R (¢)
+ R,(¢) > B(¢). This indicates that the class of two-user
(2t + 1)-decodable codes defined in Section 2 contains
good two-user (2t + 1)-decodable codes.

Consider the special case where a = 1, b = 0,and ¢ =
1/3. For this case, the code C, is simply obtained by inter-
leaving C |  with a degree of two, i.e., C, = C,,. It follows
from (20) and (21) that we have

1
[1 - H))/2=R, = 3
From (26), we have p = 3¢. Thus, the bound on R, given
by (23) reduces to

R>l[l 6~ H) — ~H[2
.= 5 |log,6 — H($) (2¢>)

—é(l+3¢)-H( )]—Rl+o(l). @7

1+ 3¢

From (27), we obtain

R + R >12925—1H(¢)—1H 3
! 2o 2 3 (2)

- (1)—(1 + 3¢)H( ) + o(l).

1
1+ 3¢
This special case was first investigated by Kasami and
Lin [2].

Appendix A: Derivation of (18)
For convenience, we repeat the definition of C, (v) here:

For a vector v in C,, let
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Figure 3 Lower bounds on the achievable rates of (2t + 1)-
decodable code pairs for various values of ¢ = (2t + 1)/n. The
high-end point for each line corresponds to @ = 1 and » = 0, and
the low-end point of each line corresponds to @ = O and b = 1.
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Figure 4 Comparison between the lower bounds on the achiev-
able rates of (2¢ + 1)-decodable code pairs and the time-sharing
lines obtained by using the upper bound of McEliece ef al. {11]
on the rates of the component codes for various ¢. The dots are
the intersections of the lower bounds on [R,(¢), R,(¢)] and the
time-sharing lines of the same ¢.
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Cov) ={xlx € C, and w,(x B v)
+ min w,(x DvOw =2 (A1)

weC,,
To determine the size of C,,(v), we take two steps. Let x
be a vector in C,,. We compare x and v in the first 2n,
components. For 1 = i = n,, define the following num-
bers:

1. Let j, denote the number of blocks 7 such that the ith
block of v is (0, 0) and the ith block of x is either (0, 1)
or (1, 0).

2. Let j, denote the number of blocks i such that the ith
block of v is either (0, 1) or (1, 0) and the ith block of x
is (0, 0).

3. Let j, denote the number of blocks i such that the ith
block of v is (0, 1) [or (1, 0)] and the ith block of x is
(1, 0) for (0, 1)].

Since both x and v are in C, and since they have the same
weight in the first 2, components, j, = j, and the weight
of the first 2n, components of x @ v is

w,(x @ V) =j, +j, + 2, =20, +j,). (A2)

Clearly w,(x © v) is even.

Let 0=/ =1 Let Cy (v, 1,) be asubset of C,, such that
(1) all the vectors in C;O (v, t,) have the same last , com-
ponents; (2) for each vector x in C, (v, 7,), w (x ®v) = 21,.
Then, we have

cwtl= Y (nl_/3) (Zn}/3) (2n1/§—jl‘)
osjyritzip=et; \ Jo Ji Js

IR

0=j;+jp=ty

_ ’z Z (nll/3) (2,1%/3) (2n1/3 wjl)

$=0 J;=0 .]1 .]1 s _Jl

SEOLLG

§=0 J1=0 -]1
Let 0 =, = 2. Let C;O(v, t,) be a subset of C, such that

(1) all the vectors in C; (v, £,) have the same first 212, com-
ponents; and (2) for each vector x in C;O(u, t,),

min w,x®vBw)=t,.
weC,, 2( @ ) 2
Then, we have

]

Coolv, ) =2 Y (”) (A4)

i=o \ !
It follows from the definitions of C,(v), C, (v, ), and
C2.(v, 1,) that

Coo = >

0=2¢,+1,=2¢

|C;0(V’ [1)| ' |C;0(V’ t2)|' (A5)
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Combining (A3), (A4), and (AS), we obtain
|C20(v)| = Z

LI IR
v {z (’z)zk] (A6)

i=0
Since the bound on [C, (v)] given by (A6) holds for any
vin C,,, we therefore obtain (18).
Appendix B: Derivation of (20)
Let n = 2n, + n,, a = 2n,/n, and b = n,/n. Taking the
logarithm of both sides of (5), dividing it by », and re-

arranging it, we obtain
sy

0=2i)+iy=2t L )

1

R=1-4_1,
=l-=-—1o
2 n E.

The binomial coefficient

f

can be bounded as follows [12]:

m pmHem (m) < m pmHEIm
8¢(m ~ £) ¢ 2aé(m — ¢)

(B2)

Let x = 2i /n, y = iy/n, and ¢ = 2t/n. It is known in
coding theory that, for an (n, k) code with minimum dis-
tance greater than 2¢, we have ¢ = 2t/n = 1/2 except for
the trivial case with two code words. It follows from (B1)
and (B2) that

a a X y
=1- = - — H|=| + bH =]} — o(1),
Riy=1-5-.max, |3 (a) (b)l ol
(B3)
where o(1) approaches zero as n becomes large.
Let
foon =2 H(5) + ol 1), cty=¢, (B
2 a b

with 0 < ¢' = ¢. To find Omfx¢j”1(x, v), we use La-
=r+ys

grange’s method of indeterminate multipliers. Consider

g,(x, y) = filx, ¥} — A\ (x + ). (B5)

Taking the first and second derivatives of g,(x, y), we
have

ag, 1 a— x 0g, b—y
— == -, —=1 —] — A,
dx 2 lng( x ) ! dy 0g2( y ) !

2
og, _ a/log, 2 e, _ _ b/log,2
ax* wa —x) 8y yb -y’
o LY
T8 T8, (B6)
axdy dyox
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Note that the second derivatives of g,(x, y) are non-
positive for 0 < x < a and 0 <y < b. Setting dg,/6x = 0
and dg, /9y = 0, we have

a b

BT ®B7

withx +y =¢’. Since a + b = 1 and since ¢’ = ¢ < 1/2,
we have
1 1 ,
=<
22M T M g ¢

1
min = (B8)

From (B8), we conclude that A, = 0. It follows from (B7)
that x/a < 1/2 and y/b = 1/2. This implies that f,(x, y)
takes its maximum value at

x+y=d. (B9)
Let z = 2*. From (B7) and (B9), we have

) b 1
g(z)=23+(1——)z2+(1—£)z+1— — = 0.
¢ S ¢
(B10)
Since 0 = ¢ = 1/2, g(1) = 0. Also, we see that
lim g(z) = +=.
2+
Therefore, g(z) has at least one real root in the range z =
1. Since g(z) has at most one extremal point for z = 1,
then g(z) has exactly one real root in the range of z = 1.

Let z, be the real root of g(z) in the range z = 1. Then, we
obtain

max f,(x,y) =f, (B11)

a b
0sr+y=d zf +1° z, + 1)

Combining (B3), (B4), and (B11), we obtain (20).

Appendix C: Derivation of lower bounds on R,
The rate of C, is given by (22). For convenience, we re-
peat (22) here:

1 1
R, = " log, |C,| = o {log, |C,,| — log, |C,(v)],..}- (CD
To bound R,, we need to determine log,|C,,| and
log, [C,,(v)]. It follows from (9) that

Liog1Cuf =L+ b+ L1og[ ™ 2
n ng 200 T 3 n Og(n1/3), ( )

where a = 2n /n and b = n,/n. Bounding the binomial
coefficient

(« ’:/13)

as shown in (B2), (C2) becomes

a

1
- log, |C, | = 5 log,3 + b + o(l), (C3)
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where o(1) approaches zero as n becomes large.

It follows from (18) that

- botan/3\ & fan/6)\ [ s
|C20(V)|max B 052zgzzszc [sg() ( $ ) J,éo ( A )(Jx)J
B e

i=0

Let

_1 > jan/6\ (s
5T n log ’jgo ( Jy )(11)] ©)

Upper bounding the binomial coefficients

(55 Jma 5

we have, for large n,

o) ot

6 an n

S = max + o(l). (C6)

! 0=jy=<s

Set z = 2j/nand x = 2s/n. Since s = ¢, and ¢, = ¢, we
have x = ¢ = 2t/n. Based on the structure of C,, and
C,,(¥), we have

2n,
25 =2t = T

This implies that x = a/3. Now, we can put (C6) into the
following form:

R

S = max + of1). (CD

1 Oo=z=<yx

The function (a/6)H(3z/a) + (x/2)H(z/x) is convex over 0
= z = x, and it takes its maximum value at
ax

= . C8
z 3x +a 8

Combining (C7) and (C8) and using the fact H(p) = H(1 —
p), we obtain the following bound on S :

a 3x
s s€(1+—)H(

1
a /

— a) + o(1). (C9)

Let y = t,/n. Since t, = n,, we have y = b. Using (C5),
(C9), and upper bounding the binomial coefficients

()

as shown in (B2), we can manipulate (C4) into the follow-
ing form:

! g, IC. = el
. ngl 20(V)]max - OSTE,,)(S¢ 3 (20,
0=r=qi3
0=y=ph
3 — k
+ 2 1+~5)H ‘ )+bH(1) + 22+ o(1),(C10)
6 a, 3x + a, b n
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where

_ H(Y) for0 =Y =1/2,
H(Y) = (C1n
1 for 1/2 <Y =1.
Define
h(X)*HiY-+l(1+X)H L C12
(2) 2 (1 + X,)‘ (C12)
The first and second derivatives of 4(X) are
, 1 2-X)(1+X)
h(X) = 5log, ——%— (C13)
H'(X) = Al L Cl14
(2)((2 - X1 + X)) (loge 2)' (€14

From (C13) and (C14), we can see that A(X) increases
monotonically as X increases from 0to (1 + /' 17)/4. Let

£ = 5 h (%) " bﬁ(%) C15)

Since x < a/3, we have 3x/a = 1 < (1 + \/17)/4. There-
fore h(3x/a) increases monotonically as x goes from 0 to
a/3. Also, we note that H(y/b) increases monotonically
for0=y=b5/2, anditisequalto 1 for /2 <y =< 1. Let

Fya, b, ¢) = Jnax £x, ¥). (C16)

0=x=al3
0=y=<b

Combining (C10), (C12), (C15), and (C16), we obtain

1
~ log, |CyW)| = Fyla, b, ¢) + ky/n + o(1). (C17)

In the following, we determine F,(a, b, ¢) for various
ranges of ¢. For (a/3) + (b/2) < ¢, we have

2a
F,(a, b, d) = T + b. (C18)

For ¢ = (a/3) + (b/2), we have
FJla, b, ¢) = Taifbf?(x’ v). (C19)

0=xr=a/3
0=y=b/2

For this case, we use Lagrange’s method of indeterminate
multipliers to determine the maximum value of f,(x, ¥).
Consider

g, ¥) = flx, ) = A(x + ) (C20)

with constraint x + y = ¢. Setting dg,/dx and dg,/dy to
zero, we obtain

(2a — 3x)(a + 3x) b—y
: o = 2X,, log, . = A,

log

withx +y=¢. Since0=x=ga/3and 0 <y = b/2, then
A, = 0. We can also show that the second derivatives of
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&,(x, y) are nonpositive for0 = x < a/3and 0 =y = b/2.
Let z = 2™ From (C20) and the constraint x + y = ¢, we
find that f,(x, y) takes its maximum value at

4a b ©21)
x = —— ’ y = bl
3(VBZ+9-1) z, + 1
where z, is a root of
da P (C22)
3IVEZ+9—1) z+L T

Since the lefthand side of (C22) decreases monotonically
for z = 0 and is equal to

a(l + V' 17) b
— + 5 > ¢ (C23)

atz = 1, there exi§ts exactly one root z, of (C22) such that
z, > 1.1Ifz, = /2, then x < a/3, vy < b/2, and

4. b Ly (C24)
3o1+v2

It follows from (C19), (C21), and (C24) that, for ¢ = (a/3)
+ b/(1 + \/2), we have

4a

IV8Z+9-1)

b
Fya, b, ¢) =fz( — 1). (C25)

However, for (a/3) + b/(1 + V2) < ¢ = (a/3) + (b/2),
we find that

Fab.¢)=£[F ¢~ %):2—”“,11(

3

3p — a
3b )

(C26)

It follows from (C1), (C3), and (C17) that we obtain the
following lower bound on R,:

a k
R, = > log,3 + b — Fya, b, ¢) — _nl + o(1), (C27)

where F,(a, b, ¢) is given by (C18), (C25), and (C26) for
different ranges of ¢. Since R, = (k, + k,)/n, (C27)
becomes

k
R,= ~log,3+h— Fya, b,¢) - R, + =L + o(l).
n

4
2
(C28)

The term & /n can be expressed in the following form:

k/n=(k/n) - (n/n) = (a/R,,. (C29)
From (19) and (C29), we obtain

LI {1 - ﬁ(fﬂ, (C30)
n 2 a
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where H(¢/a) = H(pla) for 0 < ¢la < 1/2 and H(pla) =
1for 1/2 < ¢/a <= 1. Combining (C28) and (30), we obtain

a (P
R, = 5[Iog23 +1 —H(—)J

a
+ b~ Ffa, b, ¢) - R, + o(1). (C31)

It follows from (C31), (C18), (C25), and (C26) that we
obtain the lower bounds on R, given by (23), (24), and
(25).
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