480

W. E. DONATH

W. E. Donath

Stand-Alone Wiring Program for Josephson Logic

This paper describes a channel routing wiring program and its interface to the user. Of particular interest are its interface
facilities, which permit manual update of the routing, pre-routing, and incremental routing. A hierarchical organization
of the logic is feasible, which permits moving of complex entities, such as latches, adders and others, as complete
entities. The internal wiring of these entities could either be done manually and be fixed before layout, which would be
desirable when the wiring was used as a delay line, or could be left to the wiring program, which would route them more
flexibly. The features above are made possible by the special-interface organization used here. In this interface the pins
on the devices can be directly addressed, relatively addressed, and indirectly addressed; a simple macrocompiler permits

the hierarchical organization of the data.

Introduction

The Josephson computer project is a technology develop-
ment project with relatively high-density chips. To prove
the feasibility of this technology the development of a sig-
nal processor prototype has been set as an objective and
the wiring of LSI chips is a requirement for successful
design of such a processor.

It was considered desirable to develop a channel rout-
ing program for the Josephson technology, so that com-
plex chip designs could be accomplished with reasonable
effort. Since the effort available for this part of the project
was limited, it was decided first to develop a stand-alone
wiring program, and then to add a sophisticated interface
to the wiring program—a direct consequence of the con-
straints in manpower and time. The general organization
of this program is as shown in Fig. 1; the following pro-
grams are involved:

1. The facilities generation program, through which all
the devices, device terminals, chip terminals, chan-
nels and tracks are represented. The input data con-
sist essentially of array specifications of the devices.

2. A macro expander, where parameter substitution and
string concatenation are possible. This expander es-
sentially carries out text substitution.

3. The data entry program, where connections, routings,
device usages, and operations on the data base (i.e.,

connection and wiring file) are entered. In addition,
this program performs serialization of nets. It also per-
mits control over the length of the wires.

4. The termination resistor assignment program, where
the termination resistors are assigned.

5. The global and local wire routing programs, which es-
sentially do the routing.

6. Printer plotting and mask generation interfaces.

All communication into the data base (i.e., connection
and wiring file) is done via the data entry program; the
termination resistor assignment and wire routing pro-
grams communicate their results in a format acceptable to
the data entry program. This feature ensures a higher
level of data integrity for the file and, at the same time,
makes program development simpler. Of course, the lan-
guage used for the data entry program is such as to permit
updating of the data.

In the Josephson technology, circuit delays [1] as low
as 13 ps have been measured (nominal 35 ps), which im-
plies that wiring delay is, relatively speaking, a far more
critical factor than in other technologies. In this program
it is possible to selectively constrain individual wires to
their minimum enclosing rectangles, so that wires on criti-
cal paths can be controlled as far as length is concerned.
(This is of benefit only, of course, if only a fraction of the
wires on a chip are on critical paths.)

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM J. RES DEVELOP. ® VOL. 24 ¢ NO. 4 e JULY 1980

In particular, we have a very flexible design methodol-
ogy here regarding the design of the wires internal to the
‘‘macros,”” whereby we mean circuit complexes. We may
develop so-called ‘‘soft’” macros (where the wires are
routed by the program), ‘‘hard’’ macros (where the inter-
nal wiring is prerouted by man through the input facility
of the wiring program), ‘‘superhard’’ macros, which
block channels in the program, and of course many varie-
ties of *‘intermediate’” macros. This concept permits one
to choose the wiring mode according to whether tech-
nology requirements (e.g., delay lines) or wirability re-
quirements dominate.

We discuss the facilities of the data entry program in
some detail, since this portion of the program has the
most novelty. It should be noted that in general far more
effort is devoted to manipulation of data and ensuring
data integrity than to algorithmic processing, so that it is
proper to devote considerable attention to this part of the
program.

In the second section we discuss the image, the de-
vices, and the wiring program; the third section deals with
the input interface—i.e., the macrocompiler and the data
entry program, while in the fourth section we describe
the input language.

Devices, image, and the wiring program

The image is assumed to consist of an array of cells in a
rectangular pattern, where each cell has, on its periphery,
its logic service terminals. Superimposed on this array of
cells are the wiring channels; typically these may be in the
channels between the cells as conduits for the long con-
nections between cells, or they may serve as accesses
from the channels to the terminals of the cells. Occasion-
ally, connections internal to the cell may be made through
such tracks or the access may be to a service terminal
outside the cell area (such facilities are also made avail-
able through the facility generation program). Figure 2
shows a portion of the image as represented by the
printer-plotter program. Basically, there are two kinds of
circuit devices: a three-junction interferometer, which
acts mainly as an OR-gate, and a two-junction device,
which acts mainly as an AND-gate (both these devices
serve other functions, too, and may be parts of latches
and inverters). There are two control lines crossing the
three-junction devices; a current on either of these two
lines will cause the device to switch and emit a current.
The two-junction device requires two current sources on
its two inputs. If just one of the two sources is on, the
device will be conducting and the current will be
grounded; if both sources are on, the device will also emit
a current, since it will then switch into its voltage state.
An OR-AND device is built by connecting two three-junc-

IBM J. RES DEVELOP. ¢ VOL. 24 ¢ NO. 4 e JULY 1980

Macro
description

Placement
data

Facility
data

Connection
data

Facility
file
Macro generation
compiler

Data
entry
program
Termination
resistor
assignment
Data
entry
program
Global
Data wire
entry routing
program __Q——”ocal
wire,
Plotter |output routing
Fg;ncration Data
entry +
program

Facility
file

Connection
and wiring
file

Figure 1 Data flow in the Josephson wiring program. Note that
the data entry program is used at many places—it is the only
place from which the connection and wiring file is updated and it
is also used in interfacing to the printer plotter.

tion devices to a two-junction device, a four-way OR-AND
device is built by connecting two such OR-AND devices to
another two-junction device. The four-way OR-AND de-
vice makes an ideal multiplexor if inverse boolean nota-
tion is used. These devices are defined as macros.

Since the devices are current sources, the devices they
drive must be ordered in a serial chain. Termination is
provided by special termination resistors, which connect
to ground. It is to be noted that the four-way OR-AND de-
vice drives two serial chains, and that two three-junction
interferometers can be put together to form a four-way OR
device, which also drives two chains.

Other devices available to the program include power
resistors as well as termination resistors. These the pro-
gram may connect up through device personalization in-
structions, or their I/O pins may connect to other pins—
i.e., the pins of the devices.

The wiring program works in two stages: a channel
routing program followed by a line-packing procedure.
The channel router routes two-point connections, using a
restricted-rectangle maze-running procedure with a cost
function for using wiring space, which becomes very
steep at the point where the capacity of the space is being
fully used. This means that the global wiring program
tries to avoid situations where the wiring space is used to

! I # | ! | ¢ |
120 [i # , Y .
............ L | SRR nl AL T IRL VI | PR I l 9 SOUY AL 120
1 seaec1™ % Toanes! § Laens?] et aae® g 4
- 1 A ;
A6A8 B1A8 B2A8 X B3A8 B4AS . Bans
ftu i—w AP iy
N #—+-N R N il N Nl RS =Y
e T B T T PO N EETUUSS A TUUUORIUA i S SO SUPRRI, 130
A6B1 ‘8181 B2B1 !
4681 B181 B2B1 8381 B4B1 et
................ PN - JOO DO PO I
140 140
- S -
— i
" 1
150 ¥ - §— —t 150
O IR SO (P . SO PO Nk, 11 P00 eveeoon : AL
i -ALB2. 1 8182 il “8282° jer it panc’
A6B2 2-# R B1B2 o-) BoB2 2 R 82 2 B4B2 2-8
52 5 5% &
3 H g 3 4
Are A A A A#
wo T 1 I i 160
; A6B3 .
A6B3 41
Eanal
i ¥
anEn i
LB
170 il L 170
m -
7 : s
180 I # AR # 180
......................... .. LoD XL AL
B i B ST 8 i s Bt " s
1= . “B1B4 1— 18286 1 “B3B4" =% T mema’
A6BG [_ : : B2BG4 . B384 8484 S
YR L TR g it TTE—dn NEE2EY
. A . A . A A . .
N [O A I S [e | O T el I TP -
4685 8185 B2BS . BI85 B4BS
A6BS B1BS B2B5 B385 B4BS
L I I E o N 1 I T 1 R TTOTS] IR PRRIRYS. AL I I T e
P 1
B — .3
iy p
I —1 .
210 X T 210
e || LAk s | 5 JRSEON [DRTRRIIN Ry 5 BRI
i _1 A6B6 1t B1B6" itHts e2met i “B4BG"
A6B6 2- B1B6 28 | B286 2 : : BIBG 2- . :
5 s H 5
4 g 4] H
A i A
TR LT | B B e e B U A EERREE IRTTSTRRPRL | I | INREEERHY IRCRPPPRRYY BN I IRPRPTSS INPRRRRRPRA I |) INERRRS 220
......... At R TR AL_
) A - : A A :
: A6B7 A BzB7:| - A BaB7
#6874 : D oBB7 4 ; 8387 :
2 : ## : : ## . :
i 3] : 1 i : Ie it ;
b BH A1 ¢ . 1 A C B 1
U ST A LR e T e T T e T -
= l
- 'y £
: . . . |
i [i I {

Figure 2 Printer plotter outprint of wired image; dots outline cell spaces, four letters inside cells denote area name (note that each name
covers two areas), characters on periphery denote 1/O pins of areas, and # symbol denotes connections between planes. The small areas
hold the two-junction interferometers, while the large areas contain the three-junction interferometers.

excess, but does not necessarily guarantee that this is the The global wiring program is followed by a simple line-

case. The algorithm is described in more detail in Appen- packing program, which does the detailed assignment of

dix C of Ref. [2]. The major difference between the pro- wires to tracks.

gram described here and the program developed by Chen

et al. [3] is that the Chen program counts crossings of Input facilities

lines, while this program counts the usages of a channel An essentially new feature of this program is its input fa-
482 segment. cility, which permits the definition and flexible movement

W. E. DONATH IBM J. RES DEVELOP. e VOL. 24 ® NO. 4 ¢ JULY 1980

of ‘*macro devices,’” whereby a macro device consists of
several devices connected together. The language devel-
oped here—which is presented in its essential features—
permits a pre-routing of these intra-macro connections
(i.e., if the connection is to be a delay line) or allows the
routing to be carried out by the wiring program. The latter
is more efficient in terms of wiring space, because it al-
lows the wiring program more flexibility.

The essential features of the language for the data entry
program include its different addressing capabilities for
the I/O terminals of the primitive devices—i.e., direct,
relative, and indirect—as well as the addressing capabili-
ties for the wire locations (direct and relative). Also im-
portant is its capability for giving each device a function,
where the device is addressed by a pin. Several devices
may be associated with each cell. Examples are given in
the section on the input language. Furthermore, wire may
be routed which acts only as a blockage, permitting de-
vices to extend into the wiring area and block channels.
Another capability of the data entry program, namely au-
tomatic serialization of nets, is dependent on the way the
interferometers work—i.e., that current enters the loop of
each interferometer and leaves on the same side (dis-
cussed in more detail in the previous section). The pro-
gram used here gives an approximate solution to the trav-
eling salesman problem. The algorithm is described in de-
tail in Ref. [4]. It uses an assignment procedure to
generate several tours, which are then merged by a heu-
ristic procedure.

Of considerable interest is the interaction between the
macroexpander and the data entry program, which per-
mits the separate description of a placement list and the
logical net list. In the placement portion the user provides
the system with the macro function (which implies a
placement of the components of that macro and a descrip-
tion of connections internal to the macro), the logical
name of the block, and a physical pin position. The phys-
ical pin position is used as a reference position for the
internal connections of the macro as well as the I/O pins
of the macro; the logical block name for the macro is con-
catenated with pin identification characters and used to
generate indirect addresses for the I/O pins of the macro,
which are used later in the logical net and connection
lists. In this way placement information and the logical
connection information are separated and it is possible to
move complete macros about.

Finally, control over the length of the connection is
made possible by giving a special control entry for each
wire whose length is to be controlled.

IBM J. RES DEVELOP. ¢ VOL. 24 @ NO. 4 ¢ JULY 1980

Input language

We describe the structure of the input language in this
section: first, the notation for addressing pins, devices,
and cells; second, the operational features of the language
and the method for describing routing; and last, the macro
features.

® Addressing features

As described previously, the image consists of an array of
cells which either contain devices or are used for wiring.
In the images used here, even-numbered cells contain de-
vices, while the other cells are used for routing. Typi-
cally, a four-character name is used to address the device
cell, with the first two characters referring to the column
and the second two characters to the row. A fifth charac-
ter is used to identify the device, and a sixth character the
pin. An address such as B2C3al refers to column B2, row
c3, device A, pin 1. Let us assume that the reference
address is B2C3Al1; a relative address might be *4 -2 BA
where 4 is the number of columns one moves over, -2 the
number of rows, and the last two characters of the refer-
ence address are replaced by BA. This relative address
might refer then to pin B4C2BA (remember that the cell
counts include wiring channels). The general notation
then is

*Ax Ay final characters for defining a relative address.

These instructions are provided for setting the reference
address:

LOC address (direct, relative, or indirect)
PUSH address
POP

LOC sets or changes the address currently on top of the
stack, which is the current reference address. PUSH adds
another address on top of the stack and makes it the cur-
rent reference address. POP removes an address from the
top of the stack. Indirect addresses are generated by the
command

$ name pin-address;

the address name preceded by a $ sign becomes then the
address of the pin.

e Operational features
Devices are given a personality by a two-character per-
sonality specification; a command

DEV pin-name personality;

assigns the device with the pin on it the personality im-
plied by personality. Information regarding this personal-
ity assignment is fed to the mask generation interface and
the specified personality is generated for this device.

483

W. E. DONATH

484

Wires are specified by either the SER, SERZ, or M com-
mand; these are used as follows:

SER (SERZ) source pin pin pin, - - - pin_;

where the command SERz will ensure that pin, stays as
the last pin. The command

M pin,pin, [Other information, routing]

makes a connection between pin, and pin, and allows a
routing to be described for that connection. The instruc-
tions given in the routing section consist of R and //,
where R begins routing and // ends it, and in betweenisa
set of wiring positions of the cell image. These are as fol-
lows:

A—refers to the first pin.

B—refers to the second pin.

P x y tx ty p—route a wire to cell x ¥ and track tx, ty on
plane p.

/—change plane in routing to next position.

X x tx—route a wire to channel x, tracks #x in horizontal
direction route.

* Ax tx—route Ax channels over to fx track.

sp—is used like P, but starts a new connection.

Under other information can be a T command, which, fol-

lowed by a **0,”’ limits the wire to the minimum rectangle.

® Macro instructions

The keyword macro is reserved for the macro compiler,
which precedes the data entry program. It is used as fol-
lows:

MACRO name (p, p, Py " * * P,)
Text (with references to p, « * - p,)
ENDMAC

and defines that name must be replaced by the Texr. Con-
catenation of two characters strings x and y is denoted by

x|y
® Usage
The following describes a two-way OR-gate:

MACRO ORZ (N,P) /*N-name of logical function, P-posi-
tion /*;

LOC P;

DEV *000A; /* 3-j interferometer used as 0A device */
$N|[|A *00AA; /* QUTPUT PIN */

$N||1 *00Al; /*INPUTPIN 1+

$N || C1*00 A4; /* CONTINUE ON PIN 1%/

$N||2 *00A2; /* INPUT PIN 2%/

W. E. DONATH

$N || C2* 00 A3; /* CONTINUE ON PIN 2%/

ENDMAC

The following is the placement of three OR-gates:
ORZ(GA, AAAJAA);

ORZ(GB, AABJAA);

ORZ(GC, AACJAA);

OR-gate GA now feeds gates GB and GC:

SER $GAA $GBI $GC1;

Note that only logical addresses are used here; one could
also make the serialization manually:

M $SGAA $GB1; M $GBC1 $GC1;

Large-scale study and conclusion

To eliminate errors from the program and test the pro-
gram for a large test case, logic for a 16 X 16-bit cross bar
switch was designed together with a demonstration im-
age; the logic consisted of 64 latches, which held the in-
formation for the switching of the signals, plus 16 deco-
der-selection networks, each of which selected one of the
16 input signals on the basis of the decoded signal from
four latches. The latches each required six three-junction
and six two-junction interferometers; the total logic re-
quired 1100 three-junction and 600 two-junction inter-
ferometers and used about 4300 connections. The demon-
stration image held 1536 three-junction and 1536 two-
junction interferometers in a 24 X 64 array. About 250
wiring tracks were provided in the vertical direction and
320 in the horizontal direction. There were 13 con-
nections not routed after running the program. Pre-rout-
ing the internal connections of the latch increased that
count to 25. In general, it seems that pre-routing of the
macros has a negative impact on the wirability of the chip
since it limits the degree of flexibility available to the rout-
ing program.

Computing time for a run was on the order of eight min-
utes on the IBM 370/168 computer under VM/CMS; how-
ever, the program required on the order of two megabytes
of storage. While this is acceptable, the heavy storage re-
quirement was caused by two separate aspects of the pro-
gram. First, the facility file had a separate entry for every
device and logic service terminal, which made for easy
programming, but could be avoided with some thought;
second, the routing programs used the facility file (in ad-
dition to their internal files), which could also be avoided
with some effort.

Acknowledgments
I want to thank G. Koppelman, M. Ullner, and B. Stahl
for their efforts in developing certain parts of the system

IBM J. RES DEVELOP. ® VOL. 24 ® NO. 4 @ JULY 1980

described here: G. Koppelman for the interface to manu-
facturing and the Gerber plotter, M. Ullner for the travel-
ing salesman program, and B. Stahl for optimizing the
program on computing time performance. I wish to thank
my management for encouraging and supporting this
work, L. Kugel for many suggestions regarding the re-
quirements for this program, and R. Partridge for inter-
esting discussions regarding this program.

References

1. T. Gheewala, ‘‘Design of 2.5-Micrometer Josephson Current
Injection Logic (CIL),”” IBM J. Res. Develop. 24, 130-142
(1980).

2. W. E. Donath, W. R. Heller, and W. F. Mikhail, ‘‘Prediction
of Wiring Space Requirements for LSI,” Proceedings of the
14th Annual Design Automation Conference, New Orleans,
LA, June 20-22, 1977, pp. 32-42.

IBM J. RES DEVELOP. & VOL. 24 ¢ NO. 4 ¢ JULY 1980

3. K. A. Chen, M. Feuer, K. H. Khokhani, N. Nan, and S.
Schmidt, *“The Chip Layout Problem: An Automatic Wiring
Procedure,”” Proceedings of the 14th Design Automation
Conference, New Orleans, LA, June 20-22, 1977, pp. 298-
302.

4. N. Christofides, ‘**Worst Case Analysis of a New Heuristic for
the Travelling Salesman Problem,”” Management Sciences
Research Report No. 388, Carnegie Mellon University, Pitts-
burgh, PA, 1976.

Received April 20, 1979; revised September 5, 1979

The author is located at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York 10598.

485

W. E. DONATH

