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Proximity  Effects  in  Electron  Lithography:  Magnitude 
and Correction Techniques 

Proximity  effects  due  to  electron  scattering in the  resist  and  substrate  seem  to  set  a  fundamental  limit  to  the ureul density 
that  can  be  achieved in electron  lithography.  This work briefly  reviews  the form  and  the  magnitude of the  proximity 
Jlrnction and  its  extent as evidenced  by  deviations in designed linervidths. It  also  discusses  methods to decrease  the 
proximity  effect  as well as the  algorithms  used  for  correction ojsuch  effects.  

Introduction 
The proximity effect [ 1-81 in electron lithography  refers 
to undesired exposure of a resist in regions  adjacent to 
those actually addressed by the electron beam  (e-beam). 
The manifestation of this  undesired exposure is that some 
shapes [9] develop  less completely  than others. If devel- 
opment is allowed to proceed until all shapes  are com- 
pletely developed, some shapes may be  larger  than de- 
signed, while gaps between  shapes may be smaller  than 
designed or  even  nonexistent. 

Figure 1 [especially Fig. l(a)] illustrates  this effect. The 
small shape A remains underdeveloped, while regions 
within the large shape B are completely  developed. Long 
shapes adjacent to large shapes  are especially  susceptible 
to problems  since parts of such shapes not in proximity 
to  other  shapes, e.g., C and D, are underdeveloped, 
while parts  adjacent  to large shapes  are overdeveloped. 
This  leads to  decreases in the  gaps between  shapes E. 
Further  development of such a  pattern  can result in  the 
closing of such gaps. 

The  fundamental aim of any  proximity effect correction 
technique is to provide all shapes in the  pattern with ap- 
proximately  the same level of development (i.e., the same 
type of wall profile). The type of wall profile is deter- 
mined almost  exclusively by the  exposure  and/or devel- 
opment conditions.  For  example, if certain  exposure  con- 
ditions  were to yield sloping walls in a nominal 5-pm  pat- 
tern,  a proximity correction technique would attempt to 
reproduce such wall profiles in all shapes (especially in 
smaller ones) in the  pattern. 

Proximity function and the extent of its effect 

Phenomena 
The  developed image in the  resist is formed  through  the 

Figure 1 (a) Optical  micrograph of an  uncorrected pattern cumulative action Of physical  phenomena. They 
showing  underdevelomnent due  to  intrashaoe Droximitv effects can be delineated as 1) scattering of incident and second- 
at poin;A and at points  C and  D. Overdevelopment due'to inter- ary electrons in  the  and  substrate, 2 )  energy depo- 
shape proximity effect is seen  at point E. (b) Optical  micrograph 
of a SPECTRE-comected shown i n  Dissection of a sition in the resist and concomitant  restructuring of the 

" 

complex  pattern  into (c) I j  rectangles and ( d ) 2 1  rectangles. resist  molecules, and 3) action of the  developer on the 
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molecules in the  resist. Some of these  processes have 
been modeled in detail.  The  interested  reader is referred 
to Refs. [4-61 for discussions of electron scattering and en- 
ergy deposition in electron resists on  substrates. Models 
of developer  action on irradiated resists  are discussed in 
Refs. [ I O - I  I ] .  In this paper we restrict  our interest to  the 
net influence in the resist of  all these phenomena. Thus, 
we can  disregard the details of each of these processes if a 
formulation describing  the  cumulative process can be de- 
fined. 

Proximity ,fitnction 
The proximity function is defined as  a point-spread  func- 
tion relating the  “influence” in the resist  at a point at a 
distance r from the point of incidence of the  beam.  This 
influence is the  cumulative  action of  all the  phenomena 
discussed  previously  and  has  also  been  referred to as re- 
sultant exposure [8], effective exposure [ 121, specific frag- 
mentation (see Ref. [ 131, specifically [ 13a]), etc. Based on 
the calculations of electron scattering  and  energy  deposi- 
tion studies [4-61,  it has been  postulated [7] that  the prox- 
imity function . f ( r )  can be approximated by the sum of 
two Gaussian functions related to the influences of the 
forward (characteristic width p,) and  backward  (charac- 
teristic width p,) scattered electrons [see Fig. 21. Thus, 
the proximity function  can be written [8, 13a] as 

f ( r )  = k [exp ( - r 2 / & )  + rl,,p:/P;exp (-r2/pt)l, ( 1 )  

where X. is a constant and T~ is the  ratio of integrated con- 
tributions of backscattered  to  forward-scattered elec- 
trons. The detailed  derivation of this equation can be 
found in Ref. [ 141. One  fundamental  assumption made in 
deriving Eq. ( I )  is that the  distribution of energy  deposi- 
tion is directly  related to the distribution defined by the 
proximity function: see Ref. [IS]  for  further discussion of 
this assumption. A Monte Carlo simulation of electron 
energy deposition  has shown [I41 that  a Gaussian  func- 
tion serves as  a good approximation for  the backscattered 
electron distribution  from a silicon substrate.  For high 
atomic weight substrates like copper  and certainly  gold, 
the backscattered distribution needs  to be described by 
two  Gaussians [ 141. While the forward-scattered distribu- 
tion at  the  surface of the film cannot [ 161 be described by 
a Gaussian, one finds it to be a fair  approximation  at the 
resist-substrate  interface. Recent calculations [ 171 in- 
dicate that two Gaussians yield an even better approxima- 
tion to the forward-scattered  distribution, especially 
when the incident electron beam diameter is small. For 
mathematical simplicity one  generally considers only a 
two-dimensional proximity  function ( i . r . ,  independent of 
z ,  the  distance  into the resist from the surface).  Thus, one 
assumes thatf(r)  is either appropriately  averaged over all 
z in the resist,  or is considered for  a particular value of z 
( r . g . ,  at  the resist-substrate  interface). 

Figure 2 Schematic of the  proximity  function.  The  forward- 
scattered  distribution (---) has  characteristic  width &, while 
the  backscattered  distribution (----) has  characteristic width &. 

Table 1 Proximity  function  parameters for silicon substrates. 
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*Determined from (, and c’,, value\. 
tDeduced from graphlc data. 
$Except for  the  data  from  Ref. [I41 for a point source. pf implicltly  involves  a con- 
volution of the  incident  beam  dlstribution  with  the  forward-scattering  distnbution. 

 copolymer. COP. 
OI keV = 1.602 x J .  Throughout  text  energy  values are given in keV. 

Purameters j b r  the proximity function 
The three parameters  that  characterize  the proximity 
function are pf, p,,, and vk;. These can in principle be ob- 
tained either  from theory  or  experiment [ 12, 13c, 14, 18- 
201: however, there is considerable discrepancy and con- 
troversy over  these values.  Table 1 shows  a compendium 
of the parameters for  the  case of 20-25-keV electrons in- 
cident on resist films on Si. The various  values of p, are 
admittedly difficult to  compare, since the  reported values 
depend on the incident  e-beam diameter p*. Since p, is 
very weakly affected by B*, it can be used to make more 439 
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direct comparisons between  the  values of various  work- 
ers [ X ,  13c, 201. The  parameter r ) ,  is also subject to  con- 
troversy [8, 12. 14, 18-19]. The reason  for  these dif- 
ferences in p, and qE, whether due  to differences in ex- 
posure or  developer  conditions, is at present unclear. We 
propose the adoption of a set of values that may be opera- 
tionally useful (;.e., their use gives “adequate” results) 
for the  lithographic  conditions noted in Table 1. These 
are: p, - 0.1 pm, p, - 2.5 pm, and r)E = 0.9. 

The trends in the behavior of these  parameters  for dif- 
ferent  electron  lithographic  conditions (e.g., beam en- 
ergy, resist thickness,  substrate material, etc.)  can be es- 
timated from theoretical calculations [ 141. The value of p, 
is expected to increase with increasing  resist  thickness or 
with increasing depth into  the resist,  to  decrease with  in- 
creasing beam energy, and to be essentially  independent 
of the substrate material. On the other  hand, since p, 
seems [I41 to be monotonically  related to the range of 
electrons in the  substrate, it decreases dramatically with 
increasing  atomic weight of the  substrate. (When the 
backscattered  distribution  becomes  bimodal,  two  param- 
eters  are  required.) It also increases with increasing beam 
energy and is weakly influenced by the resist  thickness or 
material. The value of qK increases with increasing  atomic 
weight [ 14, 18, 191 of the  substrate and is only weakly 
dependent on resist  thickness [14]. The relatively weak 
dependence of both p,) and r), on the resist  thickness fur- 
ther  substantiates  the previously discussed  assumption 
that  the proximity function is independent of z .  

0 Magnitrtde o f  the proximity effect 

The magnitude of the proximity effect can be assessed by 
calculating the influence E in the resist at a point r i  due to 
the writing of a complex pattern  (consisting of m shapes, 
each with area A J :  

E ( r i )  = 2 1 f ( r i j ) d A , ;  r j j  = Ir, - rjl. ( 2 )  

These values of F at  particular  points in the  pattern can be 
used to determine  deviations  from  designed pattern di- 
mensions. Thus,  an  estimate of the magnitude of the 
proximity effect can be obtained for a given proximity 
function. The  deviations from the designed  pattern di- 
mensions have  been  calculated as shown in Ref. [21]. On 
the basis of these  data, the following generalizations can 
be made: I )  The dimensional  deviations  seem to be only 

./=I . I J  

1-2 pm. For  smaller p, (51.0 pm),  however, large dimen- 
sional deviations are not obtained even  for vE - 1.0. 
3) The  parameter ,B, strongly determines dimensional 
deviations and  edge definition of patterns with e,, 5 1 pm. 
Since p, is determined by incident e-beam diameter and 
the  forward  spreading of the beam in the resist  (via  resist 
thickness and  composition),  these  latter quantities are 
critical  for  submicron  lithography. 

One can conclude  that  even  for a finely focused  beam 
and a sufficiently thin  resist film (yielding  a  cumulative p, 
= 0.1 pm), the  proximity effect will be significant enough 
to lead to dimensional  deviations for geometries as large 
as - 1  pm. If the beam is larger and/or  the film thicker, 
the proximity effect may be evident even at  dimensions as 
large as - 2  pm. 

0 Methods fhr  drcreasing the proximity qfect 
Basically, two  types of schemes  can be used to  decrease 
the magnitude of the proximity effect. The first consists of 
changing the  incident  electron  beam energy:  the  second, 
of changing the substrate  and/or the  resist  composition 
and thickness. Both methods rely on altering the magni- 
tude and distribution of energetic electrons in the  resist to 
obtain  a decrease in the proximity effect. 

Incident e-beam  energy Theoretically it  is predicted 
that a significant decrease in the  proximity effect may be 
possible with incident  electron  energies 240 keV [14. 211. 
Qualitatively,  such  behavior  can be understood as fol- 
lows. An increase in incident electron energy  leads [ 141 to 
an increase in the  extent of the backscattered electron 
distribution Ph; however,  the contribution of such  a  distri- 
bution relative to  that  due  to  forward-scattered  electrons 
decreases ( r )  decreases).  Thus, the  proximity effect may 
decrease if backscattered  electrons  are dispersed over a 
large enough area  for  their influence at any given point to 
be relatively insignificant. 

A  decrease in the proximity effect can  also be achieved 
by using incident electron energies of =10 keV.  This  has 
been shown [22] to be  especially true in thin resist films 
(50.3 pm) and  for pattern dimensions 2 1  pm. Qualita- 
tively, such a behavior can be understood  as follows: p, 
decreases with decreasing incident electron  energy. If p,) 
< I pm (the case [ 141 for electron  energy -10 keV), little 
proximity effect is expected for I-pm lithography.  How- 

weakly dependent on the  exact magnitude of p,, as long as  ever, proximity effects for submicron  lithography are  ex- 
it lies in the  range -1.0-2.5 pm.  However, when p, is pected to be even more  severe in such a case. 
-5  pm, the dimensional  deviation seems  to  decrease sig- 
nificantly. 2 )  The role of qE is difficult to  assess: its influ- Substrates Use of appropriate  substrates may also lead 
ence  seems to be related to the  magnitude of p,. For  ex-  to a decrease in the proximity effect. Investigations with 
ample, large values of both qE and p,, lead to significant substrates involving [ 12, 231 thin layers of high atomic 
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low-Z substrate  have shown  a  potential for decreasing 
proximity  effects. Results [23] obtained using Monte 
Carlo calculations for thin gold films between  I-pm 
PMMA and  a  silicon substrate (Fig. 3) show a minimum 
qE (and thus minimum proximity effects) as  the gold film 
thickness is increased  from  zero  to infinity. This behavior 
has been at least  qualitatively substantiated experimen- 
tally [12, 18-19]. A value of qE = 0.44 was  measured [I21 
for a 1-Fm PMMA film on a 350-nm Au film on garnet: 
while 7, = 0.9 and qE - I .5-2.0 were  measured for silicon 
[I21 and gold [18, 191 substrates,  respectively. A plausible 
explanation of this  effect is that  the  presence of the high-Z 
(e .g . ,  gold) film leads  to a slowing down of electrons en- 
tering the  substrate  and a decrease in the  number of elec- 
trons re-entering the  resist.  Thus, a film with appropriate 
thickness may act like a “filter” to  backscattered elec- 
trons (inset in Fig.  3).  Finally,  investigations [21] of di- 
mensional deviations for simple patterns indicate that  for 
high-Z substrates  the proximity effect is less  than  for low- 
Z substrates  for  pattern dimensions 2 1  pm. For smaller 
dimensions,  the  reverse is true. 

Correction of proximity  effects 

0 Prognosis  for correction 
In principle, the  problem of incorrect  development  and 
subsequent linewidth  variation  can never  be completely 

I Au film thickness ( E m )  

Figure 3 Monte  Carlo  calculated values of qE as a  function of 
the thickness of the gold film sandwiched  between 1 pm of 
PMMA and a silicon substrate; E, = 25 keV.  The inset shows 
“filtering”  action on the  backward-scattered  electrons  due to the 
gold film. 

these  are based on  adjustments  to  either  the  pattern di- 
mensions or the  electron  exposure. 

corrected  because  there is n o  means of directly  con- 
trolling exposure of the resist due  to  scattered electrons in 
regions not addressed by the electron beam. While com- 
plete  correction in all regions of the pattern may be  pos- 
sible, for practical electron lithographic systems it may 
also be unnecessary. 

0 Adjustment of pattern  dimensions 
A  technique  involving changing the pattern dimensions is 
probably the simplest to implement on an  electron lith- 
ographic  machine; however, explicit determination of 
such changes is far  from trivial. This technique is easy to 
utilize because only the  pattern  data  directed  to  the ma- 

A viable proximity effect correction technique for a 
practical electron lithographic  system  must  provide  ade- 
quate compensation for proximity  effects for all shapes in 
the  pattern.  Two  phrases need elaboration: First,  “ade- 
quate  compensation” implies that only that level of prox- 

chine  are afFected by proximity corrections;  the operation 
of the machine is not  affected. Thus, this technique is es- 
pecially useful for machines that  cannot  change electron 
exposure from shape  to  shape within a pattern, e . g . ,  an 
electron  projection  lithography  machine. 

imity compensation is demanded which is physically and 
practically meaningful in comparison with the resolution 
of the lithographic system.  Second, “all” shapes in a 
complex pattern need to be corrected, i . e . ,  those  that lie 
within an array as well as those that lie at  the periphery of 
an array or are  “isolated.” In addition to this  require- 
ment,  the following are highly desirable features of a vi- 
able proximity correction technique. First,  it should  be 

Several methods  have been reported  for computing 
changes in pattern dimensions [ l3a, 24,251; all rely on  the 
establishment of criteria for the magnitude of the proxim- 
ity effect.  One such criterion [24,25]  can  be  the value of E 

[Eq. (2)] at selected  “sample” points [Fig. 41 in each 
shape of the  pattern.  Another criterion [13a] can  be the 
average  value of E over  the  entire  shape: 

implementable for  large, practical electron lithographic 
patterns, with only  reasonable requirements  on computa- 
tion time and storage.  Second, it should require minimal 
human  intervention or interpretation of pattern. Compu- = 5 1 I lA f(ri j)dA#A,.  (3) 
tationally,  the corrections should be mathematically J = l  A, A ,  J 

unique and  have  no ambiguity based on  the method of Consider  next the  methods of computation  and  some  re- 
computation. Two  such techniques are now discussed;  sults  that  are  obtained when  each  criterion is imposed. 

E ,  = I,, E(r,)dA,lA, 
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A 

Figure 4 Schematic  showing  two  definitions (X and 0) of four 
“sample”  points  per  shape in each of the two shapes of a pat- 
tern. 

If the  calculated  values of E at the  sample  points are 
imposed to  be  equal, a set of equations can be obtained 
whose  solution  yields  approximations to  the dimensional 
changes in patterns.  For m shapes in  a pattern,  each with 
designed dimensions {x:} and areas A;, the  corrected (ex- 
p o s e d )  dimensions are {x ‘ i } ,  each with area A:. Requiring 
that E at each of the n sample  points in m shapes be  equal 
to  some value eo, one  obtains a system of s equations: 

E,, = EK(rj) = 2 f ( r t j )dA, ,  K = 1 ,  2, . . ., s. (4) 

Here, s = m x n and is the total  number of sample  points 
where E is considered.  In principle,  solutions to such 
equations for {x;} can be  obtained in the  least-squares 
sense since s > m. In practice [24], only a small number 

/:, I*: 

of shapes (510’) have been  simultaneously corrected by 
such a technique.  The solution  unfortunately is not al- 
ways  unique; i .e., a range of values of the  corrected di- 
mension {x;} yields equally good least-squares solutions 
to  Eq. (4). In addition, the  least-squares minimization and 
optimization requires human interpretation  and inter- 
active computing. Some may consider such requirements 
to be undesirable if the technique is to be  used for a 
“black  box” lithographic tool for proximity corrections. 

For simple patterns  such  as isolated shapes and shapes 
adjacent to large areas,  Eq. (4) can  be  solved  exactly. In 
the  case of isolated lines, imposing E to  be  equal at the 
edge of a line (independent of linewidth) yields [25] exact 
solutions to  Eq. (4), as  shown in  Fig. 5. Also shown (as 
error bars) are empirically determined  values of linewidth 
changes  that  have  been used [26] operationally in electron 
lithography. The  good agreement adds credibility to  the 
assumption of imposing equal values of E at the  edges. 
Application of Eq. (4) to geometries with more than one 
variable  dimension requires [25] iterative  solution of non- 
linear  coupled equations.  For more  complex geometries, 
e.g., a line adjacent  to a large area, graphic  solutions are 
possible, as  described in Ref. [25]. 

The definition of the  “sample”  points where E is calcu- 
lated is subject to ambiguity  and is thus a source of error. 
This  can be qualitatively seen through  Fig. 4, where the 
two sets of placements of the four points per shape can 
lead to significantly different values for  the intershape 
proximity effect that is received by shape B due  to  shape 
A. This  problem can be  ameliorated by consideration of 
the average value of E ,  as defined in Eq. (3), throughout 
the shape,  rather  than values of E at specific points. If for 
m shapes in a pattern,  each with designed  dimensions {.i;} 
and area A;, one  requires the corrected  (exposed) dimen- 
sions {x;} and  area A;,  one has to impose E ,  to be equal to, 
say E,,, for all I and  solve a system of m equations: 

K = 1 ,  2 ,  . . ., m .  ( 5 )  

Since  such a system of equations  has more  unknowns {x;} 
than constraints m ,  it is found to be underdetermined. 
The  solutions of such a system are  at best  arbitrary and in 
general, infinite. For  example, in the  case of two inter- 
acting rectangles,  the number of unknowns can be as 
many as eight corresponding  to  the eight  sides of the  two 
rectangles, while only two  equations  are obtained. 

If the  number of dimensions in a shape  that can  be  ad- 
justed is reduced to only  one per  shape,  the under- 
determined system of equations in (5) becomes  a fully de- 
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termined system of equations.  This  can be accomplished 
by a  subjective  human  interpretation of a  pattern. Alter- 
natively, one  can arbitrarily define one variable per 
shape. For example, if one defined k,  to be a  number such 
that k: could be a  measure of the “magnification” of a 
designed shape  over  an exposed shape,  then  one can 
write for rectangular shapes: k,Ax; = Ax:: and kJAy; = 

Ay:. Thus,  Eq. ( 5 )  becomes solvable,  though  not trivially. 
This is because of the variables k,  being embedded in the 
limits of the  four-dimensional  convolutional integral in 
Eq. (5 ) .  

The above discussions lead to the conclusion that while 
exact solutions for some simple geometries  are possible, 
solutions for  arbitrary patterns are  extremely difficult to 
obtain even after significant approximations. In practice, 
empirical corrections  to  the designed  dimensions of pat- 
terns have been deduced [26] after experimental observa- 
tions of variations in pattern dimensions. While good 1-  
pm pattern fidelity has been reported, such an empirical 
table “look-up”  technique is beset with difficulties. For 
example [26], small  variations in focusing, exposure, or 
development conditions can lead to large variations in 
pattern  dimensions.  Such  problems can be partially mini- 
mized by defining more than one table, each optimized for 
a specific type or size of pattern. However, for an arbi- 
trary pattern, ambiguity in interpretation  can occur. 

0 Adjustrnent of electron exposure 
Appropriate adjustment of incident electron  exposure can 
compensate for proximity  effects.  Such compensation, 
however,  relies on the benevolence of the e-beam ma- 
chine. In particular, the pattern generator determines 
whether  each shape in the pattern can be  written  with, if 
necessary, different levels of incident electron  exposure, 
or whether  sections (e.g., periphery, corners,  etc.) within 
shapes can be written with yet other levels of exposure. 
Thus, with consideration of the  freedom granted by the  e- 
beam machine,  a  criterion  based on  the value of F has to 
be established. As with techniques involving adjustment 
of pattern dimensions, we develop techniques that con- 
sider values of E at discrete  “sample” points in a  shape as 
well as average  values of E over  the  area of a shape. 

Calculation of E at predefined “sample” points (Fig. 4) 
can lead to  approximate values for exposures necessary 
for the compensation of the proximity  effect. If for m 
shapes in a pattern,  one defines n sample  points  per 
shape, then one  obtains s = n x m equations: 

c(rJ = 2 n I j A ,  f ( r , ) d ~ , ,  I = I ,  2,  . . ., s, (6) 
/ = I  

where n, is the  incident  electron exposure (in electrons or 
coulombs  per unit area)  for  shape m. If each of the &(Ti) 

I I* ( p m )  

Figure 5 Calculated values [ 2 5 ]  of the dimensional change 
(t?c,/6d) necessary for proximity correction of isolated squares 
(----) and “infinite” lines (-) with widths ed. Experimental 
data,  shown  as error bars, are from [26]. 

are required to be equal,  then solutions of these s equa- 
tions  for m < s unknowns can be obtained in a  least- 
squares  sense. As has  been  discussed above (see  also 
Refs. [13a, 24]), such solutions are inherently  ambiguous 
due  to  subjectiveness in the definition of sample points 
and due  to  the  dependences of such  solutions on initial 
“guesses”  for a least-squares  approximation. In spite of 
shortcomings, such a technique has  its strength.  Notably, 
it allows more  sample  points to be  placed  where  the pat- 
tern is most critical, and fewer  where it is less  critical. 
Such a  human interpretation of the pattern could be infea- 
sible for  a  complex electron lithographic pattern.  The use 
of sample  points to optimize pattern  data by dissecting 
shapes within a pattern into appropriate  subshapes  or seg- 
ments  has  been discussed  elsewhere [27]. 

A  technique that is independent of the subjective  inter- 
pretation of the  pattern can be developed if E [given by 
Eq. (3)] is used as a  criterion  for the magnitude of the 
proximity effect. If for each  shape in the  pattern  one cal- 
culates E ,  and imposes it to be equal  to, e.g . ,  E ,  for all 
shapes in the  pattern,  one obtains  a system of m linear 
equations: 

E., = 5 n, i,, [4J f (r,J)dA,dA,lA,> 
I =  1 

I = I ,  2 , .  . ., m. (7) 

These fully determined  systems of m linear equations  for 
the rn unknowns (n,) can be solved exactly.  Thus,  the 
strength of this self-consistent technique [8] is that  a 
unique solution is obtained which is independent of any 443 
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Figure 6 (a) Dimensional deviation (e, /ed) for isolated squares 
(-) and lines (----I of designed widths e, in the case  of uncor- 
rected patterns (Curves 1) and  patterns corrected via the self- 
consistent technique (area averaged correction-Curves 2) and 
the algorithm given in the Appendix (edge adjustment correc- 
tion-Curve 3). (b) Corresponding exposure values a,. The prox- 
imity function parameters  are p,= 0.1 pm; p, = 2.5 pm; 7, = 
0.9. 

subjective and ambiguous  interpretation of the  pattern. It 
should  be  noted that  the quality of corrections  depends  on 
the  pattern  data used in the  solution of Eq. (7). While 
good corrections  are found (vide  infra) where  shapes of 
approximately similar sizes comprise a pattern, it is found 
[28, 291 that subdivision of large shapes is necessary in 
certain cases  for  adequate proximity correction. 

Nevertheless,  the  technique  has a  shortcoming.  It  con- 
siders  the  value of E at  each point in each  shape in the 
pattern democratically.  Since the value of E at certain 
points (e.g., along the periphery or at a corner) of a shape 
may be more  critical than  at  other points (e.g., within an 
interior of a large shape),  an unequal weighting of parts of 
a pattern may have  to be considered. 

In principle, the value of E at critical  locations in a 
shape  can be considered explicitly. Several algorithms 
[13a, 24, 301 have  been  proposed.  Two of these rely on 
the calculation of E at  certain sample  points [24] or within 
certain regions [13a] along the  periphery of shapes in a 
pattern. Such calculations  are in addition to  the calcu- 
lation of E or El in the interior of a shape.  Thus this addi- 
tional constraint,  without  any additional degrees of free- 
dom (i.e., one  incident  electron  exposure value per 
shape), leads to  an  overdetermined  system of equations. 
Once again, the  solutions can be obtained in the least- 
squares  sense, with all the  concomitant ambiguities. 

Another  algorithm that avoids such ambiguities by re- 
maining within the self-consistent framework [30] consid- 
ers  the values of E at a  point  A  located midway along the 
side of length 2a of a  rectangle of width 2b. It  can be 
shown  (Appendix 1)  that 1) the value E at point  A, E * ,  

decreases  as  the dimension of an isolated  uncorrected 
shape  decreases.  This leads to  the well-known under- 
development of smaller  isolated shapes  as  compared  to 
the large shapes. 2) The self-consistent  algorithm given by 
Eq. (7) leads to  an  “overcompensation.”  That  is, while 
perfect compensation should yield E* independent of a ,  
the values of nI obtained from the  solution of Eq. (7) lead 
to values of E* that  depend  on  (increase with) a.  3) This 
overcompensation  can be  exactly corrected  for isolated 
shapes by the multiplication of nl by  a factor F given by 
Eq. (A6) in the Appendix.  Results for isolated squares 
and lines, Fig. 6(a), shown in terms of the dimensional 
deviation faled, indicate that  “perfect” compensation is 
achieved. Corresponding values of incident exposure n, 

are shown in Fig. 6(b). In  the  case of geometries involving 
intershape  proximity  effects, the  overcorrection  due  to 
the self-consistent technique is again reduced [30] signifi- 
cantly by use of the  factor F.  Note  that  the self-consistent 
technique seems  to significantly overcompensate only for 
dimensions <0.5 pm. 

Comparisons 
The  strengths  and  weaknesses of correction algorithms 
can be summarized as follows. Algorithms that adjust 
pattern  dimensions, though  favored on  the basis of com- 
patibility with electron lithographic hardware, have  short- 
comings. First,  the  corrections  are  extremely difficult and 
probably  impossible to calculate for  arbitrary  patterns. 
For simple patterns, calculations have been  possible  and 
table  look-up schemes have sometimes been  developed to 
avoid computational complexities. Note,  however,  that a 
table  look-up scheme would be inadequate  for a pattern of 
the type  where rectangles of approximately the  same size 
suffer from significant intershape  proximity  effects in 
some  locations [ e . g . ,  rectangle F in Fig. l(a)] but  experi- 
ence very little effect in others [e.g., rectangle C in Fig. 
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l(a)]. This can  be  better  understood by considering the 
value of E through a cross-section of an isolated line (Fig. 
7 ) .  If the  development level, as defined by a large shape, 
is set  at E = 0.5, the  uncorrected linewidth tu will be sig- 
nificantly narrower than  the  designed  linewidth fd. In- 
creasing the linewidth of the exposed line tex can also 
yield a  developed shape with the  correct dimension. 
However,  such a shape is quite  sensitive to  the develop- 
ment level E ;  an  increase in E from =0.5 to 0.6 would lead 
to serious underdevelopment.  This has  been  demon- 
strated by experiments involving the sensitivity of this 
technique to  development conditions [26]. 

The algorithm that adjusts incident  electron  exposures 
can yield not  only the  correct value of E at  the designed 
edge, but  also (through greater slope of E in Fig. 7 )  less 
sensitivity to  the  developer. This  relative  insensitivity to 
small errors in the development  conditions is a significant 
strength of any technique that adjusts incident exposures. 
An additional strength of such  an algorithm is  in its appli- 
cability to  arbitrary  patterns.  In our experience  the com- 
puting time for corrections  for  arbitrary  patterns is found 
(see details in the  next section) to  be  comparable  to or 
less  than the time for post-processing of such  patterns 
generated by means of a  computer-aided design system. 
Since  the quality of corrections obtained  via an  exposure- 
adjustment  algorithm depends  on  the partitioning of the 
pattern into elementary  shapes, some  special  decomposi- 
tion of the  pattern is found to be necessary [28, 291 for 
certain types of patterns. Finally, it should  be noted that 
while there  exists  no means to explicitly  control  incident 
electron exposure in regions outside of those  addressed 
by the  e-beam, some special consideration  for  exposure 
near  edges of shapes must be considered, e.g. ,  through 
algorithms discussed in the  Appendix. 

Experimental  results 
The most important  requirement of any proximity effect 
correction  technique is that it yield “adequate”  correc- 
tions for all shapes in the  pattern. While not all of the 
above mentioned  algorithms  have as yet  been  experimen- 
tally evaluated, enough  evidence exists  to  form some ten- 
tative conclusions. 

Experimental results for  algorithms involving adjust- 
ment to  pattern dimensions  have  been reported [24, 261 
using table  “look-up’’  and  “contour-fitting” schemes. In 
the former  case, simple patterns (lines  and pads) were  ex- 
posed with appropriate dimensions that were  determined 
a priori from experiment and stored in several tables.  The 
exposed patterns with the  corrected dimensions are re- 
ported to be within r O . 1  pm of the design. In the  latter 
technique, E values  at sample points along the  “contour” 
of a shape were calculated. Using a least-squares tech- 

1 .O 

I Linewidth 

Figure 7 Schematic of E through an isolated line of width e, for 
an uncorrected pattern (-); for a proximity-corrected pattern 
via a dimension adjustment technique (-e-*-); for a prox- 
imity-corrected pattern via an exposure adjustment technique 
(---). 

nique, pattern dimensions  (as well as  exposures) were 
varied until E values along the  contour  were approxi- 
mately uniform. An algorithm has recently  been reported 
[3 I ]  which is applicable to a large pattern  and which con- 
siders adjustments  to both pattern dimension  and  ex- 
posure:  pattern fidelity of 0.2 pm  seems  to be evident. 

Experimental results  for  patterns involving  adjustment 
of incident electron  exposure  are more extensive.  The 
first reported [8] proximity correction  technique used was 
the  self-consistent algorithm [Eq. ( 7 ) ] ;  numerous experi- 
mental results using this  technique have been reported. 
Another similar exposure  adjustment technique  has also 
been reported [32]. Results  for  simple patterns have 
shown  improvement in pattern fidelity. Rounding at cor- 
ners of shapes  was avoided by computing different ex- 
posures in elemental areas along corners and the periphery 
of shapes.  Exposure  adjustments  have also  been deter- 
mined [33] via  a Monte Carlo  calculation of exposures 
within a  resist pattern defining a source/drain region of an 
FET. 

The self-consistent  technique has been  used [8, 13c, 34, 
351 on a  variety of patterns and  under  a  variety of experi- 
mental conditions.  Intrashape proximity  effects lead to in- 
complete development of smaller shapes  [see  for example 
the 1- and  2-pm squares and lines in Fig. 8(a)], while all 
larger shapes  have  developed completely. Here,  as in all 
results presented  below,  the  development conditions 
[ I ~ c ]  are  chosen  such  that  the largest shapes in the pat- 
tern (typically a 5-pm line) are fully- but not over-devel- 445 
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Figure 9 Incident  electron exposure values  necessary to  cor- 
rect for proximity effects in a pattern consisting of a collection of 
lines with a  variety of widths and spacings  between  lines. Note 
that  incident  electron exposures  are normalized to unity for an 
infinitely large area.  The proximity function  parameters  are 6, = 
0.1 prn; 6, = 1.0 pm; = 0.6 (0) or 1.0 (x). 

oped. This development criterion  makes  realistic com- 
parison between corrected and uncorrected  patterns.  The 
corrected  pattern is shown in Fig. 8(b); notice that com- 
plete development of all parts of the  pattern without mea- 
surable (<O.I-pm)  error in pattern dimensions is ob- 
tained. The proximity  function parameters used in this 
case were p, = 0.1 pm, p, = 1 .O prn, and vE = 0.6. Ex- 

446 posure  values that  were obtained  from the solution of Eq. 

(7) are shown in Fig. 9 for  two  sets of proximity  function 
parameters  and for  patterns consisting of a  collection of 
lines with 0 . 2 5 ,  0 . 5 ,  I - ,  and 3-pm widths  and gaps be- 
tween  lines. Exposures  for isolated  lines and  squares  are 
also shown.  Note  that  exposures using the  correction dis- 
cussed in Appendix 1 have not been shown.  They  can be 
easily obtained by multiplication of the values from Fig. 9 
with the  factor F from  the Appendix. [At present, no ex- 
perimental evaluation of this new correction algorithm 
has been  performed.] 

A program package called SPECTRE (for Self-consis- 
tent Proximity Effect Correction Technique for  Resist 
Exposure)  has  been  developed [8, 13c] that  takes  as its 
input pattern data  and  the  parameters  for  the proximity 
function.  Without any interpretation of the  pattern  data, 
the  program outputs  pattern  data with appended values 
for exposure  changes. Since  the  e-beam  machine hard- 
ware  stipulates  only one  exposure value  (or scan speed) 
per shape,  SPECTRE  computes only one  exposure value 
per shape. A flowchart for  the  SPECTRE program  pack- 
age [13c]  is shown in Fig. 10. An interactive program 
(SPECREAD) accepts  user inputs  regarding e-beam ma- 
chine  and pattern  parameters.  The  pattern is divided into 
various zones (via  ZONMAP)  based on  whether proxim- 
ity corrections  are  to be performed on all shapes (if the 
pattern is nonrepeating) or  whether only  some shapes  are 
to be corrected (if the  pattern is repeating)  and the results 
replicated to  the  rest of the repeating pattern.  The pro- 
gram TAGSHP  tags  each  shape in the  pattern according 
to the  zone it belongs in. The tagged pattern  data  are 
sorted (via SORT) and  then passed to  the main computing 
program  (COMPC) for automatic exposure calculations 
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of each  shape via the solution of Eq. (7) for one  zone  at a 
time. The typical computation time we obtained [8, 13c] 
for  every shape in an arbitrary pattern consisting of IO4 
rectangular shapes using an IBM 370/168 computer (4” 
byte  configuration)  was = I O 2  s, increasing linearly with 
the  number of shapes.  The memory requirement for exe- 
cution of the program is less  than 256K bytes. 

The quality of corrections obtained using the self-con- 
sistent  technique  can be seen  through the reexamination 
of Figs. I(b-d). The uncorrected pattern shown in Fig. 
](a) was  written by the e-beam  machine as a set of 13 
rectangular shapes  shown in Fig. l(c).  Data  for these 
shapes, after corrections using SPECTRE, yielded the 
improvement shown in Fig. I(b). An alternate pattern 
data definition, shown in Fig. I(d), in terms of 21 rec- 
tangular shapes, yielded almost  identical patterns after 
corrections.  Generally,  pattern redefinition is unneces- 
sary [34, 351 for proximity corrections using SPECTRE 
except in situations  where large shapes  are  separated by a 
small gap [28] or  where small shapes  are in proximity with 
only  some  parts of a  large or long shape [29]. 

SPECTRE  has  been used routinely for experimental 
studies on I-pm  MOSFET VLSI devices [34] (see Fig. 
11).  In the case of the 8K FET RAM, the final metal level 
was lithographically the most difficult. This  was due  to 
the  requirement for a 1.3-pm-thick PMMA resist in order 
to ensure lift-off of a  0.5-pm AI layer over a 500-nm to- 
pography;  see  Figs. 11 and 12. The  parameters used here 
were Pr = 0. I pm, PI, = I .O pm, and qE = 0.6. The  nor- 
malized exposure values used to  correct this  level, which 
consisted of =2.2 x IO4 shapes,  are  shown in Fig. 12. 
Note  that  the exposure value increases considerably 
when a chip is reduced  to half scale (yielding a  0.5-pm 
feature). Typical results [35] for  the  case of 0.5-pm 
bubble lithography are shown in Fig. 13. The micrographs 
show gold patterns of “C bars”  on polyimide substrates; 
these  were  obtained through the use of SPECTRE-cor- 
rected  electron  lithography. Thus, proximity correction is 
now routinely possible for practical  submicron lithogra- 
phy. 

Conclusion 
The deleterious effect of electron scattering in the resist 
and substrate  on  the lithographic image fidelity has been 
reviewed.  Phenomenologically,  a  proximity  function has 
been developed and  serves  as a  macroscopic  measure of 
the  extent of influence in the  resist due  to  electron scatter- 
ing. Modeling of such  a  function by a pair of Gaussian 
functions yields parameters that are amenable to physical 
interpretation  and  obtainable  from experiment and the- 
ory. 

SPFCREAD 

Pattern 
data 

Corrected 
pattern 

Figure 10 SPECTRE  flowchart.  See text and  Ref. [ I ~ c ]  for de- 
tails. 

The  magnitude of the proximity effect has  been  esti- 
mated through the use of the proximity function. This  has 
also led to an understanding of the  sensitivity or in- 
sensitivity of the  parameters in the proximity function. 
Methods  for decreasing proximity effects  have also been 
predicted;  existing sparse experimental data  are consis- 
tent with these  results. A  variety of methods  for correc- 
tion of proximity  effects have been  outlined  and  the 
strengths  and weaknesses of each  have been reviewed. 
While techniques utilizing adjustment of pattern dimen- 
sions are  attractive in terms of compatibility with electron 
lithographic machines that  do not allow exposure adjust- 
ment, they seem  to be practically implementable only 
with table “look-up” algorithms. Techniques involving 
adjustments of electron  exposures require an e-beam ma- 
chine  capable of suitable exposure  adjustments.  These 
techniques have the  strength of being readily  implementa- 
ble  in the  case of arbitrarily  complex patterns, but  the 
complexity of the  pattern  determines  the computational 
requirements. 447 
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Figure 11 Optical  micrographs of (a)  uncorrected and (b)  SPECTRE-corrected  pattern  from a I-pm MOSFET lithography. (Courtesy 
of W. Grobman et a / .  [34].) 

1.4 1.6 I .8 2.0 

Figure 12 Distribution of exposure values  for I-pm (black 
bars) and 0.5-prn (shaded bars) lithography for  SPECTRE-cor- 
rected  pattern for the  MOSFET lithography shown in Fig. 11. Pr 
= 0.1 pm; P, = 1 .0 p n ;  qti = 0.6. (Courtesy of W. Grobrnan et 
a / .  [34].) 

Experimental results have  been reported using some of 
the algorithms described  here.  The  table “look-up”  and 

448 pattern-dimension adjustment seem to have been at- 

1 tempted  only for simple patterns.  Techniques using ex- 
posure adjustment, especially the self-consistent  tech- 
nique, have been  more  extensively tested. In particular, 
the program SPECTRE, through  its ease of operation, 
has been  successfully used for  1-pm  FET and 0.5-pm 
bubble technologies. 

At present,  several  questions  remain.  For  example,  for 
any particular  level of lithography, one wonders  what ul- 
timate  resolution is attainable  through the use of proxim- 
ity correction  techniques,  or what minimum level of prox- 
imity corrections  are imperative for  any particular level of 
lithography. The sensitivity of the proximity  function pa- 
rameters to resist  materials  and thickness,  developer, 
substrate,  and  e-beam machine  conditions are  as  yet un- 
known.  Clearly, further work is necessary. 
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Appendix:  An  algorithm  to  reduce  overcompensation 
of proximity  effects in the self-consistent  technique 
The  values of E at points  A  and 0 in an isolated  rectangle 
can be calculated  via Eq. (2) for a particular form of the 
proximity function. Assuming for simplicity a single 
Gaussian (with characteristic width b), one  obtains 
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(b) 

Figure 13 Scanning electron micrographs of (a) I - p n  and (b) 
0 . 5 - p n  bubble-lithography-generated gold-plated x-ray masks on 
polyimide substrates.  In the former  case, note that O.5-pm gaps 
are  accurately  obtained; in the  latter  case the 0.2s-pm gaps  are 
smaller  than those designed. (Courtesy of D. Hofer et a / .  [35].) 

&(A) = 7r/2P2 erf (b lP )  erf (2a/P) ,  

~ ( 0 )  = 7rP‘ erf (h /P)  erf (u /P ) .  (AI) 

For isolated squares (with h = a ) ,  computed values (Fig. 
AI) show the expected  decrease in &(A) with decreasing 
a .  This  leads to  the underdevelopment of small isolated 
shapes  as  compared  to larger shapes. 

Using the “self-consistent”  technique, a value of in- 
cident  electron exposure n, can be calculated. Solution of 

I IBM J .  RES. DEVELOP. VOL. 24 NO. 4 JULY 1980 

Figure A1 Upper  part: Values of E at points A and 0 in an iso- 
lated shape, given by Eq. (AI). Note the decrease in E as a func- 
tion of a due  to an intrashape proximity effect. Lower part: Cor- 
rected values of E at points A and 0, obtained  through the use of 
the  self-consistent technique (-) and  the “edge-com- 
pensation” technique (---). 

0.1 1 10 I..” 
Figure A2 Values of exposure n, in the self-consistent tech- 
nique (-) and in the “edge-compensation” technique 
(---); the factor F ,  Eq. (A6), is also  shown. 

Eq. (7), with the  constraint  that E, = E ~ ,  a constant,  for all 
shapes (i.e., independent of a) yields 

4uhs, 
n,  = ~ 

where 

H(P) = [ I / &  - Q(2a/P)l[1/-\/;; - €Oh/P)I (A21 

and 

Q(X) = x erf (x) + I/-\/;;exp ( - x 2 ) .  

7rP4H(P) ,’ 
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The value of E at  a  point A,  eC(A), in the  shape exposed 
with the exposure n, is thus 

&‘(A) = n,&(A). (A31 

Computed values  for &(‘(A) show  (Fig. A l )  that E in- 
creases with decreasing a. Clearly,  one would prefer &(A) 
to be  independent of a;  thus, the “self-consistent” tech- 
nique  leads to  an  overcompensation. 

This overcompensation can  be  ameliorated  by multi- 
plying n, by a factor F given by 

The behavior of F and n, as functions of a is shown in Fig. 
A2. For isolated shapes, this factor  leads  to a  perfect 
compensation,  since  the  corrected value of E ,  E”(A), is 
given by 

E = n,FE(A), 

which is completely  independent of a. 

E( 
(A51 

For a realistic  proximity  function, defined by the  two- 
Gaussian-function equation ( I ) ,  the  factor F can be easily 
generalized: 

where 

G(PJ = erf (b/PJ erf (2alPJ. 

Figure 6 showed some  results obtained using this  “edge- 
compensation”  factor. For isolated squares and lines,  the 
compensation is perfect [at least in terms of ensuring that 
&(A) is independent of a] ,  while for shapes  adjacent  to 
other  shapes, a significant reduction in overcompensation 
is achieved. 
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