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Proximity Effects in Electron Lithography: Magnitude

and Correction Techniques

Proximity effects due to electron scattering in the resist and substrate seem to set a fundamental limit to the areal density
that can be achieved in electron lithography. This work briefly reviews the form and the magnitude of the proximity
Sfunction and its extent as evidenced by deviations in designed linewidths. It also discusses methods to decrease the
proximity effect as well as the algorithms used for correction of such effects.

Introduction

The proximity effect [1-8] in electron lithography refers
to undesired exposure of a resist in regions adjacent to
those actually addressed by the electron beam (e-beam).
The manifestation of this undesired exposure is that some
shapes [9] develop less completely than others. If devel-
opment is allowed to proceed until all shapes are com-
pletely developed, some shapes may be larger than de-
signed, while gaps between shapes may be smaller than
designed or even nonexistent.

(c) (d)

Figure 1 (a) Optical micrograph of an uncorrected pattern
showing underdevelopment due to intrashape proximity effects
at point A and at points C and D. Overdevelopment due to inter-
shape proximity effect is seen at point E. (b) Optical micrograph
of a SPECTRE-corrected pattern shown in (a). Dissection of a
complex pattern into (¢) 13 rectangles and (d) 21 rectangles.

Figure 1 [especially Fig. 1(a)] illustrates this effect. The
small shape A remains underdeveloped, while regions
within the large shape B are completely developed. Long
shapes adjacent to large shapes are especially susceptible
to problems since parts of such shapes not in proximity
to other shapes, e.g., C and D, are underdeveloped,
while parts adjacent to large shapes are overdeveloped.
This leads to decreases in the gaps between shapes E.
Further development of such a pattern can result in the
closing of such gaps.

The fundamental aim of any proximity effect correction
technique is to provide all shapes in the pattern with ap-
proximately the same level of development (i.e., the same
type of wall profile). The type of wall profile is deter-
mined almost exclusively by the exposure and/or devel-
opment conditions. For example, if certain exposure con-
ditions were to yield sloping walls in a nominal 5-um pat-
tern, a proximity correction technique would attempt to
reproduce such wall profiles in al/l shapes (especially in
smaller ones) in the pattern.

Proximity function and the extent of its effect

® Phenomena

The developed image in the resist is formed through the
cumulative action of several physical phenomena. They
can be delineated as 1) scattering of incident and second-
ary electrons in the resist and substrate, 2) energy depo-
sition in the resist and concomitant restructuring of the
resist molecules, and 3) action of the developer on the
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molecules in the resist. Some of these processes have
been modeled in detail. The interested reader is referred
to Refs. [4-6] for discussions of electron scattering and en-
ergy deposition in electron resists on substrates. Models
of developer action on irradiated resists are discussed in
Refs. [10-11]. In this paper we restrict our interest to the
net influence in the resist of all these phenomena. Thus,
we can disregard the details of each of these processes if a
formulation describing the cumulative process can be de-
fined.

e Proximity function

The proximity function is defined as a point-spread func-
tion relating the ‘‘influence’ in the resist at a point at a
distance » from the point of incidence of the beam. This
influence is the cumulative action of all the phenomena
discussed previously and has also been referred to as re-
sultant exposure [8], effective exposure [ 12], specific frag-
mentation (see Ref. [13], specifically [13a]), etc. Based on
the calculations of electron scattering and energy deposi-
tion studies [4-6]. it has been postulated [7] that the prox-
imity function f(r) can be approximated by the sum of
two Gaussian functions related to the influences of the
forward (characteristic width 8,) and backward (charac-
teristic width 8,) scattered electrons [see Fig. 2]. Thus,
the proximity function can be written [8, 13a] as

fir) = k [exp (—7/B8%) + m,B%/Brexp (—r*/B)], 1)

where & is a constant and 7, is the ratio of integrated con-
tributions of backscattered to forward-scattered elec-
trons. The detailed derivation of this equation can be
found in Ref. [14]. One fundamental assumption made in
deriving Eq. (1) is that the distribution of energy deposi-
tion is directly related to the distribution defined by the
proximity function; see Ref. [15] for further discussion of
this assumption. A Monte Carlo simulation of electron
energy deposition has shown [14] that a Gaussian func-
tion serves as a good approximation for the backscattered
electron distribution from a silicon substrate. For high
atomic weight substrates like copper and certainly gold,
the backscattered distribution needs to be described by
two Gaussians [ 14]. While the forward-scattered distribu-
tion at the surface of the film cannot [16] be described by
a Gaussian, one finds it to be a fair approximation at the
resist-substrate interface. Recent calculations [17] in-
dicate that two Gaussians yield an even better approxima-
tion to the forward-scattered distribution, especially
when the incident electron beam diameter is small. For
mathematical simplicity one generaily considers only a
two-dimensional proximity function (i.e., independent of
z, the distance into the resist from the surface). Thus, one
assumes that f () is either appropriately averaged over all
z in the resist, or is considered for a particular value of z
{e.g., at the resist-substrate interface).
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Figure 2 Schematic of the proximity function. The forward-

scattered distribution (— — —) has characteristic width 3;, while
the backscattered distribution (-—-) has characteristic width 8, .

Table 1 Proximity function parameters for silicon substrates.

Ref. Resist Electron B B, Ng
thickness energy (pm (pm)
(pm) (keV)®

[5b] 1.0 20 - 2.5" —
(8] 0.6 25 0.1 1.0 0.6
[13] 0.5 25 0.06% 2.6 0.51
[17] 0.6 25 0.25 2.35 0.86
[18] 1.2 20 — — 0.91
[19] 0.6 20 — — 1.0
[20] 0.5 20 0.3 1.6 0.33*

*Determined from ¢, and ¢, values.

tDeduced from graphic data.

$Except for the data from Ref. [14] for a point source. B¢ implicitly involves a con-
volution of the incident beam distribution with the forward-scattering distribution.
§Copolymer. COP.

©1keV = 1.602 x 107 J. Throughout text energy values are given in keV.

® Parameters for the proximity function

The three parameters that characterize the proximity
function are 5,, 8,, and 0. These can in principle be ob-
tained either from theory or experiment [12, 13c, 14, 18-
20]: however, there is considerable discrepancy and con-
troversy over these values. Table 1 shows a compendium
of the parameters for the case of 20-25-keV electrons in-
cident on resist films on Si. The various values of 3, are
admittedly difficult to compare, since the reported values
depend on the incident e-beam diameter B*. Since B, is
very weakly affected by B*, it can be used to make more 439
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direct comparisons between the values of various work-
ers [8, 13¢, 20]. The parameter 7, is also subject to con-
troversy [8. 12, 14, 18-19]. The reason for these dif-
ferences in 3, and 1., whether due to differences in ex-
posure or developer conditions, is at present unclear. We
propose the adoption of a set of values that may be opera-
tionally useful (i.e., their use gives ‘‘adequate’’ results)
for the lithographic conditions noted in Table 1. These
are: B, =~ 0.1 um, B, = 2.5 um, and 5, = 0.9.

The trends in the behavior of these parameters for dif-
ferent electron lithographic conditions (e.g., beam en-
ergy, resist thickness, substrate material, etc.) can be es-
timated from theoretical calculations [ 14]. The value of 3,
is expected to increase with increasing resist thickness or
with increasing depth into the resist, to decrease with in-
creasing beam energy, and to be essentially independent
of the substrate material. On the other hand, since 8,
seems [14] to be monotonically related to the range of
electrons in the substrate, it decreases dramatically with
increasing atomic weight of the substrate. (When the
backscattered distribution becomes bimodal, two param-
eters are required.) It also increases with increasing beam
energy and is weakly influenced by the resist thickness or
material. The value of n, increases with increasing atomic
weight [14. 18, 19] of the substrate and is only weakly
dependent on resist thickness [14]. The relatively weak
dependence of both 8, and 7, on the resist thickness fur-
ther substantiates the previously discussed assumption
that the proximity function is independent of z.

® Magnitude of the proximity effect

The magnitude of the proximity effect can be assessed by
calculating the influence & in the resist at a point r, due to
the writing of a complex pattern (consisting of /2 shapes,
each with area A)):

Hi
er) = ,[ flrydA: ry =l -l @

J=1J 4,
These values of ¢ at particular points in the pattern can be
used to determine deviations from designed pattern di-
mensions. Thus, an estimate of the magnitude of the
proximity effect can be obtained for a given proximity
function. The deviations from the designed pattern di-
mensions have been calculated as shown in Ref. [21]. On
the basis of these data, the following generalizations can
be made: 1) The dimensional deviations seem to be only
weakly dependent on the exact magnitude of 8, as long as
it lies in the range ~1.0-2.5 um. However, when 8, is
~5§ pm, the dimensional deviation seems to decrease sig-
nificantly. 2) The role of 7, is difficult to assess: its influ-
ence seems to be related to the magnitude of 8,. For ex-
ample, large values of both 7 and 8, lead to significant
dimensional deviations for designed linewidths ¢, of

1-2 um. For smaller 8, (=1.0 um), however, large dimen-
sional deviations are not obtained even for n, = 1.0.
3) The parameter B, strongly determines dimensional
deviations and edge definition of patterns with €, < 1 um.
Since B, is determined by incident e-beam diameter and
the forward spreading of the beam in the resist (via resist
thickness and composition), these latter quantities are
critical for submicron lithography.

One can conclude that even for a finely focused beam
and a sufficiently thin resist film (yielding a cumulative g,
=~ (.1 um), the proximity effect will be significant enough
to lead to dimensional deviations for geometries as large
as =1 um. If the beam is larger and/or the film thicker,
the proximity effect may be evident even at dimensions as
large as =2 um.

® Methods for decreasing the proximity effect

Basically, two types of schemes can be used to decrease
the magnitude of the proximity effect. The first consists of
changing the incident electron beam energy: the second,
of changing the substrate and/or the resist composition
and thickness. Both methods rely on altering the magni-
tude and distribution of energetic electrons in the resist to
obtain a decrease in the proximity effect.

Incident e-beam energy  Theoretically it is predicted
that a significant decrease in the proximity effect may be
possible with incident electron energies =40 keV [14, 21].
Qualitatively, such behavior can be understood as fol-
lows. An increase in incident electron energy leads [14] to
an increase in the extent of the backscattered electron
distribution 8, : however, the contribution of such a distri-
bution relative to that due to forward-scattered electrons
decreases (n decreases). Thus, the proximity effect may
decrease if backscattered electrons are dispersed over a
large enough area for their influence at any given point to
be relatively insignificant.

A decrease in the proximity effect can also be achieved
by using incident electron energies of =10 keV. This has
been shown [22] to be especially true in thin resist films
(=0.3 um) and for pattern dimensions =1 pm. Qualita-
tively, such a behavior can be understood as follows: 8,
decreases with decreasing incident electron energy. If 8,
< | um (the case [14] for electron energy =10 keV), little
proximity effect is expected for 1-um lithography. How-
ever, proximity effects for submicron lithography are ex-
pected to be even more severe in such a case.

Substrates  Use of appropriate substrates may also lead
to a decrease in the proximity effect. Investigations with
substrates involving [12, 23] thin layers of high atomic
number Z material sandwiched between a resist film and a
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low-Z substrate have shown a potential for decreasing
proximity effects. Results [23] obtained using Monte
Carlo calculations for thin gold films between l-um
PMMA and a silicon substrate (Fig. 3) show a minimum
7, (and thus minimum proximity effects) as the gold film
thickness is increased from zero to infinity. This behavior
has been at least qualitatively substantiated experimen-
tally [12, 18-19]. A value of n, =~ 0.44 was measured [12]
for a 1-um PMMA film on a 350-nm Au film on garnet;
while 7, =~ 0.9 and 5, = 1.5-2.0 were measured for silicon
[12] and gold [ 18, 19] substrates, respectively. A plausible
explanation of this effect is that the presence of the high-Z
(e.g., gold) film leads to a slowing down of electrons en-
tering the substrate and a decrease in the number of elec-
trons re-entering the resist. Thus, a film with appropriate
thickness may act like a ‘‘filter’’ to backscattered elec-
trons (inset in Fig. 3). Finally, investigations [21] of di-
mensional deviations for simple patterns indicate that for
high-Z substrates the proximity effect is less than for low-
Z substrates for pattern dimensions =1 um. For smaller
dimensions, the reverse is true.

Correction of proximity effects

® Prognosis for correction

In principie, the problem of incorrect development and
subsequent linewidth variation can never be completely
corrected because there is no means of directly con-
trolling exposure of the resist due to scattered electrons in
regions nor addressed by the electron beam. While com-
plete correction in all regions of the pattern may be pos-
sible, for practical electron lithographic systems it may
also be unnecessary.

A viable proximity effect correction technique for a
practical electron lithographic system must provide ade-
quate compensation for proximity effects for all shapes in
the pattern. Two phrases need elaboration: First, ‘‘ade-
quate compensation’’ implies that only that level of prox-
imity compensation is demanded which is physically and
practically meaningful in comparison with the resolution
of the lithographic system. Second, ‘“‘all’’ shapes in a
complex pattern need to be corrected, i.¢., those that lie
within an array as well as those that lie at the periphery of
an array or are ‘‘isolated.”” In addition to this require-
ment, the following are highly desirable features of a vi-
able proximity correction technique. First, it should be
implementable for large, practical electron lithographic
patterns, with only reasonable requirements on computa-
tion time and storage. Second, it should require minimal
human intervention or interpretation of pattern. Compu-
tationally, the corrections should be mathematically
unique and have no ambiguity based on the method of
computation. Two such techniques are now discussed;
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Figure 3 Monte Carlo calculated values of n, as a function of
the thickness of the gold film sandwiched between 1 um of
PMMA and a silicon substrate; E, = 25 keV. The inset shows
“filtering’’ action on the backward-scattered electrons due to the
gold film.

these are based on adjustments to either the pattern di-
mensions or the electron exposure.

e Adjustment of pattern dimensions

A technique involving changing the pattern dimensions is
probably the simplest to implement on an electron lith-
ographic machine; however, explicit determination of
such changes is far from trivial. This technique is easy to
utilize because only the pattern data directed to the ma-
chine are affected by proximity corrections; the operation
of the machine is not affected. Thus, this technique is es-
pecially useful for machines that cannot change electron
exposure from shape to shape within a pattern, e.g., an
electron projection lithography machine.

Several methods have been reported for computing
changes in pattern dimensions [13a, 24, 25]; all rely on the
establishment of criteria for the magnitude of the proxim-
ity effect. One such criterion [24, 25] can be the value of ¢
[Eq. (2)] at selected ‘‘sample’’ points [Fig. 4] in each
shape of the pattern. Another criterion [13a] can be the
average value of ¢ over the entire shape:

5 = J o(r )dA, /A,
A4y

-y L L L Fr)dA dA, 3)

J=1 Al 1 J

Consider next the methods of computation and some re-
sults that are obtained when each criterion is imposed.

a4
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Figure 4 Schematic showing two definitions (X and O) of four
“*sample’’ points per shape in each of the two shapes of a pat-
tern.

If the calculated values of ¢ at the sample points are
imposed to be equal, a set of equations can be obtained
whose solution yields approximations to the dimensional
changes in patterns. For m shapes in a pattern, each with
designed dimensions {x‘;} and areas Af, the corrected (ex-
posed) dimensions are {x}}, each with area A}. Requiring
that ¢ at each of the n sample points in m shapes be equal
to some value ¢, one obtains a system of s equations:

o= eylr) = 2 Le frdA,  K=1,2,--s
=1 ¢

Here, s = m X n and is the total number of sample points
where ¢ is considered. In principle, solutions to such
equations for {x;} can be obtained in the least-squares
sense since s > m. In practice [24], only a small number
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of shapes (<10%) have been simultaneously corrected by
such a technique. The solution unfortunately is not al-
ways unique; i.e., a range of values of the corrected di-
mension {x?} yields equally good least-squares solutions
to Eq. (4). In addition, the least-squares minimization and
optimization requires human interpretation and inter-
active computing. Some may consider such requirements
to be undesirable if the technique is to be used for a
“‘black box’’ lithographic tool for proximity corrections.

For simple patterns such as isolated shapes and shapes
adjacent to large areas, Eq. (4) can be solved exactly. In
the case of isolated lines, imposing ¢ to be equal at the
edge of a line (independent of linewidth) yields [25] exact
solutions to Eqg. (4), as shown in Fig. 5. Also shown (as
error bars) are empirically determined values of linewidth
changes that have been used [26] operationally in electron
lithography. The good agreement adds credibility to the
assumption of imposing equal values of ¢ at the edges.
Application of Eq. (4) to geometries with more than one
variable dimension requires [25] iterative solution of non-
linear coupled equations. For more complex geometries,
e.g., a line adjacent to a large area, graphic solutions are
possible, as described in Ref. [25].

The definition of the ‘‘sample’’ points where ¢ is calcu-
lated is subject to ambiguity and is thus a source of error.
This can be qualitatively seen through Fig. 4, where the
two sets of placements of the four points per shape can
lead to significantly different values for the intershape
proximity effect that is received by shape B due to shape
A. This problem can be ameliorated by consideration of
the average value of &, as defined in Eq. (3), throughout
the shape, rather than values of ¢ at specific points. If for
m shapes in a pattern, each with designed dimensions {x‘}}
and area A;l, one requires the corrected (exposed) dimen-
sions {x}} and area A}, one has to impose £, to be equal to,
say &, for all I and solve a system of m equations:

m

5= S Ld J f(r)dA A /AL,
K 74

J=1

K=1,2,--- m (5)

Since such a system of equations has more unknowns {x;}
than constraints m, it is found to be underdetermined.
The solutions of such a system are at best arbitrary and in
general, infinite. For example, in the case of two inter-
acting rectangles, the number of unknowns can be as
many as eight corresponding to the eight sides of the two
rectangles, while only two equations are obtained.

If the number of dimensions in a shape that can be ad-
justed is reduced to only one per shape, the under-
determined system of equations in (5) becomes a fully de-
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termined system of equations. This can be accomplished
by a subjective human interpretation of a pattern. Alter-
natively, one can arbitrarily define one variable per
shape. For example, if one defined &, to be a number such
that &’ could be a measure of the *‘magnification’” of a
designed shape over an exposed shape, then one can
write for rectangular shapes: k Ax| = Ax‘; and k,Ay] =
Ay‘;. Thus, Eq. (5) becomes solvable, though not trivially.
This is because of the variables &, being embedded in the
limits of the four-dimensional convolutional integral in

Eq. (5).

The above discussions lead to the conclusion that while
exact solutions for some simple geometries are possible,
solutions for arbitrary patterns are extremely difficult to
obtain even after significant approximations. In practice,
empirical corrections to the designed dimensions of pat-
terns have been deduced [26] after experimental observa-
tions of variations in pattern dimensions. While good 1-
um pattern fidelity has been reported, such an empirical
table ‘‘look-up’’ technique is beset with difficulties. For
example [26], small variations in focusing, exposure, or
development conditions can lead to large variations in
pattern dimensions. Such problems can be partially mini-
mized by defining more than one table, each optimized for
a specific type or size of pattern. However, for an arbi-
trary pattern, ambiguity in interpretation can occur.

o Adjustment of electron exposure

Appropriate adjustment of incident electron exposure can
compensate for proximity effects. Such compensation,
however, relies on the benevolence of the e-beam ma-
chine. In particular, the pattern generator determines
whether each shape in the pattern can be written with, if
necessary, different levels of incident electron exposure,
or whether sections (e.g., periphery, corners, etc.) within
shapes can be written with yet other levels of exposure.
Thus, with consideration of the freedom granted by the e-
beam machine, a criterion based on the value of ¢ has to
be established. As with techniques involving adjustment
of pattern dimensions, we develop techniques that con-
sider values of ¢ at discrete “*sample’’ points in a shape as
well as average values of € over the area of a shape.

Calculation of ¢ at predefined “*sample’” points (Fig. 4)
can lead to approximate values for exposures necessary
for the compensation of the proximity effect. If for m
shapes in a pattern, one defines n sample points per
shape, then one obtains s = n X m equations:

n

er) = > n,J fedA,  T=1.2,---s5 ()
Ay

I=1

where n, is the incident electron exposure (in electrons or
coulombs per unit area) for shape m. If each of the &(r,)
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Figure 5 Calculated values [25] of the dimensional change
(¢,,/€,) necessary for proximity correction of isolated squares
(----) and ‘‘infinite’’ lines (——) with widths ¢ ,. Experimental
data, shown as error bars, are from [26].

are required to be equal, then solutions of these s equa-
tions for m < s unknowns can be obtained in a least-
squares sense. As has been discussed above (see also
Refs. [13a, 24]), such solutions are inherently ambiguous
due to subjectiveness in the definition of sample points
and due to the dependences of such solutions on initial
“‘guesses’’ for a least-squares approximation. In spite of
shortcomings, such a technique has its strength. Notably,
it allows more sample points to be placed where the pat-
tern is most critical, and fewer where it is less critical.
Such a human interpretation of the pattern could be infea-
sible for a complex electron lithographic pattern. The use
of sample points to optimize pattern data by dissecting
shapes within a pattern into appropriate subshapes or seg-
ments has been discussed elsewhere [27].

A technique that is independent of the subjective inter-
pretation of the pattern can be developed if £ [given by
Eq. (3)] is used as a criterion for the magnitude of the
proximity effect. If for each shape in the pattern one cal-
culates £, and imposes it to be equal to, e.g., &, for all
shapes in the pattern, one obtains a system of m linear
equations:

m

& = Z nlf f f(rij)dAJdAI/Al’
A J4,

I=1
I=1,2,--m (7

These fully determined systems of m linear equations for
the m unknowns (#,) can be solved exactly. Thus, the
strength of this self-consistent technique [8] is that a
unique solution is obtained which is independent of any
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Figure 6 (a) Dimensional deviation (¢, /¢, for isolated squares
(—) and lines (----) of designed widths ¢ 4 in the case of uncor-
rected patterns (Curves 1) and patterns corrected via the self-
consistent technique (area averaged correction—Curves 2) and
the algorithm given in the Appendix (edge adjustment correc-
tion—Curve 3). (b) Corresponding exposure values n,. The prox-
imity function parameters are 8,= 0.1 um; B, = 2.5 pm; my =
0.9.

subjective and ambiguous interpretation of the pattern. It
should be noted that the quality of corrections depends on
the pattern data used in the solution of Eq. (7). While
good corrections are found (vide infra) where shapes of
approximately similar sizes comprise a pattern, it is found
[28, 29] that subdivision of large shapes is necessary in
certain cases for adequate proximity correction.

Nevertheless, the technique has a shortcoming. It con-
siders the value of & at each point in each shape in the
pattern democratically. Since the value of & at certain
points (e.g., along the periphery or at a corner) of a shape
may be more critical than at other points (e.g., within an
interior of a large shape), an unequal weighting of parts of
a pattern may have to be considered.

In principle, the value of & at critical locations in a
shape can be considered explicitly. Several algorithms
[13a, 24, 30] have been proposed. Two of these rely on
the calculation of ¢ at certain sample points [24] or within
certain regions [13a] along the periphery of shapes in a
pattern. Such calculations are in addition to the calcu-
lation of € or &, in the interior of a shape. Thus this addi-
tional constraint, without any additional degrees of free-
dom (i.e., one incident electron exposure value per
shape), leads to an overdetermined system of equations.
Once again, the solutions can be obtained in the least-
squares sense, with all the concomitant ambiguities.

Another algorithm that avoids such ambiguities by re-
maining within the self-consistent framework [30] consid-
ers the values of ¢ at a point A located midway along the
side of length 2a of a rectangle of width 2b. It can be
shown (Appendix 1) that 1) the value ¢ at point A, &,,
decreases as the dimension of an isolated uncorrected
shape decreases. This leads to the well-known under-
development of smaller isolated shapes as compared to
the large shapes. 2) The self-consistent algorithm given by
Eq. (7) leads to an ‘‘overcompensation.’”’” That is, while
perfect compensation should yield &, independent of a,
the values of n, obtained from the solution of Eq. (7) lead
to values of &, that depend on (increase with) a. 3) This
overcompensation can be exactly corrected for isolated
shapes by the multiplication of n, by a factor F given by
Eq. (A6) in the Appendix. Results for isolated squares
and lines, Fig. 6(a), shown in terms of the dimensional
deviation £,/¢,, indicate that ‘‘perfect’” compensation is
achieved. Corresponding values of incident exposure n,
are shown in Fig. 6(b). In the case of geometries involving
intershape proximity effects, the overcorrection due to
the self-consistent technique is again reduced [30] signifi-
cantly by use of the factor F. Note that the self-consistent
technique seems to significantly overcompensate only for
dimensions <0.5 um.

® Comparisons

The strengths and weaknesses of correction algorithms
can be summarized as follows. Algorithms that adjust
pattern dimensions, though favored on the basis of com-
patibility with electron lithographic hardware, have short-
comings. First, the corrections are extremely difficult and
probably impossible to calculate for arbitrary patterns.
For simple patterns, calculations have been possible and
table look-up schemes have sometimes been developed to
avoid computational complexities. Note, however, that a
table look-up scheme would be inadequate for a pattern of
the type where rectangles of approximately the same size
suffer from significant intershape proximity effects in
some locations [e.g., rectangle F in Fig. 1(a)] but experi-
ence very little effect in others [e.g., rectangle C in Fig.
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1(a)]. This can be better understood by considering the
value of ¢ through a cross-section of an isolated line (Fig.
7). If the development level, as defined by a large shape,
is set at £ = 0.5, the uncorrected linewidth € will be sig-
nificantly narrower than the designed linewidth ¢,. In-
creasing the linewidth of the exposed line ¢, can also
yield a developed shape with the correct dimension.
However, such a shape is quite sensitive to the develop-
ment level €; an increase in & from =0.5 to 0.6 would lead
to serious underdevelopment. This has been demon-
strated by experiments involving the sensitivity of this
technique to development conditions [26].

The algorithm that adjusts incident electron exposures
can yield not only the correct value of ¢ at the designed
edge, but also (through greater slope of ¢ in Fig. 7) less
sensitivity to the developer. This relative insensitivity to
small errors in the development conditions is a significant
strength of any technique that adjusts incident exposures.
An additional strength of such an algorithm is in its appli-
cability to arbitrary patterns. In our experience the com-
puting time for corrections for arbitrary patterns is found
(see details in the next section) to be comparable to or
less than the time for post-processing of such patterns
generated by means of a computer-aided design system.
Since the quality of corrections obtained via an exposure-
adjustment algorithm depends on the partitioning of the
pattern into elementary shapes, some special decomposi-
tion of the pattern is found to be necessary {28, 29] for
certain types of patterns. Finally, it should be noted that
while there exists no means to explicitly control incident
electron exposure in regions outside of those addressed
by the e-beam, some special consideration for exposure
near edges of shapes must be considered, e.g., through
algorithms discussed in the Appendix.

Experimental results

The most important requirement of any proximity effect
correction technique is that it yield ‘‘adequate’ correc-
tions for all shapes in the pattern. While not all of the
above mentioned algorithms have as yet been experimen-
tally evaluated, enough evidence exists to form some ten-
tative conclusions.

Experimental results for algorithms involving adjust-
ment to pattern dimensions have been reported [24, 26]
using table ‘‘look-up’’ and ‘‘contour-fitting’’ schemes. In
the former case, simple patterns (lines and pads) were ex-
posed with appropriate dimensions that were determined
a priori from experiment and stored in several tables. The
exposed patterns with the corrected dimensions are re-
ported to be within 0.1 um of the design. In the latter
technique, € values at sample points along the *‘contour’’
of a shape were calculated. Using a least-squares tech-
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Cut-offing
due to developer

Linewidth

Figure 7 Schematic of & through an isolated line of width ¢, for
an uncorrected pattern (—); for a proximity-corrected pattern
via a dimension adjustment technique (—e—e—); for a prox-
imity-corrected pattern via an exposure adjustment technique

(———).

nique, pattern dimensions (as well as exposures) were
varied until £ values along the contour were approxi-
mately uniform. An algorithm has recently been reported
[31] which is applicable to a large pattern and which con-
siders adjustments to both pattern dimension and ex-
posure; pattern fidelity of 0.2 um seems to be evident.

Experimental results for patterns involving adjustment
of incident electron exposure are more extensive. The
first reported [8] proximity correction technique used was
the self-consistent algorithm [Eq. (7)]; numerous experi-
mental results using this technique have been reported.
Another similar exposure adjustment technique has also
been reported [32]. Results for simple patterns have
shown improvement in pattern fidelity. Rounding at cor-
ners of shapes was avoided by computing different ex-
posures in elemental areas along corners and the periphery
of shapes. Exposure adjustments have also been deter-
mined [33] via a Monte Carlo calculation of exposures
within a resist pattern defining a source/drain region of an
FET.

The self-consistent technique has been used [8, 13c, 34,
35] on a variety of patterns and under a variety of experi-
mental conditions. Intrashape proximity effects lead to in-
complete development of smaller shapes [see for example
the 1- and 2-um squares and lines in Fig. 8(a)], while all
larger shapes have developed completely. Here, as in all
results presented below, the development conditions
[13c] are chosen such that the largest shapes in the pat-
tern (typically a 5-um line) are fully- but not over-devel-
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(2)

(b)

Figure 8 Optical micrographs showing (a) the uncorrected and (b) SPECTRE-corrected pattern consisting of 1-, 2-, and 5-um squares

and lines, all separated by 10 pm.
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Figure 9 Incident electron exposure values necessary to cor-
rect for proximity effects in a pattern consisting of a collection of
lines with a variety of widths and spacings between lines. Note
that incident electron exposures are normalized to unity for an
infinitely large area. The proximity function parameters are 8, =
0.1 um; B, = 1.0 um; n, = 0.6 (@) or 1.0 (X).

oped. This development criterion makes realistic com-
parison between corrected and uncorrected patterns. The
corrected pattern is shown in Fig. 8(b); notice that com-
plete development of all parts of the pattern without mea-
surable (<0.1-um) error in pattern dimensions is ob-
tained. The proximity function parameters used in this
case were 3; = 0.1 um, 8, = 1.0 um, and 7, = 0.6. Ex-
posure values that were obtained from the solution of Eq.

(7) are shown in Fig. 9 for two sets of proximity function
parameters and for patterns consisting of a collection of
lines with 0.25-, 0.5-, 1-, and 3-um widths and gaps be-
tween lines. Exposures for isolated lines and squares are
also shown. Note that exposures using the correction dis-
cussed in Appendix 1 have not been shown. They can be
easily obtained by multiplication of the values from Fig. 9
with the factor F from the Appendix. [At present, no ex-
perimental evaluation of this new correction algorithm
has been performed.]

A program package called SPECTRE (for Self-consis-
tent Proximity Effect Correction Technique for Resist
Exposure) has been developed [8, 13c] that takes as its
input pattern data and the parameters for the proximity
function. Without any interpretation of the pattern data,
the program outputs pattern data with appended values
for exposure changes. Since the e-beam machine hard-
ware stipulates only one exposure value {or scan speed)
per shape, SPECTRE computes only one exposure value
per shape. A flowchart for the SPECTRE program pack-
age [13c] is shown in Fig. 10. An interactive program
(SPECREAD) accepts user inputs regarding e-beam ma-
chine and pattern parameters. The pattern is divided into
various zones (via ZONMAP) based on whether proxim-
ity corrections are to be performed on all shapes (if the
pattern is nonrepeating) or whether only some shapes are
to be corrected (if the pattern is repeating) and the results
replicated to the rest of the repeating pattern. The pro-
gram TAGSHP tags each shape in the pattern according
to the zone it belongs in. The tagged pattern data are
sorted (via SORT) and then passed to the main computing
program (COMPC) for automatic exposure calculations
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of each shape via the solution of Eq. (7) for one zone at a
time. The typical computation time we obtained [8, 13¢]
for every shape in an arbitrary pattern counsisting of 10"
rectangular shapes using an IBM 370/168 computer (4M-
byte configuration) was =10"s, increasing linearly with
the number of shapes. The memory requirement for exe-
cution of the program is less than 256K bytes.

The quality of corrections obtained using the self-con-
sistent technique can be seen through the reexamination
of Figs. 1(b-d). The uncorrected pattern shown in Fig.
1(a) was written by the e-beam machine as a set of 13
rectangular shapes shown in Fig. 1(¢). Data for these
shapes, after corrections using SPECTRE, yielded the
improvement shown in Fig. 1(b). An alternate pattern
data definition, shown in Fig. 1(d), in terms of 21 rec-
tangular shapes, yielded almost identical patterns after
corrections. Generally, pattern redefinition is unneces-
sary [34, 35] for proximity corrections using SPECTRE
except in situations where large shapes are separated by a
small gap [28] or where small shapes are in proximity with
only some parts of a large or long shape [29].

SPECTRE has been used routinely for experimental
studies on 1-um MOSFET VLSI devices [34] (see Fig.
11). In the case of the 8K FET RAM, the final metal level
was lithographically the most difficult. This was due to
the requirement for a 1.3-um-thick PMMA resist in order
to ensure lift-off of a 0.5-um Al layer over a 500-nm to-
pography; see Figs. 11 and 12. The parameters used here
were 8, = 0.1 um, 8, = 1.0 um, and n,, = 0.6. The nor-
malized exposure values used to correct this level, which
consisted of =2.2 x 10" shapes, are shown in Fig. 12.
Note that the exposure value increases considerably
when a chip is reduced to half scale (yielding a 0.5-um
feature). Typical results [35] for the case of 0.5-um
bubble lithography are shown in Fig. 13. The micrographs
show gold patterns of “*C bars’’ on polyimide substrates;
these were obtained through the use of SPECTRE-cor-
rected electron lithography. Thus, proximity correction is
now routinely possible for practical submicron lithogra-

phy.

Conclusion

The deleterious effect of electron scattering in the resist
and substrate on the lithographic image fidelity has been
reviewed. Phenomenologically, a proximity function has
been developed and serves as a macroscopic measure of
the extent of influence in the resist due to electron scatter-
ing. Modeling of such a function by a pair of Gaussian
functions yields parameters that are amenable to physical
interpretation and obtainable from experiment and the-
ory.
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Corrected
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output

Figure 10 SPECTRE flowchart. See text and Ref. [13c] for de-
tails.

The magnitude of the proximity effect has been esti-
mated through the use of the proximity function. This has
also led to an understanding of the sensitivity or in-
sensitivity of the parameters in the proximity function.
Methods for decreasing proximity effects have also been
predicted; existing sparse experimental data are consis-
tent with these results. A variety of methods for correc-
tion of proximity effects have been outlined and the
strengths and weaknesses of each have been reviewed.
While techniques utilizing adjustment of pattern dimen-
sions are attractive in terms of compatibility with electron
lithographic machines that do not allow exposure adjust-
ment, they seem to be practically implementable only
with table *“‘look-up’’ algorithms. Techniques involving
adjustments of electron exposures require an e-beam ma-
chine capable of suitable exposure adjustments. These
techniques have the strength of being readily implementa-
ble in the case of arbitrarily complex patterns, but the
complexity of the pattern determines the computational
requirements.
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(a)

(b)

Figure 11 Optical micrographs of (a) uncorrected and (b) SPECTRE-corrected pattern from a 1-um MOSFET lithography. (Courtesy

of W. Grobman et al. [34].)

5000

30001

Number of shapes

1.6 1.8 2.0
n, (electrons per unit arca)

Figure 12 Distribution of exposure values for 1-um (black
bars) and 0.5-um (shaded bars) lithography for SPECTRE-cor-
rected pattern for the MOSFET lithography shown in Fig. 11. 8,
= 0.1 um; B, = 1.0 um; 5, = 0.6. (Courtesy of W. Grobman et
al. [34].)

Experimental results have been reported using some of
the algorithms described here. The table *‘look-up’” and
pattern-dimension adjustment seem to have been at-

MIHIR PARIKH

tempted only for simple patterns. Techniques using ex-
posure adjustment, especially the self-consistent tech-
nique, have been more extensively tested. In particular,
the program SPECTRE, through its ease of operation,
has been successfully used for 1-um FET and 0.5-um
bubble technologies.

At present, several questions remain. For example, for
any particular level of lithography, one wonders what ul-
timate resolution is attainable through the use of proxim-
ity correction techniques, or what minimum level of prox-
imity corrections are imperative for any particular level of
lithography. The sensitivity of the proximity function pa-
rameters to resist materials and thickness, developer,
substrate, and e-beam machine conditions are as yet un-
known. Clearly, further work is necessary.
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Appendix: An algorithm to reduce overcompensation
of proximity effects in the self-consistent technique
The values of ¢ at points A and O in an isolated rectangle
can be calculated via Eq. (2) for a particular form of the
proximity function. Assuming for simplicity a single
Gaussian (with characteristic width 3), one obtains
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(b)

Figure 13 Scanning electron micrographs of (a) 1-um and (b)
0.5-um bubble-lithography-generated gold-plated x-ray masks on
polyimide substrates. In the former case, note that 0.5-um gaps
are accurately obtained; in the latter case the 0.25-um gaps are
smaller than those designed. (Courtesy of D. Hofer et al. [35].)

&(A) = w/2p" erf (b/B) erf 2a/P),

&(0) = wB%erf (b/B) erf (a/B). (AD)

For isolated squares (with » = a), computed values (Fig.
A1) show the expected decrease in e(A) with decreasing
a. This leads to the underdevelopment of small isolated
shapes as compared to larger shapes.

Using the ‘‘self-consistent”’ technique, a value of in-
cident electron exposure n, can be calculated. Solution of
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elx,0)
e(x,0)

a/f

Figure A1 Upper part: Values of ¢ at points A and O in an iso-
lated shape, given by Eq. (Al). Note the decrease in ¢ as a func-
tion of a due to an intrashape proximity effect. Lower part: Cor-
rected values of ¢ at points A and O, obtained through the use of

the self-consistent technique (——) and the ‘‘edge-com-
pensation’’ technique (———).
|
\\
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Figure A2 Values of exposure n, in the self-consistent tech-
nique (——) and in the ‘‘edge-compensation’ technique
(—~——); the factor F, Eq. (A6), is also shown.

Eq. (7), with the constraint that &, = &, a constant, for all
shapes (i.e., independent of @) yields

_ 4ab80
T EHB)
where
H(B) = [IN7 — 0Qa/BI1 /N7 — 02b/B)]
and

0(x) = xerf (x) + 1/Nmexp (—x7).

(A2)
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The value of € at a point A, £°(A), in the shape exposed
with the exposure #, is thus

g(A) = n&(A). (A3)

Computed values for £(A) show (Fig. Al) that ¢ in-
creases with decreasing a. Clearly, one would prefer e(A)
to be independent of a; thus, the ‘‘self-consistent’” tech-
nique leads to an overcompensation.

This overcompensation can be ameliorated by multi-
plying n, by a factor F given by
[

F=—_
n.e(A) (A9

The bebavior of F and #, as functions of a is shown in Fig.
A2. For isolated shapes, this factor leads to a perfect
compensation, since the corrected value of &, £°“(A), is
given by

e = n,Fe(A), (AS)

which is completely independent of a.

For a realistic proximity function, defined by the two-
Gaussian-function equation (1), the factor F can be easily
generalized:

1 [BFH@B,) + nBH(B)]

F =— . 6
dab  [GB) + 7,G(B)] (A6)

where
G(B,) = erf (b/B,) erf 2a/B,).

Figure 6 showed some results obtained using this *‘edge-
compensation’’ factor. For isolated squares and lines, the
compensation is perfect [at least in terms of ensuring that
e(A) is independent of al, while for shapes adjacent to
other shapes, a significant reduction in overcompensation
is achieved.

References and note

1. M. Hatzakis, *New Method of Observing Electron Pene-
tration Profiles in Solids,”” Appl. Phys. Lett. 18, 7 (1971).

2. E. D. Wolf, F. S. Ozdemir, W. E. Perkins, and P. J. Coane,
“‘Response of the Positive Electron Resist, Elvacite 2041, to
Kilovolt Electron-Beam Exposure,’” Record of the Eleventh
Symposium on Electron, Ion, and Laser Beam Technology,
Boulder, CO, 1971; R. F. M. Thornley, Ed., San Francisco
Press, CA; IEEE Catalog No. 71, C23-ED, pp. 331-336.

3. R. F. Herzog, J. S. Greeneich, T. E. Everhart, and T. Van
Duzer, **Computer-Controlled Resist Exposure in the Scan-
ning Electron Microscope,’’ IEEE Trans. Electron Devices
ED-19, 635 (1972).

4. James S. Greeneich and Theodore Van Duzer, ‘*An Ex-
posure Model for Electron-Sensitive Resists,”” IEEE Trans.
Electron Devices ED-21, 286 (1974).

S. R.J. Hawryluk, Henry 1. Smith, A. Soares, and Andrew M.
Hawryluk, *‘Energy Dissipation in a Thin Polymer Film by
Electron Beam Scattering Experiment,” J. Appl. Phys. 46,
2528 (1973).

19.

20.

21.

22.

23.

24.

. D. F. Kyser and K. Murata, ‘‘Monte Carlo Simulation of
Electron Beam Scattering and Energy Loss in Thin Films,”
Proceedings of the Sixth International Conference on Elec-
tron and lon Beam Science and Technology, San Francisco,
CA, 1974; R. Bakish, Ed., The Electrochemical Society,
Princeton, NJ, pp. 205-223.

. T. H. P. Chang, ‘‘Proximity Effect in Electron Beam Lith-
ography,” J. Vac. Sci. Technol. 12, 1271 (1975).

. M. Parikh, *SPECTRE—A Self-Consistent Proximity Ef-
fect Correction Technique for Resist Exposure,”” J. Vac.
Sci. Technol. 15, 931 (1978).

. Shapes are defined to be those entities that make up a pat-
tern. For example, if the letter V were to be written by the e-
beam machine as a composite of two parallelograms and one
triangle, these three entities would be considered shapes.

. D. F. Kyser and N. S. Viswanathan, ‘‘Monte Carlo Simula-
tion of Spatially Distributed Beams in Electron Beam Lith-
ography,” J. Vac. Sci. Technol. 12, 1305 (1975).

. R. E. Jewett, T. I. Hagouel, A. R. Neureuther, and T. Van
Duzer, ‘‘Line-Profile Resist Development Simulation Tech-
niques,”” Polymer Eng. Sci. 17, 381 (1977).

. W. D. Grobman and A. J. Speth, ‘*An Exposure Wedge for
Electron Beam Lithography Development Control and for
the Determination of Resist Development and Proximity Pa-
rameters,”’ Proceedings of the Eighth International Confer-
ence on Electron and lon Beam Science and Technology,
Seattle, WA, 1978; R. Bakish, Ed., The Electrochemical So-
ciety, Princeton, NJ, Proceedings Vol. 78-5, p. 276.

. M. Parikh, *‘Corrections to Proximity Effects in Electron
Beam Lithography. (a) 1. Theory, (b) II. Implementation,
and (c) III. Experiment, J. Appl. Phys. 50, 4371, 4378, and
4383 (1979).

. M. Parikh and D. F. Kyser, ‘‘Energy Deposition Functions
in Electron Resist Films on Substrates,”” J. Appl. Phys. 50,
1104 (1979).

. A. R. Neureuther, D. F. Kyser, and C. H. Ting, ‘‘Electron
Beam Resist Edge Profile Simulation,”” IEEE Trans. Elec-
tron Devices ED-26, 686 (1979).

. William T. Scott, **'The Theory of Small-Angle Multiple
Scattering of Fast Charged Particles,”” Rev. Mod. Phys. 35,
231 (1963).

. (a) James S. Greeneich, Burroughs Corporation Technical
Center, 16701 W. Bernardo Dr., San Diego, CA, private
communication, August 1978; (b) J. S. Greeneich, ‘*“The Im-
pact of Electron Scattering on Linewidth Control in Electron
Beam Lithography,” Record of the Fifteenth Symposium on
Electron, Ion, and Laser Beam Technology, Boston, MA,
1979; T. H. P. Chang, Ed., American Vacuum Society,
American Institute of Physics, New York, to be published.

. Fletcher Jones and Michael Hatzakis, ‘‘Experimental Deter-

mination of the Effect of Back-Scattered Electrons on the

Dissolution Rate of PMMA,’" Ref. 12, loc. cit., p. 256.

M. S. Chung and K. L. Tai, ‘‘Investigations of Electron-

Beam Resist Interactions in Electron Lithography,”” Ref. 12,

loc. cit., p. 242.

Naoshi Sugiyama, Naoaki Aizaki, Akira Kawagi, and Yasuo

Tarui, ““A Data Processing System for Electron Lith-

ography,”” Ref. 12, loc. cit., p. 184.

M. Parikh, ‘‘Dependence of Pattern Dimensions on Proxim-

ity Functions in Electron-Beam Lithography,” J. Appl.

Phys. 51, 700 (1980).

D. F. Kyser and C. H. Ting, ** Voltage Dependence of Prox-

imity Effects in Electron Beam Lithography,” Ref. 17b, loc.

cit.

D. F. Kyser and M. Parikh, ‘‘Decrease in Proximity Effect

by Sandwiching Thin Heavy Metal Films between Resists

and Substrates,”” IBM Tech. Disclosure Bull. 21, 2496

(1978).

N. D. Wittels and C. I. Youngman, *'Proximity Effect Cor-

rection in Electron-Beam Lithography,”” Ref. 12, loc. cit., p.

361.

IBM J. RES. DEVELOP. @ VOL. 24 & NO. 4 & JULY 1980




25

26.

27.

28.

29.

30.

31

32.

. M. Parikh, “*Calculation of Changes in Pattern Dimensions
to Compensate for Proximity Effects in Electron Lith-
ography,” J. Appl. Phys. 51, 705 (1980).

H. Sewell, “‘Control of Pattern Dimensions in Electron Lith-
ography,” J. Vac. Sci. Technol. 15, 927 (1978).

M. Parikh, ‘*Technique for Automatic Subdivision of Pattern
Data for Enhanced Proximity Effect Corrections,” IBM
Tech. Disclosure Bull. 21, 4278 (1979).

W. D. Grobman, A.J. Speth, and T. H. P. Chang, **Proxim-
ity Correction Enhancements for 1-um Dense Circuits,”
IBM J. Res. Develop. 24 (1980, this issue).

M. Parikh and D. E. Schreiber, *‘Pattern Partitioning for En-
hanced Proximity-Effect Corrections in Electron-Beam Lith-
ography,” IBM J. Res. Develop. 24 (September 1980), in
press.

M. Parikh, ‘*Method for Computing Incident Electron Ex-
posure Values to Compensate for Proximity Effects,”” IBM
Tech. Disclosure Bull. 22, 2863 (1979).

A. Kikuchi, A. Kanamaru, and O. Nobumichi, ‘A Fast
Computation Method for Exposure Intensity and Pattern
Correction in Electron Beam Lithography,” Ref. 17b, loc.
cit.

H. 1. Ralph and H. Sewell, **Computer Control of Proximity
and Size Effects in Electron Lithography,”” Ref. 12, loc. cit.,
p. 354.

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. 4 ¢ JULY 1980

33.

34.

35.

Hidefumi Nakata, Takaaki Kato, Kenji Murata, and Koichi
Nagami, ‘‘Proximity Effect in FET Fabrication with Elec-
tron Beam Lithography,”” Ref. 12, loc. cit., p. 393.

W. D. Grobman, H. E. Luhn, T. P. Donohue, A. J. Speth,
A. Wilson, M. Hatzakis, and T. H. P. Chang, **1 um MOS-
FET VLSI Technology: Part VI—Electron Beam Lith-
ography,” IEEE Trans. Electron Devices ED-26, 360 (1979)
and IEEE J. Solid State Circuits SC-14, 282 (1979).

D. C. Hofer, J. V. Powers, and W. D. Grobman, ‘‘X-Ray
Lithographic Patterning of Magnetic Bubbles with Sub-
micron Dimensions,”” Ref. 17b, loc. cit.

Received October 4, 1979; revised March 3, 1980

The author is located at the IBM Research Division labo-
ratory, 5600 Cottle Road, San Jose, California 95193.

451

MIHIR PARIKH




