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Yield Model for  Productivity Optimization of VLSl 
Memory Chips with Redundancy  and  Partially Good 
Product 

A model with mixed  Poisson  statistics  has been developed for  calculating  the  yieldfijr memory chips  with  redundant  lines 
and fo r  partially  good  product.  The  mixing  process requires two  parameters  which  are readily obtained  from  product 
data.  The  product  is  described  in  the  model  by critical areas  which  depend on the  circuit’s  sensitivity  to  defects,  and  they 
can be determined  in  a  systematic  way.  The  process  is  represented  in  the  model  by  defect  densities  and  gross  yield  losses. 
These are measured with defect  monitors  independently of product  type.  This  paper  shows  how  the yield for any  product 
can be calculated  given  the  critical  areas,  defect  density,  and  mixing  parameter.  Future  yields  are  forecast  by using 
expected  improvements  in  defect  densities.  Examples  show good agreement  between  actual and calculated  yields. 

Introduction 
Computer  memory chips containing 65 536 memory bits 
are now available,  and a trend towards larger  chips with 
even  greater bit densities is becoming apparent. As the 
number of bits goes  up,  the probability of having memory 
cell or word and  bit line failures increases.  Several manu- 
facturers  have  therefore begun to use redundant memory 
bits in their product [l-31. 

Using redundant memory  bits to replace defective ones 
has been  proposed by numerous inventors  and  authors. 
Sakalay, Fletcher, and Kril[4-71 devised  several  schemes 
for redundancy in core memories. Tammaru and Angel1 
[8] described and calculated  the yield of memory arrays 
and logic circuits with redundancy. A yield calculation 
with multiple word  and bit line redundancy in memory 
arrays was  published by Chen [9], and Arzubi [IO] de- 
vised a  method for implementing such a scheme  on in- 
tegrated  circuit  memory  chips. Recently,  Schuster [ I l l  
made a set of calculations to show the yield improvement 
possible as a function of the average number of faults on a 
memory chip  and  the total  number of redundant lines. 

Another scheme  for enhancing yield is that of using 
partially good product.  Elmer et  al. [I21 described  this 
scheme for use in a CCD memory  chip.  Many partially 
good combinations are possible. We have worked with 
half good,  two-thirds good, seven-eighths good, eight- 
ninths good,  and nine-tenths good schemes  for memory 
chips. The  optimum  scheme usually depends  on  the mem- 
ory organization in which  the chips  are  used. 

The effectiveness of redundancy and partially good 
product depends strongly on the fault  distribution, i.e., 
the probabilities for having zero,  one,  two,  three, or more 
faults per chip.  Except  for  Cenker et al. [3], the calcu- 
lations made in the  papers  on  redundancy  and partially 
good product  referred to previously all assumed binomial 
or Poisson distributions. Yet, data by Moore [I31 showed 
that this is not necessarily the  case.  Both Warner [14] and 
Stapper [15] showed  that Moore’s data could be repre- 
sented by mixed Poisson  statistics.  More data showing 
this to be true is given in this  paper,  thus making the  ex- 
tension of mixed Poisson statistics  necessary  for both  re- 
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dundancy and partially good product yield calculations. 
Formulas for this theory,  as well as  the comparison  be- 
tween theoretical calculations and  actual  process  data, 
are  the major subjects of this paper. 

Statistics 
Figure 1 shows  the fault  distribution  obtained  from  a 
sample of  141 memory  chips having 4K- X 9-bit organi- 
zation. The chips were selected  from 21 wafers which 
were  randomly  picked  during three months of production. 
Each wafer was tested, and  the sample was  selected from 
chips for which the locations of failing cells, word lines, 
and bit lines were known.  These  chips were  then visually 
inspected and systematically delayered  to  uncover all de- 
fects which caused  the faults. Defects which did not 
cause faults or  failures were  not  included in the distribu- 
tion. 

For a  Poisson distribution,  the mean  must  equal  the 
variance. For the  data in Fig. 1, the mean  was 2.333 and 
the variance  was 4.619, clearly  not  Poisson. These results 
can  best be modeled with mixed Poisson statistics using a 
gamma  distribution as  the mixing function. This  results in 
a  Polya-Eggenberger  distribution of the form [15] 

ryx + a)  

x!r(a) (1 + 
P ( X  = x )  = - a+x 7 

where x is  the  number of faults  per chip, i the average 
number of faults per  chip, and a a parameter  that  depends 
on the  fault density variation. The quantities i and a 
make (1) a two-parameter distribution.  Poisson  statistics 
use only a single constant parameter A ,  which is equal  to 
the mean and  the  variance of the  number of faults  per  chip 
distribution. 

The mean  and variance for (1) are 

E ( X )  = i and (2) 

Instead of a ,  it  is often useful to  express  the above re- 
sults in terms of the coefficient of variation of the fault 
density A. This  fault  density has  its  own probability distri- 
bution  function (pdf) with a mean,  variance, and coeffi- 
cient of variation alp. When this pdf or mixing function 
is a  gamma  distribution with parameters  and a [15],  it is 
found that 

a l p  = 1 / 6 .  (4) 

In  the limits,  when a approaches infinity or a l p  ap- 
proaches  zero,  expressions (2) and (3) approach  those of 
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Figure 1 Fault distribution from physical analysis. 

Poisson statistics.  In  that  case, only  a single value for A 
exists, indicating that  the pdf  of A is a delta function. 

The  parameters a and X can readily be  estimated  from 
the mean and the  variance of the data by solving (2) and 
(3). For the  data in Fig. 1, we obtain X = 2.333 and a = 

2.382 (a lp = 0.6480). The  theoretical  distribution with 
these  parameters is shown by dashed lines in Fig. I .  Test- 
ing the calculations with a  Smirnov-Kolmogorov test 
gives a significance level greater  than 0.2, indicating that 
this model cannot be rejected as a fit for  the  data. 

Another  sample of wafers manufactured during  the 
same period was  subjected  to a more severe retention 
time test. On those  chips  that were  not  completely  inoper- 
able, the number of isolated failing single cells  was 
counted. The resulting  distribution shown in Fig. 2 has a 
far longer  tail than  was  observed in the visually inspected 
sample. These long  tails are typical of the distributions for 
junction leakage  failures, which can  also be  represented 
by the Polya-Eggenberger  distribution shown by the 
dashed lines in Fig. 2. In this case we obtained = 1.572, 
a = 0.3927, and a l p  = 1.596. 

Values of a l p  ranging  from 0.5 to 2 have been  encoun- 
tered in samples from  different products.  The long tails in 
these distributions have a profound  effect on  redundancy. 
Poisson  distributions are  short  tailed,  and calculations 
based on  such  statistics,  therefore,  require less  redun- 
dancy  than may be  needed in actuality.  To  prevent this 
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Figure 2 Single cell  failure  distribution for a 4K- X 9-bit 
memory chip. 

Table 1 Defect  and fault types used in the yield model. 

Defect  types  (D) Fault types (A) 

1. Node  leakage 
2. Bit line leakage 
3.  Peripheral circuit leakage 
4. Missing diffusions 
5. Extra diffusions 
6. Missing polysilicon 
7 .  Extra polysilicon 
8. Missing aluminum 
9. Extra aluminum 

10. Holes in the SNOS oxide 
11. #Holes  in  the  MNOS  oxide 
12. Holes in the polysilicon  oxide 

1. Single cell 
2. Double  cell 
3. Single  word line 
4. Double  word line 
5 .  Single bit line 
6. Double  bit line 
7 .  Redundant circuits 
8. Section kill 
9.  Chip kill 

problem, we have  based our model completely on mixed 
Poisson statistics.  The mixing function in all cases is the 
gamma  distribution of faults  per chip or, if needed, per 
circuit. 

Cenker et al. [3] claimed to have made  their redun- 
dancy yield calculation with a model based  on a theory 
by Price [ 161. That model  essentially has a and u / p  equal 
to  one. Although better than  Poisson statistics,  such a 
model still cannot  span  the  actual range of data. 

Organization of the  model 
The yield model consists of one  set of parameters  charac- 

400 terizing the process  and  another  set describing the prod- 

uct. We have found it useful to define the  defect densities 
as a set of parameters  that  causes  faults. Mathematically, 
we can  write  this in matrix form as 

A = AcD, ( 5 )  

where A is a vector representing the nine  faults per  chip or 
circuit, A,, the critical area matrix of the  product, and D, 
a  vector  consisting of the defect densities of the  process. 

The twelve random defect types making up the defect 
density vector  are  shown in Table 1 .  Defect  densities  for 
missing contact holes have not been included. We have 
never been able  to collect data  that  substantiated a model 
like that in (5) for this type of defect.  Furthermore, less 
than 1% of the  contact holes could be associated with fix- 
able  faults; the  rest all caused a section or chip failure 
when missing. This led us  to model missing contact holes 
conveniently as  gross yield multipliers. 

Other  process  parameters  are modeled as gross yield 
detractors and  simple yield multipliers. These include 
second  level  metal and  contact  holes,  as well as over- or 
under-exposed patterns, over- or under-etched  patterns, 
and misalignment for any  photo step.  Gross area-related 
yield losses,  such  as threshold  voltage,  transconduc- 
tance, and contact  resistances  that  are  out of specifica- 
tion, fit this model implicitly. So do  the  gross  components 
of junction  leakage, which destroy  complete  areas of wa- 
fers as well as  entire wafers. 

Yield losses that  are not due  to  the  process,  such as 
those resulting from handling, misprobing,  mistesting, 
and errors in redundancy implementation, are also ac- 
counted  for by gross yield multipliers. Our models also 
include gross yield estimates for circuits  that fail to func- 
tion due to a certain combination of device  parameters 
that  are  nonetheless within process specifications. 

To model the  random defect losses requires first a list 
of the circuit areas  such  as  the list for a 4K- X 9-bit 
chip  shown in Table 2. Each circuit in this list is analyzed 
for its sensitivity to  the 12 random defect  types. This  sen- 
sitivity has to be calculated for each  type of fault that may 
be caused by  any one of these  types of defects.  The list in 
Table  1  shows nine fault types, but we have  used  more in 
other applications. These faults are  represented by the 
vector A in formula (5). 

The critical area matrix A, in ( 5 )  is a 12 X 9 array of 
numbers  representing  the sensitivity of a chip to random 
defects.  This  sensitivity to  defects is obtained by calcu- 
lating the critical area, i . e . ,  the area of the circuit in which 
a  defect  must fall to  cause a  fault. For leakage defects this 
is assumed to be the  total  area of the metallurgical junc- 
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tion.  Similarly, the critical area  for dielectric pinholes is 
the  area of overlap of the  conductors. In all these  cases 
defect size has been  neglected,  but  this cannot be  done 
for  defects in the diffusion, polysilicon, and first level 
metal photo patterns.  The  photo  defects  are known to be 
distributed by size [17, 181. Dennard [19] had  shown the 
defect size  distribution to be falling off as l / x 3  for defects 
with diameter x. Other workers at IBM have since veri- 
fied that this is a good  approximation. We have, there- 
fore, calculated our photo-critical areas with this  distribu- 
tion. This requires the generation of so-called probability 
of failure curves. This is done by computer generation of 
a set of random coordinates  on 2000x plots of the cir- 
cuits. Disks of different diameters  are  then placed on 
these locations. The probability of failure for a given disk 
size is the fraction of defects of that size  which we deter- 
mined to have caused a fault. The probabilities of failure 
vary with defect size as  shown,  for  example, in Fig. 3 for 
missing diffusions in the  array of the 4K- X 9-bit chip. 
There  are probability of failure curves for single cell, 
double  cell, single bit line,  and other failure  combina- 
tions.  These  failures or  faults are mutually  exclusive  since 
any  given defect size at a random  location can only result 
in one of these fault types. 

Integrating these probability of failure curves  over the 
size  distribution  gives the fraction of the circuit area  that 
is sensitive to  the  average photo defect. Multiplying the 
results by the circuit area gives the critical area  for  each 
defect  and  fault type. In this way critical area matrices 
can be obtained for  each circuit. The  sum of the critical 
areas of all circuits gives the critical area matrix for  the 
entire chip. Such a matrix for  the 4K- X 9-bit chip is 
shown in Table 3. By establishing  libraries of critical 
areas  for different circuits, we have  been  able  to reconfig- 
ure chips to optimize expected productivities  by  means of 
redundancy  and  partially  good schemes. 

Redundancy 
The  concept of redundancy is straightforward;  spare 
word lines and bit lines are made  available to replace fail- 
ing lines and  to  bypass failing cells. The effectiveness of 
redundancy may be assessed by  a  probabilistic model to 
be described  below.  Qualitatively, however,  the power of 
the  concept  can be illustrated as follows: 

Suppose we have a large number of arrays  for which 
there  are,  on  the  average,  two failing word lines,  one fail- 
ing bit  line, and  two failing cells-a total of five failures on 
the average. It is clear  that it will be rare  for  such  an  array 
to  have no failures. In a sense, having no failures would 
require  that  none of the five typical  failures occur.  Thus, 
the yield without redundancy is low. Suppose, however, 
we have four  redundant word  lines and  four redundant  bit 

1 .o 0"- 

N'AII failures 

IDefect size ( p n )  

Figure 3 Probability of failure as a function of defect size for 
different  failure modes in a memory  array. These curves must be 
combined with the defect  size distribution, defect  density, and 
array  area to obtain the average number of faults associated with 
each of these failure modes. 

Table 2 Circuit types and corresponding areas. 

Circuit type Circuit  area 
(mm2) 

Array cells 
Sense amplifiers 
Sense amplifier drivers 
Sense amplifier underpasses 
Word decoders and drivers 
Word line  terminators 
Bit decoders and drivers 
Word redundancy 

Word lines 
Decoders and drivers 
Terminators 
Redundancy compare 

Bit  redundancy 
Bit lines 
Sense amplifiers 
Decoders and drivers 
Steering circuits 
Redundancy compare 

Truekomplement generator 
Timing chain 
Phase  drivers 
Restore drivers 
Internal voltage supply 
Wiring 
Pads 

10.64 
1.53 
0.79 
0.15 
1.46 
0.56 
0.91 

0.17 
0.02 
0.01 
0.29 

0.30 
0.04 
0.03 
0.59 
0.19 
1.27 
0.52 
1.34 
0.72 
0.09 
1.58 
2.19 

Total circuit area 25.39 

lines. Then  on  the  average we have 4 - 2 = 2 more  word 
lines than failing lines and 4 - 1 = 3 more bit lines than 
failing lines, giving a total of 2 + 3 = 5 spare lines to 401 
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Table 3 Critical  area  matrix for a 4K- X 9-bit chip. All areas in  mm* 

Single Double Single Double Single Double Redundant Chip 
cells cells word word bit bit circuits kill 

lines lines lines lines 

Junction leakage 
Storage node 8.67 - - - - - 0.38 
Bit  line 
Peripheral circuit 

- 
- - - - - - - 3.03 
- - - - - - - - 

Diffusion 
Missing  pattern 0.65 0.05 0.24 0.21 0.54 0.05 0.17 0.44 
Extra  pattern 3.05 3.79 0.30 0.29 0.65 0.11 0.41 0.29 

Polysilicon 
Missing  pattern 2.02 0.10 0.08 0.16 0.39 0.04 0.12 0.05 
Extra  pattern 0.44 0.01 0.08 0.03 0.18 - 0.06 0.18 

Missing oxide - - 4.99 0.03 0.35 - 0.40 3.62 

Metal 
Missing  pattern 0.25 - 0.35 - 0.07 0.01 0.04 0.35 
Extra  pattern - - 0.02 0.66 0.04 0.03 0.06 0.32 

Pinholes 
SNOS thin oxide 6.49 - 0.16 0.12 0.22 0.03 0.44 0.52 
MNOS thin oxide 0.35 - 0.13 0.09 0.12 0.01 0.13 0.67 

Table 4 Combinations constituting a  fixable  pattern for a 1 x 1 
redundancy scheme. 

fault frequencies (x) can  be  calculated, and  from these 
yield with redundancy  can be derived. 

I 2 I 2 I 2 
cell cells word word bit  bit 

line lines line lines 

0 0 
1 0 
2 0 
0 1 
0 0 
0 0 
0 0 
1 0 
1 0 
1 1 

0 
0 
0 
0 
1 
1 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
1 0 
0 0 
1 0 
0 0 

correct  the two failing cells.  Intuitively, it will be rare for 
there to be enough  failures to  exceed  redundancy capabil- 
ity,  and  the yield will be high with redundancy. 

The  above  argument must be modified for fatal  defects 
which are not in principle correctable by  redundancy. 
These clearly  put  a limit on  redundancy effectiveness; in 
practical cases,  however,  redundancy  has been  shown to 
enhance yield significantly. 

Redundancy computation 
For an  array with no redundancy,  the yield is simply the 
probability that no faults occur. With redundancy,  the 
yield is the  probability that a fixable pattern of failures 

402 occurs. Given  critical areas and defect densities, mean 

Early simulation  work by McLaren indicated that  one 
redundant line for 64 lines is appropriate  for present-day 
manufacturing conditions. This  level of redundancy has 
been  implemented in several  chips, producing significant 
yield increases.  Since  that time, an analytical approach 
has  been  developed, which we are currently using in our 
yield modeling work.  This analytical approach is  now de- 
scribed. 

Since the yield with  redundancy is the probability that a 
fixable pattern of failures  occurs, it can be calculated as 
the sum of the probabilities of the (mutually  exclusive) 
events which constitute a fixable pattern. This is illus- 
trated by supposing that,  for simplicity, we have one re- 
dundant word line and  one  redundant bit line. The  events 
constituting  a fixable pattern may then be represented in 
matrix form as in Table 4. 

Each row of the matrix is an  event;  each  entry in a row 
is the number of failures of each  type (single cell, etc.) 
that is fixable with the available redundancy;  thus,  each 
row is a fixable pattern of failures. All the  rows  constitute 
the  set of all fixable events. 

The yield is then calculated by first deriving  the  proba- 
bility of each  event  and then summing these probabilities 
over the rows. 
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If  we use A,,, A,,, AsWL, A,,, ASBL, ADBL to  denote  the Table 5 Number of fixable combinations  considered for w i -  
mean frequencies  per  array of fixable failures, such  as 
single cell, double cell, etc., a  Poisson model for  the first Redundancy  Fixable 
event (first row) gives the probability combinations 

ous redundancy  schemes. 

p (oooooo) = ,-As,,-AD',-A~wwL,-ADD"'L~-As"BL e .  - ~ D B L  Word Bit 
(6) lines  lines 

For the  second row we get 
0 0 1 

x SC DC SWL'DWL S B L   D B L  
h i  Ak ' Am A" 

(8) i !  j !  k !  I !  m! n! 

for an event with i single cell failures, j double cell fail- 
ures, k single word line failures, etc. 

When all the probabilities for fixable events  are added 
together, we have the probability of a fixable array.  That 
probability must, of course,  be multiplied by the probabil- 
ity of no fatal (or chip-kill)  defect to  get  the  net chip yield. 

The above model uses Poisson statistics.  It  can be  read- 
ily modified to mixed Poisson statistics when A,,,  A,,, 
A,,,, etc.,  are  assumed  to be proportional to  the total 
mean number of faults A for  the chip. This total mean 
number of faults  per chip is given by 

A = A,, + As, + ADc + A s w L  + ADWL + As,, + h,BL, (9) 

where A,, represents  the average number of fatal or chip- 
kill faults. These  are faults caused by defects in peripheral 
circuits,  such  as timing  and  power  supply  circuits.  Such 
faults make the  chip completely  nonfunctional. 

Using  the same  gamma distribution for  the mixing func- 
tion of A as before changes (8) into 

P ( i j k 1 m n )  = 
T ( i + j + k + / + m + n + a )  

Ua) 
i+,+k+f+m+n 

X ~ ( a i  + a l i + j + k + f + m + n + a  

This expression includes  the fatal  faults in the average 
number of faults  per chip, h;. Summing (10) over all fix- 
able  patterns therefore leads to  the  correct random defect 
yield of the  chip. 

1 0 3 
2 0 8 
3 0 16 
4 0 30 
5 0 50 
1 1 10 
2 1 22 
3 1 43 
4 1 77 
5 I 126 
2 2 53 
3 2 100 
4 2 177 
5 2 284 
3 3 185 
4 3 320 
5 3 5 0 6  
4 4 548 
5 4 854 
5 5 1316 

The number of patterns that we have used for  such calcu- 
lations are given in Table 5 .  With more  redundant  lines 
the probability of fixing the chip is  increased. But fix- 
ability also depends  on  the  spread of the fault  distribu- 
tions. A lower value of (Y (higher u/p ratio) causes longer 
tails in that distribution. These long tails can seriously 
lower  the  probability of  fixing the  chip. 

Several reasons  exist,  therefore, for not  always having 
sufficent redundancy  to fix all fixable faults on  the  aver- 
age. It is useful to define a quantity hNF for  the average 
number of fixable faults  that  cannot be fixed. This defini- 
tion is such  that  the  random defect yield for the  product is 
given by 

But this yield should also be equal  to  the yield calculated 
by the summation of (10). As such, hNF can be determined 
by 

where  the  summation is over all the fixable combinations. 
Good fixability schemes will result in low values of iNF. 

Matrices for fixable events,  such  as  the  one in Table 4, The model in ( 1  1 )  is essentially the  same  as  the yield 
have  been generated for numerous  redundancy schemes.  models  used  earlier  by  Sredni [20] and  Stapper [15]. In 403 
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Table 6 Failure modes found  by visual inspection. 

Single Double Single Double Single Double 
cell cell word word bit bit 

faults faults line line line line 
faults  faults  faults  faults 

Junction leakage 
Storage node 0.248 0 0 0 0 0 
Bit line 0 0 0 0 0 0 

Diffusion 
Missing  pattern 0.050 0 0 0 0.057 0.028 
Extra  pattern 0.057 0.035 0.007 0 0.021 0 

Polysilicon 
Missing pattern 0 0 0 0 0 0 
Extra  pattern 0.106 0.007 0.021 0 0 0 

Missing oxide 0.028 0 0.106 0.028 0.007 0 

Metal 
Missing pattern 0.043 0.007 0.213 0.014 0.021 0.007 
Extra  pattern 0 0 0.028  0.099 0 0.007 

Pinholes 
SNOS thin oxide 0 0 0 0 0 0 
MNOS thin oxide 0 0 0.099 0.007 0 0 

No visual defects 0.113 0.028 0.106 0.028 0.298 0.056 

Repeating defects 0.064 0.029 0.029 0.029 0.036 0.007 

Total 0.709 0.106 0.609 0.205 0.440 0.105 

both of these  approaches  the mixing was  done  on the total 
number of random faults caused by  random defects,  such 
as  photo,  dielectric,  and leakage defects. This differs from 
earlier work by Stapper [21, 221 where mixed Poisson sta- 
tistics were applied to individual defect  types. This  ap- 
proach is not  readily extendable  to redundancy  calcu- 
lations and has  therefore been superseded by the methods 
described in this  paper. 

Expression ( 1  1) does  not  represent  the complete yield 
model. As discussed in the  section on organization of the 
model,  the gross yields still have to be included.  This is 
done by multiplying (1 1) by the total gross yield. The re- 
sult is a yield formula similar to  the model  described  by 
Paz  and Lawson [23] but extended to include the faults 
per  chip caused by all the different random defect types. 

Redundancy results 
The yield model was first used on a 32K-bit chip with four 
redundant  word  lines  and four  redundant bit lines. Defec- 
tive bit or word lines  could  be  replaced  by  redundant 
lines. This  was achieved  by blowing a pattern of fuses to 
steer the decoders  around  the defective addresses [24]. 
The perfect  plus fixable chip yield for 13 lots  is  shown  as a 
function of the perfect chip yield in Fig. 4. Each  data 
point is the yield of a  lot  consisting on  the average of ten 
wafers. 

The product had  a  kerf structure  that allowed measure- 
ment of the defect  densities, This was  done with serpen- 
tine and fingered defect monitors. The monitor data were 
converted  to  defect  densities by the  method described  by 
Stapper [21, 221. The average defect  densities  for all the 
lots  combined  were  used to  calculate  the yield indicated 
by the triangle. The defect  densities  were  then  changed 
covariantly in order  to  obtain  the solid  line. As can be 
seen,  the  agreement  between the model and  the  data is 
quite  good. 

Of special interest  are  the  two  lots  represented by the 
two high yield points in Fig. 4. The  defect monitor data 
for these lots  showed  that all defect densities except  for 
leakage defects were  low. The leakage defect densities 
were in fact higher than in the  other  lots.  These  defects 
caused a large number of single cell  failures but very few 
chip-kill failures. The low defect densities  for  the  other 
defects also  resulted  in  a  lower number of chip-kill fail- 
ures  as well as  fewer fixable failures. The single cell fail- 
ures can be fixed by using the  redundant lines.  This  prod- 
uct is therefore highly fixable. A two-dimensional yield 
profile based on  the  actual  redundant word  and  bit line 
implementation is shown in  Fig. 5 .  The solid lines connect 
points obtained  with these  data. A set of dashed lines  con- 
nect  the points  calculated with the model based on defect 
densities measured with the kerf. The  product  data along 
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Figure 4 Redundancy profile for a 32K-bit chip. The solid line 
is calculated with the model. 

the zero redundant bit line and  zero  redundant word line 
axes  are significantly lower than  the calculated probabili- 
ties.  This is an  artifact of the actual method used for im- 
plementing the  redundancy.  In  practice, we fixed all 
faulty bit lines  first, then all faulty  word lines, and finally 
other failures, using redundant  bit and word  lines  alter- 
nately.  This resulted in very few chips actually being 
fixed with word or bit  lines only,  even though  this might 
well have  been  possible. The  actual  results of using 0 x 0, 
1 X 1,2~2,3X3,and4x4redundancyareinverygood 
agreement with theory. 

We made a more comprehensive analysis of our model 
with the 141-chip sample of the 4K- X 9-bit chip mentioned 
earlier. For  each of these  chips, it was  known which cells, 
word lines, and/or bit  lines  failed. With visual inspection 
and  some  chemical  analysis, it was possible to relate  de- 
fects  to specific failures.  Table  6 shows  the  results of this 
analysis in terms of the average number of faults  per  chip. 
Some  caution  must be taken when interpreting  these  data. 
Except  for repeating defects,  the sample for  each type of 
fault consists of  141 chips. A single failure in the sample, 
therefore, leads  to  an  average of 0.007 faults per chip. The 

1 5 0 %  

Yield 

Figure 5 Yield as a function of redundancy.  Data from  a 32K- 
bit chip are in solid lines, calculations  made  with the model in 
dashed  lines. 

99% confidence  interval for this result ranges  between 0 
and 0.052 faults per chip assuming a Poisson  distribution. 
For higher failure counts,  the 99% confidence  interval 
gets  even larger. For  instance, I5 faults in this  sample 
give an  average of 0.106 faults per  chip  and a 99% con- 
fidence interval between 0.054 and 0.165.faults per  chip 
when reckoned with Poisson statistics.  These intervals 
would become even wider if mixed Poisson  statistics 
were used. 

Our objective was  to  compare  these  data  to  the fault 
densities  calculated  with our model. This was  done by 
determining the  defect densities with a sample of 1600 405 
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Table 7 Defect densities obtained from defect monitors. An * 
indicates defects greater  than 2.5 pm. All densities are in defects 
per cmz. 

chip  for single and  double word line failures, respectively. 
These triple word line failures are therefore negligible. 

Junction leakage 
Storage node 
Bit  line 

Diffusion 
Missing pattern 
Extra  pattern 

Polysilicon 
Missing  pattern 
Extra  pattern 

1.93 
2.0 

8.0” 
3.7* 

20* 
o s *  

Missing oxide 7.1 

Metal 
Missing  pattern 
Extra  pattern 

Pinholes 
SNOS thin oxide 
MNOS thin oxide 

41.1* 
38.7* 

0.5 
4.6 

kerf monitors produced  on  the  same  wafers  as  the 141 
chips. These  defect densities are listed in Table 7. By 
means of the critical area matrix of Table 3 and matrix 
equation ( 3 ,  the faults per  chip  shown in Table 8 can be 
determined. 

The theoretical  faults  for cells and word lines  agree 
with the  data within the 99% confidence  limits. It is clear, 
however, that something is missing in the  case of the bit 
lines.  This is due mostly to the  nonvisual defects shown in 
the data.  These  defects  occurred only under certain test 
conditions and,  therefore, have  been  designated as “volt- 
age sensitive  failures.” They often  manifested  themselves 
as  either complete  bit line failures or  as varying  numbers 
of cells failing along the bit lines.  This appeared  to be 
caused by marginal circuit operation  under  certain para- 
metric combinations. In subsequent yield models, we 
have included these failures.  This was done with an  extra 
defect  density  and  critical area so that  the results  con- 
formed to  the empirical data. As seen in Table 8, this ad- 
dition to the model affects only the bit lines.  Improved 
bias conditions on leakage and diffusion short monitors 
allow quantification of these  defect densities,  but product 
sensitivity depends  on  the design. 

We did not  include triple adjacent word and bit line fail- 
ures in our model since  the probabilities of failure and of 
critical areas were  very small. In the  data we did not find 
any triple bit line failures, but there were two chips  with 
triple word line failures. These  are not shown in Table 6. 
They  represent  an  average of 0.014 faults per chip with 
99% confidence bounds of zero  and 0.066 faults  per  chip. 
This is small compared  to  the 0.609 and 0.205 faults per 406 
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Besides the failure  modes, we also  compared calcu- 
lated yield with actual.  This sample of 141 chips  was  part 
of a larger  sample of wafers.  The ratio of fixable to perfect 
chips on  these wafers  was 3.51. The model using kerfde- 
fect  densities  gave a ratio of 3.60. The  absolute perfect 
chip yield was 1.06 times the  model-predicted yield. For 
the fixable chip yield, the actual to model  ratio was 1.03. 

Partially good product 
Failures  often occur only in a  given section of a chip, or 
when redundancy is present the  remaining  uncorrected 
failures may occur only in a given section of a  chip. The 
section concerned may be one-half, one-quarter,  or  one- 
eighth of the  chip, with the  remainder of the chip  (one- 
half, three-quarters,  or seven-eighths) being fault-free. 
This  suggests that  the circuitry of a chip be  partitioned so 
that the  fault-free sections can function  as independent 
units. The bit capacity of these  sections is then available 
for packaging in modules along with other partially good 
or perfect product  to give a total capacity of some  market- 
able  combination of memory bits. 

Yield calculations for partially good product are some- 
what different from  those when only all good product ex- 
ists. We define the equivalent yield as  the fraction of us- 
able capacity. If  we denote the  equivalent yield as YEe, 
the all good yield by YAG, and the partially good yield as 
YpG, then 

YE, = YAG + (k /n)Y, , ,  (13) 

where ( k / n )  is the  fraction (1/2,3/4,7/8) of usable  capacity 
for partially good chips.  The  concept of equivalent yield 
is applicable to  both empirical situations (determining ac- 
tual yield) and modeling situations  (projecting  yield). In 
the latter  case,  the partially good yield, YeG, has to be 
computed, and  this may be  done as follows: 

Suppose the chip is partitioned into n independent  sec- 
tions  and that we want the probability that k of the  sec- 
tions are fault-free (after  correction with redundancy, if 
applicable). Then, if we know the yield of each section 
separately as Yl,ns, the yield of defects  fatal  to the  chip 
(chip-kill defects)  as YcK, and  the  gross yield as Yo, then 
the  required  probability (yield) is 

For  example, in the  case of two  sections,  the yield of  half 
good product is 
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Table 8 Failure modes by type according to the model. 

Single Double Single Double Single Double 
cell cell word word bit bit 

faults faults line line line line 
faults  faults  faults  faults 

Junction leakage 
Storage node 
Bit  line 

Diffusion 
Missing pattern 
Extra  pattern 

Polysilicon 
Missing pattern 
Extra  pattern 

Missing oxide 

Metal 
Missing  pattern 
Extra  pattern 

Pinholes 
SNOS thin oxide 
MNOS thin oxide 

Total 

Voltage sensitive 
failures 

Subtotal 

0.17 
0 

0 
0 

0 
0 

0 
0 

0 
0.06 

0 
0 

0.02 
0.01 

0.02 
0.01 

0.04 
0.02 

0 
0 

0.05 
0.11 

0 
0.14 

0 
0.02 

0.02 

0 
0 

0 

0.01 
0.09 

0 

0 
0 

0 

0 
0.02 

0.35 

0 
0.01 

0 

0.10 
0 

0.14 
0.01 

0 
0.26 

0.03 
0.01 

0 
0.01 

0 
0 

0 
0.01 

0 
0 

0.03 
0.02 

0 
0 

0 
0.01 

0 
0 

0.58 0.14 0.56 0.21 0.21 0.01 

0.23 0.09 

0.44 0.10 

It is possible to combine  a  partially good product 
scheme with redundancy.  This is precisely  what  has  been 
done in IBM’s 64K-bit low cost  chip and 32K-bit high per- 
formance chip.  In this case,  the is given by the non- 
fixable faults in one of the n sections.  These quantities are 
then  calculated by means of (10) and (12). This is the form 
used for our yield model. 

Partially good product results 
Data for  a chip with half good product  and redundancy 
are shown in Fig. 6. Each  data point represents the aver- 
age all good  and half good yield for  groups of  five wafers 
which were  consecutively tested  at the output of an  auto- 
matic VLSI wafer fabricator.  The all good yield includes 
the yield of perfect chips  as well as  the yield for chips 
which have  been fixed with redundancy.  The half good 
yield consists similarly of perfect and fixed half good 
chips. 

The model used for this  chip calculates  the yield for 
both  redundancy and half good product. The dashed line 
in Fig. 6 was calculated  more than  two  years before the 
product  was  actually  manufactured. The solid line came 
from a yield projection made nine  months  before the 
product  was made. By that time  enough  was  known about 407 

Note  that Y,,, is not Y,,,. The  latter yield assumes  that  any 
two  out of four sections on a  chip are  to  be good. Six such 
combinations are possible. 

If the  mean number of faults in a  partially good section 
is given by Allns and  the mean number of random fatal 
defects by A,,, then  Eq. (14) can be rewritten  as 

thus expressing the yield completely in terms of the gross 
yield and random faults. Under  the  assumption that A,, + 
( j  + k)A, , ,  is proportional to  the  total fault 

expression (16) can  be transformed to a mixed Poisson 
model 
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