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Yield Model for Productivity Optimization of VLSI
Memory Chips with Redundancy and Partially Good
Product

A model with mixed Poisson statistics has been developed for calculating the yield for memory chips with redundant lines
and for partially good product. The mixing process requires two parameters which are readily obtained from product
data. The product is described in the model by critical areas which depend on the circuit’s sensitivity to defects, and they
can be determined in a systematic way. The process is represented in the model by defect densities and gross yield losses.
These are measured with defect monitors independently of product type. This paper shows how the yield for any product
can be calculated given the critical areas, defect density, and mixing parameter. Future yields are forecast by using
expected improvements in defect densities. Examples show good agreement between actual and calculated yields.

Introduction

Computer memory chips containing 65 536 memory bits
are now available, and a trend towards larger chips with
even greater bit densities is becoming apparent. As the
number of bits goes up, the probability of having memory
cell or word and bit line failures increases. Several manu-
facturers have therefore begun to use redundant memory
bits in their product [1-3].

Using redundant memory bits to replace defective ones
has been proposed by numerous inventors and authors.
Sakalay, Fletcher, and Kril [4-7] devised several schemes
for redundancy in core memories. Tammaru and Angell
[8] described and calculated the yield of memory arrays
and logic circuits with redundancy. A yield calculation
with multiple word and bit line redundancy in memory
arrays was published by Chen [9], and Arzubi [10] de-
vised a method for implementing such a scheme on in-
tegrated circuit memory chips. Recently, Schuster [11]
made a set of calculations to show the yield improvement
possible as a function of the average number of faults on a
memory chip and the total number of redundant lines.

Another scheme for enhancing yield is that of using
partially good product. Elmer et al. [12] described this
scheme for use in a CCD memory chip. Many partially
good combinations are possible. We have worked with
half good, two-thirds good, seven-eighths good, eight-
ninths good, and nine-tenths good schemes for memory
chips. The optimum scheme usually depends on the mem-
ory organization in which the chips are used.

The effectiveness of redundancy and partially good
product depends strongly on the fault distribution, i.e.,
the probabilities for having zero, one, two, three, or more
faults per chip. Except for Cenker et al. [3], the calcu-
lations made in the papers on redundancy and partially
good product referred to previously all assumed binomial
or Poisson distributions. Yet, data by Moore [13] showed
that this is not necessarily the case. Both Warner [14] and
Stapper [15] showed that Moore’s data could be repre-
sented by mixed Poisson statistics. More data showing
this to be true is given in this paper, thus making the ex-
tension of mixed Poisson statistics necessary for both re-
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dundancy and partially good product yield calculations.
Formulas for this theory, as well as the comparison be-
tween theoretical calculations and actual process data,
are the major subjects of this paper.

Statistics

Figure 1 shows the fault distribution obtained from a
sample of 141 memory chips having 4K- X 9-bit organi-
zation. The chips were selected from 21 wafers which
were randomly picked during three months of production.
Each wafer was tested, and the sample was selected from
chips for which the locations of failing cells, word lines,
and bit lines were known. These chips were then visually
inspected and systematically delayered to uncover all de-
fects which caused the faults. Defects which did not
cause faults or failures were not included in the distribu-
tion.

For a Poisson distribution, the mean must equal the
variance. For the data in Fig. 1, the mean was 2.333 and
the variance was 4.619, clearly not Poisson. These results
can best be modeled with mixed Poisson statistics using a
gamma distribution as the mixing function. This resuits in
a Polya-Eggenberger distribution of the form [15]

Tx + ) HI
P(X=x)= S
xT(a) (1 + —)

a

M

where x is the number of faults per chip, A the average
number of faults per chip, and « a parameter that depends
on the fault density variation. The quantities A and o
make (1) a two-parameter distribution. Poisson statistics
use only a single constant parameter A, which is equal to
the mean and the variance of the number of faults per chip
distribution.

The mean and variance for (1) are

E(X) = X and )

Var (X) = X(% + 1). 3)

Instead of «, it is often useful to express the above re-
sults in terms of the coefficient of variation of the fault
density A. This fault density has its own probability distri-
bution function (pdf) with a mean, variance, and coeffi-
cient of variation o/, When this pdf or mixing function
is a gamma distribution with parameters A and « [15], it is
found that

o/u=1Vea. 4)

In the limits, when a approaches infinity or o/p ap-
proaches zero, expressions (2) and (3) approach those of
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Figure 1 Fault distribution from physical analysis.

Poisson statistics. In that case, only a single value for A
exists, indicating that the pdf of A is a delta function.

The parameters « and A can readily be estimated from
the mean and the variance of the data by solving (2) and
(3). For the data in Fig. 1, we obtain A = 2.333 and a =
2.382 (o/n = 0.6480). The theoretical distribution with
these parameters is shown by dashed lines in Fig. 1. Test-
ing the calculations with a Smirnov-Kolmogorov test
gives a significance level greater than 0.2, indicating that
this model cannot be rejected as a fit for the data.

Another sample of wafers manufactured during the
same period was subjected to a more severe retention
time test. On those chips that were not completely inoper-
able, the number of isolated failing single cells was
counted. The resulting distribution shown in Fig. 2 has a
far longer tail than was observed in the visually inspected
sample. These long tails are typical of the distributions for
junction leakage failures, which can also be represented
by the Polya-Eggenberger distribution shown by the
dashed lines in Fig. 2. In this case we obtained A = 1.572,
o = 03927, and o/ = 1.596.

Values of o/u ranging from 0.5 to 2 have been encoun-
tered in samples from different products. The long tails in
these distributions have a profound effect on redundancy.
Poisson distributions are short tailed, and calculations
based on such statistics, therefore, require less redun-
dancy than may be needed in actuality. To prevent this
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Figure 2 Single cell failure distribution for a 4K- x 9-bit
memory chip.

Table 1 Defect and fault types used in the yield model.

Defect types (D) Fault types (M)
1. Node leakage 1. Single cell
2. Bitline leakage 2. Double cell
3. Peripheral circuit leakage 3. Single word line
4. Missing diffusions 4. Double word line
5. Extra diffusions S. Single bit line
6. Missing polysilicon 6. Double bit line
7. Extra polysilicon 7. Redundant circuits
8. Missing aluminum 8. Section kill
9. Extra aluminum 9. Chipkill

10. Holes in the SNOS oxide
11. ‘Holes in the MNOS oxide
12. Holes in the polysilicon oxide

problem, we have based our model completely on mixed
Poisson statistics. The mixing function in all cases is the
gamma distribution of faults per chip or, if needed, per
circuit.

Cenker et al. [3] claimed to have made their redun-
dancy yield calculation with a model based on a theory
by Price [16). That model essentially has « and o/u equal
to one. Although better than Poisson statistics, such a
model still cannot span the actual range of data.

Organization of the model
The yield model consists of one set of parameters charac-
terizing the process and another set describing the prod-
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uct. We have found it useful to define the defect densities
as a set of parameters that causes faults. Mathematically,
we can write this in matrix form as

A=ApD, ®)

where A is a vector representing the nine faults per chip or
circuit, A, the critical area matrix of the product, and D,
a vector consisting of the defect densities of the process.

The twelve random defect types making up the defect
density vector are shown in Table 1. Defect densities for
missing contact holes have not been included. We have
never been able to collect data that substantiated a model
like that in (5) for this type of defect. Furthermore, less
than 1% of the contact holes could be associated with fix-
able faults; the rest all caused a section or chip failure
when missing. This led us to model missing contact holes
conveniently as gross yield multipliers.

Other process parameters are modeled as gross yield
detractors and simple yield multipliers. These include
second level metal and contact holes, as well as over- or
under-exposed patterns, over- or under-etched patterns,
and misalignment for any photo step. Gross area-related
yield losses, such as threshold voltage, transconduc-
tance, and contact resistances that are out of specifica-
tion, fit this model implicitly. So do the gross components
of junction leakage, which destroy complete areas of wa-
fers as well as entire wafers.

Yield losses that are not due to the process, such as
those resulting from handling, misprobing, mistesting,
and errors in redundancy implementation, are also ac-
counted for by gross yield multipliers. Our models also
include gross yield estimates for circuits that fail to func-
tion due to a certain combination of device parameters
that are nonetheless within process specifications.

To model the random defect losses requires first a list
of the circuit areas such as the list for a 4K- x 9-bit
chip shown in Table 2. Each circuit in this list is analyzed
for its sensitivity to the 12 random defect types. This sen-
sitivity has to be calculated for each type of fault that may
be caused by any one of these types of defects. The list in
Table 1 shows nine fault types, but we have used more in
other applications. These faults are represented by the
vector A in formula (5).

The critical area matrix A_ in (5) is a 12 X 9 array of
numbers representing the sensitivity of a chip to random
defects. This sensitivity to defects is obtained by calcu-
lating the critical area, i.e., the area of the circuit in which
a defect must fall to cause a fault. For leakage defects this
is assumed to be the total area of the metallurgical junc-
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tion. Similarly, the critical area for dielectric pinholes is
the area of overlap of the conductors. In all these cases
defect size has been neglected, but this cannot be done
for defects in the diffusion, polysilicon, and first level
metal photo patterns. The photo defects are known to be
distributed by size [17, 18]. Dennard [19] had shown the
defect size distribution to be falling off as 1/x° for defects
with diameter x. Other workers at IBM have since veri-
fied that this is a good approximation. We have, there-
fore, calculated our photo-critical areas with this distribu-
tion. This requires the generation of so-called probability
of failure curves. This is done by computer generation of
a set of random coordinates on 2000X plots of the cir-
cuits. Disks of different diameters are then placed on
these locations. The probability of failure for a given disk
size is the fraction of defects of that size which we deter-
mined to have caused a fault. The probabilities of failure
vary with defect size as shown, for example, in Fig. 3 for
missing diffusions in the array of the 4K- x 9-bit chip.
There are probability of failure curves for single cell,
double cell, single bit line, and other failure combina-
tions. These failures or faults are mutually exclusive since
any given defect size at a random location can only result
in one of these fault types. '

Integrating these probability of failure curves over the
size distribution gives the fraction of the circuit area that
is sensitive to the average photo defect. Multiplying the
results by the circuit area gives the critical area for each
defect and fault type. In this way critical area matrices
can be obtained for each circuit. The sum of the critical
areas of all circuits gives the critical area matrix for the
entire chip. Such a matrix for the 4K- X 9-bit chip is
shown in Table 3. By establishing libraries of critical
areas for different circuits, we have been able to reconfig-
ure chips to optimize expected productivities by means of
redundancy and partially good schemes.

Redundancy

The concept of redundancy is straightforward; spare
word lines and bit lines are made available to replace fail-
ing lines and to bypass failing cells. The effectiveness of
redundancy may be assessed by a probabilistic model to
be described below. Qualitatively, however, the power of
the concept can be illustrated as follows:

Suppose we have a large number of arrays for which
there are, on the average, two failing word lines, one fail-
ing bit line, and two failing cells—a total of five failures on
the average. It is clear that it will be rare for such an array
to have no failures. In a sense, having no failures would
require that none of the five typical failures occur. Thus,
the yield without redundancy is low. Suppose, however,
we have four redundant word lines and four redundant bit
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Figure 3 Probability of failure as a function of defect size for
different failure modes in a memory array. These curves must be
combined with the defect size distribution, defect density, and
array area to obtain the average number of faults associated with
each of these failure modes.

Table 2 Circuit types and corresponding areas.

Circuit type Circuit area
(mm®)
Array cells 10.64
Sense amplifiers 1.53
Sense amplifier drivers 0.79
Sense amplifier underpasses 0.15
Word decoders and drivers 1.46
Word line terminators 0.56
Bit decoders and drivers 0.91
Word redundancy
Word lines 0.17
Decoders and drivers 0.02
Terminators 0.01
Redundancy compare 0.29
Bit redundancy
Bit lines 0.30
Sense amplifiers 0.04
Decoders and drivers 0.03
Steering circuits 0.59
Redundancy compare 0.19
True/complement generator 1.27
Timing chain 0.52
Phase drivers 1.34
Restore drivers 0.72
Internal voltage supply 0.09
Wiring 1.58
Pads 2.19
Total circuit area 25.39

lines. Then on the average we have 4 — 2 = 2 more word
lines than failing lines and 4 — 1 = 3 more bit lines than
failing lines, giving a total of 2 + 3 = 5 spare lines to
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Table 3 Critical area matrix for a 4K- X 9-bit chip. All areas in mm®.

Single Double Single Double Single Double Redundant Chip
cells cells word word bit bit circuits kill
lines lines lines lines
Junction leakage
Storage node 8.67 — — — — — 0.38 —
Bit line — — — — 3.03 — — —
Peripheral circuit — — — — — — — —
Diffusion
Missing pattern 0.65 0.05 0.24 0.21 0.54 0.05 0.17 0.44
Extra pattern 3.05 3.79 0.30 0.29 0.65 0.11 0.41 0.29
Polysilicon
Missing pattern 2.02 0.10 0.08 0.16 0.39 0.04 0.12 0.05
Extra pattern 0.44 0.01 0.08 0.03 0.18 — 0.06 0.18
Missing oxide — — 4.99 0.03 0.35 — 0.40 3.62
Metal
Missing pattern 0.25 — 0.35 — 0.07 0.01 0.04 0.35
Extra pattern — —_ 0.02 0.66 0.04 0.03 0.06 0.32
Pinholes
SNOS thin oxide 6.49 — 0.16 0.12 0.22 0.03 0.44 0.52
MNOS thin oxide 0.35 — 0.13 0.09 0.12 0.01 0.13 0.67

Table 4 Combinations constituting a fixable pattern fora 1 X 1
redundancy scheme.

1 2 I 2 ) 2
cell cells word word bit bit
line lines line lines
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 Q 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 0 1 0
1 0 1 0 0 0
1 0 0 0 1 0
1 1 0 0 0 0

correct the two failing cells. Intuitively, it will be rare for
there to be enough failures to exceed redundancy capabil-
ity, and the yield will be high with redundancy.

The above argument must be modified for fatal defects
which are not in principle correctable by redundancy.
These clearly put a limit on redundancy effectiveness; in
practical cases, however, redundancy has been shown to
enhance yield significantly.

Redundancy computation

For an array with no redundancy, the yield is simply the

probability that no faults occur. With redundancy, the

yield is the probability that a fixable pattern of failures
402 occurs. Given critical areas and defect densities, mean
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fault frequencies (A) can be calculated, and from these
yield with redundancy can be derived.

Early simulation work by McLaren indicated that one
redundant line for 64 lines is appropriate for present-day
manufacturing conditions. This level of redundancy has
been implemented in several chips, producing significant
yield increases. Since that time, an analytical approach
has been developed, which we are currently using in our
yield modeling work. This analytical approach is now de-
scribed.

Since the yield with redundancy is the probability that a
fixable pattern of failures occurs, it can be calculated as
the sum of the probabilities of the {mutually exclusive)
events which constitute a fixable pattern. This is illus-
trated by supposing that, for simplicity, we have one re-
dundant word line and one redundant bit line. The events
constituting a fixable pattern may then be represented in
matrix form as in Table 4.

Each row of the matrix is an event; each entry in a row
is the number of failures of each type (single cell, etc.)
that is fixable with the available redundancy; thus, each
row is a fixable pattern of failures. All the rows constitute
the set of all fixable events.

The yield is then calculated by first deriving the proba-
bility of each event and then summing these probabilities
over the rows.
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If we use Ay, Apes Agwir Apwer Agpr» Apg 1O denote the
mean frequencies per array of fixable failures, such as
single cell, double cell, etc., a Poisson model for the first

event (first row) gives the probability
P (000000) = ¢~ *sceTAco™AswWip=AowL, ~Ashr, ~Aonl, 6)
For the second row we get

—Asc

A
P (100000) = — " SC e_)‘DCe_)‘SWLe‘)\DWLe—)\SBLe—)\DBL.« N

In general, we can express these probabilities as

. . —(AsctApet AswLt ApwrtH AsBLAA
P(tjklm”):e(su pctAswitApwitAgpLtApeL)

AT AE AL Nt A"
X

sc™pc swi/ pwisBL M DBL ®)
vkl m! !

for an event with i single cell failures, j double cell fail-
ures, & single word line failures, etc.

When all the probabilities for fixable events are added
together, we have the probability of a fixable array. That
probability must, of course, be multiplied by the probabil-
ity of no fatal (or chip-kill) defect to get the net chip yield.

The above model uses Poisson statistics. It can be read-
ily modified to mixed Poisson statistics when Ag., Ay,
Agwe» €tc., are assumed to be proportional to the total
mean number of faults A for the chip. This total mean
number of faults per chip is given by

A=Neg T Ao F Mgt A F A T Ay F A 9)

where A, represents the average number of fatal or chip-
kill faults. These are faults caused by defects in peripheral
circuits, such as timing and power supply circuits. Such
faults make the chip completely nonfunctional.

Using the same gamma distribution for the mixing func-
tion of A as before changes (8) into

Iri+j+k+l+m+n+oa
T'(a)

( 1 )z'+j+k+l+m+n

Pljklmn) =

o
X - G aAE
(2]
a
xi )‘\j )‘\k )-\l Xm )‘\n
X SC "*DC ""SWL “*DWL “"SBL " “DBL (10)
i jL k! It mY n! '

This expression includes the fatal faults in the average
number of faults per chip, A. Summing (10) over all fix-
able patterns therefore leads to the correct random defect
yield of the chip.

Matrices for fixable events, such as the one in Table 4,
have been generated for numerous redundancy schemes.
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Table 5 Number of fixable combinations considered for vari-
ous redundancy schemes.

Redundancy Fixable
combinations

Word Bit
lines lines

MANPBRNRWNRAWNUNAWN~,ULUREWN—=O
NMAPRWWLUWNNNN=S=R,=—=—=000000
[V
(¥ )

The number of patterns that we have used for such calcu-
lations are given in Table 5. With more redundant lines
the probability of fixing the chip is increased. But fix-
ability also depends on the spread of the fault distribu-
tions. A lower value of « (higher o/ ratio) causes longer
tails in that distribution. These long tails can seriously
lower the probability of fixing the chip.

Several reasons exist, therefore, for not always having
sufficent redundancy to fix all fixable faults on the aver-
age. It is useful to define a quantity XNF for the average
number of fixable faults that cannot be fixed. This defini-
tion is such that the random defect yield for the product is
given by

Nep + Ao} ©
Y=(1+M)_ an

o

But this yield should also be equal to the yield calculated
by the summation of (10). As such, XNF can be determined

by
L P S | (12)
a( SPGjklmn) ])J Ao

where the summation is over all the fixable combinations.
Good fixability schemes will result in low values of Ag..

e =

The model in (11) is essentially the same as the yield
models used earlier by Sredni [20] and Stapper [15). In
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Table 6 Failure modes found by visual inspection.

Single Double
cell cell
Sfaults Faults

Junction leakage

Storage node 0.248 0

Bit line 0 0
Diffusion

Missing pattern 0.050 0

Extra pattern 0.057 0.035
Polysilicon

Missing pattern 0 ({]

Extra pattern 0.106 0.007
Missing oxide 0.028 0
Metal

Missing pattern 0.043 0.007

Extra pattern 0 0
Pinholes

SNOS thin oxide 0 0

MNOS thin oxide 0 0
No visual defects 0.113 0.028
Repeating defects 0.064 0.029
Total 0.709 0.106

Single Double Single Double
word word bit bit
line line line line
Sfaults faults Jfaults faults
0 0 0 0
0 0 0 0
0 0 0.057 0.028
0.007 0 0.021 0
0 0 0 0
0.021 0 0 0
0.106 0.028 0.007
0.213 0.014 0.021 0.007
0.028 0.099 0 0.007
0 0 0 0
0.099 0.007 0 0
0.106 0.028 0.298 0.056
0.029 0.029 0.036 0.007
0.609 0.205 0.440 0.105

both of these approaches the mixing was done on the total
number of random faults caused by random defects, such
as photo, dielectric, and leakage defects. This differs from
earlier work by Stapper [21, 22] where mixed Poisson sta-
tistics were applied to individual defect types. This ap-
proach is not readily extendable to redundancy calcu-
lations and has therefore been superseded by the methods
described in this paper.

Expression (11) does not represent the complete yield
model. As discussed in the section on organization of the
model, the gross yields still have to be included. This is
done by multiplying (11) by the total gross vyield. The re-
sult is a yield formula similar to the model described by
Paz and Lawson [23] but extended to include the faults
per chip caused by all the different random defect types.

Redundancy results

The yield model was first used on a 32K-bit chip with four
redundant word lines and four redundant bit lines. Defec-
tive bit or word lines could be replaced by redundant
lines. This was achieved by blowing a pattern of fuses to
steer the decoders around the defective addresses [24).
The perfect plus fixable chip yield for 13 lots is shown as a
function of the perfect chip yield in Fig. 4. Each data
point is the yield of a lot consisting on the average of ten
wafers.

C. H., STAPPER ET AL.

The product had a kerf structure that allowed measure-
ment of the defect densities. This was done with serpen-
tine and fingered defect monitors. The monitor data were
converted to defect densities by the method described by
Stapper [21, 22]. The average defect densities for all the
lots combined were used to calculate the yield indicated
by the triangle. The defect densities were then changed
covariantly in order to obtain the solid line. As can be
seen, the agreement between the model and the data is
quite good.

Of special interest are the two lots represented by the
two high yield points in Fig. 4. The defect monitor data
for these lots showed that all defect densities except for
leakage defects were low. The leakage defect densities
were in fact higher than in the other lots. These defects
caused a large number of single cell failures but very few
chip-kill failures. The low defect densities for the other
defects also resulted in a lower number of chip-kill fail-
ures as well as fewer fixable failures. The single cell fail-
ures can be fixed by using the redundant lines. This prod-
uct is therefore highly fixable. A two-dimensional yield
profile based on the actual redundant word and bit line
implementation is shown in Fig. 5. The solid lines connect
points obtained with these data. A set of dashed lines con-
nect the points calculated with the model based on defect
densities measured with the kerf. The product data along
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Relative fixable and perfect chip yield
—

Relative perfect chip yield

Figure 4 Redundancy profile for a 32K-bit chip. The solid line
is calculated with the model.

the zero redundant bit line and zero redundant word line
axes are significantly lower than the calculated probabili-
ties. This is an artifact of the actual method used for im-
plementing the redundancy. In practice, we fixed all
faulty bit lines first, then all faulty word lines, and finally
other failures, using redundant bit and word lines alter-
nately. This resulted in very few chips actually being
fixed with word or bit lines only, even though this might
well have been possible. The actual results of using 0 X 0,
1x1,2x2,3x%3,and4 x 4redundancy are in very good
agreement with theory.

We made a more comprehensive analysis of our model
with the 141-chip sample of the 4K- X 9-bit chip mentioned
earlier. For each of these chips, it was known which cells,
word lines, and/or bit lines failed. With visual inspection
and some chemical analysis, it was possible to relate de-
fects to specific failures. Table 6 shows the results of this
analysis in terms of the average number of faults per chip.
Some caution must be taken when interpreting these data.
Except for repeating defects, the sample for each type of
fault consists of 141 chips. A single failure in the sample,
therefore, leads to an average of 0.007 faults per chip. The
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Figure 5 Yield as a function of redundancy. Data from a 32K-
bit chip are in solid lines, calculations made with the model in
dashed lines.

99% confidence interval for this result ranges between 0
and 0.052 faults per chip assuming a Poisson distribution.
For higher failure counts, the 99% confidence interval
gets even larger. For instance, 15 faults in this sample
give an average of 0.106 faults per chip and a 99% con-
fidence interval between 0.054 and 0.165faults per chip
when reckoned with Poisson statistics. These intervals
would become even wider if mixed Poisson statistics
were used.

Our objective was to compare these data to the fault
densities calculated with our model. This was done by
determining the defect densities with a sample of 1600
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Table 7 Defect densities obtained from defect monitors. An *
indicatc;s defects greater than 2.5 um. All densities are in defects
per cm’.

Junction leakage

Storage node 1.93

Bit line 2.0
Diffusion

Missing pattern 8.0

Extra pattern 3.7*
Polysilicon

Missing pattern 0.5*

Extra pattern 20*
Missing oxide 7.1
Metal

Missing pattern 41.1*

Extra pattern 38.7*
Pinholes

SNOS thin oxide 0.5

MNOS thin oxide 4.6

kerf monitors produced on the same wafers as the 141
chips. These defect densities are listed in Table 7. By
means of the critical area matrix of Table 3 and matrix
equation (5), the faults per chip shown in Table 8 can be
determined.

The theoretical faults for cells and word lines agree
with the data within the 99% confidence limits. It is clear,
however, that something is missing in the case of the bit
lines. This is due mostly to the nonvisual defects shown in
the data. These defects occurred only under certain test
conditions and, therefore, have been designated as *‘volt-
age sensitive failures.”” They often manifested themselves
as either complete bit line failures or as varying numbers
of cells failing along the bit lines. This appeared to be
caused by marginal circuit operation under certain para-
metric combinations. In subsequent yield models, we
have included these failures. This was done with an extra
defect density and critical area so that the results con-
formed to the empirical data. As seen in Table 8, this ad-
dition to the model affects only the bit lines. Improved
bias conditions on leakage and diffusion short monitors
allow quantification of these defect densities, but product
sensitivity depends on the design.

We did not include triple adjacent word and bit line fail-
ures in our model since the probabilities of failure and of
critical areas were very small. In the data we did not find
any triple bit line failures, but there were two chips with
triple word line failures. These are not shown in Table 6.
They represent an average of 0.014 faults per chip with
99% confidence bounds of zero and 0.066 faults per chip.
This is small compared to the 0.609 and 0.205 faults per
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chip for single and double word line failures, respectively.
These triple word line failures are therefore negligible.

Besides the failure modes, we also compared calcu-
lated yield with actual. This sample of 141 chips was part
of a larger sample of wafers. The ratio of fixable to perfect
chips on these wafers was 3.51. The model using kerf de-
fect densities gave a ratio of 3.60. The absolute perfect
chip yield was 1.06 times the model-predicted yield. For
the fixable chip yield, the actual to model ratio was 1.03.

Partially good product

Failures often occur only in a given section of a chip, or
when redundancy is present the remaining uncorrected
failures may occur only in a given section of a chip. The
section concerned may be one-half, one-quarter, or one-
eighth of the chip, with the remainder of the chip (one-
half, three-quarters, or seven-eighths) being fault-free.
This suggests that the circuitry of a chip be partitioned so
that the fault-free sections can function as independent
units. The bit capacity of these sections is then available
for packaging in modules along with other partially good
or perfect product to give a total capacity of some market-
able combination of memory bits.

Yield calculations for partially good product are some-
what different from those when only all good product ex-
ists. We define the equivalent yield as the fraction of us-
able capacity. If we denote the equivalent yield as Y,
the all good yield by Y,,, and the partially good yield as
Y., then

PG?

Yia = Yuo ¥ K/MY,

pas (13)
where (k/n) is the fraction (1/2, 3/4, 7/8) of usable capacity
for partially good chips. The concept of equivalent yield
is applicable to both empirical situations (determining ac-
tual yield) and modeling situations (projecting yield). In
the latter case, the partially good yield, Y,., has to be

computed, and this may be done as follows:

Suppose the chip is partitioned into » independent sec-
tions and that we want the probability that & of the sec-
tions are fault-free (after correction with redundancy, if
applicable). Then, if we know the yield of each section
separately as Y, , the yield of defects fatal to the chip

(chip-kill defects) as Y, and the gross yield as Y, then
the required probability (yield) is

n n—
Yew= (k)YOYCKYI:/nS(l = Y f
_(n n -k J itk
Tk YOYCK Z j (=1 Yllns' (14)
i=0

For example, in the case of two sections, the yield of half
good product is
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Table 8 Failure modes by type according to the model.

Single Double Single Double Single Double
cell cell word word bit bit
faults faults line line line line
faults faults faults Sfaults
Junction leakage
Storage node 0.17 0 0 0 0 0
Bit line 0 0 0 0 0.06 0
Diffusion
Missing pattern 0.05 0 0.02 0.02 0.04 0
Extra pattern 0.11 0.14 0.01 0.01 0.02 0
Polysilicon
Missing pattern 0.01 0 0 0 0 0
Extra pattern 0.09 0 0.02 0.01 0.02 0
Missing oxide 0 0 0.35 0 0.02 0
Metal
Missing pattern 0.10 0 0.14 0 0.03 0
Extra pattern 0 0 0.01 0.26 0.01 0.01
Pinholes
SNOS thin oxide 0.03 0 0 0 0 0
MNOS thin oxide 0.02 0 0.01 0 0.01 0
Total 0.58 0.14 0.56 0.21 0.21 0.01
Voltage sensitive
failures 0.23 0.09
Subtotal 0.44 0.10
Y, =21 Y Y, (1 — Y ,) (13) It is possible to combine a partially good product

Note that Y, is not Y, ,. The latter yicld assumes that any
two out of four sections on a chip are to be good. Six such

combinations are possible.

If the mean number of faults in a partially good section
is given by A, . and the mean number of random fatal
defects by A, then Eq. (14) can be rewritten as

m\ &=k i Aokt OO
Ve = Yo(k) > ( j )(_1) e s, (16)
=0

thus expressing the yield completely in terms of the gross
yield and random faults. Under the assumption that A, +
(J + K\, s is proportional to the total fault

A=Ay + HA a7

1/ns®

expression (16) can be transformed to a mixed Poisson
model
N\ "En—k ,
Y,;Y()Z( . )(—1)’
ki ol k ot J

1
X (18)
ll et Ut k)Alms}

a
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scheme with redundancy. This is precisely what has been
done in IBM’s 64K-bit low cost chip and 32K-bit high per-
formance chip. In this case, the Xl ms 1S given by the non-
fixable faults in one of the n sections. These quantities are
then calculated by means of (10) and (12). This is the form
used for our yield model.

Partially good product resuits

Data for a chip with half good product and redundancy
are shown in Fig. 6. Each data point represents the aver-
age all good and half good yield for groups of five wafers
which were consecutively tested at the output of an auto-
matic VLSI wafer fabricator. The all good yield includes
the yield of perfect chips as well as the yield for chips
which have been fixed with redundancy. The half good
yield consists similarly of perfect and fixed half good
chips.

The model used for this chip calculates the yield for
both redundancy and half good product. The dashed line
in Fig. 6 was calculated more than two years before the
product was actually manufactured. The solid line came
from a yield projection made nine months before the
product was made. By that time enough was known about
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Relative yield of half good chips

Relative yield of all good chips

Figure 6 Yield of all good and half good chips. These chips
have been fixed with redundancy. The lines are projections made
with the model.
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Figure 7 Bit productivity as a function of a defect density mul-
tiplier for three different chips.

the product and manufacturing line to make a more accu-
rate forecast. The triangle shows the grand mean for the
105 chips in this sample.

Applications of the model

The model described in this paper has been used for yield
projection and productivity optimization. Short term
yield projections for a half year are made monthly based
on existing in-line monitor and inspection data. The re-
sults of these projections are used to assess line loading
and inventory of different parts needed for all good or par-
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tially good product. The long term yield projections are
made using the best available technical judgment on how
much can be learned for the individual parameters in the
model. These parameters include the random defect den-
sities as well as the gross yield detractors. The results are
used to determine long term product cost.

Data are continually collected to see how actual results
differ from the projected yield assumptions. The reasons
for not making or exceeding targets are therefore contin-
ually visible and allow for quick management decisions
and corrective action.

The long term yield projections have also been used to
optimize productivity. We have stored the defect sensi-
tivity factors for all circuits in computer libraries. By
rearranging these circuits, we have been able to configure
chips with redundancy and partially good schemes that
optimize the expected number of good bits per wafer. The
productivity in usable bits per wafer can be plotted as a
function of defect densities, as in Fig. 7. This plot shows
which chip size gives optimum productivity at a given
multiple of a reference set of random defect densities.
The manufacture of a 128K-bit chip at the time that a line
has defect densities of five times the reference set would
be disastrous, whereas productivity for either a 64K-bit
or 32K-bit chip would be optimum.

Summary

We have found the yield model described in this paper to
be a powerful tool for analyzing, projecting, and opti-
mizing yield in VLSI memory chips. Although this model
has been specifically developed for memory chips, we be-
lieve that the techniques can be applied to a large number
of other integrated circuits. The use of this tool facilitates
a systematic approach to yield analysis and has estab-
lished a method for yield improvement.
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