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A System Solution to the Memory Soft Error Problem 

High-density andior high-performance  memory chip designs often create  new reliability problems;  one good  example is 
the alpha-particle problem  for high-density RAM and CCD chips,  the  problem being that sojt errors may “line up” with 
existing hard errors, giving rise to double errors which are not  correctable with conventionally implemented single-error- 
correcting double-error-detecting codes.  In this paper  it is shown  that an overall system approach based on error- 
correcting codes  and system  maintenance strategy will reduce the  main  memory  failure rate at the  system level as  $the 
alpha-particle problem had not  occurred.  This system solution is designed to  be  compatible with most existing memory 
designs so that  there should be minimal  additional  cost for implementing  it.  The  procedure described  herein uses  the 
capability of a single-error-correcting and double-error-detecting code  to  detect one hard and one soft error; then  a 
microcode and hardware  algorithm performs  the correction of both errors. Results of both analytical  and  simulation 
modeling of the  method and its comparison with other techniques are  also included. 

Introduction 
Progress in memory chip technology has been significant 
with regard to  cost,  performance,  and reliability improve- 
ments. Cost  reduction  has  come mostly from  chip density 
increases [l-31. For example, FET memory chip density 
has advanced from 256 bits  per  chip  to 64K bits  per chip 
in the last decade, with the major advantage of this  den- 
sity  improvement being cost  reduction.  Another advan- 
tage of higher bit densities on a chip is the reduction in the 
number of packaging  levels and  the interconnections  be- 
tween them. This  also  results in a reliability improvement 
in the  intrinsic  failure rate  on a per-bit  basis [3]. 

To achieve the high density,  the memory cell area has 
to be  extremely  small.  At present, most LSI and VLSI 
RAM memories are of the  dynamic MOSFET type using 
the one-device-cell  design [4]. In recent  laboratory  tests 
[ 5 ,  61, this kind of dynamic MOSFET memory  has  suf- 
fered a new kind of failure caused by alpha-particle radia- 
tion, and has a failure rate  one  to  two  orders of magnitude 
higher  than the  basic intrinsic  failure rate.  It  has also been 

between package,  solder,  and  the memory  circuit. Al- 
though some progress  has been made,  the problem has 
not  been completely  eliminated. 

In this paper,  instead of a  device or package fix, a sys- 
tem  solution is presented which uses error-correcting 
codes in combination  with system  maintenance strategy. 
There is virtually no additional cost in this  solution to  the 
alpha-particle problem  and yet it achieves the desired result. 

The  next section of this paper  describes  the basic fail- 
ure definitions and  the memory  cell  failure  mode caused 
by alpha-particle and  other radiation sources.  The section 
following that  reviews  the  base error-correcting-code 
(ECC) system with respect  to a specific single-error- 
correcting  and  double-error-detecting code example. 
Subsequent  sections  then describe  what  options are avail- 
able if we need to  correct a high rate of errors in a mem- 
ory  system;  the  system solution that  was arrived at  after 
examining the  options; a microcode  implementation  ap- 

discovered that  the primary source of alpha particles is in proach;  presentation of resulting data  from  an analytical 
the package and solder. Therefore, much work has been model and  a  simulation run;  and a comparison of this 
devoted to fixing this problem  by  changing the package technique with the  state of the art. A summary and  con- 
material or the cell  design, or by adding  a shielding layer clusions are  presented in the final section. 
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Overview of alpha-particle phenomenon and  basic 
failure modes 
Alpha  particles are doubly  charged helium nuclei ejected 
from the nucleus of a high atomic number  atom during 
radioactive decay.  The mass of an  alpha particle is about 
7500 times that of an  electron,  and its  kinetic  energy is of 
the  order of several million electron  volts, e.g., up to 
10.5 MeV. Electron-hole pairs are  generated by  the  alpha 
particles as they  lose  energy in the silicon and resulting 
charges can be collected in the memory  storage  capaci- 
tors within a cell. 

For high-density dynamic memory chips,  the  presence 
or absence of minority carrier charge  in the cell is the 
basic principle of data storage. In the  case of CCDs 
and FET RAMS, the charges are electrons  and are typical- 
ly in the range of 3 x lo5 to 3 X lo6 electrons. Although 
there  can be  a  relatively large difference in the charge 
between one and zero states, many factors will reduce 
this  difference, for  example, noise tolerance,  sense ampli- 
fier, etc.  The  net effective difference in the number of 
electrons  between  the one and zero states is called a 
“critical charge,” Qcrit. If the alpha-particle-generated 
electrons  exceed Qcrit, an  error will result. 

In the  one-device  dynamic MOSFET memory  design, 
the information is stored  as the voltage state of a floating 
storage  node which serves as  one  plate of an MOS capaci- 
tor. Collection of alpha-particle-generated  charge by the 
floating storage node alters  its voltage and  can result in 
loss of the  stored information. The information is lost by 
an empty weli becoming filled, i . e . ,  a one becoming a 
zero. However,  the  opposite  direction, i . e . ,  zero to o n e ,  
cannot  occur in the cell.  This type of failure is not  per- 
manent and can  be erased during the next memory write 
operation; this is why the term soft error is used, since 
there is no  permanent physical damage to  the memory 
cell. 

Very dense RAM (24K) and  CCD (216K) chips, which 
are sensitive to alpha-radiation errors,  are easily  contami- 
nated by exposure  to high  flux rates.  In general,  a  CCD 
cell has a lower Qcrit than a RAM cell, hence  a CCD cell is 
more  susceptible to alpha-induced  failures. 

With very few exceptions, alpha-induced failure rates 
usually increase  as cell size is reduced with high-density 
chip  designs. This  poses a serious obstacle  to  the progress 
of memory technology as higher and higher densities are 
sought. 

At present most errors  caused by  alpha-particle radia- 
tion are single-bit errors. This  may  not  necessarily be the 
case with future ultra-high-density RAM memory  chips. 

It should be pointed out here that in a  one-device RAM 
memory the storage  node may pick up alpha-generated 
electrons at  any  time;  thus  the bit  failure rate will be  inde- 
pendent of system  operation or cycle  time. Also, alpha 
emissions are  nuclear  events unaffected by temperature, 
pressure,  etc. 

Bit lines and sense amplifiers are  also sensitive to al- 
pha-particle  charge because  the sensing process involves 
sharing  charge between  the bit line and  the memory cell. 
It  makes no difference  whether the charge  generated by 
alpha particles is collected by the memory cell or by the 
bit line. However, a sense amplifier can fail in both the 
one and zero directions;  therefore, we cannot take  advan- 
tage of the memory  failure mode of one to zero only, for 
which more  effective codes possible with binary  asym- 
metric channels [7] can be  used. 

Besides  alpha-particle-induced errors, cosmic rays  are 
another  source  that  can  cause soft  failures in memory. 
The cosmic ray  contains several  kinds of high-energy par- 
ticles, e .g . ,  protons,  neutrons,  and muons. The density of 
these  particles is low at  sea level  but increases  at higher 
altitudes [8]. 

LSI memory system and error-correcting codes 
In the semiconductor memory area,  the most widely used 
error-correcting codes  are  the  class of single-error-cor- 
recting and double-error-detecting (SEC-DED)  codes [9]. 
This class of codes is most effective for a memory system 
organized on a  one-bit-per-card  basis. 

As the  memory  chip  density goes  up,  the  card may be- 
come  a  module, an.1 the bit-per-card  organization may be- 
come  a  bit-per-chip  situation. In a  bit-per-chip  per ECC 
word-organized memory, it is true that  any category of 
failure  associated with one chip is correctable; typical 
categories  include single array cell, single bit line, single 
word line, and a broad category  referred to  as  “chip kill.” 

The significance of such a  partition of failures  into cate- 
gories is that the number of erroneous bits  produced by a 
particular  failure is different for  each  category.  However, 
in the  presence of the  SEC-DED  code,  the maintenance 
strategy of a system may allow failures to accumulate. 
The particular categories of failure which are allowed to 
accumulate will strongly affect the probability that  future 
random errors  (hard or soft) will “line  up”  with  previous 
failures  and cause a  double error  to  occur. This is a  seri- 
ous concern when high levels of soft errors  such  as  those 
caused by alpha-particle  radiation can be expected. 

Before we describe the  solution to this  problem, we 
shall review the  base  ECC using a (72, 64) SEC-DED 
code as an  example. 

D. C. BOSSEN P 

391 

rND M. Y. HSIAO IBM 3. RES. DEVELOP. VOL. 24 NO. 3 MAY 1980 



n =  

- 0 1 2 1 4 5 6 7 8 9 1 0  " ' I 1 1 6  " '  11 24 ' ' ' 31  32 ' ' ' 19 40 ' ' ' 4, 48 , . . 1 1 1 6  ' ' ' 6 1 C c , C , C , C . C , C , C , C ,  

I I 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0  
1 1 I I 1 1 1 1 I I 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0  

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 0 0  
1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0  

0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
~ 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1  

Figure 1 A (72, 64) SEC-DED code  matrix. 
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Figure 2 Simplified ECC implementation. 

The (72, 64) code  shown in Fig. 1 is an  SEC-DED  code. 
Its basic properties  and implementation have previously 
been  described [9]. Figure  2  illustrates a simplified imple- 
mentation of an  ECC  procedure  based  on (72, 64) code. 

During the  fetch  operation, a codeword containing 72 
bits, i.e., 64 data bits and 8 check  bits, is fed into the 
Exclusive-Or tree  to  generate  the 8 syndrome bits (SJ. 
Since  the code matrix [HI in Fig. I has columns  contain- 
ing an odd number of ones, the  syndrome Su should have 
one of the following: 

1. All 8 bits = 0 j no  error. 
2. Odd number of ones in the 8 bits 3 single or multiple 

errors. 
(a) Match one of the  code matrix  columns j single 

error  assumed  and  thus  the  error is corrected at 
the matched column bit position [IO]. 

rectable error (UE)  has  been  detected. 
(b) No match in any column  position j an uncor- 

3.  Even  number of ones in the 8 bits 3 even number of 
errors. Again,  this is a UE  situation. 

In the three  cases  listed, only cases 2(b) and 3 could 
cause a UE. Since  errors  are  assumed  to be statistically 
independent, it is assumed here that  double  errors  are 
much more likely to happen than  three-,  four-,  and higher 
multiple-bit errors within a codeword.  In  the following 
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of a double error  caused by single solid [ 111 and soft er- 
rors. This  situation is a predominant  case  because if the 
solid error  is a chip kill or word-line kill, the probability of 
having another single random  soft error  caused by  alpha- 
particle  radiation  within the  same  address block will be 
high. In this case,  the memory system will require  a 
double-error-correction  scheme or other  alternatives. 

Error-correction options and  memory  system  main- 
tenance  strategies 
One  possible  solution would be to  use a random double- 
error-correcting code.  In  order  to  correct  double  errors 
and  detect triple errors (DEC-TED),  a  Bose-Chaudhuri- 
Hocquenghem (BCH)  code of Hamming distance 6 is 
required [7]. This  class of codes  requires more  check 
bits  and a complicated  decoding circuit,  as well as a 
longer  decoding time than  the SEC-DED  code.  For ex- 
ample, a DEC-TED  code requires 14 check bits  instead 
of 8 in the  case of 64 data bits. Adding the 6 extra 
check bits to  every  address  increases  the  cost pro- 
portionately.  In  order  to  stay with the  SEC-DED  code, 
we have  to  take  advantage of the  erasure-correction 
capability of a distance 4 code.  The double-bit error mode 
caused by a hard  error  and  an alpha-induced error  can be 
treated  as  equivalent  to  an  erasure  error  correction, i.e ., a 
Hamming distance 4 code  can  correct  one solid and  one 
soft error. A method for exploiting  this  capability will be 
given in the following section. 

In a system  environment,  another  option  for failure re- 
covery is the  system maintenance strategy [12]. Instead 
of having service  personnel  sent immediately to a mem- 
ory  system when  a solid error  occurs,  error-correcting 
codes would allow physical replacement of solid failures 
to be deferred  for a  period of time.  A  storage  maintenance 
strategy  which  allowed "solid" correctable failures to ac- 
cumulate to some threshold before  physical  replacements 
were made would be exposed  to a higher UE  rate when 
the soft error  rate  was high. To  control this higher UE 
rate  caused by alpha  particles, maintenance  strategies 
could be altered so that  fewer solid fails would be allowed 
to  accumulate, but  this would cause higher  removal rates 
for storage components and thus higher parts  costs. 
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It is possible, however,  to  take a new approach  to  the 
alpha-particle-induced UE which avoids unnecessary ex- 
tra replacements. This is accomplished by correcting the 
alpha-particle-induced UE using the existing (72,  64) 
SEC-DED  code along with the decoding logic described 
in the following section. For this discussion, a  memory 
system UE is  equal to one solid error plus one alpha-par- 
ticle error. 

A solid and soft error-correction scheme  using  an 
SEC-DED code 
The simplified implementation scheme  shown in Fig. 2 
can be extended  as  shown in Fig. 3 to correct one solid 
and one soft error. By  dynamically  locating the solid posi- 
tion,  advantage is taken of the erasure  correction capabil- 
ity of a distance 4 code. This is different  from the  tech- 
nique by Walker et al. [13] where an  erasure position is 
established  through  historic  mark-up  and an  extra  aux- 
iliary memory is thus required. This difference will be  fur- 
ther discussed in a subsequent  section. 

In  the algorithm  used here,  the solid error is dynami- 
cally located during the  correction  process  and  an algo- 
rithmic modification of the original syndrome allows cor- 
rection of the soft random  error.  Corrected information is 
then rewritten into  memory. Since the  alpha error is tran- 
sient,  subsequent  read  operations will have only the single 
solid error  to  correct.  In this  way, no  extra auxiliary storage 
is required.  As  shown in Fig. 1 ,  an ECC codeword consists 
of 7 2  bits. Let h (1 5 h 5 7 2 )  be the solid-error bit position 
and cy (1 c: CY c: 7 2  and a # h) be the  soft-error bit position; 
then, according to Fig. 3, the  resultant syndrome S, is the 
Exclusive-Or of the  syndromes  due  to  erroneous bits CY 

and h ,  i.e., 

s, = Se@ s,. 
The decoding  algorithm is summarized as follows: 

1. Detect  the  UE,  represented by S,, a  double-bit error 
syndrome.  Save  the  codeword with errors,  as well as 
the  syndrome. 

2 .  Using the  exerciser diagnostic patterns,  locate posi- 
tion h of the solid error. Knowing the index h ,  gener- 
ate S, using check-bit-generation logic. 

3. Determine Sa = S, @ S,. 
4. Decode Sa to  correct bit CY in the  data.  Invert bit h ,  

determined in step 2 ,  to  correct  the solid error. 

This  algorithm can be implemented  completely by 
hardware,  as  shown in Fig. 3, or by a microcode approach 
which will be described in the  next section. 

Implementation in microcode 
For many computer  systems using the  current memory 
chips  and SEC-DED  codes, it may  be important  to have 
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Figure 3 Schematic  implementation for correcting  alpha-par- 
ticle-induced UE. (Note: CB indicates Exclusive-Or.) 

the flexibility to  adadelete  the additional  double-error- 
correction  capability due  to soft error plus hard  error.  In 
these cases  the capability of microcode  implementation 
would be  very attractive. 

In  order  to implement erasure  correction,  the decoding 
process  must  know the position of the  permanently stuck 
bits. The  approach  taken in this paper is to accomplish 
this using a small number of tests.  In  order  to apply these 
tests and to  observe  the  results using a  microcode al- 
gorithm, the  system  was designed so that  the microcode 
has  access  to  the  syndrome  on a fetch  operation. This 
could also be accomplished by the capability to read 
check bits. 

The general flow diagram of the algorithm,  illustrated in 
Fig. 4, follows the  steps of the previously  described  hard- 
ware  implementation. 

The  code matrix [HI is given  in Fig. 1. The  three  test 
patterns P , ,  P, ,   P,  are defined in Fig. 5, and  the applicable 
valid syndrome sets  are given in Table 1. 

It will be  noted that this set of three  test  patterns  has 
the  feature  that  each is a valid codeword,  and one and 
zero are  presented  to  each bit position when  the  set is 393 
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ECC logic  recognizes a UE 
condition. 

Step 1 : 
Is syndrome a valid UE 
(i.e., an even number of 
1-bits)? 

Step 2 : 
Save erroneous data. 
Save syndrome S, . 
- + 
Step 3 : 
Apply PI, P,, P, to the erroneous word. 
Save syndromes SI, S, ,  S,. 

i 
Step 4: 

FindLOC (SI), LOC (SI), LOC (S3) 
in syndrome table. Set LOC(S,) = 73 if 
Si not found. Set LOC(0) = 0. 

I ’  I 

1 I step 5 : I 
Istheset  [LOC (SI), LOC (S,), 
LOC (S,)] valid (Le., contained 

Step 6: 
SetSh-SI + S, -I- S, and 

Step I :  
c Is LOC (Sa ) in syndrome 

table? I 
i Yes 

Uncorrectable 
multiple errof InvertbitsLOC (Sa) 

and LOC (S, ). 

Figure 4 Microcode implementation algorithm. (Note: + indi- 
cates Or.) 

Table 1 Valid syndrome  sets (1 5 A s 72). 

LOC(S,) LOC(S,) LOC(S,) 

applied. In  addition, it is not necessary  to perform  a data 
compare in order  to  locate  the  erroneous location. The 
syndromes  from the  three  tests  are sufficient, using the 
algorithm. An alternate  approach would be to provide 
memory capability to  “bypass  ECC” and thereby write 
and  read arbitrary 72-bit test  patterns; in this case two 
patterns,  one consisting of  72 zeros  and  the  other  con- 
sisting of 72 ones, would be sufficient. 

Modeling of reliability  improvement 
Since a memory  with error  correction  can  operate cor- 
rectly in the  presence of permanent  physical  failures, cri- 
teria  for replacing  physical failures must be established. 
The criteria for  replacement will generally consist of 1) a 
definition of the  event which triggers replacement,  and 2) 
a definition of the failure characteristics of the  parts 
which qualify for  replacement.  Events which trigger re- 
placement  could be,  for example, an  uncorrectable  error 
or the occurrence of a total  number of failed bits ex- 
ceeding a predetermined  threshold;  and  the specification 
of failure characteristics of parts which qualify for re- 
placement  could  be the threshold  number of erroneous 
bits, or  chips,  etc.,  per  part. Any particular definition of 
such replacement criteria is called  a replacement  strat- 
e g y .  

A  number of strategies  for memories with error  correc- 
tion have  been  described  and  analyzed with a Monte 
Carlo simulation model [12]. Key  output  parameters of 
such a model are  the  parts  removal  rate  and  the  rate of 
uncorrectable errors. A  general conclusion obtained from 
such modeling is that  the  parts  removal  rate  and  the un- 
correctable error  rate  can be  greatly  reduced  any time 
that  error  correction is employed, and a desirable strat- 
egy is to minimize the  parts removed subject  to  an  accept- 
able uncorrectable  error  rate. 

The following data will be  used to define the failure rate 
characteristics of a memory system  for analytical mod- 
eling. 

Soft error  rates in the range 0. I to 150% per IO00 hours 
per  chip have  been  reported [5, 6 ,  81. Hard failure rates 
and failure mode  distribution in memory  technology  have 
been published [14, 151. By using these hard and soft er- 
ror  rates  and the  failure mode percentage distribution in a 
chip, the following analytical results  and a simulation 
analysis  were obtained. 

A 
0 
0 
A 
A 

0 
A 
0 
A 
0 

0 
0 
A 
0 
A 
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Example  memory: 

Organization: 72 cards, (72, 64) SEC-DED code, 
one bit per  card  per  codeword. 

Card: 64 chips,  one  chip selected per card. 
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Figure 5 Test  patterns for the (72, 64) code of Fig. 1. 

Chip: 16K bits per  chip, 128 word  lines by 
128 bit  lines. 

Hard  failure 
rate:  chip: 0.005% per 1000 power-on 

hours. 
chip piece  part category failure  rates: 

128 word lines: 25% of total. 
128 bit lines: 25% of total. 
16K bits: 25% of total. 
chip kill: 25% of total. 

Soft  failure 
rate: vanes from 0.1 to 10% per 1000 

power-on hours  per chip. 

This memory has  been modeled with an analytic model 
to determine the  uncorrectable  error  rate  as a function of 
various  alpha-particle  failure rates.  The assumed  replace- 
ment  strategy is no preventive maintenance; i . e . ,  hard 
fails are allowed to  accumulate until a hard  uncorrectable 
error (double  bit in some word) occurs,  then all failures 
are replaced.  This is referred to  as a “clean” maintenance 
strategy. The  system uncorrectable error  (UE)  rate is 
given in Fig. 6 for  the following code capabilities: 

1. No error  correction (no ECC). 
2. With single error  correction only  (SEC). 
3. With extended  error  correction  (ESEC). 

It can be seen  that  for soft rates in the neighborhood of 
1% per 1000 hours  per chip and  above,  the improvement 
in the  UE  rate  for  extended  ECC  compared  to  SEC is 100 
times. 

Modeling of strategies which do not  completely clean 
the memory when a UE  occurs  requires simulation [14]. 
These strategies are desirable because  they have  a  lower 
removal rate of cards  than  the  “clean”  strategy. 

When repair is necessary,  an effective  strategy is to re- 
place only the  card with  the  most erroneous  bits, with no 
further action taken.  This is called a “minimum mainte- 
nance” strategy  and is one of the five maintenance strate- 
gies discussed  by Kwon  and  Harvey [12]. Under this 
strategy, the  memory card replacement rate is the lowest 
and  UE  rate is the highest  when using SEC-DED  code, 
since  the  memory card contains all the  errors  that  are 

2! 1 ;  . . . . . . . .  . . . . . . . . . .  : . . .  . .  . . . . . . . .  5 . . . .  ; . 
. . . .  .... . .  . . . . . . . . . .  

g 0.5: -  . .-.-.LL: -.L +- ~ 

. . . . . . . . . .  . . . .  .! . ;  : .  
1 . . . . . .  : ......... 

0.3 ,”  . : 
. . .  . . .  

. , .. . . . . . . . . . . . . . . . .  I 

. . . . . . . . . . . .  . . . . .  0.2,. 
. .  ____ ....... ............. 1 ..... .” ! 

0.0 0.2 0.4 0.6 0.8 1.0 

Soft error rate (%/kh) 

Figure 6 UE rate with no preventive  maintenance.  (Note: kh = 
1000 power-on hours.) 

single and can be corrected,  and  yet it is still functioning. 
Therefore,  the probability that a UE will occur  at  the  next 
time-to-fail is high. Also, a moderately  intelligent memory 
diagnostic  package is required to isolate solid failures. 
Clearly,  this strategy  appears not to be the  best choice in 
the  case of  high alpha-particle-induced errors when the 
system  only has  the capability to  correct single errors. 
One example is that a solid chip-kill failure in combina- 
tion with any alpha-particle-induced  soft error within the 
same address  group will cause a UE. By adopting the 
strategy of replacing any  card which contains a  chip kill, 
the  UE  rate is substantially reduced. This  results, how- 
ever, in a higher card removal rate  than  the minimum 
maintenance strategy. Using the Monte Carlo model de- 
scribed in [12], we have run some  data  on  the  cases of 
SEC-DED  and  extended  SEC-DED, i . e . ,  correction of 
one solid and  one soft error,  under  the  two different main- 
tenance strategies. Results  are  shown in Fig. 7. 

From Fig. 7 it is clear  that with extended two-error 
ECC,  the  UE  and  card  removal  rate  can  be effectively 
reduced to  the  rate which  existed with solid errors only 
and  one-error  ECC; i . e . ,  we have virtually eliminated the 395 
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Figure 7 Monte  Carlo  simulation run results. 

Table 2 Example of limitation of read-invert-write-read-invert 
process  [based on (8, 4) d = 4 code]. 

Data Check 
bits 

Original data 0 0 0 0 0000 

1 0 0 0  Fetcheddata 0 0 0 1 

Stuck  positions OX’XX 0 0 0 0  

Data after 

4 “erasures” / random error 

invert-read 
-invert* 0 0 1 0  1 0 0 0  

*Now contains three errors, leading to rniscorrection. 

impact of alpha-particle-induced errors through extended 
ECC capability while still using a minimum maintenance 
strategy. 

Comparing procedures 
The  erasure-correction capability of a distance d code is 
well known. Therefore,  error-correction procedures for 
memory systems which exploit the  erasure-correction ca- 
pability of a particular  code will differ significantly only in 
the  characteristics of their implementations. Issues of 
hardware cost  and  speed of the check-bit-generation and 
error-correction processes  are  thus  the major concerns in 

396 comparing procedures. 

There  are,  however, differences in the capabilities of 
different procedures,  even though the  same  code is used, 
due  to  the particular  implementation algorithm utilized. 
For example, a d = 4 code  has a theoretical capability to 
correct  one hard (erasure) plus  a single soft random  error. 
A  scheme  based on  the read-invert-write-read-invert pro- 
cess [15] will not be able  to  correct this type of error when 
the number of stuck positions  (say three)  is  greater than 
the number of erasure  errors (say one) which are actually 
present in the  word.  In  other  words,  three  stuck positions 
plus one random error can  result  in two bits in error 
which are  miscorrected by the  above  process.  (See Table 
2.) On the  other  hand,  an algorithm based  on diagnostic 
testing of the  location,  such  as  that  described in this 
paper, can  be  designed to properly detect this error. 

Another consideration  for discovering erasure informa- 
tion is the  storage  requirement. Erasure-decoding 
schemes  for memory  which depend  upon recording of in- 
formation about  previous failures for  later use when a 
double error  is  detected must consider  the size and com- 
plexity of this  special store. Large-capacity  storage with a 
high soft error  rate would require  a  prohibitively large 
auxiliary store  for recording past  error  data. 

In this  application area, a more suitable approach  to 
erasure  correction is to derive the  necessary  erasure in- 
formation at the  time the double error  occurs and is de- 
tected. This approach  has  the additional  advantage of 
minimizing the probability of miscorrection if more errors 
than the  code  is  capable of handling are  present. 

Such  a scheme  handles combinations of two  types of 
errors, both permanent  and soft. Methods  such as the one 
described  by  Walker et al. [ 131 explicitly assume  an accu- 
mulation of hard  errors, so that  the first single error 
causes storage of the syndrome of the single error. In an 
environment where soft errors  are more  predominant, 
such a procedure will not  work,  since  the  stored syn- 
drome would in general  represent a  soft error which may 
not be present when  a  double error  to be corrected oc- 
curs. A modification of this procedure  to  store  the most 
recent hard error may relieve this dficulty, but would 
require  a test-based decision to  store  syndromes. 

Also the  technique  for  the  correction of erasures  based 
on the read-invert-write-read-invert process  has  the  capa- 
bility, when combined with a distance 4 code, of correct- 
ing one  hard  and  one soft error. An implementation  re- 
quirement of this scheme is the ability to write arbitrary 
data  patterns into  a data word,  including the  check  bit 
positions. In practical  applications of erasure  correction, 
where  this  capability does not exist, a more  suitable  ap- 
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proach is to use specifically designed data  test  patterns 
which are valid codewords  as  far  as  distance 4 code is 
concerned. 

Summary  and conclusions 
The  progress of semiconductor memory  technology  has 
advanced in the industry from LSI  to VLSI and will con- 
tinue to  advance  to  ULSI in the  future. With accelerated 
progress in memory chip  density,  chip reliability is im- 
pacted by alpha-particle  radiation errors  at  present, and is 
expected  to be increasingly  impacted in the  future, possi- 
bly by other radiation sources  as well. It  is,  therefore, of 
extreme  importance  to find practical  solutions  enabling us 
to  reduce, eliminate, or to live with  this  type of failure. In 
this  paper we have  presented a system solution to this 
problem  by  extending the  SEC-DED  code capability in 
combination with a minimum maintenance strategy; and 
we have shown  that this  solution  offers  the  best  cost and 
reliability tradeoff with no reduction in performance, as 
compared with the  double random error-correction  code 
scheme. In  future memory  technology  development the 
system solution is expected  to  continue  to play an impor- 
tant role. 

Innovative solutions will always be needed; probably a 
more powerful error-correcting  code is also the way to 
go. This is similar to  the path  which the industry  has 
taken in the magnetic media storage  area;  for example, 
error-correcting codes have been very  important in in- 
creasing the  area density of magnetic tape  systems.  In  the 
semiconductor memory  area,  error-correcting  codes  can 
also be used to enhance yield [16] and  can eventually be 
integrated on  the  chip  for  both yield and reliability im- 
provement. 
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