
D. C. Bossen
M. Y. Hsiao

A System Solution to the Memory Soft Error Problem

High-density andior high-performance memory chip designs often create new reliability problems; one good example is
the alpha-particle problem for high-density RAM and CCD chips, the problem being that sojt errors may “line up” with
existing hard errors, giving rise to double errors which are not correctable with conventionally implemented single-error-
correcting double-error-detecting codes. In this paper it is shown that an overall system approach based on error-
correcting codes and system maintenance strategy will reduce the main memory failure rate at the system level as $the
alpha-particle problem had not occurred. This system solution is designed to be compatible with most existing memory
designs so that there should be minimal additional cost for implementing it. The procedure described herein uses the
capability of a single-error-correcting and double-error-detecting code to detect one hard and one soft error; then a
microcode and hardware algorithm performs the correction of both errors. Results of both analytical and simulation
modeling of the method and its comparison with other techniques are also included.

Introduction
Progress in memory chip technology has been significant
with regard to cost, performance, and reliability improve-
ments. Cost reduction has come mostly from chip density
increases [l-31. For example, FET memory chip density
has advanced from 256 bits per chip to 64K bits per chip
in the last decade, with the major advantage of this den-
sity improvement being cost reduction. Another advan-
tage of higher bit densities on a chip is the reduction in the
number of packaging levels and the interconnections be-
tween them. This also results in a reliability improvement
in the intrinsic failure rate on a per-bit basis [3].

To achieve the high density, the memory cell area has
to be extremely small. At present, most LSI and VLSI
RAM memories are of the dynamic MOSFET type using
the one-device-cell design [4]. In recent laboratory tests
[5 , 61, this kind of dynamic MOSFET memory has suf-
fered a new kind of failure caused by alpha-particle radia-
tion, and has a failure rate one to two orders of magnitude
higher than the basic intrinsic failure rate. It has also been

between package, solder, and the memory circuit. Al-
though some progress has been made, the problem has
not been completely eliminated.

In this paper, instead of a device or package fix, a sys-
tem solution is presented which uses error-correcting
codes in combination with system maintenance strategy.
There is virtually no additional cost in this solution to the
alpha-particle problem and yet it achieves the desired result.

The next section of this paper describes the basic fail-
ure definitions and the memory cell failure mode caused
by alpha-particle and other radiation sources. The section
following that reviews the base error-correcting-code
(ECC) system with respect to a specific single-error-
correcting and double-error-detecting code example.
Subsequent sections then describe what options are avail-
able if we need to correct a high rate of errors in a mem-
ory system; the system solution that was arrived at after
examining the options; a microcode implementation ap-

discovered that the primary source of alpha particles is in proach; presentation of resulting data from an analytical
the package and solder. Therefore, much work has been model and a simulation run; and a comparison of this
devoted to fixing this problem by changing the package technique with the state of the art. A summary and con-
material or the cell design, or by adding a shielding layer clusions are presented in the final section.

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

390
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor. I

Overview of alpha-particle phenomenon and basic
failure modes
Alpha particles are doubly charged helium nuclei ejected
from the nucleus of a high atomic number atom during
radioactive decay. The mass of an alpha particle is about
7500 times that of an electron, and its kinetic energy is of
the order of several million electron volts, e.g., up to
10.5 MeV. Electron-hole pairs are generated by the alpha
particles as they lose energy in the silicon and resulting
charges can be collected in the memory storage capaci-
tors within a cell.

For high-density dynamic memory chips, the presence
or absence of minority carrier charge in the cell is the
basic principle of data storage. In the case of CCDs
and FET RAMS, the charges are electrons and are typical-
ly in the range of 3 x lo5 to 3 X lo6 electrons. Although
there can be a relatively large difference in the charge
between one and zero states, many factors will reduce
this difference, for example, noise tolerance, sense ampli-
fier, etc. The net effective difference in the number of
electrons between the one and zero states is called a
“critical charge,” Qcrit. If the alpha-particle-generated
electrons exceed Qcrit, an error will result.

In the one-device dynamic MOSFET memory design,
the information is stored as the voltage state of a floating
storage node which serves as one plate of an MOS capaci-
tor. Collection of alpha-particle-generated charge by the
floating storage node alters its voltage and can result in
loss of the stored information. The information is lost by
an empty weli becoming filled, i . e . , a one becoming a
zero. However, the opposite direction, i . e . , zero to o n e ,
cannot occur in the cell. This type of failure is not per-
manent and can be erased during the next memory write
operation; this is why the term soft error is used, since
there is no permanent physical damage to the memory
cell.

Very dense RAM (24K) and CCD (216K) chips, which
are sensitive to alpha-radiation errors, are easily contami-
nated by exposure to high flux rates. In general, a CCD
cell has a lower Qcrit than a RAM cell, hence a CCD cell is
more susceptible to alpha-induced failures.

With very few exceptions, alpha-induced failure rates
usually increase as cell size is reduced with high-density
chip designs. This poses a serious obstacle to the progress
of memory technology as higher and higher densities are
sought.

At present most errors caused by alpha-particle radia-
tion are single-bit errors. This may not necessarily be the
case with future ultra-high-density RAM memory chips.

It should be pointed out here that in a one-device RAM
memory the storage node may pick up alpha-generated
electrons at any time; thus the bit failure rate will be inde-
pendent of system operation or cycle time. Also, alpha
emissions are nuclear events unaffected by temperature,
pressure, etc.

Bit lines and sense amplifiers are also sensitive to al-
pha-particle charge because the sensing process involves
sharing charge between the bit line and the memory cell.
It makes no difference whether the charge generated by
alpha particles is collected by the memory cell or by the
bit line. However, a sense amplifier can fail in both the
one and zero directions; therefore, we cannot take advan-
tage of the memory failure mode of one to zero only, for
which more effective codes possible with binary asym-
metric channels [7] can be used.

Besides alpha-particle-induced errors, cosmic rays are
another source that can cause soft failures in memory.
The cosmic ray contains several kinds of high-energy par-
ticles, e .g . , protons, neutrons, and muons. The density of
these particles is low at sea level but increases at higher
altitudes [8].

LSI memory system and error-correcting codes
In the semiconductor memory area, the most widely used
error-correcting codes are the class of single-error-cor-
recting and double-error-detecting (SEC-DED) codes [9].
This class of codes is most effective for a memory system
organized on a one-bit-per-card basis.

As the memory chip density goes up, the card may be-
come a module, an.1 the bit-per-card organization may be-
come a bit-per-chip situation. In a bit-per-chip per ECC
word-organized memory, it is true that any category of
failure associated with one chip is correctable; typical
categories include single array cell, single bit line, single
word line, and a broad category referred to as “chip kill.”

The significance of such a partition of failures into cate-
gories is that the number of erroneous bits produced by a
particular failure is different for each category. However,
in the presence of the SEC-DED code, the maintenance
strategy of a system may allow failures to accumulate.
The particular categories of failure which are allowed to
accumulate will strongly affect the probability that future
random errors (hard or soft) will “line up” with previous
failures and cause a double error to occur. This is a seri-
ous concern when high levels of soft errors such as those
caused by alpha-particle radiation can be expected.

Before we describe the solution to this problem, we
shall review the base ECC using a (72, 64) SEC-DED
code as an example.

D. C. BOSSEN P

391

rND M. Y. HSIAO IBM 3. RES. DEVELOP. VOL. 24 NO. 3 MAY 1980

n =

- 0 1 2 1 4 5 6 7 8 9 1 0 " ' I 1 1 6 " ' 11 24 ' ' ' 31 32 ' ' ' 19 40 ' ' ' 4, 48 , . . 1 1 1 6 ' ' ' 6 1 C c , C , C , C . C , C , C , C ,

I I 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0
1 1 I I 1 1 1 1 I I 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 l 0 0
1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
~ 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1

Figure 1 A (72, 64) SEC-DED code matrix.

Memory 1
1 SDR

172 \T Exclusive-Or

S"

Figure 2 Simplified ECC implementation.

The (72, 64) code shown in Fig. 1 is an SEC-DED code.
Its basic properties and implementation have previously
been described [9]. Figure 2 illustrates a simplified imple-
mentation of an ECC procedure based on (72, 64) code.

During the fetch operation, a codeword containing 72
bits, i.e., 64 data bits and 8 check bits, is fed into the
Exclusive-Or tree to generate the 8 syndrome bits (SJ.
Since the code matrix [HI in Fig. I has columns contain-
ing an odd number of ones, the syndrome Su should have
one of the following:

1. All 8 bits = 0 j no error.
2. Odd number of ones in the 8 bits 3 single or multiple

errors.
(a) Match one of the code matrix columns j single

error assumed and thus the error is corrected at
the matched column bit position [IO].

rectable error (UE) has been detected.
(b) No match in any column position j an uncor-

3. Even number of ones in the 8 bits 3 even number of
errors. Again, this is a UE situation.

In the three cases listed, only cases 2(b) and 3 could
cause a UE. Since errors are assumed to be statistically
independent, it is assumed here that double errors are
much more likely to happen than three-, four-, and higher
multiple-bit errors within a codeword. In the following

392 sections, we shall concentrate our discussion on the case

of a double error caused by single solid [111 and soft er-
rors. This situation is a predominant case because if the
solid error is a chip kill or word-line kill, the probability of
having another single random soft error caused by alpha-
particle radiation within the same address block will be
high. In this case, the memory system will require a
double-error-correction scheme or other alternatives.

Error-correction options and memory system main-
tenance strategies
One possible solution would be to use a random double-
error-correcting code. In order to correct double errors
and detect triple errors (DEC-TED), a Bose-Chaudhuri-
Hocquenghem (BCH) code of Hamming distance 6 is
required [7]. This class of codes requires more check
bits and a complicated decoding circuit, as well as a
longer decoding time than the SEC-DED code. For ex-
ample, a DEC-TED code requires 14 check bits instead
of 8 in the case of 64 data bits. Adding the 6 extra
check bits to every address increases the cost pro-
portionately. In order to stay with the SEC-DED code,
we have to take advantage of the erasure-correction
capability of a distance 4 code. The double-bit error mode
caused by a hard error and an alpha-induced error can be
treated as equivalent to an erasure error correction, i.e ., a
Hamming distance 4 code can correct one solid and one
soft error. A method for exploiting this capability will be
given in the following section.

In a system environment, another option for failure re-
covery is the system maintenance strategy [12]. Instead
of having service personnel sent immediately to a mem-
ory system when a solid error occurs, error-correcting
codes would allow physical replacement of solid failures
to be deferred for a period of time. A storage maintenance
strategy which allowed "solid" correctable failures to ac-
cumulate to some threshold before physical replacements
were made would be exposed to a higher UE rate when
the soft error rate was high. To control this higher UE
rate caused by alpha particles, maintenance strategies
could be altered so that fewer solid fails would be allowed
to accumulate, but this would cause higher removal rates
for storage components and thus higher parts costs.

D. C . BOSSEN AND M. Y . HSIAO IBM J. RES. DEVELOP. VOL. 24 NO. 3 MAY 1980

It is possible, however, to take a new approach to the
alpha-particle-induced UE which avoids unnecessary ex-
tra replacements. This is accomplished by correcting the
alpha-particle-induced UE using the existing (72, 64)
SEC-DED code along with the decoding logic described
in the following section. For this discussion, a memory
system UE is equal to one solid error plus one alpha-par-
ticle error.

A solid and soft error-correction scheme using an
SEC-DED code
The simplified implementation scheme shown in Fig. 2
can be extended as shown in Fig. 3 to correct one solid
and one soft error. By dynamically locating the solid posi-
tion, advantage is taken of the erasure correction capabil-
ity of a distance 4 code. This is different from the tech-
nique by Walker et al. [13] where an erasure position is
established through historic mark-up and an extra aux-
iliary memory is thus required. This difference will be fur-
ther discussed in a subsequent section.

In the algorithm used here, the solid error is dynami-
cally located during the correction process and an algo-
rithmic modification of the original syndrome allows cor-
rection of the soft random error. Corrected information is
then rewritten into memory. Since the alpha error is tran-
sient, subsequent read operations will have only the single
solid error to correct. In this way, no extra auxiliary storage
is required. As shown in Fig. 1 , an ECC codeword consists
of 7 2 bits. Let h (1 5 h 5 7 2) be the solid-error bit position
and cy (1 c: CY c: 7 2 and a # h) be the soft-error bit position;
then, according to Fig. 3, the resultant syndrome S, is the
Exclusive-Or of the syndromes due to erroneous bits CY

and h , i.e.,

s, = Se@ s,.
The decoding algorithm is summarized as follows:

1. Detect the UE, represented by S,, a double-bit error
syndrome. Save the codeword with errors, as well as
the syndrome.

2 . Using the exerciser diagnostic patterns, locate posi-
tion h of the solid error. Knowing the index h , gener-
ate S, using check-bit-generation logic.

3. Determine Sa = S, @ S,.
4. Decode Sa to correct bit CY in the data. Invert bit h ,

determined in step 2 , to correct the solid error.

This algorithm can be implemented completely by
hardware, as shown in Fig. 3, or by a microcode approach
which will be described in the next section.

Implementation in microcode
For many computer systems using the current memory
chips and SEC-DED codes, it may be important to have

I I

1 ‘ L h

I
1
t

-
Detect 8
single -,
error,
UE

t ,

1 1 S” I 1 1 ‘h 1
I I
I P IR

orrect
Ita to

L

1
C
d;
system

Figure 3 Schematic implementation for correcting alpha-par-
ticle-induced UE. (Note: CB indicates Exclusive-Or.)

the flexibility to adadelete the additional double-error-
correction capability due to soft error plus hard error. In
these cases the capability of microcode implementation
would be very attractive.

In order to implement erasure correction, the decoding
process must know the position of the permanently stuck
bits. The approach taken in this paper is to accomplish
this using a small number of tests. In order to apply these
tests and to observe the results using a microcode al-
gorithm, the system was designed so that the microcode
has access to the syndrome on a fetch operation. This
could also be accomplished by the capability to read
check bits.

The general flow diagram of the algorithm, illustrated in
Fig. 4, follows the steps of the previously described hard-
ware implementation.

The code matrix [HI is given in Fig. 1. The three test
patterns P , , P, , P, are defined in Fig. 5, and the applicable
valid syndrome sets are given in Table 1.

It will be noted that this set of three test patterns has
the feature that each is a valid codeword, and one and
zero are presented to each bit position when the set is 393

IBM J. RES. DEVELOP. VOL. 24 NO. 3 MAY 1980 D. C. BOSSEN AND M. Y. HSIAO

ECC logic recognizes a UE
condition.

Step 1 :
Is syndrome a valid UE
(i.e., an even number of
1-bits)?

Step 2 :
Save erroneous data.
Save syndrome S, .
- +
Step 3 :
Apply PI, P,, P, to the erroneous word.
Save syndromes SI, S, , S,.

i
Step 4:

FindLOC (SI), LOC (SI), LOC (S3)
in syndrome table. Set LOC(S,) = 73 if
Si not found. Set LOC(0) = 0.

I ’ I

1 I step 5 : I
Istheset [LOC (SI), LOC (S,),
LOC (S,)] valid (Le., contained

Step 6:
SetSh-SI + S, -I- S, and

Step I :
c Is LOC (Sa) in syndrome

table? I
i Yes

Uncorrectable
multiple errof InvertbitsLOC (Sa)

and LOC (S,).

Figure 4 Microcode implementation algorithm. (Note: + indi-
cates Or.)

Table 1 Valid syndrome sets (1 5 A s 72).

LOC(S,) LOC(S,) LOC(S,)

applied. In addition, it is not necessary to perform a data
compare in order to locate the erroneous location. The
syndromes from the three tests are sufficient, using the
algorithm. An alternate approach would be to provide
memory capability to “bypass ECC” and thereby write
and read arbitrary 72-bit test patterns; in this case two
patterns, one consisting of 72 zeros and the other con-
sisting of 72 ones, would be sufficient.

Modeling of reliability improvement
Since a memory with error correction can operate cor-
rectly in the presence of permanent physical failures, cri-
teria for replacing physical failures must be established.
The criteria for replacement will generally consist of 1) a
definition of the event which triggers replacement, and 2)
a definition of the failure characteristics of the parts
which qualify for replacement. Events which trigger re-
placement could be, for example, an uncorrectable error
or the occurrence of a total number of failed bits ex-
ceeding a predetermined threshold; and the specification
of failure characteristics of parts which qualify for re-
placement could be the threshold number of erroneous
bits, or chips, etc., per part. Any particular definition of
such replacement criteria is called a replacement strat-
e g y .

A number of strategies for memories with error correc-
tion have been described and analyzed with a Monte
Carlo simulation model [12]. Key output parameters of
such a model are the parts removal rate and the rate of
uncorrectable errors. A general conclusion obtained from
such modeling is that the parts removal rate and the un-
correctable error rate can be greatly reduced any time
that error correction is employed, and a desirable strat-
egy is to minimize the parts removed subject to an accept-
able uncorrectable error rate.

The following data will be used to define the failure rate
characteristics of a memory system for analytical mod-
eling.

Soft error rates in the range 0. I to 150% per IO00 hours
per chip have been reported [5, 6 , 81. Hard failure rates
and failure mode distribution in memory technology have
been published [14, 151. By using these hard and soft er-
ror rates and the failure mode percentage distribution in a
chip, the following analytical results and a simulation
analysis were obtained.

A
0
0
A
A

0
A
0
A
0

0
0
A
0
A

394
0 A A

Example memory:

Organization: 72 cards, (72, 64) SEC-DED code,
one bit per card per codeword.

Card: 64 chips, one chip selected per card.

D. C. BOSSEN AND M. Y. HSIAO IBM J. RES. DEVELOP. VOL. 24 NO. 3 MAY 1980

Figure 5 Test patterns for the (72, 64) code of Fig. 1.

Chip: 16K bits per chip, 128 word lines by
128 bit lines.

Hard failure
rate: chip: 0.005% per 1000 power-on

hours.
chip piece part category failure rates:

128 word lines: 25% of total.
128 bit lines: 25% of total.
16K bits: 25% of total.
chip kill: 25% of total.

Soft failure
rate: vanes from 0.1 to 10% per 1000

power-on hours per chip.

This memory has been modeled with an analytic model
to determine the uncorrectable error rate as a function of
various alpha-particle failure rates. The assumed replace-
ment strategy is no preventive maintenance; i . e . , hard
fails are allowed to accumulate until a hard uncorrectable
error (double bit in some word) occurs, then all failures
are replaced. This is referred to as a “clean” maintenance
strategy. The system uncorrectable error (UE) rate is
given in Fig. 6 for the following code capabilities:

1. No error correction (no ECC).
2. With single error correction only (SEC).
3. With extended error correction (ESEC).

It can be seen that for soft rates in the neighborhood of
1% per 1000 hours per chip and above, the improvement
in the UE rate for extended ECC compared to SEC is 100
times.

Modeling of strategies which do not completely clean
the memory when a UE occurs requires simulation [14].
These strategies are desirable because they have a lower
removal rate of cards than the “clean” strategy.

When repair is necessary, an effective strategy is to re-
place only the card with the most erroneous bits, with no
further action taken. This is called a “minimum mainte-
nance” strategy and is one of the five maintenance strate-
gies discussed by Kwon and Harvey [12]. Under this
strategy, the memory card replacement rate is the lowest
and UE rate is the highest when using SEC-DED code,
since the memory card contains all the errors that are

2! 1 ; : 5 ; .
.

g 0.5: - . .-.-.LL: -.L +- ~

.! . ; : .
1 :

0.3 ,” . :
.

. , I

. 0.2,.
. . ____ 1” !

0.0 0.2 0.4 0.6 0.8 1.0

Soft error rate (%/kh)

Figure 6 UE rate with no preventive maintenance. (Note: kh =
1000 power-on hours.)

single and can be corrected, and yet it is still functioning.
Therefore, the probability that a UE will occur at the next
time-to-fail is high. Also, a moderately intelligent memory
diagnostic package is required to isolate solid failures.
Clearly, this strategy appears not to be the best choice in
the case of high alpha-particle-induced errors when the
system only has the capability to correct single errors.
One example is that a solid chip-kill failure in combina-
tion with any alpha-particle-induced soft error within the
same address group will cause a UE. By adopting the
strategy of replacing any card which contains a chip kill,
the UE rate is substantially reduced. This results, how-
ever, in a higher card removal rate than the minimum
maintenance strategy. Using the Monte Carlo model de-
scribed in [12], we have run some data on the cases of
SEC-DED and extended SEC-DED, i . e . , correction of
one solid and one soft error, under the two different main-
tenance strategies. Results are shown in Fig. 7.

From Fig. 7 it is clear that with extended two-error
ECC, the UE and card removal rate can be effectively
reduced to the rate which existed with solid errors only
and one-error ECC; i . e . , we have virtually eliminated the 395

IBM 1. RES. DEVELOP. VOL. 24 NO. 3 MAY 1980 D. C. BOSSEN AND M. Y. HSIAO

Normalized UE rate
(%/lo00 h/Mbyte) Without ECC

Without

bit linf

chip
line,

kill

4

WithECC
andminimu]
maintenance
strategy m

Soft error rate = 0

$ X 400

With ECC, no
preventive maintenance

_.

408

With ECC and
remove chip
kill strategy

Withextended

Soft error rate = X%/kh/chip

Figure 7 Monte Carlo simulation run results.

Table 2 Example of limitation of read-invert-write-read-invert
process [based on (8, 4) d = 4 code].

Data Check
bits

Original data 0 0 0 0 0000

1 0 0 0 Fetcheddata 0 0 0 1

Stuck positions OX’XX 0 0 0 0

Data after

4 “erasures” / random error

invert-read
-invert* 0 0 1 0 1 0 0 0

*Now contains three errors, leading to rniscorrection.

impact of alpha-particle-induced errors through extended
ECC capability while still using a minimum maintenance
strategy.

Comparing procedures
The erasure-correction capability of a distance d code is
well known. Therefore, error-correction procedures for
memory systems which exploit the erasure-correction ca-
pability of a particular code will differ significantly only in
the characteristics of their implementations. Issues of
hardware cost and speed of the check-bit-generation and
error-correction processes are thus the major concerns in

396 comparing procedures.

There are, however, differences in the capabilities of
different procedures, even though the same code is used,
due to the particular implementation algorithm utilized.
For example, a d = 4 code has a theoretical capability to
correct one hard (erasure) plus a single soft random error.
A scheme based on the read-invert-write-read-invert pro-
cess [15] will not be able to correct this type of error when
the number of stuck positions (say three) is greater than
the number of erasure errors (say one) which are actually
present in the word. In other words, three stuck positions
plus one random error can result in two bits in error
which are miscorrected by the above process. (See Table
2.) On the other hand, an algorithm based on diagnostic
testing of the location, such as that described in this
paper, can be designed to properly detect this error.

Another consideration for discovering erasure informa-
tion is the storage requirement. Erasure-decoding
schemes for memory which depend upon recording of in-
formation about previous failures for later use when a
double error is detected must consider the size and com-
plexity of this special store. Large-capacity storage with a
high soft error rate would require a prohibitively large
auxiliary store for recording past error data.

In this application area, a more suitable approach to
erasure correction is to derive the necessary erasure in-
formation at the time the double error occurs and is de-
tected. This approach has the additional advantage of
minimizing the probability of miscorrection if more errors
than the code is capable of handling are present.

Such a scheme handles combinations of two types of
errors, both permanent and soft. Methods such as the one
described by Walker et al. [131 explicitly assume an accu-
mulation of hard errors, so that the first single error
causes storage of the syndrome of the single error. In an
environment where soft errors are more predominant,
such a procedure will not work, since the stored syn-
drome would in general represent a soft error which may
not be present when a double error to be corrected oc-
curs. A modification of this procedure to store the most
recent hard error may relieve this dficulty, but would
require a test-based decision to store syndromes.

Also the technique for the correction of erasures based
on the read-invert-write-read-invert process has the capa-
bility, when combined with a distance 4 code, of correct-
ing one hard and one soft error. An implementation re-
quirement of this scheme is the ability to write arbitrary
data patterns into a data word, including the check bit
positions. In practical applications of erasure correction,
where this capability does not exist, a more suitable ap-

D. C. BOSSEN AND M. Y. HSIAO IBM I. RES. DEVELOP. 8 VOL. 24 8 NO. 3 MAY 1980

proach is to use specifically designed data test patterns
which are valid codewords as far as distance 4 code is
concerned.

Summary and conclusions
The progress of semiconductor memory technology has
advanced in the industry from LSI to VLSI and will con-
tinue to advance to ULSI in the future. With accelerated
progress in memory chip density, chip reliability is im-
pacted by alpha-particle radiation errors at present, and is
expected to be increasingly impacted in the future, possi-
bly by other radiation sources as well. It is, therefore, of
extreme importance to find practical solutions enabling us
to reduce, eliminate, or to live with this type of failure. In
this paper we have presented a system solution to this
problem by extending the SEC-DED code capability in
combination with a minimum maintenance strategy; and
we have shown that this solution offers the best cost and
reliability tradeoff with no reduction in performance, as
compared with the double random error-correction code
scheme. In future memory technology development the
system solution is expected to continue to play an impor-
tant role.

Innovative solutions will always be needed; probably a
more powerful error-correcting code is also the way to
go. This is similar to the path which the industry has
taken in the magnetic media storage area; for example,
error-correcting codes have been very important in in-
creasing the area density of magnetic tape systems. In the
semiconductor memory area, error-correcting codes can
also be used to enhance yield [16] and can eventually be
integrated on the chip for both yield and reliability im-
provement.

Acknowledgments
The authors thank R. A. Rutledge for his analytical model
run, C. L. Chen for his test pattern generation, S. K.
Kwon for his simulation run, and W. E. Harding for his
comments.

References and notes
1 . B. J . Greenblott and M. Y. Hsiao, “Where is Technology

Taking Us in Data Processing Systems,” Proceedings, Na-
tional Computer Conference, Los Angeles, CA, 1975, pp.
623-628.

2. E. Bloch and D. J. Galage, “Component Progress: Its Effect
on High Speed Computer Architecture and Machine Organi-
zation,” Proceedings, Symposium on High Speed Comput-
ers and Algorithm Organization, Urbana, IL, April 13-15,
1977; also in Computer 11, 64-76 (1978).

3. M. Y. Hsiao, “The Impact of LSI on Computer Reliability,
Availability and Serviceability,” Proceedings of Inter-
national Computer Symposium, Taipei, Taiwan, 1978.

4 . R. H. Dennard, “Field Effect Transistor Memory,” U.S.
Patent 3,387,286, 1968.

5. T. C. May and M. H. Woods, “Alpha-Particle-Induced Soft
Errors in Dynamic Memories,” IEEE Trans. Electron De-
vices ED-26, 2-9 (1979).

6. D. S. Yaney, J. T. Nelson, and L. L. Vanskike, “Alpha-
Particle Tracks in Silicon and Their Effect on Dynamic MOS
RAM Reliability,” IEEE Trans. Electron Devices ED-26,

7. W. W. Peterson and E. J. Weldon, Jr., Error Correcting
Codes, MIT Press, Cambridge, MA, 1972.

8. T. C. May, “Soft Errors in VLSI-Present and Future,”
Proceedings, 29th Electronic Components Conference,
Cherry Hill, NJ, May 14-16, 1979.

9. M. Y. Hsiao, “A Class of Optimal Minimum Odd-weight-
column SEC-DED Codes,” IBM J . Res. Develop. 14, 395-
401 (1970).

10. A multiple number of odd errors could cause a mis-
correction.

1 1 . Solid errors and hard errors are equivalent in this paper.
12. S. K. Kwon and H. E. Harvey, “A Simulation Approach to

the Reliability Analysis of Main Storage Systems,” Pro-
ceedings, IEEE 12th Annual Simulation Symposium,
Tampa, FL, 1979, pp. 257-272.

13. W. K . S. Walker, C. E. Sundberg, and C. J. Black, “A Re-
liable Spaceborne Memory with a Single Error Correction
and Erasure Correction Scheme,” IEEE Trans. Computers

14. H. C. Rickers, “Microcircuit Device Reliability Memory/
LSI Data,” Reliability Analysis Center, RADCIRBRAC,
MDR-3, Winter 1975-76, U.S. Air Force Rome Air Develop-
ment Center, Rome, NY.

15. W. C. Carter and C. E. McCarthy, “Implementation of an
Experimental Fault-Tolerant Memory System,” IEEE
Trans. Computers C-25, 557-568 (1976).

16. D. C. Bossen, C. F. Haugh, and M. Y. Hsiao, “Dynamic
Address Translation Scheme Using Orthogonal Squares,”
U.S. Patent 3,812,236, 1974.

10-15 (1979).

C-28, 493-500 (1979).

Received May 16, 1979; rev ised December 3, 1979

The authors are located at the IBM Data Sys tems Div i -
sion laboratory, Poughkeepsie, New York 12602.

IBM J . RES. DEVELOP. VOL. 24 NO. 3 MAY 1980

397

D. C. BOSSEN AND M. Y. HSIAO

