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Modeling  of  Characteristics  for  Josephson  Junctions 
Having  Nonuniform  Width  or  Josephson  Current  Density 

Several  models,  both  static  and  dynamic,  for  calculating  the  maximum  dc  Josephson  current  versus  external  magnetic 
field “Characteristic” of  tunnel  junctions  of various geometries  are  described.  The  static  models  have  the  advantage of 
short  computation  times;  the  dynamic  models,  although  slower,  yield  additional  information o n  circuit-switching  times. 
The  dependence  ofthe  characteristics on the  junction  shape  is  described.  The  accuracy . f a  one-dimensional  approxima- 
tion  used  in  the  models  has  been  tested  experimentally,  and  theoretically  against  a  two-dimensional  approximation. In 
both  cases,  the  one-dimensional  treatment  yields  quantitatively  good  agreement  provided  the  inductance  of  the  junction 
is included in  the  model.  Junctions  dejined  by  an  oxide  “window”  of  sinusoidal  shape  (maximum  and  minimum  width  at 
the  center  and  ends,  respectively)  have  a  characteristic in which  the side lobes  are  almost  completely  suppressed.  The 
characteristics  of  a  wide variety of  junction  shapes,  including  interferometers  having  two or more  junctions,  have  been 
accurately  calculated,  permitting  the  design of devices for  specijic  purposes. 

Introduction 
The dependence of the maximum dc  Josephson  current 
on magnetic field exhibits a simple Fraunhofer diffraction 
pattern when the  junction width W is uniform and the 
length is smaller than  about twice the  Josephson pene- 
tration length A, [l ,  21. However,  for larger values of 
f / h , ,  the self-field of the  junction  current  has  an increas- 
ing influence, and  the resultant characteristic  depends 
strongly on  the geometry of the  junction.  Such  cases  can- 
not  be solved in a simple analytical form and  have  been 
the subject of a number of theoretical [3-81 and  experi- 
mental [4, 5 ,  7 ,  91 investigations. With suitably chosen 
junction geometry the experimental results show good 
agreement with one-dimensional  numerical  calculations. 

Josephson  tunnel junctions  are now being studied for 
logic and  memory  applications [IO-151. With regard to 
“small” junctions having & / A ,  5 2 ,  it is easily  shown that 
the  controlzurrent ic required to  reduce the dc Josephson 
gate current of the  junction i ,  to  the first minimum of the 
Fraunhofer diffraction pattern, defined here as ic(0), is 
given by 2 ~ r i , / ( f / h , ) ~ ,  where i ,  is the  Josephson  current 

density j ,  multiplied by  the junction  area A .  Consequently 
the  “current  gain,” defined here by the ratio i l / ic(0) ,  is 
small  ST/^), restricting the usefulness of such  junctions. 
The advantages of dc isolation between input  and output 
provided by control lines, and the higher current gain of 
longjunctions having f/A, 2 3 make such  structures more 
generally suitable for circuit  applications. In this respect 
the ability successfully to design circuits with specified 
properties requires  an  accurate knowledge of the  static 
and  dynamic characteristics of the  junctions.  For  the 
static behavior, calculation of the junction  current ig ver- 
sus ic for various  values of &/A, is  an important  part of 
determining  the  operating  regions  and  hence the suit- 
ability of a given set of parameters. 

For a constant  junction width W and current density j ,  
along the length of the  junction, one-dimensional  models 
lead to a single family of curves  for  the characteristic ig 
versus i,. The  shape of the  curves  depends only on the 
single parameter &/A,. However, it is known that varying 
either j ,  [ 161 or W [ 131 along the length  can strongly influ- 
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ence the characteristic, especially in those regions of ic 
where the  junction contains  one or more flux quanta @,, 
(ao = h/2e = 2.07 x Wb). By these means the avail- 
able range of characteristics  can be extended.  In prin- 
ciple, the  former restriction of a single family of curves is 
lifted and the ability to “tailor” curves  to best fulfill a 
particular  purpose is greatly enhanced. 

The first approach, variation of j , ,  can be realized with 
a structure  that  is uniform along the length. For appropri- 
ate geometry it can be treated  as a one-dimensional  prob- 
lem. The calculations are relatively simple but realization 
of a  spatially  varying  thickness of the tunnel  barrier is 
very difficult to  achieve in a  controlled  manner. The sec- 
ond alternative, variation of W, is technologically much 
easier; however,  calculation of the  characteristics is ap- 
parently  more difficult because two dimensions  must  be 
considered for a rigorous  solution. 

In this  paper we report the results of a number of mod- 
els, mainly one-dimensional, that  have been used to ob- 
tain the calculated characteristics for the  two  cases  just 
mentioned. 

Theory 
The equations that must be solved to  obtain  the charac- 
teristic are well known and have  been  described in sev- 
eral  publications [3-81; thus, we summarize  here only the 
necessary  relations in their most  general form. 

We assume the junction  to be in the x-y plane, to be of 
length in the x direction, and to be of width Win the y 
direction. The  surface  currents in the  superconductors 
flow  in the x-y plane  only  and  the  tunnel current between 
the  electrodes is assumed  to be restricted to  the z direc- 
tion. For this geometry the Josephson  equations  are 

j = j ,  sin 4; (1) 

where Y is the junction voltage, f is  time, 4 is the order- 
parameter  phase  difference across  the  barrier, Bx and By 
are the x and y components of magnetic flux density  B in 
the  barrier,  and d is the sum of the  London penetration 
depths (A,, A’) in the  electrodes plus the thickness of the 
tunnel  barrier tnx. 

Differentiating Eqs. (2) with respect  to x and y ,  respec- 
tively,  and  replacing the z component of the Maxwell 
equation with the  term  for the  displacement current writ- 
ten in terms of Cs (the  capacitance  per unit area), 

Equations (1)  and (3) can now be substituted  for the terms 
on the  right-hand  side of Eq. (5) to give a single equation 
in 4, 

$4 a*+ 1 a’+ sin 4 
ax’ ay’ V’ at’ ~ 2 ,  ’ (6) 

in which 

A, = (h/2epodj,)”’ (7) 

and 

v = 1/(poCsd)”’ = c(to,/Ed)l’z, (8) 

where E is the dielectric constant of the  oxide, po is the 
permeability of a vacuum,  and c is the velocity of light. 
The  quantity A, has the dimension of length and describes 
the effective penetration distance of a magnetic field into 
the plane of the  junction.  The  constant v represents a 
wave velocity and is typically =c/25. 

In general terms, determination of the characteristic 
consists of solving Eq. (6) subject to  the condition that  the 
total junction gate current ig is a  maximum; 

bv .Y 

is = lo 1 j ,  sin 4 dxdy. 
o 

It is relevant at this  stage to give a brief description of 
the junction  geometries that have  been studied. This will 
be helpful in illustrating modifications required in Eqs. (6) 
and (9) for application to  these particular cases. 

The first and simplest structure is shown in plane and 
cross-sectional  views in Fig. 1. The  junction, consisting 
of the  superconductors 1 and 2,  separated by a thin oxide 
tunnel barrier (tax = 2-5 nm) is placed over a  super- 
conducting  ground  plane that provides  magnetic shielding 
and  serves  to  control  the impedance of transmission  lines 
used for  interconnections. A third superconductor,  the 
control line 3, is placed above and parallel to  the  junction 
to provide a  magnetic field when a current ic flows along 
it. Good magnetic coupling  between  the films  is ensured 
by close spacing,  obtained with thin oxides (SiO) that  are 
vacuum-deposited on  the ground  plane and  between elec- 
trodes 2 and 3 .  

This structure  has already  been  used  in one-dimen- 
sional analyses with constant W and j ,  [7]. Reference to 1 79 
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Eq. (2) shows  that  the  absence of a  magnetic flux density 
in the x direction (BE) removes the y dependence of 4 
from Eq. (6).  As mentioned  in the  introduction, j ,  can  be 
made any arbitrary function of x without violating the 
one-dimensional condition.  However, A, is no longer con- 
stant and Eqs. ( l ) ,  (2), ( 3 ,  and (9) become 

and 

I h L l  """""" 2 

Figure 1 (a) Plane  and (b) cross-sectional views of a simple in- 
line Josephson junction showing the parameters  that  determine 
the characteristics. 

JunctiT area , 

Figure 2 (a) Plane  and (b) cross-sectional views of a "window" 
junction whose area is defined by  an opening  in a thin dielectric 

180 deposited between electrodes 1 and 2. 

If W is varied  instead of jl, the  current flow is no longer 
everywhere  parallel to  the x axis and Bx is not generally 
zero. In this case, a  one-dimensional treatment is an ap- 
proximation in which Eqs. (10) and (1 1) are used to simu- 
late  a  varying  width.  Computationally  there is no dif- 
ference between  the  two  cases. 

A varying junction width in the structure of Fig. 1 can 
be  inconvenient  with  regard to the placement of the con- 
trol line. A more favorable  arrangement, especially when 
several  control  lines are required, is shown in Fig. 2. Here 
the  top  electrode 2 is of constant width W,  and the junc- 
tion area is surrounded by a vacuum-deposited  oxide of 
thickness t ,  greater  than  that of the tunnel barrier,  as in- 
dicated in Fig. 2(b). In comparison  with Fig. 1 ,  the latter 
geometry  provides greater  freedom in  varying the shape 
with less sacrifice in coupling efficiency k between the 
control  lines  and the  junction. In addition, multiple-junc- 
tion interferometers can also be  designed on the same 
principle. 

To analyze junctions of this  geometry it is convenient 
to make the following substitutions.  Noting that the in- 
ductance  per  unit  length of the junction is L = po d l  W and 
using Eq. (4) we can rewrite Eqs. (2)  in the form 

where Ix and I ,  are  the  total surface currents flowing  in 
the junction  electrodes in the x and y directions. The in- 
ductances  are not constant  because of the  thicker  oxide 
outside  the junction  area.  For  example, in the  case of Lz 
we must add  two  components in parallel: the inductance 
in the  junction region L, = pod/ W and  the inductance out- 
side  the junction Le = po(d + t ,  - to.)/( W,  - W ) .  Neglect- 
ing tox leads  to 

This  completes the summary of the principal  relations re- 
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quired in the following section.  More  specialized for- 
mulae are derived in connection  with specific models. 

Numerical  models  and  comparison with experiment 
The three models to be  described are  based  on two dis- 
tinct approaches.  Two  are  static models in which the 
phase difference 4 yielding the maximum dc  Josephson 
current is calculated  directly  from the one-dimensional, 
time-independent form of Eq. (6), or from a modification 
including a varying inductance Lx derived  from Eqs. (12) 
and (13). The  other models are  based  on  an equivalent 
circuit representation using the  general-purpose  circuit- 
analysis  program ASTAP [ 171. This differs from the  former 
models in that  the  junction  is  represented by an equiva- 
lent network of resistive, inductive,  and  capacitive  ele- 
ments to which a  time-independent current ramp is ap- 
plied. The  characteristic is determined  from the value of 
the current at which the  junction switches to a finite volt- 
age. More computer time is required with this approach 
but additional information is gained regarding the switch- 
ing speed  and the amplitude  and  voltage of junction reso- 
nances. The  latter  aspects  are of considerable  importance 
in circuit  designs [ 181. 

The  junctions used in comparing  experimental with cal- 
culated characteristics were  based on the structure shown 
in Fig. 2. Oxidized  Si  wafers  were  used as  substrates. A 
niobium ground  plane was first evaporated  onto  the SiO,, 
patterned by etching  and, after growth of a thin anodic 
oxide (Nb,O,), was coated with 300 nm of SiO. Junction 
electrodes ( 1  and 2 in Fig. 2), consisting of Pb with small 
additions of In  and  Au, of thicknesses 200 and 350 nm, for 
base and counter  electrodes,  respectively, were  patterned 
by photoresist  and  a lift-off technique.  The  junction  area 
on  the base electrode was  delineated by an opening in a 
thin film ( ~ 2 0 0  nm) of SiO.  Growth of the tunneling oxide 
was  carried out in an rf plasma of oxygen with equipment 
and techniques  similar to  those first described by Greiner 
[19]. The  junction  electrodes were coated with about 
500 nm  of Si0  to insulate  them from  the Pb-alloy control 
lines (one or more per  junction)  deposited  on  the oxide 
and lying parallel to  the  counter  electrode. Various exper- 
iments  established that the  coupling factor k between the 
control lines and the  junction  was within the range 0.8- 
0.9, according to  the particular  geometry in use.  The 
value is less than unity  because of flux leakage  caused  by 
the finite width of the  control lines and their small separa- 
tion from the  junction  counter  electrode. 

Constant junction width and varying  current density 
This model is described first because, although  strictly 
applicable only  to  junctions of constant width or induc- 
tance, it is relatively simple and yields a qualitative de- 
scription of the  characteristic  for all shapes  and values of 

the  ratio [/A,. We use it here to outline the general  behav- 
ior of the characteristic  on either the  current-density pro- 
file or shape  before  proceeding to more  detailed  models. 

The calculation is  based on a simple extension of the 
approach  used in [7]. Assuming the  junction  to be of the 
geometry of Fig. 1 and of unit width we can define a cur- 
rent density j , (x) that varies  along the .x direction  only. 
The mean current density is then 

x . P K J  

e - 0  

j = A  1 j l W x  (14) 

and  the  mean  penetration depth  can be defined by 

For comparison of the  characteristics obtained from vari- 
ous current-density profiles, it is convenient  to use di- 
mensionless units. Expressing the x coordinate in units 
of iJ, and  applying Eq. (6) to  the one-dimensional time- 
independent case, we obtain the simple equation 

- = J sin +, 8% 
ax’ (16) 

where J = j l ( x ) / j l .  The normalized gate and control cur- 
rents,  per unit junction width, are given by 

1 1 = ]c‘’’J J sin 4 dx 
i 

(17) iJjl 
and 

1 
(18) 

The boundary  conditions for a+/ax at x = 0 and [/XJ are 
easily  determined from Fig. l(b), where it is seen  that  the 
presence of the ground  plane causes all junction  current 
to flow on  the underside of electrode 1 at x = 0. Hence, 
from  Eqs. (2) [noting that By = polx] and (151, 

xJjl . 

(19) 

At x = [/XJ, the  entire  junction  current  contributes  to the 
magnetic flux density By, giving 

This  choice of geometry allows Eq. (16) to be  treated as 
an initial-value problem  since the unknown I, does not 
appear in the  boundary condition (19). With this ap- 
proach, condition (20) is unnecessary;  however, it serves 
as a useful check  on  the  accuracy of the computation be- 
cause  the solution of Eq. (16) also yields a+/dx at x = 

[/x,. The value of Zg calculated from  the insertion of 841 
ax at x = [ / x J  in Eq. (20) can then be compared with that 
obtained  from Eq. (17). 181 
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Figure 3 (a) Calculated  characteristics  showing the effect of increasing (dotted  curve; R = 0.5) or decreasing  (dashed curve; R = 2) the 
current density at  the  ends of the junction. The  continuous line for a uniform current density (R  = 1) is shown for  comparison; f / h ,  = 4. 
(b) The influence of an asymmetric  current-density distribution; e l l ,  = 4,  R' = JmaX/Jmin = 4. (c)  The  characteristics  ofjunctions having 
a  sinusoidal current  density distribution with minima at  the  ends of the  junction.  The  number of maxima in Ja re  1 (Curve A), 2 (Curve B), 
and 3 (Curve  C); e l l ,  = 4, R' = 4. 

It is important to note that  structures of the forms of 
Figs. 1 and  2 always lead to  characteristics  that  are  asym- 
metric about  the axis i, = 0. Symmetric  curves  are ob- 
tained  by other  geometries,  such  as feeding the  current ig 
to both ends of the  counter  electrode.  In this  case the 
characteristic  can  be obtained from the  asymmetric case 
simply by using the shear transformation 

applied to  the ic axis  only. 

The solution of Eq. (16) for  constant J ,  leading to  the 
determination of I g ,  has  been described in [7]; only brief 
details need be given  here.  Since (Po, the  phase difference 
at x = 0, is undefined, Eqs. (16) and (17), with the starting 
condition (19), were  solved  numerically for a  number of 
values (generally 62) of 4, between 0 and 2rr by using a 
simple integration routine [20] for  Eq. (16) and 20 inter- 
vals in x. The value of $,, corresponding to  the maximum 
value of I ,  was then found and  the  process repeated for 
smaller steps in (Po around  the initial solution. The dif- 
ference in Zg determined  from Eqs. (17) and  the boundary 
condition (20) was generally  less than I%, provided a 
smoothly  varying  function  was  used for J .  The method 
used to determine $,, was satisfactory for &/h, 5 8. This 
procedure  yields the envelope of the  characteristic. Al- 
though not generally carried  out in the following treat- 
ments, it is a relatively  easy matter  to  determine vortex- 
mode  boundaries which lie below the  envelope by seeking 
all the positive  maxima  in the solutions of ig versus (Po. 
Written  in FORTRAN IV, the  program  took about one min- 
ute of CPU time to calculate  a  complete  characteristic of 
50-80 points, using a high-speed,  3M-byte computer. 

Figures 3(a-c) illustrate the  results  obtained from  sev- 
eral simple current  density profiles and a fixed [/xJ = 4. 
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Figure 3(a) is  chosen  to show the influence of increasing 
or decreasing J at the ends of the junction relative to  the 
center, using a linear profile as sketched in the insert. The 
ratio R is here defined by the ratio of J at x = &/2h, to J at 
x = 0. The side lobes  are  rather sensitive to R ,  increasing 
in amplitude  when J has maxima at  the  ends of the junc- 
tion and  decreasing when its maximum is in the center.  In 
contrast, the central lobe is relatively  independent of the 
profile; the small increase  (decrease) in Zg at  the maximum 
for R < 1 ( R  > 1) can be  understood from  the current 
distribution within the  junction, which is concentrated 
near the ends [3-61 at the corresponding  value of I , .  

The effect of asymmetry in J about  the  center point of 
the junction (x = e / 2 h J )  is illustrated  in Fig. 3(b), again 
for a  linear  variation in J .  Here, we define a ratio R' E 
Jmax /Jmi,,; in this case, R ' = 4. Two basic features  are ap- 
parent. First,  there  is a displacement of the  center lobe to 
the left or right depending on whether  the maximum in J 
is at x = 0 or x = &/xJ, respectively. Second, the maxi- 
mum amplitudes of the pairs of equal-order vortex  modes 
for positive  and  negative  values of Zc are  no longer  equal. 
Thus, application of the transformation for symmetric 
current  feed, Eq. (21), here  does  not lead to a  symmetric 
characteristic. However, in Fig. 3(b) it may be noted that 
curve A maps onto  curve B with the transformation ZA = 

- ( Ic  + ZJ.  

Figure 3(c)  shows  the effect of several maxima in J ,  
in this instance with a  cosine  distribution and R' = 
4. Curves A, B, and C were obtained with J = 1 + 
[ (R'  - l ) / (R '  + l)] cos [ ~ ( l  + 2mxi,/f)] with m (repre- 
senting  the  number of maxima in J )  = 1,2 ,  and 3, respec- 
tively. This function  has J minima at the ends of the junc- 
tion,  and  the n = I ,  2,  and 3 vortex modes are almost 
entirely suppressed  for m = 1, 2 ,  and  3, respectively. 
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The foregoing results can  be  applied in two ways: to 
calculate the  characteristic obtained  from  a  given current 
density or width profile, and, by reversing the  sequence, 
to make an  estimate of the j,(x) leading to a given mea- 
sured characteristic. In the former  case,  the  junction 
width W(x) is  the  parameter of interest since j ,  cannot be 
varied  easily in a  reproducible manner  over  the  area of a 
single junction  and  is, therefore, usually assumed to be 
constant in designing junctions with specific character- 
istics. However, a  number of factors  can lead to a spa- 
tially varying current  density; e .g . ,  a) microshorts, b) dif- 
ferent crystal  orientations of a polycrystalline base elec- 
trode having slightly varying oxide growth rates, and c) 
back-sputtered  material from areas surrounding the  junc- 
tion for tunneling oxides grown in an rf plasma [ 191 (local 
influence on oxide thickness). 

Asystematic variation in j ,  (case  c) is generally of more 
interest  than the random variations (cases a  and b). 
Where j , (x)  is likely to be  smoothly  varying  with maxima 
or minima limited to  one or two,  the model is capable of 
yielding a reasonably unambiguous interpretation of the 
current-density profile. For example, the  relative ampli- 
tude of the n = 1 vortex modes  indicates whether j ,  has a 
maximum or a minimum at  the  ends of the  junction [Fig. 
3(a)]. For more  complex profiles, however,  the results 
must be regarded with caution because they may not be a 
unique solution to  the measured characteristic [16]. This 
model has  been  found useful for qualitative  investigations 
where  its high speed of execution  allows  many  character- 
istics to be  obtained in a short  time. 

0 Time-dependent circuit model (dynamic  simulation) 
Some  circuit  applications  require Josephson  junctions 
having a very  small dc JoFephson gate current, ig(ic)/ ig(0),  
at modest  values of the control current ic 2 ic(0) [15]. It 
has  been  indicated in the previous  section that  junctions 
having a  reduced  width  at the  ends may satisfy  this  re- 
quirement. In addition,  for the circuits of [IS], a knowl- 
edge of the dynamic (switching) behavior of the  junctions 
is of importance in order  to  estimate  the switching  delays 
and the influence of internal junction  resonances [18] 
thereon.  Consequently, although only the  static behavior 
is considered here,  the following models are based on the 
full time-dependent equations applied to  junctions of the 
form of Fig. 2. 

The circuit-analysis  program  used  here  was ASTAP[ 171, 
in which a  lumped  representation of the  terms in the  equa- 
tions is obtained with current  sources,  capacitors, and in- 
ductors.  These elemental  values are derived from the 
equations of the preceding  section in the following man- 
ner. 
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Figure 4 Equivalent-circuit models of a Josephson junction. (a) 
Distributed-junction model with a point junction as sectional ele- 
ment  (b) in which ii = Josephson current, G'(V)  = single-particle 
contribution, and C' = capacitance of the point junction. 

Assuming a  magnetic field in the y direction to obtain a 
one-dimensional approximation,  Eq. (5) becomes 

where the additional term VGs(V) represents  the contri- 
bution of the single-particle current  per unit area, and Vis 
the  junction voltage. Eliminating the  second derivative of 
4 with Eq. (3) yields 

a2 
dpn ax' at' 

To obtain the  characteristic for .shaped window junc- 
tions,  the width W has  to be  made x-dependent, leading to 
a sectioned model in the x direction. With W(x), we can 
now obtain the element  values  per unit length of the  dis- 
tributed  model by comparison of Eqs. (23) with the ex- 
pression for a  transmission  line,  namely, 

leading to C' = CsW(x), G' = Gs(V)W(x), ii = j,W(x) and, 
according to  Eq. (13), L' = pO(d - t,)/(W2 + t,W/d). 

Figure 4(a) shows  the elements of the distributed junc- 
tion model in which each section is represented by a 183 
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Figure 5 Simulated (--) and measured (-) gain character- 
istics of a diamond-shaped Josephson junction in the vicinity of 
the first null in i,. For the simulation, the equivalent-circuit 
model of Fig. 4 has  been  used. 

I 
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Figure 6 Computed  threshold characteristic of the  junction 
with an  approximated sine shape; j ,  = 2.2 kA/cmZ, (/A, i= 2.5. 

“point”  junction of length e’ << h, as  shown in Fig. 4(b). 
In this figure the following equalities hold: 

i(, = sin 4, 
. 2 a  

Q, cp, .. 
Z = ii sin + + “C’(V)$ + C’ -4.  

27r 2 a  

Figure 5 illustrates the experimental characteristic (-) of 
a  diamond-shaped junction in the vicinity of the first null 
in i,, in comparison with calculations (--), where j ,  = 

2.3 kA/cm2. Evidently, agreement between experiment 
and  the model is fairly  good. 

This  model  has  been  used to calculate junction  shapes 
yielding the maximum  side-lobe suppression. Simulations 
with shapes of the form sin ( a x l e ) ,  sin’ ( a x l e ) ,  and a 
circle, have shown that  the choice of sin ( a x l e )  minimizes 
the side lobes [21]. An example of the  characteristic  com- 
puted for such a junction having an approximated sine 
shape is shown in Fig. 6. For ic 2 10 mA,j, = 2 . 2  kA/cm2, 
and e l k ,  = 2.5, the maximum value of the dc Josephson 
gate current i, is less than two percent of its value at ic = 

0. This is a significant side-lobe suppression in com- 
parison with the  diamond-shaped junction of Fig. 5. 

It is appropriate  to mention at  this point that the ASTAP 

simulation for  each point of the characteristic is obtained 
by increasing the  junction  current from zero in small in- 
crements,  and solving the  equations  for  each  current.  The 
current  at which a finite voltage first appears  across the 
junction is then taken  as the i, for the  previously defined 
value of ic. The  accuracy of the solutions thus  depends on 
the size of the  current increments  and (to be shown) on 
the number of sections. The solutions are continued 
above the point at which the junction  switches  to a volt- 
age state, thus yielding information on  the rime taken  for 
the voltage to build up to  its maximum value, the  gap volt- 
age 2 A / e  (or V,).  The behavior in the voltage regime 
yields information on switching speed and the influence of 
junction  resonances. 

The  junction of Fig. 6 has  a fairly small value of the 
ratio (/A, (-2.5) and has therefore almost symmetric char- 
acteristics about ic = 0. In some  circuit  applications a 
strongly asymmetric characteristic is required, implying a 
larger t / h ,  ratio [15]. With the model considered in this 
section the magnetic field caused by the  junction  current 
is automatically  included so that no modifications, except 
an increase in the number of sections,  are required for 
large t / h ,  ratios. 

Figure 7(a) shows that good side-lobe  suppression is 
also  obtained in long junctions ( i . e . ,  f / h ,  = 6) with a si- 
nusoidal shape.  Apart from the scaling factor for ic, 
caused by a  nonunitary coupling factor ( k  == 0.82), there is 
excellent  agreement between calculated (--) and mea- 
sured (-) characteristics in the experimental junction 
when 60 sections are used (e’ = 0. lh,) for the simulation 
[see Fig. 7(b)]. For Fig.  7(a), j ,  = 1.6 kA/cm2. 
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In order  to investigate  the accuracy and validity of the 
one-dimensional  model,  a  two-dimensional  distributed 
equivalent  circuit has been studied. A total of  196 ele- 
ments (14 X 14) was  used to  represent a  diamond-shaped 
junction of length (/A, = 1.5. In  comparison with the one- 
dimensional approximation, the central lobe was essen- 
tially unchanged and only small deviations (maximum of 
=20%) were observed in the side lobes.  Thus,  for  the 
shapes  studied,  the one-dimensional model is adequate 
for most purposes,  an important finding in view of the 
very long computation time  required for  the two-dimen- 
sional model. In fact,  the computation  time is not trivial 
even  for  the one-dimensional case;  one point of the char- 
acteristic of a  60-section junction  requires  about 30 min of 
CPU time on our computer. 

0 Static rnodel f o r  varying inductance 
This  last model is similar to the one first described, in- 
volving constant  Wand varying j , .  However, it applies to 
structures having varying  inductance along the length e 
and constant j ,  (Fig. 2). Although restricted to the static 
characteristics,  the computation  time is much  less  than 
that required by ASTAP. In this respect, it is advantageous 
for preliminary investigations of junction  characteristics, 
such as determination of the  optimum shape and dimen- 
sions consistent with the  tolerances imposed by a given 
circuit. 

Again, we restrict  the analysis to one  dimension.  Incor- 
poration of an x-dependent  inductance into  a time-inde- 
pendent  form of Eq. ( 5 )  is easily  obtained  by dif- 
ferentiating  the  x component of Eq. (12) with respect to x 
and noting that  ailax = j ,  W sin 4, leading to 

with L given by Eq. (13). In the calculations W, was as- 
sumed to be constant along the  length but, in principle, it 
can also be x-dependent. 

The  junction  current  is given by a  relation similar to 
Eq. (1  1): 

ig = j ,  1 w sin 4 d x ,  (26) 

and the boundary  conditions are 

4 

n 

The solution of Eqs. (25)-(28) followed the  same proce- 
dure used in the section on constant W and varying j ,  

1s 

10 

S 

0 
-20 0 20 

- 

i, (mA) 

-10 0 

Figure 7 Measured (-) and computed (--) threshold charac- 
teristics of the sine-shaped junction shown; ([/A, = 6), j ,  = 
1.6 kA/cm2. (a) Full characteristic and  (b) computed character- 
istic for i ,  > ic(0), using the distributed model with 30 (A) and 60 
(0) sections. 

with the  difference  that a  Runge-Kutta  routine was used 
to integrate Eq. (25). Since the model was mainly de- 
voted to the calculation of specific geometries, real quan- 
tities were used in place of the dimensionless values 
used in the first model. 

The program  was  written in FORTRAN IV. For the solu- 
tion of Eq. ( 2 5 ) ,  twenty integration steps were  found to 
give results accurate  to  about 2%, adequate for most pur- 
poses. In this case,  each point took less than one  second 
to compute; a complete  characteristic could  be  obtained 
in = 1  min. 

Applied to sinusoidal junctions,  such  as  that shown in 
Fig. 7(a), the  results were the  same as those obtained by 
ASTAP simulation to 22%.  A further  extension of the 
model is of interest: its application to some types of inter- 
ferometers having two or more junctions.  The character- 
istics of such  devices, based on point junctions, have 
been  determined by a  number of methods [22, 231. In 
some cases,  however,  the  junctions  cannot be regarded as 
point devices ([/A, 2 1)  and it is desirable to include the 1 85 
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Figure 8 Calculated (--) and experimental  characteristics 
(-) of the  interferometer shown. In the calculation,j, = 2.4 kA/ 
cmz, d = 0.18 pm,  and t, = 0.2 pm. The experimental values of 
ic are  multiplied by k = 0.80. 

influence of the finite length. An example is  the single- 
flux-quantum (SFQ) memory cell [ 13,  141. The geometry 
and  experimental characteristic of a simple version of 
such a cell are shown in Fig. 8. Here,  the finite junction 
length results in a  reduction in the amplitude of the side 
lobes in comparison  to  the  central lobe. To calculate 
(see dashed  lines in figure) the characteristic with the 
present model it is only necessary  to approximate the  two 
separate  junctions by a single junction  to preserve the 
continuity of Eq. ( 2 5 ) .  This may be done by connecting 
the  two junctions with a  narrow filament and  by providing 
a  graded region between  the  junctions  proper (of width 
wmax) and the filament to avoid discontinuities. The width 
of the filament wmin can be made arbitrarily small so that it 
contributes negligible gate  current. A  suitable  function for 
junction  width Win  the region 0 5 x 5 4*/2, used in the 
calculation of the  interferometer of Fig. 8, is 

w = Wmin + Wmax - Wrnin 

1 + ( 2 X / U t * ) "  

(d = 0.18 pm, t ,  = 0.2 pm,  andj ,  = 2.4 kA/cm2). The 
values were wmin = 0.01 prn, wmax = 17.8 pm, n = 20, 
and u = t / ( f * /2 )  = 7.43112.76 = 0.58, where e* = e,+ 
e, + D (el = e, = 7.43 pm, D = 10.65 pm;  see inset). Be- 
cause of the  fairly abrupt change  in W at x = e the num- 
ber of integration steps  was increased to 40. 

It will be seen from the inset of Fig. 8 that  the  current 
feed to  the  interferometer is symmetric; hence, the  calcu- 
lated curves were modified for this  condition by applying 

1 86 the  shear  transformation,  Eq. (21). 

With the inclusion of an assumed  coupling factor k = 

0.8 for  the  experimental  data,  the agreement  between the 
experimental (-) and calculated (--) curves is quite 
good. In  particular,  the effect of finite junction length 
on  the amplitude of the side  lobes  ("control effect") is 
rather well described by the model. The small deviations 
between theory and  experiment  most likely result  from 
small asymmetries in j ,  and the geometry, and from two- 
dimensional effects. 

The model may also  be  extended  to three-junction in- 
terferometers having geometries similar to  that of Fig. 8. 

Summary 
In cryogenic  circuits based  on  Josephson  junctions,  the 
static characteristic  of  the  junction  determines the  regions 
of switching. Different circuits  require different charac- 
teristics. For  example, overlapping vortex modes are  re- 
quired in single-flux-quantum memory cells, whereas 
some types of logic gate demand that ig be reduced to less 
than 2% of its maximum value with relatively small con- 
trol currents i,. The  former  case is satisfied by two-junc- 
tion interferometers and  the  latter by sinusoidally shaped 
junctions having maximum widths in the  center.  For 
these  applications it is essential to be  able to calculate  the 
characteristic,  both  static  and  dynamic,  for given geom- 
etry and  electrical parameters, first, to obtain the most 
suitable shape and second,  to  derive the  operating cur- 
rents and their  tolerances. 

To make the problem  manageable, while at  the same 
time obtaining reliable results  that  are in good agreement 
with experiment, a number of simplifications and  details 
have been investigated and tested against device measure- 
ments. The principal findings on  the static characteristics 
are summarized  here: 

Most shaped  junctions  or interferometers have part or 
all of the  junction defined by  a  relatively thick in- 
sulating film, which  isolates the  electrodes outside of 
the required junction  area.  For  electrodes of constant 
width this results in a varying inductance along the 
junction length,  which significantly influences the char- 
acteristics  and  which must be included in the  theory. 
Consideration of the phase difference c$ along the 
length of the  junction only,  assuming  invariance over 
the width,  greatly simplifies the calculations by reduc- 
ing them to  one dimension. The validity of the  one- 
dimensional treatment, in cases where the gate current 
flows  predominantly along the length of the  junction, 
has  been tested theoretically and experimentally. 

Static  solutions  based on numerical  integration of the 
differential equation describing $(x) have  the advantage 
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of  speed,  whereas  the  computationally  longer  dynamic 
simulation  has  the  advantage of yielding  information  on 
both  the  resonance  behavior  and  the  static  character- 
istics. 

It  has  been  demonstrated  that  the  one-dimensional  ap- 
proximation,  including  the  variation  of  inductance  along 
the  length,  gives a rather  good  description  of  the  charac- 
teristics  of a wide  range of junction  shapes  and  inter- 
ferometers.  The  models  described  have  been  used  suc- 
cessfully  in  designing  gates  for  the  logic  circuits of a 
cross-sectional  model  for a 16K-bit SFQ memory [24]. 
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