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Modeling of Characteristics for Josephson Junctions
Having Nonuniform Width or Josephson Current Density

Several models, both static and dynamic, for calculating the maximum dc Josephson current versus external magnetic
field “‘characteristic’’ of tunnel junctions of various geometries are described. The static models have the advantage of
short computation times, the dynamic models, although slower, yield additional information on circuit-switching times.
The dependence of the characteristics on the junction shape is described. The accuracy of a one-dimensional approxima-
tion used in the models has been tested experimentally, and theoretically against a two-dimensional approximation. In
both cases, the one-dimensional treatment yields quantitatively good agreement provided the inductance of the junction
is included in the model. Junctions defined by an oxide ‘‘window’" of sinusoidal shape (maximum and minimum width at
the center and ends, respectively) have a characteristic in which the side lobes are almost completely suppressed. The
characteristics of a wide variety of junction shapes, including interferometers having two or more junctions, have been

accurately calculated, permitting the design of devices for specific purposes.

Introduction

The dependence of the maximum d¢ Josephson current
on magnetic field exhibits a simple Fraunhofer diffraction
pattern when the junction width W is uniform and the
length ¢ is smaller than about twice the Josephson pene-
tration length \; [1, 2]. However, for larger values of
€/, the self-field of the junction current has an increas-
ing influence, and the resultant characteristic depends
strongly on the geometry of the junction. Such cases can-
not be solved in a simple analytical form and have been
the subject of a number of theoretical [3-8] and experi-
mental {4, 5, 7, 9] investigations. With suitably chosen
junction geometry the experimental results show good
agreement with one-dimensional numerical calculations.

Josephson tunnel junctions are now being studied for
logic and memory applications [10-15]. With regard to
“*small’’ junctions having £/A, < 2, it is easily shown that
the control current i, required to reduce the dc Josephson
gate current of the junction i, to the first minimum of the
Fraunhofer diffraction pattern, defined here as i (0), is
given by 2m‘1/(€/>\J)2, where i, is the Josephson current

density j, multiplied by the junction area A. Consequently
the *‘current gain,”” defined here by the ratio i, /i (0), is
small (=/2), restricting the usefulness of such junctions.
The advantages of dc isolation between input and output
provided by control lines, and the higher current gain of
long junctions having £/, = 3 make such structures more
generally suitable for circuit applications. In this respect
the ability successfully to design circuits with specified
properties requires an accurate knowledge of the static
and dynamic characteristics of the junctions. For the
static behavior, calculation of the junction current i ver-
sus i, for various values of £/A is an important part of
determining the operating regions and hence the suit-
ability of a given set of parameters.

For a constant junction width W and current density j,
along the length of the junction, one-dimensional models
lead to a single family of curves for the characteristic i,
versus i,. The shape of the curves depends only on the
single parameter ¢/ . However, it is known that varying
either j, [16] or W [13] along the length can strongly influ-
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ence the characteristic, especially in those regions of i,
where the junction contains one or more flux quanta @,
(®, = h/2e =~ 2.07 X 107'> Wb). By these means the avail-
able range of characteristics can be extended. In prin-
ciple, the former restriction of a single family of curves is
lifted and the ability to “‘tailor’” curves to best fulfill a
particular purpose is greatly enhanced.

The first approach, variation of j,, can be realized with
a structure that is uniform along the length. For appropri-
ate geometry it can be treated as a one-dimensional prob-
lem. The calculations are relatively simple but realization
of a spatially varying thickness of the tunnel barrier is
very difficult to achieve in a controlled manner. The sec-
ond alternative, variation of W, is technologically much
easier; however, calculation of the characteristics is ap-
parently more difficult because two dimensions must be
considered for a rigorous solution.

In this paper we report the results of a number of mod-
els, mainly one-dimensional, that have been used to ob-
tain the calculated characteristics for the two cases just
mentioned.

Theory

The equations that must be solved to obtain the charac-
teristic are well known and have been described in sev-
eral publications [3-8]; thus, we summarize here only the
necessary relations in their most general form.

We assume the junction to be in the x-y plane, to be of
length ¢ in the x direction, and to be of width W in the y
direction. The surface currents in the superconductors
flow in the x-y plane only and the tunnel current between
the electrodes is assumed to be restricted to the z direc-
tion. For this geometry the Josephson equations are

J =J,sin é; (1
ap  2ed ? 2ed

o _2edp 06 Zed . @
dx oY dy k

9 2e

% _ 2 v, 3
at A

where V is the junction voltage, ¢ is time, ¢ is the order-
parameter phase difference across the barrier, 8, and B,
are the x and y components of magnetic flux density B in
the barrier, and d is the sum of the London penetration
depths (A, A,) in the electrodes plus the thickness of the
tunnel barrier ¢ .

Differentiating Eqs. (2) with respect to x and y, respec-
tively, and replacing the z component of the Maxwell
equation with the term for the displacement current writ-
ten in terms of C, (the capacitance per unit area),
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Equations (1) and (3) can now be substituted for the terms
on the right-hand side of Eq. (5) to give a single equation
in ¢9

2 2 2 )
in which

A, = (B/2epdj)" (7
and

v =1(p,Cd" = c(t,/ed), ®

where € is the dielectric constant of the oxide, u, is the
permeability of a vacuum, and c is the velocity of light.
The quantity A has the dimension of length and describes
the effective penetration distance of a magnetic field into
the plane of the junction. The constant v represents a
wave velocity and is typically =c/25.

In general terms, determination of the characteristic
consists of solving Eq. (6) subject to the condition that the
total junction gate current i . is a maximum;

W

i, = JO J J, sin ¢ dxdy. 9

0

It is relevant at this stage to give a brief description of
the junction geometries that have been studied. This will
be helpful in illustrating modifications required in Egs. (6)
and (9) for application to these particular cases.

The first and simplest structure is shown in plane and
cross-sectional views in Fig. 1. The junction, consisting
of the superconductors 1 and 2, separated by a thin oxide
tunnel barrier (£, = 2-5nm) is placed over a super-
conducting ground plane that provides magnetic shielding
and serves to control the impedance of transmission lines
used for interconnections. A third superconductor, the
control line 3, is placed above and parallel to the junction
to provide a magnetic field when a current i, flows along
it. Good magnetic coupling between the films is ensured
by close spacing, obtained with thin oxides (SiO) that are
vacuum-deposited on the ground plane and between elec-
trodes 2 and 3.

This structure has already been used in one-dimen-
sional analyses with constant W and j, [7]. Reference to
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Figure 1 (a) Plane and (b) cross-sectional views of a simple in-
line Josephson junction showing the parameters that determine
the characteristics.
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Figure 2 (a) Plane and (b) cross-sectional views of a *‘window’’
junction whose area is defined by an opening in a thin dielectric
deposited between electrodes 1 and 2.
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Eq. (2) shows that the absence of a magnetic flux density
in the x direction (B,) removes the y dependence of ¢
from Eq. (6). As mentioned in the introduction, j, can be
made any arbitrary function of x without violating the
one-dimensional condition. However, A | is no longer con-
stant and Eqs. (1), (2), (5), and (9) become

’p 1 ¢  2ed

o 7 of ~ p Meh0sind (10)
and
R4
i = WJ J, (%) sin ¢ dx. (11)
0

If Wis varied instead of j , the current flow is no longer
everywhere parallel to the x axis and B_ is not generally
zero. In this case, a one-dimensional treatment is an ap-
proximation in which Egs. (10) and (11) are used to simu-
late a varying width. Computationally there is no dif-
ference between the two cases.

A varying junction width in the structure of Fig. 1 can
be inconvenient with regard to the placement of the con-
trol line. A more favorable arrangement, especially when
several control lines are required, is shown in Fig. 2. Here
the top electrode 2 is of constant width W, and the junc-
tion area is surrounded by a vacuum-deposited oxide of
thickness ¢, greater than that of the tunnel barrier, as in-
dicated in Fig. 2(b). In comparison with Fig. 1, the latter
geometry provides greater freedom in varying the shape
with less sacrifice in coupling efficiency k between the
control lines and the junction. In addition, multiple-junc-
tion interferometers can also be designed on the same
principle.

To analyze junctions of this geometry it is convenient
to make the following substitutions. Noting that the in-
ductance per unit length of the junction is L = u, d/W and
using Eq. (4) we can rewrite Eqgs. (2) in the form

a2 3 2
% _ 2 @y (12)

ax BTy ®,

where I, and I, are the total surface currents flowing in
the junction electrodes in the x and y directions. The in-
ductances are not constant because of the thicker oxide
outside the junction area. For example, in the case of L
we must add two components in parallel: the inductance
in the junction region L; = u,d/W and the inductance out-
side the junction L, = u,(d + ¢, — t )/(W, — W). Neglect-
ing ¢ _leads to

_ mdty
W+t W/d

ox

(13)

This completes the summary of the principal relations re-
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quired in the following section. More specialized for-
mulae are derived in connection with specific models.

Numerical models and comparison with experiment
The three models to be described are based on two dis-
tinct approaches. Two are static models in which the
phase difference ¢ yielding the maximum dc Josephson
current is calculated directly from the one-dimensional,
time-independent form of Eq. (6), or from a modification
including a varying inductance L derived from Egs. (12)
and (13). The other models are based on an equivalent
circuit representation using the general-purpose circuit-
analysis program ASTAP{17]. This differs from the former
models in that the junction is represented by an equiva-
fent network of resistive, inductive, and capacitive ele-
ments to which a time-independent current ramp is ap-
plied. The characteristic is determined from the value of
the current at which the junction switches to a finite volt-
age. More computer time is required with this approach
but additional information is gained regarding the switch-
ing speed and the amplitude and voltage of junction reso-
nances. The latter aspects are of considerable importance
in circuit designs [18].

The junctions used in comparing experimental with cal-
culated characteristics were based on the structure shown
in Fig. 2. Oxidized Si wafers were used as substrates. A
niobium ground plane was first evaporated onto the SiO,,
patterned by etching and, after growth of a thin anodic
oxide (Nb,0,), was coated with 300 nm of SiO. Junction
electrodes (1 and 2 in Fig. 2), consisting of Pb with small
additions of In and Au, of thicknesses 200 and 350 nm, for
base and counter electrodes, respectively, were patterned
by photoresist and a lift-off technique. The junction area
on the base electrode was delineated by an opening in a
thin film (=200 nm) of SiO. Growth of the tunneling oxide
was carried out in an rf plasma of oxygen with equipment
and techniques similar to those first described by Greiner
[19]. The junction electrodes were coated with about
500 nm of SiO to insulate them from the Pb-alloy control
lines (one or more per junction) deposited on the oxide
and lying parallel to the counter electrode. Various exper-
iments established that the coupling factor & between the
control lines and the junction was within the range 0.8-
0.9, according to the particular geometry in use. The
value is less than unity because of flux leakage caused by
the finite width of the control lines and their small separa-
tion from the junction counter electrode.

& Constant junction width and varying current density

This model is described first because, although strictly
applicable only to junctions of constant width or induc-
tance, it is relatively simple and yields a qualitative de-
scription of the characteristic for all shapes and values of
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the ratio £/ ,. We use it here to outline the general behav-
ior of the characteristic on either the current-density pro-
file or shape before proceeding to more detailed models.

The calculation is based on a simple extension of the
approach used in [7]. Assuming the junction to be of the
geometry of Fig. 1 and of unit width we can define a cur-
rent density j (x) that varies along the x direction only.
The mean current density is then
-m?J
= J,(x)dx (14

/0

and the mean penetration depth can be defined by
_ e
A, = (®,/2mp,dj). (15

For comparison of the characteristics obtained from vari-
ous current-density profiles, it is convenient to use di-
mensionless units. Expressing the x coordinate in units
of A}, and applying Eq. (6) to the one-dimensional time-
independent case, we obtain the simple equation

ERS

— = J sin ¢, 16
o ¢ (16)
where J = j,(x)/, fl. The normalized gate and control cur-

rents, per unit junction width, are given by

i ¢k

I =-5%= { J sin ¢ dx an
}‘JJI s

and
)

I=-%. (18)
Ay

The boundary conditions for d¢/dx at x = 0 and ¢/A jare
easily determined from Fig. 1(b), where it is seen that the
presence of the ground plane causes all junction current
to flow on the underside of electrode 1 at x = 0. Hence,
from Egs. (2) [noting that B, = /. ] and (15),

o
ox
Atx=¢/\ ,» the entire junction current contributes to the
magnetic flux density B, giving

ad
ox

=1. (19)

c
0

=1, +1, 20)

ll)\J

This choice of geometry allows Eq. (16) to be treated as
an initial-value problem since the unknown I, does not
appear in the boundary condition (19). With this ap-
proach, condition (20) is unnecessary; however, it serves
as a useful check on the accuracy of the computation be-
cause the solution of Eq. (16) also yields d¢/dx at x =
¢/\ ;- The value of /_calculated from the insertion of 3¢ /
dx at x = £/X, in Eq. (20) can then be compared with that
obtained from Eq. (17).
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Figure 3 (a) Calculated characteristics showing the effect of increasing (dotted curve; R = 0.5) or decreasing (dashed curve; R = 2) the
current density at the ends of the junction. The continuous line for a umform current density (R = 1) is shown for comparison; €/, = 4.
(b) The influence of an asymmetric current-density distribution; £/ >\ =4,R =J__JJ

'max/ Imin = 4 (¢) The characteristics of junctions havmg

a sinusoidal current density dlstnbutlon with minima at the ends of the junction. The number of maxima in J are 1 (Curve A), 2 (Curve B),

and 3 (Curve C); f/)\ =4,R =4,

It is important to note that structures of the forms of
Figs. 1 and 2 always lead to characteristics that are asym-
metric about the axis i, = 0. Symmetric curves are ob-
tained by other geometries, such as feeding the current { .
to both ends of the counter electrode. In this case the
characteristic can be obtained from the asymmetric case
simply by using the shear transformation

B =1, +1./2, @y

applied to the i, axis only.

The solution of Eq. (16) for constant J, leading to the
determination of ,, has been described in [7]; only brief
details need be given here. Since ¢,, the phase difference
at x = 0, is undefined, Eqgs. (16) and (17), with the starting
condition (19), were solved numerically for a number of
values (generally 62) of ¢, between 0 and 27 by using a
simple integration routine [20] for Eq. (16) and 20 inter-
vals in x. The value of ¢, corresponding to the maximum
value of I, was then found and the process repeated for
smaller steps in ¢, around the initial solution. The dif-
ference in I, determined from Eqs. (17) and the boundary
condition (20) was generally less than 1%, provided a
smoothly varying function was used for J. The method
used to determine ¢, was satisfactory for £ /A ; = 8. This
procedure yields the envelope of the characteristic. Al-
though not generally carried out in the following treat-
ments, it is a relatively easy matter to determine vortex-
mode boundaries which lie below the envelope by seeking
all the positive maxima in the solutions of i L versus ¢,.
Written in FORTRAN 1V, the program took about one min-
ute of CPU time to calculate a complete characteristic of
50-80 points, using a high-speed, 3M-byte computer.

Figures 3(a-c) illustrate the results obtained from sev-
eral simple current density profiles and a fixed £/A; = 4.

R. F. BROOM ET AL.

Figure 3(a) is chosen to show the influence of increasing
or decreasing J at the ends of the junction relative to the
center, using a linear profile as sketched in the insert. The
ratio R is here defined by the ratio of Jat x = ¢/2A ;to J at
x = 0. The side lobes are rather sensitive to R, increasing
in amplitude when J has maxima at the ends of the junc-
tion and decreasing when its maximum is in the center. In
contrast, the central lobe is relatively independent of the
profile; the small increase (decrease) in I, at the maximum
for R < 1 (R > 1) can be understood from the current
distribution within the junction, which is concentrated
near the ends [3-6] at the corresponding value of 1.

The effect of asymmetry in J about the center point of
the junction (x = ¢/2X,) is illustrated in Fig. 3(b), again
for a linear variation in J. Here, we define a ratio R’ =
J pax /i in this case, R’ = 4, Two basic features are ap-
parent. First, there is a displacement of the center lobe to
the left or right depending on whether the maximum in J
isatx=0orx = Z/)_\J, respectively. Second, the maxi-
mum amplitudes of the pairs of equal-order vortex modes
for positive and negative values of I, are no longer equal.
Thus, application of the transformation for symmetric
current feed, Eq. (21), here does not lead to a symmetric
characteristic. However, in Fig. 3(b) it may be noted that

curve A maps onto curve B with the transformation I, =
-, +1).

Figure 3(c) shows the effect of several maxima in J,
in this instance with a cosine distribution and R’ =
4. Curves A, B, and C were obtained with J = 1 +
[(R' — D/(R" + )] cos [=(1 + 2mxXJ/€)] with m (repre-
senting the number of maximainJ) = 1, 2, and 3, respec-
tively. This function has J minima at the ends of the junc-
tion, and the n = 1, 2, and 3 vortex modes are almost
entirely suppressed for m = 1, 2, and 3, respectively.
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The foregoing results can be applied in two ways: to
calculate the characteristic obtained from a given current
density or width profile, and, by reversing the sequence,
to make an estimate of the j (x) leading to a given mea-
sured characteristic. In the former case, the junction
width W(x) is the parameter of interest since j, cannot be
varied easily in a reproducible manner over the area of a
single junction and is, therefore, usually assumed to be
constant in designing junctions with specific character-
istics. However, a number of factors can lead to a spa-
tially varying current density; e.g., a) microshorts, b) dif-
ferent crystal orientations of a polycrystalline base elec-
trode having slightly varying oxide growth rates, and c)
back-sputtered material from areas surrounding the junc-
tion for tunneling oxides grown in an rf plasma [19] (local
influence on oxide thickness).

A systematic variation in j, (case c) is generally of more
interest than the random variations (cases a and b).
Where j,(x) is likely to be smoothly varying with maxima
or minima limited to one or two, the model is capable of
yielding a reasonably unambiguous interpretation of the
current-density profile. For example, the relative ampli-
tude of the n = 1 vortex modes indicates whether j, has a
maximum or a minimum at the ends of the junction [Fig.
3(a)]. For more complex profiles, however, the results
must be regarded with caution because they may not be a
unique solution to the measured characteristic [16]. This
model has been found useful for qualitative investigations
where its high speed of execution allows many character-
istics to be obtained in a short time.

o Time-dependent circuit model (dynamic simulation)
Some circuit applications require Josephson junctions
having a very small dc Josephson gate current, ig(ic) /i (0),
at modest values of the control current i, = i (0) [15). It
has been indicated in the previous section that junctions
having a reduced width at the ends may satisfy this re-
quirement. In addition, for the circuits of [15], a knowl-
edge of the dynamic (switching) behavior of the junctions
is of importance in order to estimate the switching delays
and the influence of internal junction resonances [18]
thereon. Consequently, although only the static behavior
is considered here, the following models are based on the
full time-dependent equations applied to junctions of the
form of Fig. 2.

The circuit-analysis program used here was ASTAP[17],
in which a lumped representation of the terms in the equa-
tions is obtained with current sources, capacitors, and in-
ductors. These elemental values are derived from the
equations of the preceding section in the following man-
ner.
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Figure 4 Equivalent-circuit models of a Josephson junction. (a)
Distributed-junction model with a point junction as sectional ele-
ment (b) in which i; = Josephson current, G'(V) = single-particle
contribution, and C' = capacitance of the point junction.

Assuming a magnetic field in the y direction to obtain a
one-dimensional approximation, Eq. (5) becomes
2
b, d°¢
27d di®

v
= 1, [jl sin ¢ + VG (V) + C, EJ’ 22)

where the additional term VG (V) represents the contri-
bution of the single-particle current per unit area, and V'is
the junction voltage. Eliminating the second derivative of
¢ with Eq. (3) yields

1 8 9 9 27
——2-CT—GS(V)5;V=11$VCOS¢. (23)

0

To obtain the characteristic for shaped window junc-
tions, the width W has to be made x-dependent, leading to
a sectioned model in the x direction. With W(x), we can
now obtain the element values per unit length of the dis-
tributed model by comparison of Eqgs. (23) with the ex-
pression for a transmission line, namely,

1 & , 8 , 9 , 3¢

— — —~C —5 -G —|V=i —cos o, 24
(L' ax* ar’ 61‘) ' oot ¢ @4
leading to C' = C.W(x), G' = G (V)W(x), i, = j,W(x) and,
according to Eq. (13), L' = p,(d = t)/(W, + t,W/d).

Figure 4(a) shows the elements of the distributed junc-
tion model in which each section is represented by a
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Figure 5 Simulated (——) and measured (—) gain character-
istics of a diamond-shaped Josephson junction in the vicinity of
the first null in i,. For the simulation, the equivalent-circuit
model of Fig. 4 has been used.

ig (mA)

i, (mA)

Figure 6 Computed threshold characteristic of the junction
with an approximated sine shape; j, = 2.2 kA/cm®, €/h; = 2.5,

“‘point”” junction of length ¢ << A, as shown in Fig. 4(b).
In this figure the following equalities hold:

i, =i sin ¢,
d) 3

0

o . ®0 ’ { ’ ¢()
I=ising+ —=GV)p~+C —o.
2 2
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Figure 5 illustrates the experimental characteristic (—) of
a diamond-shaped junction in the vicinity of the first null
in i, in comparison with calculations (——), where j, =
2.3 kA/cm®. Evidently, agreement between experiment
and the model is fairly good.

This model has been used to calculate junction shapes
yielding the maximum side-lobe suppression. Simulations
with shapes of the form sin (wx/¢), sin® (wx/€), and a
circle, have shown that the choice of sin (7rx/#) minimizes
the side lobes [21]. An example of the characteristic com-
puted for such a junction having an approximated sine
shape is shown in Fig. 6. Fori, = 10 mA, j, = 2.2 kA/em®,
and £/x; = 2.5, the maximum value of the dc Josephson
gate current i, is less than two percent of its value at i, =
0. This is a significant side-lobe suppression in com-
parison with the diamond-shaped junction of Fig. 5.

It is appropriate to mention at this point that the ASTAP
simulation for each point of the characteristic is obtained
by increasing the junction current from zero in small in-
crements, and solving the equations for each current. The
current at which a finite voltage first appears across the
Jjunction is then taken as the i, for the previously defined
value of i . The accuracy of the solutions thus depends on
the size of the current increments and (to be shown) on
the number of sections. The solutions are continued
above the point at which the junction switches to a volt-
age state, thus yielding information on the time taken for
the voltage to build up to its maximum value, the gap volt-
age 2A/e (or V). The behavior in the voltage regime
yields information on switching speed and the influence of
junction resonances.

The junction of Fig. 6 has a fairly small value of the
ratio €/X; (=~2.5) and has therefore almost symmetric char-
acteristics about i, = 0. In some circuit applications a
strongly asymmetric characteristic is required, implying a
larger £/X; ratio [15). With the model considered in this
section the magnetic field caused by the junction current
is automatically included so that no modifications, except
an increase in the number of sections, are required for
large ¢/X ratios.

Figure 7(a) shows that good side-lobe suppression is
also obtained in long junctions (i.e., £/, =~ 6) with a si-
nusoidal shape. Apart from the scaling factor for i,
caused by a nonunitary coupling factor (k = 0.82), there is
excellent agreement between calculated (——) and mea-
sured (—) characteristics in the experimental junction
when 60 sections are used (¢' = 0.1A)) for the simulation
[see Fig. 7(b)]. For Fig. 7(a), j, = 1.6 kA/cm’.
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In order to investigate the accuracy and validity of the
one-dimensional model, a two-dimensional distributed
equivalent circuit has been studied. A total of 196 ele-
ments (14 X 14) was used to represent a diamond-shaped
junction of length €/A = 1.5. In comparison with the one-
dimensional approximation, the central lobe was essen-
tially unchanged and only small deviations (maximum of
=~20%) were observed in the side lobes. Thus, for the
shapes studied, the one-dimensional model is adequate
for most purposes, an important finding in view of the
very long computation time required for the two-dimen-
sional model. In fact, the computation time is not trivial
even for the one-dimensional case; one point of the char-
acteristic of a 60-section junction requires about 30 min of
CPU time on our computer.

e Static model for varying inductance

This last model is similar to the one first described, in-
volving constant W and varying j,. However, it applies to
structures having varying inductance along the length ¢
and constant j, (Fig. 2). Although restricted to the static
characteristics, the computation time is much less than
that required by ASTAP. In this respect, it is advantageous
for preliminary investigations of junction characteristics,
such as determination of the optimum shape and dimen-
sions consistent with the tolerances imposed by a given
circuit.

Again, we restrict the analysis to one dimension. Incor-
poration of an x-dependent inductance into a time-inde-
pendent form of Eq. (5) is easily obtained by dif-
ferentiating the x component of Eq. (12) with respect to x
and noting that 3i/dx = j W sin ¢, leading to
b 9L 1 9 2w

o T ar L oax e, @

0

with L given by Eq. (13). In the calculations W, was as-
sumed to be constant along the length but, in principle, it
can also be x-dependent.

The junction current is given by a relation similar to
Eq. (11):

¢

i =, J W sin & dx, 26)
0

and the boundary conditions are

ad 2

—| = —L(0)i; 27
axl, D, (0%, @7
od 27

— = —LOW, +1i). 28
oxl, o, (O, +1i) (28)

The solution of Eqgs. (25)-(28) followed the same proce-
dure used in the section on constant W and varying j,

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. 2 ¢ MARCH 1980

f ®
|
|

Lo Control-field

coupling loss
a

|_~60 sections
Qgr//
y
4

AM— 30 sections

ugﬁ'{}{:bﬁ'

z'g (mA)

=20 —10 0

i, (mA)

Figure 7 Measured (—) and computed (——) threshold charac-
teristics of the sine-shaped junction shown; (£/A, = 6), j, =
1.6 kA/cm®. (a) Full characteristic and (b) computed character-
istic for i, > i (0), using the distributed model with 30 (A) and 60
(O) sections.

with the difference that a Runge-Kutta routine was used
to integrate Eq. (25). Since the model was mainly de-
voted to the calculation of specific geometries, real quan-
tities were used in place of the dimensionless values
used in the first model.

The program was written in FORTRAN 1v. For the solu-
tion of Eq. (25), twenty integration steps were found to
give results accurate to about 2%, adequate for most pur-
poses. In this case, each point took less than one second
to compute; a complete characteristic could be obtained
in =1 min.

Applied to sinusoidal junctions, such as that shown in
Fig. 7(a), the results were the same as those obtained by
ASTAP simulation to *2%. A further extension of the
model is of interest: its application to some types of inter-
ferometers having two or more junctions. The character-
istics of such devices, based on point junctions, have
been determined by a number of methods [22, 23]. In
some cases, however, the junctions cannot be regarded as
point devices (€/A; = 1) and it is desirable to include the
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iy (mA)
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Figure 8 Calculated {(——) and experimental characteristics
(—) of the interferometer shown. In the calculation, J; =24 kA/
cm®, d = 0.18 um, and t, = 0.2 um. The experimental values of
i, are multiplied by k = 0.80.

influence of the finite length. An example is the single-
flux-quantum (SFQ) memory cell [13, 14]. The geometry
and experimental characteristic of a simple version of
such a cell are shown in Fig. 8. Here, the finite junction
length results in a reduction in the amplitude of the side
lobes in comparison to the central lobe. To calculate
(see dashed lines in figure) the characteristic with the
present model it is only necessary to approximate the two
separate junctions by a single junction to preserve the
continuity of Eq. (25). This may be done by connecting
the two junctions with a narrow filament and by providing
a graded region between the junctions proper (of width
W, .,) 2nd the filament to avoid discontinuities. The width
of the filament w_, can be made arbitrarily small so that it
contributes negligible gate current. A suitable function for
junction width W in the region 0 < x =< ¢*/2, used in the
calculation of the interferometer of Fig. 8, is
- Pmax ~ Wmin_

W= oo ¥ T3 2xfat™y @9)
(d = 0.18 um, ¢, = 0.2 um, and j, = 2.4 kA/cm®). The
values were w_, = 0.01 um, w_. = 17.8 um, n = 20,
and a = €/(€*/2) = 7.43/12.76 = 0.58, where ¢* = £ +
¢, + D¢, =¢,=7.43 um, D = 10.65 um; see inset). Be-
cause of the fairly abrupt change in W at x = ¢ the num-
ber of integration steps was increased to 40.

It will be seen from the inset of Fig. 8 that the current
feed to the interferometer is symmetric; hence, the calcu-
lated curves were modified for this condition by applying
the shear transformation, Eq. (21).

R. F. BROOM ET AL.

With the inclusion of an assumed coupling factor & =
0.8 for the experimental data, the agreement between the
experimental (—) and calculated (——) curves is quite
good. In particular, the effect of finite junction length
on the amplitude of the side lobes (‘‘control effect’) is
rather well described by the model. The small deviations
between theory and experiment most likely result from
small asymmetries in j, and the geometry, and from two-
dimensional effects.

The model may also be extended to three-junction in-
terferometers having geometries similar to that of Fig. 8.

Summary

In cryogenic circuits based on Josephson junctions, the
static characteristic of the junction determines the regions
of switching. Different circuits require different charac-
teristics. For example, overlapping vortex modes are re-
quired in single-flux-quantum memory cells, whereas
some types of logic gate demand that i, be reduced to less
than 2% of its maximum value with relatively small con-
trol currents i.. The former case is satisfied by two-junc-
tion interferometers and the latter by sinusoidally shaped
junctions having maximum widths in the center. For
these applications it is essential to be able to calculate the
characteristic, both static and dynamic, for given geom-
etry and electrical parameters, first, to obtain the most
suitable shape and second, to derive the operating cur-
rents and their tolerances.

To make the problem manageable, while at the same
time obtaining reliable results that are in good agreement
with experiment, a number of simplifications and details
have been investigated and tested against device measure-
ments. The principal findings on the static characteristics
are summarized here:

& Most shaped junctions or interferometers have part or
all of the junction defined by a relatively thick in-
sulating film, which isolates the electrodes outside of
the required junction area. For electrodes of constant
width this results in a varying inductance along the
junction length, which significantly influences the char-
acteristics and which must be included in the theory.

o Consideration of the phase difference ¢ along the
length of the junction only, assuming invariance over
the width, greatly simplifies the calculations by reduc-
ing them to one dimension. The validity of the one-
dimensional treatment, in cases where the gate current
flows predominantly along the length of the junction,
has been tested theoretically and experimentally.

Static solutions based on numerical integration of the
differential equation describing ¢(x) have the advantage
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of speed, whereas the computationally longer dynamic
simulation has the advantage of yielding information on
both the resonance behavior and the static character-
istics.

It has been demonstrated that the one-dimensional ap-
proximation, including the variation of inductance along
the length, gives a rather good description of the charac-
teristics of a wide range of junction shapes and inter-
ferometers. The models described have been used suc-
cessfully in designing gates for the logic circuits of a
cross-sectional model for a 16K-bit SFQ memory [24].
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