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Interferometric Wavelength Measurements through
Post-Detection Signal Processing

Modern electronic signal processing techniques make it possible to use a conventional scanning Fabry-Perot inter-
ferometer for highly accurate measurement of (tunable) laser wavelengths. An experimental device is described in which
the time intervals between resonances of an unknown wavelength are compared with those of a stabilized He-Ne refer-
ence laser by the use of highly accurate electronic timing devices. The accuracy is further enhanced through signal
averaging over many scan periods. Accuracies approaching one part in 107 are expected to be readily achievable.

Introduction

The extraordinary resolving power routinely achieved
with present tunable laser sources has rendered conven-
tional methods for wavelength measurements inadequate.
The resolution of all but the largest grating spectrographs
has become insufficient and conventional interferometric

The intensity I, of each beam transmitted through the
interferometer is given by the Airy function [2]:

I, = L/[1 + P sin® 2md/M)]. 4}

Here, I, is the input intensity, P is a constant related to

methods for precision wavelength measurements are too
time-consuming, tedious, and difficult for routine labora-
tory use. Several new approaches to precise wavelength
measurements of tunable laser radiation have recently
been explored [1]. These include arrays of fixed Fabry-
Perot interferometers with optical multichannel readout,
a Fizeau interferometer with a linear photodiode array in-
terfaced to a minicomputer, and fringe counting traveling-
arm Michelson-type interferometers. In this paper we de-
scribe another wavelength- or frequency-measuring de-
vice in which the burden of achieving a high degree of
accuracy is placed on post-detection signal processing
rather than on the optics.

Principles of operation

In its most rudimentary form, the device consists of a
scanning Fabry-Perot interferometer (F-P) into which are
coupled two laser beams: a highly stabilized He-Ne refer-
ence beam and the measured beam of unknown wave-
length (see Fig. 1).

the finesse F through the relation F = (7/2)P'*, d is the
spacing between the mirrors, and A is the wavelength of
light. Figure 2(a) shows the transmitted intensity /, as a
function of d.
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Figure 1 Schematic diagram of the experimental set-up.
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Figure 2 (a) Output signal from one of the two photodiodes. (b)
The same signal after differentiation (—) and the time-interval
gate (- - -).

Suppose that the distance between the mirrors is peri-
odically scanned in a ramp-like manner so that it varies
linearly with the time velocity of motion. Figure 2(a) then
represents the output as a function of time. Since the two
resonances are one-half wavelength apart, the time inter-
val between the two peaks is equal to T = A/2v, where v is
the velocity of mirror motion.

If the wavelengths of the reference and unknown
beams are denoted by A and A,

A, = M(T,/T.). @

The problem reduces to the accurate determination of the
two time intervals T, and T,. In addition, as we shall see
later, this accuracy can be enhanced beyond instrumental
limitations by averaging the measurements over many pe-
riods. The accuracy of the measurement of the two time
intervals depends both on the precision with which the
four peaks are detected and the accuracy of the time mea-
suring process itself.

From the variety of possible methods of peak detec-
tion, we have chosen one relying on signal differentiation
and subsequent detection of the zero crossings [solid lines
in Fig. 2(b)]. The actual time interval measurement in
each channel is performed by means of a counter that is
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gated by a rectangular pulse [dashed lines in Fig. 2(b)]
whose duration is determined by two successive zero
crossings.

Basic sources of error are due to nonlinearities of the
mirror motion and overall noise in the system. The
former, although possibly large, is deterministic in nature
and can therefore be minimized either by calibration or
feedback control. Errors stemming from purely random
noise in the system are much more difficult to remove.
Clearly, the first step is to design a system so that noise is
minimized within the acceptable limits of system com-
plexity while the highest possible accuracy in time mea-
surements is maintained. Any further increase in accura-
cy beyond that achieved by the ‘‘clever’” design is pos-
sible only by post-detection signal processing, which
takes advantage of the easily achieved periodicity of the
signal.

Let us assume, for the sake of analysis, that the time
intervals T, (or T,) for a large number of scans have been
stored in a computer so that we can construct a quasi-
periodic function:

y(t) = Zf(t - kTo - Gk), 3)
k

where f () is the function representing individual pulses,
such as the rectangular pulses in Fig. 3(a). The average
interval between the pulses is given by T, and ¢, is the
deviation of the kth interval from T so that the average
value of € is zero.

Let the probability density function for € be given by
p(e). We can then define the characteristic function

.0

P) = J p(e) exp (i2mve)de. (4)

We also define the Fourier transform of Eq. (3) as

3

Y) = J (1) exp (~i2mvi)de

= F() i exp (—i2wkv), (&)

k=-n
where

.0

Flv) = J F(x) exp (—i2mvx)dx (6)

is the Fourier transform of the individual pulse f(¢). It can
be shown [3] that in the limit of n — o, the power or in-
tensity spectrum W(v) of such a signal is given by

wu—imw
v) = ]b 12

})V 2 x
xnﬂmm+%l2&wmm4(n

0 n=0
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A power spectrum of a typical signal is shown in Fig.
3(b) for the case of a Gaussian distributed €. The signal is
a mixed one, consisting of both a periodic component and
a continuous background. This continuum, whose energy
has been extracted from the periodic component, is the
noise due to the interval jitter €. Clearly, in the limit of no
jitter [0 — 0 and |P(v)| — 1], the power spectrum [Eq.
(7)] reduces to a perfectly periodic signal consisting of
discrete frequencies only.

This suggests that the accuracy of determination of 7|
can be improved by minimizing the continuous com-
ponent in the spectrum. In practice, this can be accom-
plished by improving measurement accuracy of the time
intervals T and by passing the signal through a ‘““‘comb”’
filter. This filter, whose transfer function |H(v)| =
[sin (mvT k)/sin (wvT)]l, can be realized either by cross-
correlating the signal y(#) with a string of periodic im-
pulses [1] or by simply storing the measured time interval
values T and averaging them in the computer. The latter is
tantamount to taking the sum of a power series with time
delays 7, and mathematically leads to Eq. (7); e.g., [3].

Generally, since the width of the peaks in the (square of
the) ““‘comb’’ transfer function goes down as the square
root of &, the improvement in the accuracy is proportional
to the square root of the number of averages. Thus, the
final accuracy of the wavelength measurement process is
proportional to the square root of the number of averages
and to the precision with which the exact time interval
between two Fabry-Perot resonances can be determined
during a scan.

The expected time jitter € in the position of a resonance
can, on the other hand, be estimated. The Fabry-Perot
transmission /,/I,, as a function of time f near a resonance
t..» is to a good approximation given by a Lorentzian. Let
us assume that the detected signal near ¢ is distorted by a
superimposed sinusoidal noise component according to

I
st —1 )= W + :J
x sin[o (r — 1) + ¢]. (8)
Here,
AT = T(n/4F) ©9)

is the width of the resonance pulse, r is the signal-to-noise
ratio, o, is a frequency characteristic for the noise, and
¢, is some arbitrary phase angle. Setting the time deriva-
tive of the signal [Eq. (8)] equal to zero, we find a maxi-
mum time jitter of

lt — ¢, _ AT (o,
mimax ~ (4)- (10)
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Figure 3 (a) Definition of the time jitter €, and (b) the power
spectrum W(v) of a Gaussian distributed € and the root mean
square deviation o = 1/200 000.

Since the signal processing electronics have to transmit
frequencies up to at least AT ', the estimated *‘worst
case’’ jitter is approximately

[t —t [P~ nATr = (a° /4NT,/Fr), 1

or its relative value

2
:|t—tm|=‘n'_

m T, 4Fr "’

0

(12)

which implies that the effective finesse has been improved
by a factor corresponding to the signal-to-noise ratio r of
the system. Since this jitter can be further decreased by
averaging, the total uncertainty 8, in the measurement of
the wavelength is on the order of

a 1
o= (5 ) 03

where k is again the number of averages.
Since for time intervals T, on the order of 1 ms an r of

10® could be readily achieved, an accuracy of one part in
107, for a finesse of F = 200, can be obtained by averaging
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over roughly a ten-second interval. Better estimates of
the achievable measurement accuracy can be obtained by
deriving the actual p(e) in a given system rather than only
estimating €. In that case, the power spectrum [such as
that shown in Fig. 2(b)] may provide insight into the un-
certainty and/or the accuracy of the wavelength measure-
ment. This curve was derived for a Gaussian p(e) and o =
1/Fr with F = 200 and r = 10® in Fig. 2(b).

Experimental details

The arrangement of the wavelength meter was shown
schematically in Fig. 1. The two beams A, and A traverse
the interferometer in opposite directions; the two laser
sources are in line. After having passed the inter-
ferometer, the beams are reflected to their respective
photodetectors. Because of internal reflection in the beam
splitter and the light reflected back from the inter-
ferometer, light from the reference beam can reach the
photodetector for the unknown and vice versa. To pre-
vent this, iris diaphragms have been placed in front of the
photodetectors in order to block the off-axis light. In addi-
tion, the polarization directions of the two lasers are cho-
sen perpendicular, and polarizers are placed in front of
the photodetectors to stop unwanted beams.

The interferometer is a commercially available scan-
ning interferometer driven by a ramp generator. The sig-
nals from the photodetectors are differentiated, the zero
crossing detected, and the resulting gating signals (see
Fig. 2) fed into the time interval counters in order to mea-
sure T, and T,.

The whole measurement is controlled by a micro-
processor that performs several tasks. During one scan of
the interferometer, more than two intensity peaks occur
in one channel. Together with the gating circuits, the mi-
croprocessor selects the first two successive pulses dur-
ing each scan and directs them into the counters. After
the time measurements, the results are transferred from
the counters into the microprocessor and then into a mini-
computer. Here, the ratio T/T, is taken and multiplied by
A, (in the memory of the minicomputer). The average over
several results can be calculated. Finally, the calculated
A, is transmitted to the microprocessor and shown on an
LED display [4].

The reference laser is a stabilized single-mode He-Ne
laser. Since we have not attempted to determine the ac-
tual stability of this laser, our results are only as accurate
as this reference. So far, we have been able to achieve
such a relative accuracy on the order of one part in 10°
during sample measurement, and several parts in 10° by
averaging over several seconds. Although somewhat less
than expected, we have traced the problem to previous
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noise sources in the microprocessor and the counters,
and expect to resolve this problem in the near future.

Conclusions

We have described a wavelength meter based on a mul-
tiple path interferometer of the Fabry-Perot type. The ad-
vantage of this approach is that the device is rather com-
pact and the total mirror motion small. The measurement
accuracy, which in a Michelson-type wave meter is asso-
ciated with the long pathlength traversed by the moving
mirror, has been at least partly recaptured through the
long ‘‘lifetime of the photon’’ in the multiple-path inter-
ferometer, or in other words, through its higher finesse.
Further enhancement in measurement accuracy has been
achieved by precision time measurements associated with
high signal-to-noise ratios of modern electronics and by
averaging the results of repetitive measurements.

Although the inaccuracies associated with the nonlin-
earity of the mirror motion are considerable, we believe
they will not be too troublesome since they can be sub-
stantially reduced by proper calibration of the system.
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