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Interferometric  Wavelength  Measurements through 
Post-Detection  Signal  Processing 

Modern  electronic signal processing  techniques  make it possible  to  use  a  conventional  scanning  Fubry-Perot  inter- 
ferometer  for  highly  accurate  measurement  of  (tunable)  laser  wavelengths.  An  experimental  device is described  in which 
the  time  intervals  between  resonances  of  an  unknown  wavelength  are  compared with those  of  a  stabilized  He-Ne refer- 
ence  laser  by  the  use of highly accurate  electronic  timing  devices.  The  accuracy is firrther  enhanced  through  signal 
averaging  over  many  scan  periods.  Accuracies  approaching  one  part in IO7 are  expected  to  be  readily  achievable. 

Introduction 
The  extraordinary resolving power routinely achieved 
with present tunable  laser sources  has rendered conven- 
tional methods  for wavelength measurements  inadequate. 
The resolution of all but the  largest  grating spectrographs 
has become insufficient and conventional interferometric 
methods for precision wavelength measurements are  too 
time-consuming, tedious, and difficult for routine  labora- 
tory use.  Several new approaches  to precise  wavelength 
measurements of tunable  laser  radiation have recently 
been explored [I]. These include arrays of fixed Fabry- 
Perot interferometers with optical multichannel readout, 
a Fizeau interferometer with a linear  photodiode array in- 
terfaced to a minicomputer,  and  fringe  counting traveling- 
arm Michelson-type  interferometers. In this paper we de- 
scribe another wavelength- or frequency-measuring de- 
vice in which the burden of achieving  a high degree of 
accuracy is placed on post-detection signal processing 
rather  than  on  the  optics. 

Principles of operation 
In its  most  rudimentary  form, the device consists of a 
scanning Fabry-Perot interferometer (F-P) into which are 
coupled two laser  beams:  a highly stabilized He-Ne refer- 
ence beam and  the measured  beam of unknown  wave- 
length (see Fig. 1). 

The intensity I ,  of each beam transmitted  through the 
interferometer is given by the Airy function [ 2 ] :  

Z, = ZJl + P sin’ (2rd /A)] .  (1) 

Here, Zi is the  input intensity, P is a constant related to 
the finesse F through  the  relation F = (r/2)P1’*,  d is the 
spacing between  the mirrors,  and A is the wavelength of 
light. Figure 2(a)  shows the  transmitted intensity I ,  as a 
function of d. 
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Figure 1 Schematic diagram of the experimental set-up. 
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Figure 2 (a) Output signal from one  of the two  photodiodes. (b) 
The same signal after differentiation (-) and the time-interval 
gate (- - -). 

Suppose  that  the distance  between the mirrors is peri- 
odically scanned in a ramp-like manner so that it varies 
linearly with the time velocity of motion. Figure 2(a) then 
represents  the  output  as a  function of time. Since  the  two 
resonances  are one-half wavelength apart, the time inter- 
val between the  two peaks is equal to T = A/2v, where v is 
the velocity of mirror motion. 

If the  wavelengths of the  reference  and  unknown 
beams are  denoted by Ar and A", 

A u  = A,(Tu/Tr). (2) 

The problem reduces  to  the  accurate determination of the 
two time intervals Tu and Tr. In addition, as we shall see 
later, this accuracy can be enhanced  beyond  instrumental 
limitations by averaging  the measurements  over many pe- 
riods. The  accuracy of the measurement of the two  time 
intervals depends both on  the precision with which the 
four  peaks are  detected and the  accuracy of the time mea- 
suring process itself. 

From the variety of possible methods of peak detec- 
tion, we have  chosen  one relying on signal differentiation 
and subsequent detection of the zero crossings [solid lines 
in Fig. 2(b)]. The actual time interval  measurement in 

86 each channel is performed by means of a counter  that is 

gatel d by a  rectangular pulse [dashed lines in Fig. 
whose duration is determined by two  successive zero 
crossings. 

Basic sources of error  are  due  to nonlinearities of the 
mirror motion and  overall  noise in the  system.  The 
former, although possibly large, is deterministic in nature 
and can  therefore be minimized either by calibration or 
feedback control.  Errors stemming  from purely random 
noise in the  system  are much more difficult to  remove. 
Clearly, the first step is to design a system so that noise is 
minimized within the acceptable limits of system com- 
plexity while the highest possible accuracy in time mea- 
surements is maintained. Any further increase in accura- 
cy beyond that achieved by the "clever" design is pos- 
sible only by post-detection signal processing,  which 
takes advantage of the easily achieved periodicity of the 
signal. 

Let us assume,  for the  sake of analysis, that  the time 
intervals Tu (or TJ for a large number of scans  have been 
stored in a computer so that we can  construct a  quasi- 
periodic  function: 

k 

where f( t )  is the function  representing individual pulses, 
such  as  the rectangular pulses in Fig. 3(a). The  average 
interval between  the pulses is given by To and elc is the 
deviation of the kth interval  from To so that  the average 
value of E is zero. 

Let  the probability  density  function for E be given by 
p ( ~ ) .  We can then define the  characteristic function 

~ ( u )  = 1 p(E) exp  (i2mc)dc. 

We also define the Fourier  transform of Eq. (3) as 

.m 

"m 

y ( t )  exp ( - i2rut)dt  

k=-n 

where 

~ ( v )  = j f ( x )  exp (-i2.rrux)dx (6) 

is the  Fourier transform of the  individual pulsef(t). It can 
be shown [3] that in the limit of n + XI, the  power or in- 
tensity spectrum W(v) of such a signal is given by 

. m  
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A power spectrum of a typical signal is shown in Fig. 
3(b) for  the  case of a  Gaussian  distributed E. The signal is 
a mixed one, consisting of both a periodic  component  and 
a continuous background.  This continuum, whose  energy 
has  been extracted from  the  periodic component, is the 
noise due  to  the interval jitter E .  Clearly, in the limit of no 
jitter [u2 + 0 and IP(v)l -+ 11, the power spectrum  [Eq. 
(7)] reduces to a  perfectly  periodic signal consisting of 
discrete frequencies only. 

This  suggests that  the accuracy of determination of To 
can be improved by minimizing the continuous  com- 
ponent in the  spectrum. In practice, this can be accom- 
plished by improving  measurement  accuracy of the time 
intervals T and by passing  the signal through a  "comb" 
filter. This filter,  whose transfer function IH(v)I = 

([sin (mTok)/sin (T~vZ',)]~, can be realized either by cross- 
correlating the signal y ( t )  with a  string of periodic im- 
pulses [ I ]  or by simply storing the measured time interval 
values T and averaging  them in the  computer.  The  latter is 
tantamount  to taking  the sum of a  power  series with time 
delays T ,  and  mathematically  leads to Eq. (7); e.g., [3]. 

Generally,  since the width of the  peaks in the  (square of 
the)  "comb" transfer function  goes  down  as the  square 
root of k ,  the improvement in the  accuracy is proportional 
to the square  root of the  number of averages. Thus, the 
final accuracy of the wavelength measurement process is 
proportional to  the  square root of the number of averages 
and to  the precision with which the  exact time interval 
between two Fabry-Perot resonances can be determined 
during a scan. 

The  expected time jitter E in the position of a resonance 
can, on the  other hand, be estimated. The  Fabry-Perot 
transmission It/Zi, as a  function of time t near a resonance 
tm, is to a good approximation given by a Lorentzian. Let 
us assume  that  the  detected signal near tm is distorted by a 
superimposed  sinusoidal noise component according to 

X sin [w,(t - t ,) + $1. (8) 

Here, 

AT = T(7r/4F) (9) 

is the width of the resonance pulse, r is the signal-to-noise 
ratio, on is a frequency  characteristic  for  the noise, and 
$m is some arbitrary phase angle. Setting the time  deriva- 
tive of the signal [Eq. (8)] equal to  zero, we  find a maxi- 
mum time jitter of 

t 
h - 

Figure 3 (a) Definition of the time jitter E~ and (b)  the power 
spectrum W(u) of a Gaussian  distributed E and  the  root  mean 
square deviation (T = 1/2W 000. 

Since  the signal processing  electronics  have to transmit 
frequencies  up to  at least AT", the estimated "worst 
case"  jitter is approximately 

It - l m l 2  = rrATr = (n2 /4 ) (T0 /Fr ) ,  (1 1) 

or its  relative  value 

which implies that the effective finesse has been improved 
by a factor corresponding to  the signal-to-noise ratio r of 
the system.  Since this jitter  can be further  decreased by 
averaging, the  total uncertainty 6, in the  measurement of 
the  wavelength is on  the  order of 

where k is again the number of averages. 

Since for time  intervals To on  the  order of I ms an r of 
I O 3  could be readily achieved,  an  accuracy of one  part in 
lo', for  a  finesse of F = 200, can be  obtained by averaging 
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over roughly a  ten-second  interval. Better  estimates of 
the  achievable  measurement accuracy  can be obtained by 
deriving the  actual P(E)  in a given system  rather  than only 
estimating e,,,. In  that  case, the power  spectrum [such as 
that  shown in Fig. 2(b)] may provide insight into the un- 
certainty andlor  the  accuracy of the wavelength  measure- 
ment.  This curve was  derived for a Gaussianp(e) and u = 

1/Fr with F = 200 and r = lo3 in Fig. 2(b). 

Experimental details 
The  arrangement of the wavelength  meter  was shown 
schematically in Fig. I .  The two  beams Ar and A, traverse 
the  interferometer in opposite directions;  the two laser 
sources  are in line.  After having passed the inter- 
ferometer,  the beams are reflected to their respective 
photodetectors. Because of internal reflection in the beam 
splitter  and the light reflected back  from the inter- 
ferometer, light from the  reference  beam  can  reach the 
photodetector  for the  unknown and vice  versa. To pre- 
vent this, iris diaphragms have  been placed in front of the 
photodetectors in order  to block the off-axis light. In addi- 
tion,  the polarization  directions of the  two  lasers  are  cho- 
sen perpendicular, and  polarizers are placed in front of 
the  photodetectors  to  stop unwanted  beams. 

The  interferometer is a  commercially available scan- 
ning interferometer driven by a ramp  generator.  The sig- 
nals from the  photodetectors  are differentiated,  the zero 
crossing detected, and the resulting gating signals (see 
Fig. 2) fed  into  the time  interval counters in order  to mea- 
sure Tr and Tu. 

The whole  measurement is controlled by a micro- 
processor  that performs  several tasks. During one scan of 
the  interferometer, more than  two intensity  peaks occur 
in one  channel.  Together with the gating  circuits, the mi- 
croprocessor  selects  the first two  successive pulses dur- 
ing each  scan  and directs  them  into the  counters. After 
the time measurements, the  results are transferred from 
the  counters  into  the microprocessor and  then into  a mini- 
computer.  Here,  the ratio TJT, is taken  and multiplied by 
Ar (in the  memory of the minicomputer). The average over 
several results  can be calculated.  Finally, the calculated 
A, is transmitted  to the  microprocessor  and  shown on  an 
LED display [4]. 

noise sources in the microprocessor and  the  counters, 
and expect  to resolve  this  problem in the  near future. 

Conclusions 
We have described a  wavelength meter based on a mul- 
tiple path  interferometer of the  Fabry-Perot  type.  The  ad- 
vantage of this approach is that  the device is rather com- 
pact  and the  total mirror motion small. The measurement 
accuracy, which in a Michelson-type  wave meter is asso- 
ciated with the  long  pathlength traversed by the moving 
mirror,  has  been at  least partly recaptured through the 
long “lifetime of the  photon” in the multiple-path  inter- 
ferometer, or in other words,  through  its higher finesse. 
Further  enhancement in measurement  accuracy  has been 
achieved by precision  time measurements associated  with 
high signal-to-noise ratios of modern electronics and by 
averaging the  results of repetitive  measurements. 

Although the  inaccuracies associated with the nonlin- 
earity of the mirror motion are  considerable,  we believe 
they will not  be too troublesome since they  can be sub- 
stantially reduced by proper calibration of the  system. 
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The  reference  laser is a stabilized single-mode He-Ne 
laser.  Since we have not attempted  to  determine  the ac- 
tual  stability of this laser,  our  results  are only as  accurate 
as this reference. So far, we have been  able to  achieve 
such a relative accuracy on the  order of one  part in lo5 
during  sample measurement, and several  parts in lo6 by 
averaging over  several  seconds. Although  somewhat less 

88 than expected, we have traced  the problem to previous 
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