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On the Complexity of Permuting  Records  in  Magnetic 
Bubble  Memory  Systems 

In this  paper we study  the  problem of permuting  records  in  various  simple  models of magnetic  bubble  memories.  Previous 
studies  usually  assumed  the  memory  system  either  had  one  switch  or n independently  controlled  switches,  where n is  the 
number of records to  be  permuted. In the  former  case,  the  time  complexity  to  prrrnutr  a set .f n records is O(n'), while in 
the  latter  case,  the  time  complexity  is O(n). In this  paper,  we  propose  several  simple  models of bubble  memory  systems 
with  their  numbers of switches  ranging  between I and n and  analyze  the  respective  time  complexities  and  respective 
numbers o f  control  states  for  some  permutation  algorithms  designed  especially  for  them.  Specifically,  four  models  are 
studied:  They  have  essentially  log, n, 2 f i  (log, n - log, log,  n)', and k switches;  their  respective  time  complexities  are 
essentially (312)n log,  n, (512)n, (7/2)n, and 2"ikkn1+(1ik'; and  their  respective  numbers o f  control  states  are  essentially 
4 log, n, 2fi+1, 2n/log, n, and 4 k .  

1. Introduction 
The problem of permuting  records in a magnetic bubble 
memory has recently  received  considerable attention 
[ 1-81. Permuting records may constitute part of a  sorting 
algorithm, in the sense  that  the  keys of the  records are 
sorted in the CPU and the  records  are then  rearranged 
according to the sorted keys  (hence  a  permutation of the 
records [3-6, 91). Or  the problem may arise from  the fol- 
lowing situation: Suppose the requests  for the  records do 
not occur  randomly, and we accumulate  statistics about 
their access  frequencies.  Then  at  certain time  intervals 
we can  rearrange  the records according to  these frequen- 
cies to improve  upon the average access time. For ex- 
ample,  the higher the  frequency,  the  closer  to  the input/ 
output  port  the record is placed [10-15]. In effect,  a per- 
mutation of the records is performed. 

Throughout  this paper, we assume n is the number of 
records to be permuted.  In the  models of [3-6, 91 there 
are (n  - 1) independently  controlled  switches with time 
complexity n / 2  for a permutation. Furthermore,  the  ac- 
tual permutation  time  can be completely  overlapped with 
the input/output time. On the other  hand,  the two models 

in [7], which are improvements of those in [8], have only 
one switch  and the time  complexities  for  permutation are 
both ( 1  /2)r? + O(n).  

In this paper, we propose several models which require 
different numbers of independently  controlled  switches. 
For each  model, we study the time complexity of a pro- 
posed  permutation  algorithm and the  required  number of 
control states. We assume a switch has two states.  Thus, 
in general, a model with x switches may have  a total of 2" 
possible states.  However, in our proposed algorithms 
only  a subset of them is required. The cardinality of this 
subset is the number of control states  necessary. 

A summary of results is given in Section 7. The prob- 
lem of sorting n records is treated in another paper [ 161. 

2. Basic model 
We assume that a magnetic bubble  memory  consists of 
loops.  A loop of size m is capable of holding m records. 
Under the control of a switch, a loop can circulate  rec- 
ords in a counterclockwise direction or  can hold the  rec- 
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Figure 1 One  major loop with four minor loops. 

Figure 2 Adjacent loops cannot  exchange  records  when  switch 
is open  as  at  (a)  but  can  when it is closed as  at (b). 

ords in position. The time it takes  to move  one  record 
from one position to  an adjacent  position (in a counter- 
clockwise  direction) is called a step and is assumed to be 
the basic unit of time. The “holding” action of the loops 
can be realized by one of the following two methods: 

I .  By placing an additional magnetic field over  the  loop, 
which, when turned  on,  cancels  the original rotating 
magnetic field that  drives  the bubble  domains around. 

2. By using the model proposed in [I], which is an uncon- 
ventional  majoriminor  loop structure with specially 
designed switches (to be described in the next para- 
graph). 

We use one minor  loop  for a record, with a switch con- 
necting each of the minor  loops to a  major  loop. Thus, a 
loop of size m in our model actually consists of one major 
loop and m minor loops. (See Fig. 1.) All the switches 
connecting the major  loop to its  minor  loops are  under 
one single control  and can be opened or closed simultane- 
ously. If they are all closed, in one  step  the bubbles in one 
minor loop  move to  an  adjacent minor  loop. On the  other 
hand, if they are all open, then in one  step  the bubbles 
complete  a cycle within the  minor  loops and the holding 
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We now describe  the function of a  switch  for all our 
models. Two  adjacent loops can  exchange  records by 
means of a switch. When the switch between them is 
open,  the two  loops remain separate. But when it is 
closed, they form a single big loop.  (See Fig. 2.) These 
switches can also  be  used to implement the major-minor 
loop  switches described in  (2) above. Implementation of 
such switches in hardware  has been demonstrated in 
many previous studies;  see, e . g . ,  [9, 171. 

3. Separation algorithm 
In the  models and algorithms to follow, one basic al- 
gorithm is always used; it separates  the  data into  two ad- 
jacent loops connected by a  switch. More specifically, 
given two loops of records with the destination  loop of 
each record known, this algorithm describes a  sequence 
of switch  settings  which  moves the  records  to  their desti- 
nation  loops. 

Throughout  this paper, we use  the notation “move 
(1, 2, . . ., m;x)” to mean “simultaneously  shift  loops 
1, 2, . . ., m by x steps.”  Ifx = 1 ,  we simply write “move 
(1, 2, . . ., m).” 

procedure separate (i, j ) ;  
(Comment:  Perform  a  separation of records in adjacent 

loops i and j .  Size [i] denotes  the size of loop i, and 
destination [i, k ]  denotes the loop  to which the  record 
at position k of loop i is to be moved.  Switch [i, j ]  
designates the switch between loops i and j ) ;  

begin 
c1 +- 1 ;  
c 2  + 1; 
(Comment: Call the positions of the record of loop i and 

the record of loop j at the switch both 1); 

if destination [i, I ]  = i and destination [ j ,  11 = i then 
repeat 

begin switch [i, j ]  c “open”; 
move (i); 
c1 + C l  + I ;  

end 
else if destination [i, I ]  = i 

and destination [ j ,  11 = j then 

move (i, j ) ;  
c1 +- c1 + 1; 
C 2 + C 2  + 1 ;  

else if destination [i, 11 = j 

begin switch [i, j ]  c “open”; 

end 

and destination [ j ,  11 = i then 

move (i, j ) ;  
c1 c C 1  + 1; 
c2 c c 2  + 1 ;  

begin switch [i, f c “closed”; 

end 
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Figure 3 Sequence of switch settings required to  separate  lower-numbered  records into loop 1 and higher-numbered records into loop 2. 

else if destination [i, 13 = j 
and destination [ j ,  I ]  = j then 

move ( j ) ;  
c2 + C 2  + 1; 

begin switch [i, j] +- “open”; 

end; 
until C 1 > size [i] and C 2  > size [ j]; 

end: 

Example 
In the example of Fig. 3, there are  two  loops, designated 1 
and 2 .  The size of loop 1 is 4 and  the size of loop 2 is 6. A 
total of 10 records reside in these two loops. All records 
numbered  less than  or  equal  to 4  have loop 1 as their  des- 
tination, while the  others have loop 2 as their  destination. 
At the beginning, records 7 and 2 are  at  the switch. The 
sequence of switch settings for the  separation of records 
is “closed,”  “open,”  “open,”  “open,” and “closed.” 

Note  that, in general,  the number of steps required by 
the  separation  algorithm is less than  or  equal  to  the sum of 
size [i] and size [j]. 

We next consider  several models of magnetic bubble 
memories and  propose corresponding  permutation al- 
gorithms. All these algorithms have  the previous separa- 
tion algorithm as a  basic building block.  However, it is 
adapted to suit the specific models. 

4. Model 1 
In model 1, the bubble memory system  consists of loops 
of sizes 2 ,  2 ,  4, 8 . . .; i.e., 

2”‘ for i 2 2, 
size [i] = 

f o r i  = I .  

2 3 8 5 14 15 I? 9 
( b )  

Figure 4 A 16-record memory is shown at  (a) with its  corre- 
sponding addresses  at  (b). 

Thus, the  total capacity of a memory system consisting of 
k loops is 2 + 2 + . . . + 2k” = 2 k .  Between  loop  i and 
loop i + I ,  for  i = 1, 2, . . ., k - I ,  there is a  switch si; 
thus, a  total of k - 1 switches are required.  (See Fig. 4.) 
Loops 1, 2 ,  . . ., k - 1 are regarded as forming the first 
half of the  memory system, while loop k is regarded as 
forming the second half. 

We impose  a  special  ordering on the memory locations 
which we refer to  as  the memory addresses [Fig. 4(b)]. 
The permutation  problem  means that, for  a given set of 
records with their relative  ordering  known  beforehand, 
we want to place them in the memory locations  such  that 
the ith record goes  to  the ith memory  location. The rela- 
tive order of a record is also  referred to  as  the address of 
the record. 

Before stating the permutation algorithm formally, we 
first describe it informally: 77 
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1. The first step of the algorithm calls for  the separation 
of records so that  the  ones with larger addresses go to 
the first half of  the memory. 

2 .  Then  perform the desired  permutation on  them, while 
holding the  records in the second half of the memory. 
The permutation of the records in the first half  of the 
memory is done recursively. 

3. Swap  the first half with the  second half by closing the 
appropriate  switch ( sk-J  and  circling the  records 
through 2“” record  lengths. 

4. Repeat step 2 .  

This algorithm calls for a  special address scheme for 
the memory locations.  Assume the memory  capacity is 
r 1 ( = 2 ~ )  and  regard  the  memory system  as a 2 x ( 4 2 )  ar- 
ray, with loop 1 occupying the first column, loop 2 the 
second column, loop 3 the third and  loop 4 the fourth  col- 
umn, and so on. (See Fig. 4.) Thus,  the first half of the 
memory occupies  the first n/4  columns, while the second 
half  of the  memory occupies the remaining n/4 columns. 
Let (x, y ) ,  1 5 x 5 2 ,  1 5 y 5 n / 2 ,  be the coordinates of 
the memory locations and d(x, y )  the  address to be as- 
signed to (x, y ) .  The  address  scheme is defined recur- 
sively as follows: 

1. If n = 2 ,  assign d(1, I )  = 1, 4 2 ,  I )  = 2 .  
2 .  If n = 2‘, for i > 1, then the address  scheme for the first 

half of the memory is the  same  as when n = 2i-1. 
For the second half  of the memory, assign d(x, y )  = 

d(3 - x, (n /2 )  + 1 - y )  + ( n / 2 )  for 1 5 x 5 2, 1 + (n/4) 
5 y 5 n/2.  

An example of this address  scheme  for a memory of 
capacity 16 is given in Fig. 4(b). 

We can now describe the permutation algorithm for- 
mally. Note  that in the sequel we write lg x for log,x. 

procedure swap (n) :  
(Comment: Swap  contents of the first (Ig n - 1) loops 

with the (Ig n)th loop by closing the switches  and 
shifting the  resulting big loop  for half the  total 
length); 

begin 
for i + 1 to (lg n - 1) do si +- “closed”; 
(Comment: Set  the first (lg n - 1) switches to 

move ( I ,  2 ,  . . ., Ig n ;  n /2 ) ;  
(Comment: Move first lg n loops n / 2  steps); 

“closed”); 

end; 

The following procedure is an  adaptation of the separa- 
tion algorithm described in Section 3 to  the  current 
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procedure separate-] (n,   no);  
(Comment:  Given n records with destination addresses 

no, no + 1 ,  . . ., no + n - 1 in the first lg n loops of the 
memory,  the procedure performs  a  separation on the 
records  such  that  the  address of any record in the 
first (lg n - 1) loops is larger than  that of any  record 
in the (lg n)th  loop. Denote by c(k)  the destination 
address of the record  currently  at memory  address k 
numbered as before); 

begin 
for i + 1 to (lg n)  - 2 do si + “closed”; 
(Comment: The first lg n - 1 loops form  a big loop); 

x +if + I ) ;  

y +  - +  1 ;  c 1 
(Comment: x and y are  the memory addresses at the 

inputs to sls n- l ) ;  

count + 0; 
for i + 1 to n / 2  do 

if c(i) < (no + n/2)  then count + count + 1; 
(Comment: Count is the number of records  that 

should be  moved from the first (lg n - 1) loops to 
the (lg n)th  loop); 

while count > 0 do 
if c(x) 2 no + n / 2  and c(y)  2 no + n / 2  then 

begin sir n”l +- “open”; 

end 
move ( 1 ,  2, . . ., lg n - 1); 

else if c(x) 2 no + n / 2  and c(y)  < no + n/2 then 
begin slg n-l + “open”; 

end 
move ( I ,  2 ,  . . ., lg n) ;  

else  if c(x) < no + n / 2  and c(y)  2 no + n / 2  then 
begin slg n ~ l  +- “closed”; 

move (1,  2 ,  . . ., lg n) ;  
count + count - I ;  

else begin sls n--l + “open”; 
end 

move (lg n) ;  
end; 

end; 

procedure permute- l (n ,  no) ;  
(Comment:  Given n records with  destination addresses 

no, no + 1, . . ., no + n - 1 in the first lg n loops. Let 
c(i) denote  the destination address of the record at 
memory address i. Given an initial set of c(i), which 
is a permutation of the set {no, no + 1, . . ., no + 
n - I}, the  procedure performs  a  permutation of the 
records such  that c(i) = no + i - 1 fori  = 1,  . . ., n) ;  
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begin 
if n = 2 then 

if c( I )  > c(2) then move (1); 
(Comment: Put  the  records of loop 1 in order) 

separate- I ( n ,  no); 
(Comment: Separate n records so that  records with 

larger destination  addresses go to the first half); 
slg n--l  “open”; 
permute-l ( n / 2 .  n / 2  + no): 
(Comment: Apply recursion to  the first (lg n - I )  

else begin 

loops); 
swap (n ) ;  

slg ,~-, “open”: 
permute_l(n/2, no); 
(Comment: Apply recursion to  the first (lg n - I )  

loops while holding the (Ig n)th  loop); 
end; 

end; 

5 k + ?  +“+tl 1 3 1 

I 6 2 4  h 7 2 

Figure 5 Eight records  are  permuted by first forming  two big 
loops (a). Separation is carried  out  at  (b),  and the first half is 
permuted while the second half is held at (c). Loop contents  are 
swapped (d), and  the first half is permuted while the  second half 
is held at  (e). 

An example of permuting eight records is given in Fig. 
5 .  

We next  analyze  this  algorithm. Let p,(n) be  the num- 
ber of steps  to  achieve an arbitrary permutation of n rec- 
ords. To separate a set of n records,  the worst case  for 
our separation  algorithm  requires n steps. (Actually, the 
worst  case requires only (n  - 2) steps. This occurs when 
there are two  loops of size n / 2  each and the record  desti- 
nations are  as  shown in Fig. 6. However,  to simplify the 
calculation, we assume  that the  worst case  for  the  separa- 
tion algorithms is n). To swap two loops of size n/2  re- 
quires n / 2  steps. Altogether we have 

P , ( d  = n + p,(n/2)  + n/2  + P,( f l /2)  

3 
2 

3 
2 

= - n + 2p1(n/2)  

= - n l g n + c .  

Since p, (2)  = I ,  we have 

3 
2 

p,(n)  = - n Ig f l  - 2. 

The number of switches in the  memory  system is clear- 
lY 

s,(n) = lg n - 1.  

To compute the  number of control  states, we consider 
the situation  when  permutation is being performed on the 
first k loops, while loops k + I ,  k + 2, . . ., lg n are all on 
“hold.”  Four  states  are used in the  procedure  separ- 
a t ec  1 : 

980 

Figure 6 The  number 1 adjacent  to  a  record  indicates  that  its 
destination is loop 1, while the  number 2 indicates  that  its  desti- 
nation is loop 2. 

I .  Move first ( k  - I )  loops, hold loop k ;  
2. Hold first ( k  - 1 )  loops, move loop k ;  
3. Move all k loops, with switch sk- ,  “open”; 
4. Move all k loops, with switch sk- ,  “closed.” 

The procedure swap uses only the last state of the above. 
Therefore,  for  each  step in the iteration, only  four states 
are  introduced.  Thus, the  total  number of control states is 

c,(n) = 4  (lg fl - I )  

= 4 I g n - 4 .  

5. Model 2 
In model 2, the memory  system consists of loops of equal 
size. After the  data have  been separated in the  loops, the 
contents of the loops  can be permuted in parallel. 79 
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LOOP: ;e1 ~ *=I 
l;;iIn;I Switch: 

( a )  

5 6 7 8 13 14 15  16 

( b )  

2 1 8 5 I O  I I  I6  13 
( C )  

Figure 7 The memory at  (a)  has a capacity of 16. The corre- 
sponding addresses for model 2a are as  shown  at (b) and  those 
for model 2b are  as shown at (c). 

In general,  let the size of each  loop be h and let the 
number of loops in the memory system be w. Between 
loops i and i + 1, there is a  switch s i ,  i = 1, . . ., w - 1, 
with a  total of w - 1 switches.  [See  Fig. 7(a).] We also 
assume that w = 2‘. Thus, the total  capacity of the mem- 
ory system is n = 2’h. The final result depends  on  the 
structure of individual loops, which is described  later. 

The  addresses of the memory  locations are assigned se- 
quentially from loop I to loop w, i.e., loop 1 has memory 
addresses I to h ,  loop 2 has  addresses h + 1 to 2h, and so 
on.  The memory addresses within the  loops depend on 
the details of the loops and will become clear  later. [See 
Figs. 7(b) and 7(c).] 

The following procedure is an  adaptation of the  separa- 
tion algorithm in Section 3 to  the  current model. Note  that 
it differs from  the  adaptation  for model 1 in that records 
with smaller addresses now go to  the first half of the mem- 
ory. 

begin 
for i + to to to + t/2 - 2 do si +- “closed”; 
for i +- to + t/2  to to + t - 2 do si + “closed”; 
(Comment: Form  two big loops); 
x + memory address  at  the input of switch s , ~ + ~ ~ ~ - ~  in 

y + memory address at  the other  input of switch 
loop to + t/2 - 1; 

s ~ ~ + ~ ~ ~ - ~  in loop to + t/2; 
a +- (to + t/2 - I )  x h;  
for i +- 1 to t X h do 

if c(x) 5 a and c ( y )  5 a then 
begin sto+ti2-l +- “open”; 

end 
move (to, to + I ,  . . ., to + t/2 - 1); 

else  if c(x) 5 a and c(y) > a then 
begin s ~ , + ~ ~ ~ - ~  +- “open”; 

end 
move (to, to + 1, . . ., to + t - 1); 

else  if c(x) > a and c(y)  5 u then 
begin s ~ ~ + ~ ~ ~ ~ ~  + “closed”; 

end 
move (to, to + I ,  . . ., to + t - 1); 

else sto+t,z-l + “open”; 

end; 
move (to + t / 2 ,  to + t/2 + 1,. . ., to + t - 1); 

end; 

procedure permuteP2(t, to); 

(comment: Given t (assumed to be a power of 2) loops 
numbered to, to + 1, . . ., to + t - 1, each of size h 
and  letting c(i) denote  the  destination  address of the 
record currently  at memory address i, the procedure 
performs a permutation on  the  records  such  that 
c(i) = i); 

begin if t = 1 then permute-x(h) 
(Comment: Procedure permute-x depends on the 

model used for a single loop) 
else  begin 

separate_2(t, to); 

simultaneously  begin 
+- “open”; 

permutec2(t/2, to); 
permute_2(t/2, to + t/2); 

end; 
end; 

procedure separateP2(t, to); end; 
(Comment:  Given t loops numbered t,, t, + 1, . . ., t,, + 

“ Y  

t - 1,  each of size h ,  and  letting c(i) denote the  desti- 
nation address of the record currently  at memory ad- 
dress i, the  procedure  separates  the  records of the t 

To analyze  this  algorithm, we let p,(n)  be the number of 
steps  to  permute n records.  Then 

loops such  that  any record in the  loops t,, t, + 1, . . ., p,(n)  = n + p,(n/2), 
.I ” 

to + ( t / 2 )  - 1 has a  destination address smaller  than 
that of any record in the loops to + (t/2), . . ., to + with initial condition 
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where p,(h) is the number of steps  to permute the con- 
tents of a single loop  and is dependent  on  the loop  struc- 
ture.  Thus, 

p,(n) = 2n - 2h + p,(h). (1) 

To specify the  details of the individual loops, we have  the 
following two  models. 

Model 2a 
Each  loop has only one  switch.  (See Fig. 8.) When the 
switch is closed,  the  loop  contents shift in a counter- 
clockwise  direction  [Fig. 8(a)]. On the  other  hand, when 
the  switch is open, the original loop is separated into two 
smaller loops [Fig. 8(b)]: one of size 1, the  other of size h 
- I .  The  records in the  latter  loop can shift in a counter- 
clockwise  direction  independently of the single record 
loop. The memory addresses  are assigned in a  sequential 
fashion,  starting with 1 for  the location which becomes 
the loop of size 1 when the switch is open and  continuing 
in a  clockwise  direction. Note  that this is exactly the 
model 1 of [7]. By the permutation algorithm of [7], the 
number of steps  to permute 11 records is at most ( 1/2)h2 + 
O(h). Thus, substituting in Eq. ( I ) ,  we have 

p,,(n) = 2n + - h2 + ~ ( h ) .  

If we choose h = 6, then 

p, , (n)  = - n + O C V ~ ) ,  

and  the total number of switches in the system is 

1 

2 (2) 

5 
2 

s2,(n) = 2 f i -  1. 

Model 2b 
Each loop is now structured  exactly  as in model 1 with 
the corresponding address  scheme transplanted here  as 
well. [See Fig. 7(c)]. Then, 

3 
2 

p,,(n) = 2n - 2h + - h Ig h - 2. 

If we choose h = 2" (recall that w is the total number of 
loops in the  system), then n = h w  = h Ig h and 

7 
2 

p,,(n) = - n - 2h - 2. 

The total  number of switches is 

s&) = ( w  - I )  + w(lg h - 1 )  

= 1t' Ig h - 1 

= lg2h - 1. 

The  fact  that n = h Ig h implies h - (n/lg n)  for large n.  
Therefore, 
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Figure 8 Model 2a with the switch  closed (a) and open (b). 

7 2n 

2 Ig n 
p,,(n) - - n - - - 2. 

and 

S&) - (lg n - Ig  Ig n)' 

for large n 

To count  the number of control  states, we note that the 
procedure separate-2 requires only four states,  as in model 
1. With each iteration of the  procedure permute-2, 
the operations in separate-2 are carried out in parallel, 
each independent of the  other;  hence,  the total  number of 
control states can be summed up as follows: 

c * ( w )  = 4 + 4, + 44 + . . . + 4u"2 + C J h ,  IV) 

i = O  
k 

= 1 2'21' + e,@, w), 
i = l  

where w = 2k, and ~ , ~ ( h ,  w) is the number of control states 
for  the w individual loops  and is included  here to  account 
for the  control states used in the last  recursion step.  The 
value of cs(h,  w) depends on the model used. Note  that 

c,(w) < 2U+' + e@, w ) .  

For model 2a, w = A, c,(h, w) = 2", since  each  loop has 
2 control states;  hence, 

c2a(n) < 3 . 2? 

For model 2b, w = Ig h ,  to  count  the number of control 
states  for the w individual loops, we note  that  each loop 
goes through (Ig h - 1) iterations and each  iteration is 
synchronized for all loops; i . e . ,  all loops go  from  one iter- 
ation to  the  other  at exactly the same time. For any  itera- 
tion,  each loop  requires 4 control  states, with a  total of 4'" 
control states.  Thus, ~ , ~ ( h ,  w) = (Ig h - 1)4" and 

c,,(H) < 2'""' + 4Igh(lg h - 1) 

= (Ig h - I)h' + 2h. 81 
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Figure 9 Algorithm  for  model 3: (a)  address  assignment; (b) de- 
sired  permuted  order in loops l and 2; ( c )  part 4 of the  algorithm. 

6. Model 3 
In model 3, we assume that  the  number of switches is 
arbitrary  but fixed, say, k .  Suppose  there  are k + 1 loops 
of size L, ,  L,, . . ., L,,,, respectively, where L ,  = 1. Also 
assume there is a  switch si between loop i and  loop i + 1 .  
Let q,(n; L, ,  . . ., Lk+,)  be the  number of steps  to  achieve 
an arbitrary permutation of n records in this model. 

For k = 1 ,  using the algorithm in [7], we have q l ( n ;  
I ,  n - 1) = (1/2)i2 + O(n).  

Fork = 2, we have n = L ,  + L, + L,. We next describe 
informally an algorithm which achieves an arbitrary  per- 
mutation.  This algorithm can then  be  recursively  applied 
to larger k .  

1 .  We assign the  addresses in the three loops as in Fig. 

2. Regard loops 1 and 2 as one loop, loop 3 as  another 
loop. For  ease of discussion, we call them A, B ,  re- 
spectively. Separate  the  records  into these two loops 
so that  records with the smaller addresses  are in loop 
A .  (This part takes L,  + L, + L, = n steps.) 

3. Permute  the records in loop A so that  the resulting or- 
der is as shown in Fig. 9(b), while holding the records 
in loop B .  [This  part  takes (l /2)(L1 + L,)' + O(L,  + 
L,) steps.] 

4. Now move the sorted records from  loop A to loop B. 
Then separate  the remaining L, records  into  loops A 
and B so that records with the smallest addresses  are 
in loop A. Next, shift loop B further so that  the sorted 
records  are in the same position as when they were 
first moved  into  loop B at  the beginning of this step. 
[See  Fig.  9(c).] (This part  takes a total of n steps.) 

9(4.  
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5 .  Repeat  parts 3 and 4 until all the addresses  are in or- 
der. [This  part is executed rL , / (L ,  + L,)l times.] 

The total  number of steps required by this algorithm is 
therefore 

r " 1  

Since q , ( ~ ,  + L,; L, ,  LJ = ( 1 / 2 ) ( ~ ~  + L,)' + O(L ,  + L,), 
it is clear  that the  best choice for L, is such  that L ,  + L,  = 

av%(this makes both  terms n and q1 have the  same  order 
of magnitude). Under this  choice  and  omitting L,, L,, L, 
in the  notation, we have [neglecting the term O(L, + L,)]: 

since rxl < x + I .  The coefficient is minimum when N = a. Thus we have 

q,(n) < 4 i3' '  
and 

L, = 6- I .  

For k > 2, the procedure can  be  applied  recursively. 
Suppose we can permute records on  the first k loops using 
( k  - 1) switches. We let the first k loops form a single loop 
and loop k + 1 another loop. We then  apply the same 
procedure as before; therefore, 

(3) 

~ / u i r n  q,(n) < 2-l 'kkn'+1'k, if we assume 

I< 1 Li = 21'"n"1'k 

i= 1 

(Recall X;:; Li = n.) 

Proof We prove this claim by induction.  The claim is 
true  fork = 2. From Eq. (3) and by the induction  hypothe- 
sis, we have 
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Note  that the corresponding loop  sizes L, ,  L,, . . ., Lk+] 
are, respectively, 

Remark When doing a permutation on two  loops, our 
address assignment requires  that  the final configuration 
be as in Fig. 10(a). However,  the recursive  application of 
the algorithm requires that the final configuration be as in 
Fig. 10(b), so that it is ready  to be moved out  into  the next 
bigger loop [the one on the right in Fig. 10(b)]. We can 
achieve  this in the following way: As soon as  the  “head” 
of the record stream [i.e., the  record with the smallest 
address, cf. Fig. 9(c)] reaches  the switch  connecting  the 
bigger loop  [the  rightmost switch in Fig. 10(b)], the switch 
is closed so that the record  stream  moves  directly  into  the 
bigger loop [Fig. lO(c)] instead of circulating back. This 
modification in fact saves some running time. 

To count  the  number of control states  for model 3 ,  we 
note  that  the  process of separating  records requires four 
states  as before. Moreover, when the first p loops,  say, 
are separating records, loops p + I ,  . . ., k + 1 are all on 
“hold.” Also, two  control  states  are sufficient to permute 
records in the first two loops. Therefore,  the  total number 
of control states is 

c,(n) = 4(k - I )  + 2 

= 4 k - 2  

7. Summary  and conclusions 
We summarize our  results in Table I ;  some  known  results 
are also listed for comparison. We also give some numeri- 
cal  examples in Table 2 to illustrate the relative values of 
these three  parameters for the  various  models. We as- 
sume n = IO6 .  Note  that  as  far  as  the  number of control 
lines is concerned, model 2a as well as  the models in [3- 
6, 91 are practically not  usable. Model 2b is of some theo- 
retical  interest  since it gives a  linear-time  permutation al- 
gorithm with a small number of switches as well as con- 
trol  lines.  It is also interesting to note that in model 3 the 
minimum number of steps is achieved  when k = In (n/2). 
Thus model 3 performs well only when k is small.  (Note 
the substantia1 increase in performance when k = 2, 
[O(n”’)], as  compared  to the O(n’) performance in [7].) In 
terms of its simplicity in the  permutation algorithm as 
well as the  favorable  values of its three  parameters, 
model 1 seems to be a reasonable  choice for a practical 
implementation of magnetic bubble memories. 

The question still remains  open as  to  the relationship of 
these three parameters in an optimal magnetic bubble 
memory designed for doing permutations of data. Except 

( C )  

Figure 10 Our  address  assignment  requires  the final configura- 
tion at (a), but  recursive  application of the  algorithm  requires 
that  at  (b). With the  configuration  at  (c),  the  record  stream  moves 
directly  into  the  bigger  loop  instead of circulating  back. 

Table 1 Complexity of permuting  records for different  memory 
models. 

Model  Number of Number of Number of 
switches  steps control states 

3 
2 
5 

1 I g n - 1   - n l g n - 2  4 I g n - 4  

2a 2 6 -  I n + o(&) <3 x 2fi 

2b I g ’ h - 1  - n - 2 h - 2  < (Ig h - I)hZ + 2h 
7 
2 
( n  = h Ig h ;  hence 

h - n/lg  n) 

3 k <2--ll*knl+lfk 

- n’ + O(n) 

4k - 2 

2 [71 I 
1 
2 

[3-6, 91 n - 1 5 2“” 
2 

for  the obvious fact  that in a linear memory structure, 
where O(n) steps  are necessary to move a record from 
one end of the memory to the other, we know of no other 
theoretical  lower bounds. 

All models considered so far  are essentially  one-dimen- 
sional. It would be interesting to see if any two-dimen- 
sional memory structures would give better performance. 83 
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Table 2 Numerical examples of complexity. 

Model Number of 
switches 

Number of Number of Number of 
steps control states control lines 

(=rig (control  states)?) 

1 19 

2a 2 X 103 

2b ( h  = 6.27 X IO4) 
254 

3 k = 2  
k = 3  
k = 4  
k = 12 
k =  13 

(Ig (n/2) = 13.1) 
k = 15 

[71 1 

L3-6, 91 1 o6 

2.99 X 10’ 

2.5 X IO‘ 

3.5 x IO6 

1.41 X IO9 
2.38 x IO8 
1.06 x IO8 
3.58 X lo7 
3.57 X 10’ 

3.60 X 107 

5 x IO” 

5 X 105 

76 

1.07 X 

1.25 X 105 

6 
IO 
14 
46 
48 

58 

2 

2lOR 

7 

I o 3  

17 

3 
4 
4 
6 
6 

6 

1 

1 0‘ 
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