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On the Complexity of Permuting Records in Magnetic
Bubble Memory Systems

In this paper we study the problem of permuting records in various simple models of magnetic bubble memories. Previous
studies usually assumed the memory system either had one switch or nindependently controlled switches, where nis the
number of records to be permuted. In the former case, the time complexity to permute a set of nrecords is Oy, while in
the latter case, the time complexity is O(n). In this paper, we propose several simple models of bubble memory systems
with their numbers of switches ranging between | and n and analyze the respective time complexities and respective
numbers of control states for some permutation algorithms designed especially for them. Specifically, four models are
studied: They have essentially log, n, 2Vn, (log,n —log,log, n)®, and k switches; their respective time complexities are
essentially (312)n log, n, (512)n, (7/2)n, and 27k TR and their respective numbers of control states are essentially

4 log,n, 2‘/ﬁ“, Zn/log2 n, and 4k.

1. Introduction

The problem of permuting records in a magnetic bubble
memory has recently received considerable attention
[1-8]. Permuting records may constitute part of a sorting
algorithm, in the sense that the keys of the records are
sorted in the CPU and the records are then rearranged
according to the sorted keys (hence a permutation of the
records [3-6, 9]). Or the problem may arise from the fol-
lowing situation: Suppose the requests for the records do
not occur randomly, and we accumulate statistics about
their access frequencies. Then at certain time intervals
we can rearrange the records according to these frequen-
cies to improve upon the average access time. For ex-
ample, the higher the frequency, the closer to the input/
output port the record is placed [10-15]. In effect, a per-
mutation of the records is performed.

Throughout this paper, we assume # is the number of
records to be permuted. In the models of [3-6, 9] there
are (n — 1) independently controlled switches with time
complexity n/2 for a permutation. Furthermore, the ac-
tual permutation time can be completely overlapped with
the input/output time. On the other hand, the two models

in [7], which are improvements of those in [8], have only
one switch and the time complexities for permutation are
both (1/2)n* + O(n).

In this paper, we propose several models which require
different numbers of independently controlled switches.
For each model, we study the time complexity of a pro-
posed permutation algorithm and the required number of
control states. We assume a switch has two states. Thus,
in general, a model with x switches may have a total of 2"
possible states. However, in our proposed algorithms
only a subset of them is required. The cardinality of this
subset is the number of control states necessary.

A summary of results is given in Section 7. The prob-
lem of sorting n records is treated in another paper [16].

2. Basic model

We assume that a magnetic bubble memory consists of
loops. A loop of size m is capable of holding m records.
Under the control of a switch, a loop can circulate rec-
ords in a counterclockwise direction or can hold the rec-
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Figure 1 One major loop with four minor loops.
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Figure 2 Adjacent loops cannot exchange records when switch
is open as at (a) but can when it is closed as at (b).

ords in position. The time it takes to move one record
from one position to an adjacent position (in a counter-
clockwise direction) is called a step and is assumed to be
the basic unit of time. The ‘‘holding’” action of the loops
can be realized by one of the following two methods:

1. By placing an additional magnetic field over the loop,
which, when turned on, cancels the original rotating
magnetic field that drives the bubble domains around.

2. By using the model proposed in [1], which is an uncon-
ventional major/minor loop structure with specially
designed switches (to be described in the next para-
graph).

We use one minor loop for a record, with a switch con-
necting each of the minor loops to a major loop. Thus, a
loop of size m in our model actually consists of one major
loop and m minor loops. (See Fig. 1.) All the switches
connecting the major loop to its minor loops are under
one single control and can be opened or closed simultane-
ously. If they are all closed, in one step the bubbles in one
minor loop move to an adjacent minor loop. On the other
hand, if they are all open, then in one step the bubbles
complete a cycle within the minor loops and the holding
action is achieved.
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We now describe the function of a switch for all our
models. Two adjacent loops can exchange records by
means of a switch. When the switch between them is
open, the two loops remain separate. But when it is
closed, they form a single big loop. (See Fig. 2.) These
switches can also be used to implement the major-minor
loop switches described in (2) above. Implementation of
such switches in hardware has been demonstrated in
many previous studies; see, e.g., [9, 17].

3. Separation algorithm

In the models and algorithms to follow, one basic al-
gorithm is always used; it separates the data into two ad-
jacent loops connected by a switch. More specifically,
given two loops of records with the destination loop of
each record known, this algorithm describes a sequence
of switch settings which moves the records to their desti-
nation loops.

Throughout this paper, we use the notation ‘‘move

(1, 2, - -+, m;x)” to mean ‘‘simultaneously shift loops
1,2, -+, mby xsteps.”” If x = 1, we simply write ‘‘move
1z, m.>

procedure separate (i, j);

(Comment: Perform a separation of records in adjacent
loops i and j. Size [i] denotes the size of loop i, and
destination [i, k] denotes the loop to which the record
at position & of loop i is to be moved. Switch [i, j]
designates the switch between loops i and j);

begin

Cl < 1;

C2 <« 1;

(Comment: Call the positions of the record of loop i and
the record of loop j at the switch both 1);

repeat
if destination [i, 1] = i and destination [j, 1] = i then

begin switch [/, j] < *‘open’’;
move (i);
Cl<Cl+ I
end
else if destination [/, 1] =i
and destination [/, 1] = j then
begin switch [i, j] < ‘“‘open’’;
move (i, j);
Cl < CIl + 1,
C2«<C2+1;
end
else if destination [i, 1] = j
and destination [, 1] = i then
begin switch [/, j] « *‘closed’’;
move (i, j);
Cl < Cl +1;
C2«—~C2+1;
end
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Figure 3 Sequence of switch settings required to separate lower-numbered records into loop 1 and higher-numbered records into loop 2.

else if destination [/, 1] = j

and destination [/, 1] = j then

begin switch [i, j] < “‘open’’;
move (J);
C2«—C2+1;

end;

until C1 > size [{] and C2 > size [j];
end;

o Example
In the example of Fig. 3, there are two loops, designated 1
and 2. The size of loop 1 is 4 and the size of loop 2is 6. A
total of 10 records reside in these two loops. All records
numbered less than or equal to 4 have loop 1 as their des-
tination, while the others have loop 2 as their destination.
At the beginning, records 7 and 2 are at the switch. The
sequence of switch settings for the separation of records
is “‘closed,”” ‘‘open,”” ‘‘open,’”’ ‘‘open,”’ and ‘‘closed.”
Note that, in general, the number of steps required by
the separation algorithm is less than or equal to the sum of
size [{] and size [ j].

We next consider several models of magnetic bubble
memories and propose corresponding permutation al-
gorithms. All these algorithms have the previous separa-
tion algorithm as a basic building block. However, it is
adapted to suit the specific models.

4. Model 1
In model 1, the bubble memory system consists of loops
of sizes 2,2,4,8 - - -;i.e.,

270 fori=2,

size [i] =
2 fori = 1.
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Figure 4 A 16-record memory is shown at (a) with its corre-
sponding addresses at (b).

Thus, the total capacity of a memory system consisting of
kloopsis2 +2 + - - -+ 2¥' = 2*, Between loop i and
loopi+1,fori=1,2,-- -, k— 1, there is a switch s;;
thus, a total of Kk — 1| switches are required. (See Fig. 4.)
Loops 1, 2, - - -, k — 1 are regarded as forming the first
half of the memory system, while loop & is regarded as
forming the second half.

We impose a special ordering on the memory locations
which we refer to as the memory addresses [Fig. 4(b)].
The permutation problem means that, for a given set of
records with their relative ordering known beforehand,
we want to place them in the memory locations such that
the ith record goes to the ith memory location. The rela-
tive order of a record is also referred to as the address of
the record.

Before stating the permutation algorithm formally, we
first describe it informally:
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1. The first step of the algorithm calls for the separation
of records so that the ones with larger addresses go to
the first half of the memory.

2. Then perform the desired permutation on them, while
holding the records in the second half of the memory.
The permutation of the records in the first half of the
memory is done recursively.

3. Swap the first half with the second half by closing the
appropriate switch (s,_,) and circling the records
through 2° record lengths.

4. Repeat step 2.

This algorithm calls for a special address scheme for
the memory locations. Assume the memory capacity is
n(=2") and regard the memory system as a 2 X (n/2) ar-
ray, with loop 1 occupying the first column, loop 2 the
second column, loop 3 the third and loop 4 the fourth col-
umn, and so on. {(See Fig. 4.) Thus, the first half of the
memory occupies the first #/4 columns, while the second
half of the memory occupies the remaining #/4 columns.
Let (x,y),1 =x=2,1=y=n/2, be the coordinates of
the memory locations and d(x, y) the address to be as-
signed to (x, y). The address scheme is defined recur-
sively as follows:

1. If n=2,assignd(1, 1) = 1,d2, 1) = 2.

2. If n=2',fori > 1, then the address scheme for the first
half of the memory is the same as when n = 2.
For the second half of the memory, assign d(x, y) =
d3—x,(n/2)+ 1 —y)+ (n/Q)for1=x=2,1+ (n/4)
<y =n/2

An example of this address scheme for a memory of
capacity 16 is given in Fig. 4(b).

We can now describe the permutation algorithm for-
mally. Note that in the sequel we write Ig x for log, x.

procedure swap (n):

(Comment: Swap contents of the first (Ig » — 1) loops
with the (Ig n)th loop by closing the switches and
shifting the resulting big loop for half the total
length);

begin
fori—1to(lgn — 1)dos, < “*closed”;
(Comment: Set the first (Ig n — 1) switches to

““closed™);
move (1, 2, - - -, 1g n; n/2);
(Comment: Move first Ig n loops #/2 steps);

end;

The following procedure is an adaptation of the separa-
tion algorithm described in Section 3 to the current
78 model.
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procedure separate__1 (n, n);

(Comment: Given n records with destination addresses
ny, vy +1,- -+, n,+ n— linthe first Ig 7 loops of the
memory, the procedure performs a separation on the
records such that the address of any record in the
first (Ig n — 1) loops is larger than that of any record
in the (Ig n)th loop. Denote by c(k) the destination
address of the record currently at memory address k&
numbered as before);

begin
fori < 1to(lgn) — 2dos, < ‘‘closed™’;
(Comment: The first Ig » — 1 loops form a big loop);

n
x<—(— + 1);
4

‘e

3 e
(3
y (‘4 )

(Comment: x and y are the memory addresses at the
inputs to s
count « 0;
for i <— 1 to n/2 do
if c(i) < (n, + n/2) then count < count + 1;
(Comment: Count is the number of records that
should be moved from the first (Ig » — 1) loops to
the (lg n)th loop);
while count > 0 do
if c(x) = n, + n/2 and c(y) = n, + n/2 then

lg n—l);

begin s, < “open’’;
move (1,2, -, lgn — 1),
end
else if c(x) = n, + n/2 and c(y) < n, + n/2 then
begins A < “‘open’’;
move (1,2, -+ -, Ig n);
end
else if c(x) < n, + n/2 and c(y) = n, + n/2 then
begins, < ‘‘closed”;
move (1,2, - - -, lg n);
count < count — 1;
end
else begin Signot < “‘open’’;
move (Ig n);
end;

end;

procedure permute_1(n, n,);
(Comment: Given n records with destination addresses
nys g+ 1, -+, ny + n— lin the first Ig n loops. Let
c(i) denote the destination address of the record at
memory address /. Given an initial set of ¢(i), which

is a permutation of the set {n,, n, + 1, - -+, n, +
n — 1}, the procedure performs a permutation of the
records such that ¢(i) =n,+i— lfori=1,- -, n);
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begin
if n = 2 then
if c(1) > ¢(2) then move (1);
(Comment: Put the records of loop 1 in order)
else begin
separate__1(n, n,);
(Comment: Separate n records so that records with
larger destination addresses go to the first half);
Slg n—1 - “Open”;
permute_1 (n/2, n/2 + ny);
(Comment: Apply recursion to the first (Ign — 1)
loops);
swap (n);
Signoq < toOpen’’;
permute_1{n/2, n,):
(Comment: Apply recursion to the first (g n — 1)
loops while holding the (Ig »)th loop);
end;
end;

An example of permuting eight records is given in Fig.
5.

We next analyze this algorithm. Let p,(n) be the num-
ber of steps to achieve an arbitrary permutation of »n rec-
ords. To separate a set of n records, the worst case for
our separation algorithm requires n steps. (Actually, the
worst case requires only (n — 2) steps. This occurs when
there are two loops of size n/2 each and the record desti-
nations are as shown in Fig. 6. However, to simplify the
calculation, we assume that the worst case for the separa-
tion algorithms is n). To swap two loops of size /2 re-
quires n/2 steps. Altogether we have

pyn) = n + p,(n/2) + n/2 + p,(n/2)

I

3
3 n + 2p(n/2)

3 1 +
—nlgn .
;BT
Since p,(2) = 1, we have

3
pl(n)=5n1gn—2.

The number of switches in the memory system is clear-
ly

s,(n) =1lgn— 1

To compute the number of control states, we consider
the situation when permutation is being performed on the
first k loops, while loops k + 1,k + 2, - -, g nareall on
“hold.”” Four states are used in the procedure separ-
ate_1:
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Figure 5 Eight records are permuted by first forming two big
loops (a). Separation is carried out at (b), and the first half is
permuted while the second half is held at (c). Loop contents are
swapped (d), and the first half is permuted while the second half
is held at (e).

Loop |

O -eme- )

Loop?2

Figure 6 The number 1 adjacent to a record indicates that its
destination is loop 1, while the number 2 indicates that its desti-
nation is loop 2.

Move first (k — 1) loops, hold loop £;

Hold first (k — 1) loops, move loop k;

Move all k loops, with switch s__ “*open’’;
Move all & loops, with switch s, *‘closed.”

k—1

BN -

k-1

The procedure swap uses only the last state of the above.
Therefore, for each step in the iteration, only four states
are introduced. Thus, the total number of control states is

cmy=4(gn—1)
41gn— 4.

5. Model 2

In model 2, the memory system consists of loops of equal

size. After the data have been separated in the loops, the

contents of the loops can be permuted in parallel. 79
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Figure 7 The memory at (a) has a capacity of 16. The corre-
sponding addresses for model 2a are as shown at (b) and those
for model 2b are as shown at (c).

In general, let the size of each loop be /& and let the
number of loops in the memory system be w. Between
loops i and i + 1, there is a switch s, i =1, - -, w— 1,
with a total of w — 1 switches. [See Fig. 7(a).] We also
assume that w = 2%, Thus, the total capacity of the mem-
ory system is # = 2*h. The final result depends on the
structure of individual loops, which is described later.

The addresses of the memory locations are assigned se-
quentially from loop 1 to loop w, i.e., loop 1 has memory
addresses 1 to 4, loop 2 has addresses & + 1 to 2k, and so
on. The memory addresses within the loops depend on
the details of the loops and will become clear later. [See
Figs. 7(b) and 7(c).]

The following procedure is an adaptation of the separa-
tion algorithm in Section 3 to the current model. Note that
it differs from the adaptation for model 1 in that records
with smaller addresses now go to the first half of the mem-
ory.

procedure separate_2(¢, £);
(Comment: Given ¢ loops numbered £, ¢, + 1, - -, t, +
t — 1, each of size 4, and letting (i) denote the desti-
nation address of the record currently at memory ad-
dress i, the procedure separates the records of the ¢
loops such that any record in the loops £, £, + 1, - - -,
1+ (z/2) — 1 has a destination address smaller than
that of any record in the loops ¢, + (¢/2), - - -, t, +
80 t— 1)
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begin

fori<t,tot, + t/2 - 2dos, < ‘‘closed’’;

fori<—1t +t/2tot,+t— 2dos, < “closed”;

(Comment: Form two big loops);

x < memory address at the input of switch s
loop t, + t/2 — 1;

y < memory address at the other input of switch
Styrtia—1 in loop ¢, + t/2;

a<«(t, + /2= 1) X h;

fori<1tot X hdo
if c(x) = a and c(y) < a then

ty+t/2-1 n

begin S+t € Open’;
move (¢, t, + 1, -, 1, + /2 — 1);
end
else if c(x) < a and c(y) > a then
begins, ., , < “open’’;
move (¢, t, + 1, -, 1+t = 1)
end
else if ¢(x) > a and c(y) < « then
begins, ., , < “closed”;
move (£, t,+ 1, -+, ¢+t — 1);
end
elses, ., , < “open’’;
move (f, + /2,8, +t/2+ 1, - -, £, + = 1);
end;

end;

procedure permute__2(t, f);

(Comment: Given f (assumed to be a power of 2) loops
numbered #,, 2, + 1, - - -, ¢, + t — 1, each of size
and letting c(i) denote the destination address of the
record currently at memory address i, the procedure
performs a permutation on the records such that
ci) = i);

begin if 1 = 1 then permute _x(h)

(Comment: Procedure permute_x depends on the

model used for a single loop)

else begin
separate__2(t, £,);
Siprti—1 < “‘open’’;

simultaneously begin
permute__2(1/2, t);
permute_2(1/2, t, + t/2);
end;
end;
end;

To analyze this algorithm, we let p,(n) be the number of
steps to permute n records. Then
py(n) = n + p,(n/2),
with initial condition

p,(h) = p_(h),
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where p_(h) is the number of steps to permute the con-
tents of a single loop and is dependent on the loop struc-
ture. Thus,

p,\n) =2n — 2h + p (h). (1)

To specify the details of the individual loops, we have the
following two models.

® Model 2a

Each loop has only one switch. (See Fig. 8.) When the
switch is closed, the loop contents shift in a counter-
clockwise direction {Fig. 8(a)]. On the other hand, when
the switch is open, the original loop is separated into two
smaller loops [Fig. 8(b)]: one of size 1, the other of size
— 1. The records in the latter loop can shift in a counter-
clockwise direction independently of the single record
loop. The memory addresses are assigned in a sequential
fashion, starting with 1 for the location which becomes
the loop of size 1 when the switch is open and continuing
in a clockwise direction. Note that this is exactly the
model 1 of [7]. By the permutation algorithm of [7], the
number of steps to permute / records is at most (1/2)h> +
O(h). Thus, substituting in Eq. (1), we have

1
Poaln) = 2n + > W+ o). )}
If we choose & = \/n, then
5
Poalt) = 5 1+ ON/),

and the total number of switches in the system is

8,,(n) = 2n - 1.

® Model 2b

Each loop is now structured exactly as in model 1 with
the corresponding address scheme transplanted here as
well. [See Fig. 7(c)]. Then,

3
Pypln) = 2n — 2h + Ehlgh—z.

If we choose & = 2" (recall that w is the total number of
loops in the system), then n = Aw = h lg h and

7
Poy(n) = En - 2h - 2.

The total number of switches is
sy =(w—1)+wlgh-1)
=wlgh -1
=1g°h ~ 1.

The fact that n = h lg h implies & ~ (n/lg n) for large n.
Therefore,
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Figure 8 Model 2a with the switch closed (a) and open (b).

2n
Pop(n) ~ ST lg—n -
and
sp(n) ~ (g n — 1g 1g n)*

for large n.

To count the number of control states, we note that the
procedure separate_ 2 requires only four states, as in model
1. With each iteration of the procedure permute_2,
the operations in separate_2 are carried out in parallel,
each independent of the other; hence, the total number of
control states can be summed up as follows:

c(w) =4 + N S o (h, w)
k-1 .
= > 4% + ¢ (h, w
i=0
K i
= > 2%+ ¢ (h, w),

T

1

where w = 2, and ¢ (h, w) is the number of control states
for the w individual loops and is included here to account
for the control states used in the last recursion step. The
value of ¢ (A, w) depends on the model used. Note that

c,(w) < 2% 4 ¢ (h, w).

For model 2a, w = Vn, c lh,w) = 2”, since each loop has
2 control states; hence,

Cplm) < 322

For model 2b, w = lg 4, to count the number of control
states for the w individual loops, we note that each loop
goes through (Ig 4 — 1) iterations and each iteration is
synchronized for all loops;i.e., all loops go from one iter-
ation to the other at exactly the same time. For any itera-
tion, each loop requires 4 control states, with a total of 4*
control states. Thus, ¢ (h, w) = (Ig A — 1)4” and

o) < 2"+ 4¥ Mg h — 1)
=(gh — DA* + 2h.

81

K. M. CHUNG ET AL.




address address

< EI l:D Smallest Lﬁréest

(b)

Loop: A Move Separate Shift

i LR (et LR

Sorted portmn

(c)

Figure 9 Algorithm for model 3: (a) address assignment; (b) de-
sired permuted order in loops 1 and 2; (¢) part 4 of the algorithm.

6. Model 3

In model 3, we assume that the number of switches is
arbitrary but fixed, say, k. Suppose there are &k + 1 loops
ofsize L, L,, - -, L, ,respectively, where L, = 1. Also
assume there is a switch s, between loop i and loop i + 1.
Letg (n; L, -+ L,,) be the number of steps to achieve
an arbitrary permutatlon of n records in this model.

For k = 1, using the algorithm in [7], we have g (n:
I,n— 1) = (1/2)n* + On).

Fork =2, wehaven =L + L, + L, We next describe
informally an algorithm which achieves an arbitrary per-
mutation. This algorithm can then be recursively applied
to larger k.

1. We assign the addresses in the three loops as in Fig.
9(a).

2. Regard loops 1 and 2 as one loop, loop 3 as another
loop. For ease of discussion, we call them A, B, re-
spectively. Separate the records into these two loops
so that records with the smaller addresses are in loop
A. (This part takes L, + L, + L, = n steps.)

3. Permute the records in loop A so that the resulting or-
der is as shown in Fig. 9(b), while holding the records
in loop B. [This part takes (1/2)(L, + L,)* + O(L, +
L,) steps.]

4. Now move the sorted records from loop A to loop B.
Then separate the remaining L, records into loops A
and B so that records with the smallest addresses are
in loop A. Next, shift loop B further so that the sorted
records are in the same position as when they were
first moved into loop B at the beginning of this step.

82 [See Fig. 9(c).] (This part takes a total of n steps.)
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5. Repeat parts 3 and 4 until all the addresses are in or-
der. [This part is executed ['L_/(L, + L,)7 times.]

The total number of steps required by this algorithm is
therefore

=

L3
R VA
1

9.
Since q (L, + L,; L,, L,) = (1/)(L, + L, + O(L, + L),
itis clear that the best choice for L, is suchthat L, + L, =
a\/n (this makes both terms n and q, have the same order
of magnitude). Under this choice and omitting L, L,, L,
in the notation, we have [neglecting the term O(L, + L,)]:

()_(";a_q L
a,(n) = | (n 2an)
n 1,
< n+ —an
a\/ﬁ( 2 )

_ l + a o2
a 2 ’
since [x1 < x + 1. The coefficient is minimum when a =
\/2. Thus we have
qz(n) < \/5”3/2

and

L,=~2n—1.

[n+qg(L, + L,;L, L)l

For k > 2, the procedure can be applied recursively.
Suppose we can permute records on the first £ loops using
(k — 1) switches. We let the first £ loops form a single loop
and loop & + 1 another loop. We then apply the same
procedure as before; therefore,

L
q(n) = | =R [qul( L,.)}. 3)

> L
i=1

Ipa=-

Claim g, (n) < 27" kn™"" if we assume

k
1k 1-1k
zLiIZ/n &,

i=1
(Recall /7' L, = n.)

Proof We prove this claim by induction. The claim is
true for k = 2. From Eq. (3) and by the induction hypothe-
sis, we have

1) (21/kn171/k)k/(k71)]

n e
q,(n) < Uk 117k [n + 27" Pk —

2
= 971k, llh[n + (k= D)
= Uk LUk
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Note that the corresponding loop sizes L. L,, - - -, L
are, respectively,

k+1

I (21/2n1/2 - 1), (21/kn1—1/k _ 21/(k~1)n1—1/(k‘1))’
(n — 21/kn1—1/k).

Remark  When doing a permutation on two loops, our
address assignment requires that the final configuration
be as in Fig. 10(a). However, the recursive application of
the algorithm requires that the final configuration be as in
Fig. 10(b), so that it is ready to be moved out into the next
bigger loop [the one on the right in Fig. 10(b)]. We can
achieve this in the following way: As soon as the “*head”’
of the record stream [i.e., the record with the smallest
address, ¢f. Fig. 9(c)] reaches the switch connecting the
bigger loop [the rightmost switch in Fig. 10(b}], the switch
is closed so that the record stream moves directly into the
bigger loop [Fig. 10(c)] instead of circulating back. This
modification in fact saves some running time.

To count the number of control states for model 3, we
note that the process of separating records requires four
states as before. Moreover, when the first p loops, say,
are separating records, loops p + 1, - - -, k + 1 are all on
“‘hold.”” Also, two control states are sufficient to permute
records in the first two loops. Therefore, the total number
of control states is

cyn) =4tk - 1) + 2
=4k — 2.

7. Summary and conclusions

We summarize our results in Table 1; some known results
are also listed for comparison. We also give some numeri-
cal examples in Table 2 to illustrate the relative values of
these three parameters for the various models. We as-
sume n = 10° Note that as far as the number of control
lines is concerned, model 2a as well as the models in [3-
6. 9] are practically not usable. Model 2b is of some theo-
retical interest since it gives a linear-time permutation al-
gorithm with a small number of switches as well as con-
trol lines. It is also interesting to note that in model 3 the
minimum number of steps is achieved when & = In (n/2).
Thus model 3 performs well only when & is small. (Note
the substantial increase in performance when & = 2,
[0(r*®)], as compared to the O(r®) performance in [7].) In
terms of its simplicity in the permutation algorithm as
well as the favorable values of its three parameters,
model 1 seems to be a reasonable choice for a practical
implementation of magnetic bubble memories.

The question still remains open as to the relationship of

these three parameters in an optimal magnetic bubble
memory designed for doing permutations of data. Except
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g o—————
Smallest Largest
address address

(a)

X X

(b)

X X
—0

(¢)

Figure 10 Our address assignment requires the final configura-
tion at (a), but recursive application of the algorithm requires
that at (b). With the configuration at (c), the record stream moves
directly into the bigger loop instead of circulating back.

Table 1 Complexity of permuting records for different memory
models.

Model Number of Number of Number of
switches steps control states
3
1 Ign—1 Enlgn—Z 4lgn -4
5 vE
2a 2n — 1 5n+0(\/;) <3 x2
\ 7
2b Ig2h — 1 En—zh—z <(gh— DK + 2k

(n = hlg h; hence

h ~ n/lg n)
3 k VAR T 4k ~2
[71 1 %n2 + 0n) 2
[3-6,9] n -1 n 2"!
2

for the obvious fact that in a linear memory structure,
where O(n) steps are necessary to move a record from
one end of the memory to the other, we know of no other
theoretical lower bounds.

All models considered so far are essentially one-dimen-
sional. It would be interesting to see if any two-dimen-
sional memory structures would give better performance.
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Table 2 Numerical examples of complexity.

Model Number of Number of Number of Number of
switches steps control states control lines
(=llg (control states)™)
1 19 2.99 x 107 76 7
2a 2 x 10° 2.5 x 10° 1.07 x 103" 10°
2b (h =6.27 x 109 3.5 x 10° 1.25 x 10° 17
254
3 k=2 1.41 x 10° 6 3
k=3 2.38 x 10° 10 4
k=4 1.06 x 10 14 4
k=12 3.58 x 107 46 6
k=13 3.57 x 107 48 6
(Ig (n/2) = 13.1)
k=15 3.60 x 107 58 6
7 1 5 x 10" 2 1
[3-6, 9] 10° 5 x 10° pd 10°
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