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On  a Class of One-Step Majority-Logic  Decodable  Cyclic 
Codes 

Majority-logic decoding is attractive for three  reasons: (I) It can be simply implemented; (2 )  the decoding delay is short; 
and (3) its performance, while suboptimal, is always superior to bounded  distance decoding. For these  reasons, majority- 
logic decodable cyclic codes are very suitable f o r  error control in high speed digital data transmission systems.  Among 
the majority-logic  decodable codes,  the  one-step decodable codes can be most easily implemented;  they employ a single 
majority-logic gate.  In this paper we study  a class of  one-step majority-logic decodable cyclic codes.  First, we describe 
these  codes in a simple manner.  Second,  a way of jinding  the orthogonal polynomials  for decoding these  codes is 
presented.  Third, we show that for a given error correction capability,  the ratio of the number of parity digits to  the  code 
length  goes to zero  as the code length  increases. For error correction Capabilities of the  form 2" - I or 2", we determine 
the  dimensions of the  codes exactly. 

1. Introduction 
Majority-logic decoding is attractive  for  three reasons: (1)  
It can be simply  implemented; ( 2 )  the decoding  delay is 
short;  and (3) its  performance, while suboptimal, is supe- 
rior to  bounded distance  decoding [ 11. For these  reasons, 
majority-logic decodable cyclic codes  are very  suitable 
for  error  control in high speed digital data transmission 
systems. Among the majority-logic decodable codes,  the 
one-step  decodable  codes  can be  most easily imple- 
mented,  since  they employ a single majority-logic gate 
[ 1-31, In this paper, we study  a class of one-step majority- 
logic decodable  codes. This class of codes is a subclass of 
the  generalized  Euclidean  geometry codes (which are not 
in general one-step majority-logic decodable)  studied by 
Delsarte [4], Kasami and Lin [ 5 ] ,  and Lin and Yiu [6]. 
First, we briefly describe the codes in a simple manner. 
Second, a method of finding the orthogonal  polynomials 
(or orthogonal  parity-sums) for decoding these  codes is 
presented.  Third, we show that  for a given error  correc- 
tion capability,  the ratio of the  number of parity-check 
digits to  the  code length goes  to  zero  as  the  code length 
increases. For error correction  capabilities of the form 
2" - 1 or 2", we determine the dimensions of the  codes 
exactly. At the  end, we present  an example to illustrate 
the  process of finding the orthogonal  polynomials. 

Since the decoding of these  codes is based on  the prop- 
erty  that  these  codes, when extended by the addition of 
an overall  parity-check  digit, are invariant  under  the af- 
fine group of permutations, we give a brief discussion of 
this invariant property here. 

Let C be a binary cyclic code of length n = 2" - 1 ,  
generated by the polynomial g ( X ) .  Let C, be a code  ob- 
tained from C by appending an  overall parity-check digit 
to every  code  vector in C ,  i.e., if 

b o ,  u,, u2> . . ., Un-J 

(urn, U"' u,, u2, . . ., un-J 

is a vector in C, then 

is a vector in C,, where u, is the overall  parity-check digit 
and 

us = uo a3 u,  a3 u2 a3 . . . a3 un-,, 

where Cf3 denotes  the modulo-2 addition. Clearly, the 
length of C, is 2". 

Let GF(2") be the Galois field of 2" elements.  Let a be 
a primitive element in GF(2"). Then  the nonzero elements 
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in GF(2") can be expressed  as  powers of a ,  a' = 1 ,  a , a , 
. . ., a2m--2(a2m"1 = 1 ) .  The zero element 0 in GF(2'") is 
sometimes represented by am. Now, we number the  com- 
ponents  of a vector (urn, u,, ul ,  . 9 ., u2m.-2)  in C, by the 
elements of GF(2") as follows: The  component u, is num- 
bered am, the  component uo is numbered a', and,  for 1 5 

i < 2" - I ,  the  component ui is numbered ai. These num- 
bers are called location  numbers. Let Y denote  the loca- 
tion of a component in (um, uo, u l ,  . . ., uzm-J. An ujine 
permutation with parameters a and b in GF(2") and a # 0 
is a permutation that  carries  the  component  at location Y 
to the  location a Y + b .  The  code C, is said to be invariant 
under the affine group of permutations if every affine per- 
mutation carries  every  code  vector in C, into another 
code  vector in C,. 

1 2  

Let h be a  nonnegative integer less than 2'". The radix-2 
expansion of h is 

h = 6, + S12 + 6, . 2' + . ' + Sm-12m-1, 

where 6, is  either 0 or 1 for 0 5 i < m. Let h' be another 
nonnegative  integer < 2" whose radix-2-expansion is 

h' = 6; + 6: . 2 + 8; . 22 + . ' . + 6~-12m". 

The integer h' is said to be a descendant of h if 6; 5 Si for 
0 I i < m. We also write h' S* h meaning that h' is a 
descendant of h .  Clearly,  for all h ,  0 S* h .  Let A(h) de- 
note the  set of all nonzero descendants of h .  The follow- 
ing theorem  characterizes  the  necessary  and sufficient 
condition for  the extension Ce of a  cyclic code C to be 
invariant under  the affine group of permutations. 

0 Theorem I (Kasami,  Lin, and Peterson [7]) 
Let C be a  cyclic code of length 2'" - 1 generated  by g ( X ) .  
Let Ce be the  extended  code  obtained from C by append- 
ing an overall  parity-check digit. Let GF(2")  be the Galois 
field of  2"' elements.  Let a be a primitive element of 
GF(2m).  Then  the  extended  code C, is invariant under  the 
affine group of permutations if and only if, for  every ah 

that  is a root of the  generator polynomial g ( X )  of C ,  for 
every h' E A(h) ,  ah' is also a  root of g ( X ) ,  and (YO is not  a 
root of g ( X ) .  0 

A cyclic code of length 2" - 1 whose generator poly- 
nomial satisfies the conditions given in the  above  theorem 
is said to  have  the doubly  transitive invariant property. In 
the next section, we describe a class  of  one-step majority- 
logic decodable cyclic codes whose  dual codes have the 
doubly  transitive  invariant property. 

2. The  codes 
Let J and L be two factor:  of 2" - 1 such  that J . L = 
2" - 1 .  The polynomial X' + I can be factored  as fol- 
lows: 

p m -  I + 1 = (  

Let 

1 + X J ) ( l  + X J  + X Z J  + . . . + X ' L - " J ) .  

a ( X )  = 1 + X J  + X2J + . . . + x'L-"J. ( 1 )  

It is well known that  the 2" - 1 n p z e r o  elements of 
GF(2") form  the 2" - 1 roots of X' + 1. Let a be a 
primitive element of ~ ~ ( 2 ~ 1 .  Since = I ,  it is easy  to 
see  that 1, aL, cyzL,  . . ., a are  the J roots of 1 + X J .  
Therefore,  the polynomial a ( X )  = 1 + X J  + X z J  + . . . + 
X ' L - l ) J  has ah, 0 < h < 2"' - 1 ,  as a root if and only if h is 
not a multiple of L .  

( J - l ) L  

Now, we form a polynomial H ( X )  over  GF(2)  as fol- 
lows: H ( X )  has ah as a root if and only if both of the fol- 
lowing are satisfied: 

1. ah is a root of u(X), and 
2. For every h' E A@) ,  ah' is also a root of m ( X )  (0 B 

W ) ) .  

Let ai be a root of H ( X ) .  Let mi(X)  be the minimal poly- 
nomial of ai. Then 

H ( X )  = LCM {minimal polynomials mi(X) 
of the  roots of H(X)} .  

It is clear that H ( X )  is a factor of u(X). 

Let c be the cyclic code of length 2" - 1 generated by 
H ( X ) .  It  follows  from  Theorem 1 that c has  the doubly 
transitive invariant  property, i.e., the  extended  code ce 
of C is invariant under the affine group of permutations. 
Now, let C be the dual code of c. Then C is also cyclic. 
Since N ( X )  divides XZm" + 1 ,  we have 

p m -  I + 1 = G ( X ) H ( X ) .  

Let k be the  degree of H ( X ) .  Then the degree of C ( X )  is 
2" - k - 1. It follows  from the  theory of cyclic codes  that 
the  generator polynomial of C is 

g ( X )  = Xzm-""G(X-~) .  (2) 

In the next  section, we show that C generated by 
g ( X )  = X2m--L"IG(X"I) is one-step majority-logic decod- 
able  and is capable of correcting  at  least t,, = ( J  - 1)/2 
or fewer errors  (note  that J is odd). 

3. Orthogonal  parity-check sums and decoding 
Since a ( X )  is a multiple of H ( X ) ,  it is a code polynomial in 
code  generated by H ( X ) .  Since  is cyclic, X u ( X ) ,  
X ' a ( X ) ,  . . . , XJ"(r(X)  are also code polynomials in c. It 
can be seen easily that,  for i # j ,  X i ( r ( X )  and X ' a ( X )  do 
not have  any  common  component.  Let vo, v,, . . ', vJ-] be 
the corresponding  vectors (with length 2" - 1)  of u(X), 
X u ( X ) ,  . . ., XJ"u(X).  The Hamming weight of each of 57 
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these  vectors is L.  Adding an overall  parity-check digit to 
each of these  vectors, we obtain J vectors u,, u,, . . ., uJ-, 
of length 2". The  vectors u,, u,, . . ., uJ-, are  code vec- 
tors in Cp (the extension of CJ. Since L is odd, the overall 
panty-check digit of each ui is a 1. Thus, u,,, u,, . . ., uJ-, 
have the following properties: 

1. They all have I at location am (overall  parity-check 

2. One and only one  vector  has a 1 at location a' f o r j  = 
digit location); 

0, 1 ,  2, . . ' )  2" - 2. 

These  vectors  are said to be orthogonal on the digit at 
location ax [I]. 

Now, we apply the affine permutation 

z = aY + f f 2 m - 2  

to u,,, u,, . . ., uJ-,. This  permutation carries the set of J 
vectors u,,, ul: . . ., uJ-l into another J vectors a,,, w,, 

component of ui at location am to location a2 -*. Thus,  the 
vectors w,, o,, . . ., wJ have the following properties: 

1. All the  vectors  have a 1 at location a'"-'; 
2. One  and  only one  vector  has a 1 at location aJ for j = 

. . .  , wJ-, in C,. Note  that  the permutatio! carries  the 

m, 0, I ,  . . .) 2" - 3. 

Hence, w,,,,w,, . . ., wJ-, are orthogonal on  the digit at 
location a2 -*. Deleting the digit at location am from 
a,,, w,, . . ., w J - ] ,  we obtain Jvectors z,, z,, . . ., zJ-I of 
length 2" - 1 which are  code  vectors in code C. Th%se 
vectors  are still orthogonal to  the digit at location a' -' 
and will be used  for decoding the  code C generated by 
g(x) = x Z r n - k - l  G(X-' ) .  

Suppose a vector in C is transmitted  and a vector r = 

(r,, r,, . . ., r2m--2) is received. For decoding r, we form the 
following inner  products: 

A,  = r . zo = r,, . zoo @ riznl @ . . . G3 rZm-, . 
A ,  = r . z1 = r,, . z,,, @ r, . zll  @ . . . @ r2m-2 . z1,2m"2, 

(3) 

where r . zi denotes  the inner product of r and zi and z i j  
denotes  the j th component of zi. These J inner products 
are called parity-check sums [l]. Since C and C are dual 

58 codes and  since z,, z,, . . ', zJ- ,  are  vectors in C ,  if r is a 
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code word in C, then r ' z i  = 0 fori = 0, I ,  . . ., J - I ,  ; .e . ,  
A = A = . + . = AJ-,  = 0. If the received  vector r is not a 
code word in C, it must be a  sum of the transmitted code 
word x and  an unknown error  vector e = (e, ,  e,, . ' ., 
e2m-J, ;.e., 

r = x @ e .  

Since x . zi = 0 for i = 0, I ,  . . ., J - 1, we obtain, from 
(3), the following relations  between the parity-check sums 
A,,   A, ,  . . ., A,-] and  the  error digits: 

0 1  

A,  = r . z, = e . zo = e,  . zoo @ eizOl . . . @ 

A ,  = r . z, = e . z, = eo . zl, 63 eizll @ . . . @ e2m"2, 

AJ-l = r . zJ- ,  
- 
- e . zJ-, = eo . zJ-,.,, 63 eizJ-l,l e... 

(4) 

(Note  that Zn,2m_Z = ~ , , ~ m - ~  

(4), we see  that  the  error digit e2m-2 appears in every pari- 
ty-check sum. 

- _ . . .  = z J - l , 2 m - 2  = 1.) From 

Suppose  there  are t,, = (J  - 1)/2 or fewer  transmission 
errors in e. We  will show that the  error digit e2m-2 can 
be correctly determined from the parity-check  sums. If 
e2m-2 = 1, then  the  other nonzero error digits can distrib- 
ute among at most [ ( J  - 1)/2] - 1 parity-check sums. 
Hence, at least J - [(J  - 1)/2] + 1 = ( J  + 3)/2, or more 
than half of the parity-check sums,  are  equal  to = 1. 
However, if e2m-z = 0, the nonzero error digit can  distrib- 
ute among  at most (J  - 1)/2 parity-check  sums. Hence, at 
least J - ( J  - 1)/2 = ( J  + 1)/2 (more than  half)  parity- 
check sums  are equal to e2m-2 = 0. Thus, if the  number of 
errors in e is ( J  - 1)/2 or less, the value of e2m-2 is simply 
equal to the  value  assumed by a  majority of the  parity- 
check sums A,,  A , ,  . . ., AJ-,. Based on the above  facts, 
an algorithm for decoding can be formulated as fol- 
lows: The  error digit e2m+ is decoded  as 1 if a clear major- 
ity of the  parity-check  sums is 1 ;  otherwise, e2m-2 is de- 
coded as 0. Since C is cyclic,  decoding of other  error dig- 
its is the  same  as decoding e2m-2 [ 2 ,  31. The  above 
decoding  algorithm is referred to  as  one-step majority de- 
coding. 

The decoding can be implemented with a single J-input 
majority-logic gate.  When r is received,  the parity-check 
sums are  formed.  These parity-check sums are  the inputs 
to a majority-logic gate.  The  output of this gate is the  esti- 
mate of Once e2mP2 is decoded, we correct  the re- 
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ceived digits r2m-2 by taking the  sum rZm+ €0 eZm-,. Then 
the  received vector is shifted cyclically one place to  the 
right, and  the  error digit e2m-3 is ready  to be decoded.  The 
error digits are  decoded sequentially  from to e,. 

4. Numerical  parameters 
For  the  codes  described  above, we have  that  the number 
of the  parity check digits is 2" - 1 - deg H ( X ) ,  while the 
total length of the  code is 2" - 1. We  will show that 

lim = 1, 
L-m 2" - 1 

and,  for J of the form 2 ,  * 1 ,  give the  exact formulas for 
deg H ( X ) .  

Lemma 2 
Let J 2 3 be any odd integer. There  exists a  positive  in- 
teger 6 such  that we can find an L solving JL = 2" - I iff 
m = 0 (mod 6). Furthermore, if we let L ,  be such  that 
JL, = 2* - 1 ,  then, if JL, = 2,' - 1, 

deg H ( X )  

A-1 

L,  = 1 2'*L,. 
.. - 

i=O 

Proof Since J is odd, 2 is a member of the group of units 
of ZJ and has  an  order 6. We claim that 6 has all the  prop- 
erties stated  above. This is fairly  straightforward  since 
solving JL = 2'" - 1 is equivalent to solving 2"' = 1 (mod 
J )  and since 6 is the  order of 2. To conclude the proof of 
the  lemma we observe  that 

A- 1 

Let J ,  6, A, and LA be as  above  and m = As. Then it 
follows that deg H ( X )  = (2" - 1) - U ,  where U = [{hll 5 

h 5 2'" - 1 and 3 0 with @LA 5* h}l. Note  that  Ugives  the 
number of parity  bits,  since it enumerates those  integers 
which have multiples of LA as descendants. 

Theorem 3 

Thus, 

Proof By the  principle of inclusion and exclusion [8], 
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where for k m-digit binary numbers a,, . . ', a,, 

Mm,al,. , , , a k  = [{hll 5 h 5 2" - 1 and ai 5* h V i}l. 

From Lemma 2 ,  we see  that  each L A  looks like A copies 
of L, with sufficient leading 0's to make A consecutive 
blocks of size 6.  Since we only allow our indices to range 
between 1 and J (recall JL, = 2' - I ) ,  each  iL, looks like A 
copies of iL,.  Thus, looking at  the A blocks of size 6 we 
see  that Mm,i ,L, ,  , , . ,ikLA - MhS,i,L,, . . . , ikL1'  

- 

Now, we see  that 
I J 

il<i2 

Thus, 

where r = max {M,,iL li = 1, . . ., J } .  Note  that since iL, 
is not 0, 5 2"'. Actually,  since L,  is odd,  iL, 
contains at  least  two 1's in its  binary  representation  and 
MSSiL,  5 2,-'. Thus 

u (2J  - 1) 
2" 4" ' 
- 5 -  

which goes to 0 as A - m. 

We now give some additional information  about U 

0 Corollary 4 
In  the  above  notation, 

where p = I{i/MS,iL1 = r}l. 
Proof We claim  that M,,il,,l~i21,1,. . . , ikL1 < r for all i, < i, < 
. . . < i, and k 2 2 .  To  see this  note that MSiIL,,  , . _, i k L l  5 

min {MSiIL, ,  MGiZL,; . ., MSikL).  If all the MS,ijLl = r, 
then  note that . ,,i,L, 5 MGi,L,,i,l , ,  5 A ,  where A = 
l{hll 5 h 5 2" - 1 and  i,L, u i,L, 5* h}l. By i,L, U i,L, 
we mean the binary  number having a 1 whenever i,L, 
or i,L, have a I .  Since i ,L ,  and  i2L,  are distinct  numbers 
having the same  number of digits, the number i ,L, U i2L1 
has  strictly  more digits than  either of them, whence 
A < r. The  formula  for U derived in the proof of Theorem 
2 shows that  as A "+ ~0 we need only worry  about those 
M, equal to r. The  above argument shows this can only 
happen  for terms in the first sum. 0 

Note  that r = 2*-', where p is the smallest  number of 
binary digits in any of the numbers  L,, 2L,, . . ., JL,. De- 59 
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terrnining this  quantity in general is probably best  carried 
out by direct calculation. We now turn our attention  to 
J's of the  form 2" - I or 21C + 1. 

Theorem 5 
Let J = 2k - 1 for some k 2 2. Then m = hk and  deg 
H ( X )  = (2, - 1)" - I .  

Proof Clearly the 6 of Lemma 2 is k and  L, = 1. Thus 
rn = hk for  some integer A and 

A - - I  

LA = 2 2ik 
.. - 

i=o 

We note that  because of the structure of L,(L, = l ) ,  for 
each integer p, 

k- 1 

pL, = u ai2iL,, 
i=o 

where 

k- 1 .. - 
p = 2 ai2i 

i=O 

Thus,  to calculate U it is enough to work with the 
quantities LA, 2L,,  4L,, . . ., 2k"L,, since  they are  the 
minimal elements with respect to s*. A bit of reflection 
shows that we can  adapt  the inclusion-exclusion formula 
of Theorem 3 to read as follows: 

IC- 1 k- 1 

u = C Mm,a'L, - C ~ m ~ z i f L ~ ,  2izLA + . .. 
il<i2 

i=O i,,i,=o 

Furthermore,  note  that Mm,2i,LA,, , ,,21cLk = 2m-cA. Thus we 
get  that 

deg H ( X )  = 2" - I + 2 2r"-ch(- 1)' 
C = l  

= (2, - I)" - 1 .  0 

Theorem 6 
Let J = 2" + 1 for some  k 2 1. Then rn = 2pk for some 
p 2 1 and deg H ( X )  = (2" - 1 )  - (2(pc1) - I ) k .  

Proof Since 21C = - 1 (mod J ) ,  22k = 1 (mod J), and 2i f 
1 (mod J )  for all i = 1, . . ., k, it follows that  the 6 of 
Lemma 1 is 2k. Thus, rn = 2pk for some  p 2 1. Further- 
more,  L, = 2' - 1. Thus,  LA  looks like 

We now show  that all nonzero multiples of LA smaller 
60 than JL, = 2"' - 1 have  a binary expansion that  looks like 
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wwww . . . Ww, 
p-pairs 

where W is a k-bit string and W is the complementary k- 
bit string. Furthermore, we show that  every  such string is 
a multiple of LA.  Let M be an integer  between 1 and 2k - 
1 ,  and consider  that 

Y 

ML, = 1 2*1 (zk - 1) = 2 2*iik + 2aO+k - 1 i: 2*', 
i= l  i=O 

where q 5 k - 1. Note  that in order  to perform the sub- 
traction we write as 
ao+k--l 1 2 ' + l  

i = O  

and then cancel  out  the 1 ' s  corresponding  to the 2*"s and 
add in the 1. Considering  the  two cases a0 = 0 and a,, 2 I 
shows that we get a  string of the  form WW. Since ML, 
looks like p copies of ML,,  the result follows. 

Note  that 2'L, has  the same form with W being a  string 
of k zeros.  Since  there  are 2" strings of the type WW and 
2" multiples of LA less than JL,, we see  that  there is a one- 
to-one correspondence between such strings  and multi- 
ples of LA < 2" - 1. Since LA <* 2" - 1, we can ignore 
2" - 1 = JL, in calculating UJ,,, since we need only con- 
sider those multiples which are minimal with respect  to 
<*. Note  that  the  above argument  shows that  LA, 2L,, 
3L,, * . ., 2'L, are all minimal with respect  to I*. 

Rather than  using the inclusion-exclusion  formula of 
Theorem 2 to calculate UJ,,, we calculate it directly.  Sup- 
pose @LA s* M for some  integers @ 5 2k and  M. Write 
@LA  as a,b,a,b, ' . . a,b,, where each ai, hi is a  string of k 
digits and where W 5* ai and W s* hi for all i. 

Let A = {hi1 5 h 5 2" - 1 and 3 0 with @LA I* H } .  We 
consider each h to be in the form a,b,a,b, . * . a,b,,. For 
each g between I and 2" - 1 ,  let 

AS = {h  E A l n  hi = g }  

where 

8.I b, 
is the  number whose binary expansion has  a 1 in the j th  
place iff each hi has a 1 in thejth place of its binary expan- 
sion.  Assume g has s 1's in its representation.  Then  each 
hi must have  at  least  those s 1's.  In  order  for  nb, = g ,  we 
must pick the remaining digits of the hi so that some hi has 
a 0 in each of the k - s positions where g has a 0. If we 
focus our  attention  on a particular  position and try to fill it 
in all b,'s simultaneously, we see  that this  can be done in 

P 

i= l  

i=1 
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strictions on the remaining bits. Thus we see  that lAgl = 
(2" - I)k-s (2p)s and, since there  are ( k / s )  strings g having 
s l's, we see  that 

U = (A(  = (2' - 1)k-s(2')s = (2"l - l )k.  17 
3-0 

5. An example 
The following example  illustrates the  code  construction 
and  decoding  described above,  as well as Theorem 5. 

Let m = 4. The polynomial X*'" + 1 = X" + 1 can be 
factored as follows: 

+ 1 = ( I  + x3)(1 + x3 + x6 + X' + x"). 
Thus, J = 3 ,  L = 5, and 

r ( X )  = 1 + X 3  + x6 + X 9  + XI2.  

The Galois field GF(24) is given by Table 1, where a is a 
primitive element and is a root of p ( X )  = 1 + X + X4, i . e . ,  
p ( a )  = 1 + a + a4 = 0. Note  that cy1' = 1. The polynomial 
u(X) has 

a , a , a , a , a , a , a , a , a  , a  , a  , a  

as roots. 

2 3 4 6 7 8 9 1 1 1 2 1 3 1 4  

Next, we form the polynomial f f ( X ) .  The polynomial 
H ( X )  has ah as a root if and only if ah is a  root of r ( X )  
and,  for  every  nonzero  descendant h' of h, ah' is also a 
root of u ( X ) .  For example a'' is a  root of u(X). The non- 
zero  descendants of 12 are 4 and 8, and both a4 and cy8 are 
roots of u ( x ) .  Thus, is a root of H ( X ) .  The  roots of 
H ( X )  are 

1 2 3 4 6 8  12 
a , a , a , a , a , a , a Y , a ,  

and we see  that  deg H ( X )  = 8 as predicted by Theorem 5. 
The roots a',  a', a4, and ax are  conjugates,  and they have 
the  same minimal polynomial 

m l ( X )  = ( X  + a ' ) (X  + a2)(X + a4)(X + 2 ) ) .  

m,(X) = 1 + x  + X4. 

Using Table 1, we obtain 

The  roots a3,  a6, a'', aZ4 = a' are conjugates  and their 
minimal polynomial is 

m3(X)  = ( X  + a3)(X + a"(X + alZ)(X + 2 )  

= 1 + X + X 2 + X 3 + X 4 .  

Therefore, 

W X )  = m l ( X ) m 3 ( X )  

= 1 + x4 + X 6  + X 7  + x8, 

0 
1 
ff 

ff 

ff 

2 

3 

ff4 = a + l  
f f5  = ff(ff + 1) = f f2  + ff 

ff6 = ff(ff2 + a) = ff3 + f f2  

ff' = ff(ff3 + a') = a 4  + ff3 = ff3 + ff + 1 
ff8 = f f ( f f3  + a + 1) = f f 4  + f f2  + ff 

= f f 2 + f f + f f + l = f f 2 + l  
ff9 = ff(ff' + 1) = f f3  + ff 

ff10 = f f ( f f3  + ff)  = ff4 + ff2 = f f2  + ff + 1 
ff = ff(ff' + ff + 1) = f f 3  + f f 2  + ff 

ff = f f ( f f3  + 012 + ff)  = ff4 + f f3  + f f2  = f f3  + a2 + ff + 1 
ff 13 = f f ' + f f 3 + f f ~ + f f = f f 3 + f f 2 + f f + f f + 1  

ff 14 = f f 4 + f f 3 + f f = f f 3 + f f + f f + 1 = f f 3 + 1  

f f ' 5 = f f 4 + f f = f f + f f f I = I  

11 

12 

= a 3  + f f2  + 1 

Table 2 Location numbers. 

v , = ( l 0 0 1 0 0 1 0 0 1  0 0 1 0 0 )  

v , = ( 0 1 0 0 1 0 0 1 0 0  1 0  0 1 0 )  

v , = ( O O  1 0  0 1 0  0 1 0  0 1 0 0 1) 

which is the  generator polynomial of the  code with 
length 15, and 

u(X) = (1 + x 3  + X 4 ) H ( X ) .  

Therefore, r ( X ) ,  X u ( X ) ,  X 2 r ( X )  are  code polynomials in 
e. 

Also, H ( X )  divides XI5 + 1 and 

X l S  + 1 = (1 + x4 + X 6  + X 7 ) H ( X ) .  

Thus, 

C ( X )  = 1 + x4 + x6 + x7.  
The  generator polynomial of the  code C (the  dual of c) is 

g ( X )  = X7G(X") 

= 1 + x + x 3 + x 7 .  
Thus, C is a (15, 8) cyclic code. 

To  decode C,  we need to find parity-check sums  that 
are orthogonal on  error digit eI4. The  vectors  correspond- 
ing to r ( X ) ,  X u ( X ) ,  and X 2 u ( X ) ,  which are  code  vectors 61 
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c 
Output 

L7+r Majority 

I 

Figure 1 One-step-majority-logic  decoder. 

J 

Table 3 Resulting  vectors after adding panty-check  digit. 

a a a a a a ff5 a6 a' au  a9 D l L U  f f l l  alZ a13 a14 

u , = ( l 1 0 0 1 0 0 1 0 0 1 0 0   1 0 0 )  

u , = ( 1 0 1 0 0 1 0 0 1 0 0 1 0 0   1 0 )  

u , = ( 1 0 0 1 0 0 1 0 0 1 0 0   1 0 0 1 )  

m u 1 2 3 4  

Table 4 Resulting  vectors  after  permutation. 

n a f f a a a a a a a a a a a a  l2 l3 
a 0 1 2 3 4 5 6 7 u Y l O l l  

w , = ( 0 0 1 1 0 0 0 0 I 0 1 0 1 0 0 1 )  

0 , = ( 1 0 0 0 0 0 0 1 0 0 0 I 0 1 1 1 )  

0 , = ( 0 I 0 0 1 1 1 0 0 1 0 0 0 0 0 1 )  

Table 5 Vectors  after  deletion of parity-check  digit. 

U 1 2 3 4 5 6 7 8 Y 1 U I I I Z  a a a a ff a ff ff a a a  a a a13a14 

z O = ( O I 1 O O O O 1 O 1 O 1 O O 1 )  

z , = ( O O  0 0 0 0 1 0  0 0 1 0  1 1  I )  

2 , = ( 1 0 0 1 1 1 0 0 1 0 0 0 0 0 1 )  
62 

in C ,  are  shown in Table 2 .  Adding an overall  parity- 
check digit to  each of these  vectors, we obtain  the vectors 
in Table 3 .  These  are  code  vectors in C e  (the extension of 
c). Now, we apply  the affine permutation 

2 = a Y  + a14 

to  permute  the  components of uo, ul,  u,. The resultant 
vectors  are given in Table 4. Deleting the overall  parity- 
check digit from  the  above  vectors, we obtain  the vectors 
in Table 5, which are  vectors in C. We see that these  vec- 
tors  are  orthogonal  on  the digit at location a14. Let 

r = (rnr1rzr3r4rgrsr7rsrgr,or11r12r13r14) 

be the received vector. Then the parity-check sums  or- 
thogonal on  error digit e14 are 

A,, = r . zn = r ,  C3 r2 CB r7 C3 r9 C3 r I 1  CE r,4, 

A, = r . z1 = re C3 rIn CB r12 CE rI3 C3 r,4, 

A,  = r . z, = rn CE r3 CE r4 C3 r5 CB rs CB r14. 

The decoding  circuit is shown in Fig. 1.  The  code is 
capable of correcting any single error  over  the span of IS 
digits. The  code C has minimum distance 4 (the generator 
polynomial has weight 4). Thus,  the  code is capable of 
correcting single errors and detecting any  double errors. 

6. Summary 
In this paper we have  investigated  a class of one-step ma- 
jority-logic decodable  codes. A method of decoding these 
codes  has been presented. Combinatorial expressions for 
determining the dimensions of these  codes have been de- 
rived. These  codes  are effective compared with other ma- 
jority-logic decodable  codes [3, pp. 176-1771. Most im- 
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portant,  they  can be decoded in one  step with a single 
majority-logic gate. A list of these  codes is given in Table 
6. 

For short  length, these codes  are comparable  with 
BCH codes in efficiency. For example, there exists a (63, 
36) one-step majority-logic decodable  code which is ca- 
pable of correcting 4 or fewer errors.  The  corresponding 
4-error-correcting  BCH code of the  same length is a (63, 
39) code which has 3 information digits more  than the 
one-step majority-logic decodable code. For large block 
length, the  codes presented in this paper  are much less 
efficient than the  BCH codes of the  same length and the 
same error-correcting capability. 

Due to  their decoding  simplicity, the  codes  presented in 
this paper may find applications in data communication 
systems where  cost and  decoding speed  are critical. 
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Table 6 Some  one-step majority-logic decodable codes. 

15 8 
6 

63 48 
36 
12 

255 224 
206 
174 
36 
20 

511 342 
138 

1023 960 
832 
780 
150 
30 

1 
2 
1 
4 

10 
1 
2 
8 

25 
42 

3 
36 

1 
5 

16 
46 

170 

2047 1210 1 1  
572 44 

4095 3968 1 
3870 2 
3752 4 
3366 32 
2706 17 
2261 19 
2073 22 
1648 45 
1392 52 
1376 136 
405 292 
100 409 
42 682 
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