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Synchronous  Bounded  Delay  Coding  for  Input 
Restricted  Channels 

Consider  the  class of input  restricted  channels  whose  constraints  can be modelled  by$nite  state  machines.  This  paper 
treats  the  problem of constructing3xed  rate  (synchronous)  codes  for  such  channels  subject  to  a  constraint  that  the  coding 
delay  be  bounded  by  a  parameter M .  M is  the  maximum  number of information  symbols required by  the  coder  in  choosing 
a word during  transmission. 

1. Introduction 
In many digital transmission  and  recording systems, con- 
siderations such  as spectral shaping, self-timing, and limi- 
tations on intersymbol  interference  require that, before 
modulation, the  data be mapped onto a  sequence  with 
special properties. Such  suitable sequences often define 
discrete noiseless  channels of the type  considered by 
Shannon [ l ]  in which  restrictions are represented by fi- 
nite-state sequential machines. In  practice, a  common  ad- 
ditional requirement is that  the encoding of the  binary 
data  onto  the  channel sequence  must be synchronous. By 
this is meant  that  the bit per  symbol  ratio (the coding  rate) 
is constant  over  each word. 

An extensive body of literature exists  on  such  codes; 
References [ 2 ,  31 are  survey  papers. Although there  have 
been techniques proposed for  creating a  direct mapping 
between data and code words [4-71, the majority of chan- 
nel codes  encountered in practice  employ  table  look-up 
techniques;  construction of such  codes requires finding a 
set of code  words  or  paths which correspond  to  state  tran- 
sitions in the model for  the channel constraints. Informa- 
tion to be coded is then associated  with these  paths [8, 91. 

This paper  considers questions  related to  the problem 
of formulating synchronous  codes  under the  assumptions 
that  (a)  the  code word choice may be a  function of the 
channel state,  and (b) code words are  chosen with  knowl- 
edge of up to M of the next letters  to be transmitted. Here 
M is referred to  as  the coding delay. Such codes include, 

as special cases,  the fixed and  variable length (FL and 
VL) codes of References [9-1 I], as well as  the future de- 
pendent (FD) block codes of [12]. 

The FL and VL codes of References [9-113 have the 
property  that information to be represented by a word is, 
given the  channel  state, sufficient to determine  this word. 
Knowledge of all the  next M known letters  to be trans- 
mitted is not  used  unless  the code word is to  represent 
these source  letters.  There is no look-ahead or  future de- 
pendency.  A consequence is that  the number of code 
words  available  from each coding state must be sufficient 
to satisfy the Kraft  inequality.* 

Recently it was shown [I21 that,  for  the special case of 
block codes, this  condition is in fact not necessary; if fu- 
ture  dependency is permitted,  the  Kraft inequality for  the 
required number of code word choices may be replaced 
by a weaker  set of relations on  the  number of paths link- 
ing such  states.  These permit the  construction of codes 
for  rates and channel  constraints which admit no conven- 
tional codes of finite length. Although this is true only for 
certain  special cases and for  rates  equal  to the  channel 

*The Kraft inequality is given by 

1 d 2: n,2"", 
1-1 

where ju is  the number of source bits represented by a word of lengthj and n, is the 
number of words of this length. 
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capacity, a practical implication which  holds  more gener- 
ally is that  the  techniques may result in an appreciable 
reduction of the word (or dependency) length  required to 
obtain a  given rate. Since  implementation is generally  via 
hard wired logic or table look-up, this tends  to yield a 
significant decrease in coder  complexity,  as well as  reduc- 
ing error propagation. 

This  paper  extends  the earlier  block  coding  result [12] 
to  the general case of variable word length.  A  recursive 
algorithm, based  on  dynamic programming, is developed 
for finding channel  states which are  candidates  for a set of 
coding states.  The  existence of a set of such  states is a 
necessary condition  for  the possibility of constructing  a 
code. 

The following is a synopsis of the  paper. Section 2 re- 
views methods  for generating paths  between  the  channel 
states.  Section 3 contains a  derivation of a set of relations 
between the  number of coding paths connecting the  chan- 
nel states which is necessary for  the  existence of a code. 
In  the special case where the  number of paths from each 
state satisfies the  Kraft inequality, the associated code is 
a conventional  one of fixed or variable  length.  Section 4 
describes  an algorithm for finding a set of states eligible 
for coding. The  existence of such a set is a  necessary  but 
not sufficient condition for  the  existence of a code.  Sec- 
tion 5 presents  an  example, and Section 6 summarizes the 
results. 

2. Coding paths and channel constraints 
Let S = {ui}, i = 1 ,  2, . . ., E ,  denote  the  states  for  the 
channel constraint model. To  each ui E S, there  corre- 
sponds a set of allowable channel  symbols {Vk}i. The 
transmission of a symbol takes  the  channel  to a new state 
which is a function of the previous state and the  trans- 
mitted symbol. 

It is convenient  to define a channel skeleton  transition 
matrix as follows: 

D = Idi,}, (1)  

where dij 2 the number of distinct paths of length one 
( i .e . ,  channel symbols)  which take  the channel  from ui to 
a, . 

Let d: the number of paths of length n symbols  which 
take the  channel from ui to uj. Then 

The  channel  capacity, defined as  the maximum bit per 
symbol rate permitted by the  channel  constraints, is given 

44 [l] by the  base-two logarithm of the largest  real  root of 
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det [di,Z" - Si,] = 0, (3) 

where Sij is the  Kronecker delta and Z a dummy  variable. 

Symbols associated with paths of length W may be ob- 
tained from  the Wth power of the  channel transition ma- 
trix 

where a, represents the  disjunction, + , of channel  sym- 
bols which cause a transition from ui to a,. If no  such 
symbol exists,  then a, = 0, the null sequence.  Powers of 
A are formed by the operations of disjunction, +, and 
concatenation.  The  concatenation of 0 with  any  symbol 
results in 0. 

3. Necessary conditions 
Let L, , j  = 1 ,  2, . . . be the  sequence of letters  to be trans- 
mitted. It is assumed  that  each  letter L, is drawn  from  an 
alphabet B ,  where a = log, (BI. That  is,  each  letter  repre- 
sents a bits. Let W denote  the basic  word  length. That  is, 
code words of length N W ,  N 5 M ,  represent N source 
letters.  The coding rate R = a / W .  

Let {ut}' be a set of coding or terminal  states. These  are 
the  states  entered  at  the end of code  words. 

Dejinition 
A synchronous, instantaneously decodable bounded 
delay code C ( S ,  M ,  R) is a mapping 

chi; Lj, Lj+], Lji2' . ' . >  Lj+"l) + f3J ( 5 )  

of letters L onto  paths between the channel states S, 
where LI) is a sequence of NW channel symbols associated 
with the  next N letters  to be transmitted, Lj ,   L j+l ,  . . ., 
Lj+N"l, when the channel occupies ui E {mi}'. The map- 
ping is  such  that L,,  L,+], . . . , Lj+N can be recovered 
given ui and o, and which is defined for  those combina- 
tions of states  and  source  letters which occur during 
transmission. 

It  should be noted that  the  above definition does not 
require that  the mapping C be valid for any  combination 
of coding state  and  letters  to be transmitted.  That  is,  the 
transmission of a  particular sequence of letters may re- 
quire that the channel  state be in a proper  subset of {ui}'. 
This  point is  discussed  further below. 

Dejinition 
An independent  path  set of length NW (which will usually 
be termed  an  independent path or IP  for short) is a path or 
set of paths of length NW from a  given  terminal state 
which is capable of representing one particular sequence 
of N source  letters, with no  constraints  on  the  letters  that 
follow. 0 
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Note  that  an  IP of length N is equivalent to 2" inde- 
pendent  paths of length N + 1. 

Proposition I 
Suppose  state ut is entered at  the  end of a  word w of 
length N W  at time t j+N-l .  Then ui must  have leading from 
it an integer  number of independent paths of length 
( M  - N ) W .  

Proof 
The word w represents  the first N of the M source  letters 

must have  associated with it enough paths so that  the 
mapping C(ui; Lj+,v, Lj+N+l, . . ., Lj+M+N-I)  is defined for 
any (Lj+" . . ., L,+,w+N_,). 0 

( L j ,  LjCl, . ' . , Lj+M-l)  known at  the time t j .  Clearly ui 

Dejinition 
Let +i be the weight of state ui, where 

71 

+i = 2 z,2-aV, (6) 
N = O  

and Z,v is the  number of distinct  independent  paths of 
length NW leading  from ui. 

An independent path of length N W  is said to be of 
weight 2-&". Note  that if each  source  sequence  corre- 
sponds  to a single code sequence ( i . e . ,  the  code is not 
redundant),  the weight +i corresponds  to  the number of 
source  sequences  that can be encoded from this state. 

Consider  a code word w of length NW that  terminates 
in state mi.  From Proposition I ,  the  code words  available 
from mi to follow w must  comprise an integer  number of 
independent paths of length ( M  - N ) .  Suppose the  code 
is such  that  the  code  paths  to be used  from ui are inde- 
pendent of the way this state is entered.  Then  the  code 
will  be termed  memoryless.  To illustrate  this notion, sup- 
pose ui has  independent  paths  corresponding to the  source 
sequences 01 and 00. A code with  memory might be con- 
structed  such  that if ui is entered via wo from uj, then  the 
next two  source bits to be transmitted  are necessarily 00. 

Proposition 2 
Suppose, for a  given  memoryless code,  there  exists a path 
w of length N W  leading from ui to uj. Then this path is of 
weight 2-av+j. 

Proof 
State uj has 4j = r2-a""N) independent paths of length 
( M  - N )  W for  some integer r (from  Proposition 1). Then 
w must be capable of representing a particular sequence 
of N letters, followed by any of r sequences of ( M  - N )  
letters, followed by any source  letters.  Thus, w followed 
by the  set of paths available from uj is equivalent to r 
independent paths of length MW and is of weight r2-& = 

2-?pj. 0 
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If the  code is not  memoryless,  a path of the  type de- 
scribed in Proposition 2 has weight no greater  than 
2-*q l j .  

Let C(S, M ,  R )  be a code and { P : j ( N ) } ,  N = I ,  2, . * ., 
M ,  r = 1, 2, . . . be the  set of code  paths of length N W  
starting at r, and  terminating at T ~ .  The  superscript r is 
necessary  since there may be several paths of length N W  
leading from ui to uj. Let I{PL( N)}I denote  the number of 
such distinct paths. 

0 Proposition 3 
A necessary condition for  the  existence of a memoryless 
C(S ,  M ,  R )  code is that  the  set of equations 

+i = 2 l{P:j(N)}I 2-"N+j (7) 
j ,i-,N 

has a set of solutions  such  that 

a.  The  are integer multiples of 2-"'"-"' , where N W  is 
the maximum length of the  code  paths terminating in 
+i. 

b. Not all the  are  zero. 
c. 5 1. 

Proof 
Conditions (a)  and (b) follow immediately  from the defini- 
tion of +i and Propositions 1 and 2 .  Condition (c) is neces- 
sary if there  are  to be no  redundant  paths in the  code, 
since +i = 1 implies that sufficient paths exist  from mi for 
the mapping C(ui; Lj, Lj+l, . . ., Lj+M--l) to be valid for  any 
Lj, . . ., Lj+"l. 0 

Consider the special case  where all nonzero +i are 
equal to 1. Then 

C#J~ = I{Pr,(N)}I 2-"" = I ,  (8) 
Ar.N 

which satisfies the Kraft  inequality 

2 I{P'j(N)}I 2 F  2 1 .  (9) 
j,r,N 

This case  corresponds  to  the variable length codes  of 
[IO]. Here  each  path PC( N )  can be assigned a distinct 
source  sequence of length N .  

If some  coding states  are of fractional  weight, then  two 
additional conditions  must be satisfied in order  for mem- 
oryless  instantaneously  decodable  code  to  exist [ 121: 

d.  Each  distinct  sequence of N source  letters assigned 
( i . e . ,  for which the mapping C i s  valid) to a state ui and 
which is associated with a path P l j ( N )  must be the 
only such  sequence associated with P ; ( N ) .  45 
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Figure 1 Model of a constrained  channel. 

e.  The  sequences of letters assigned to a  coding state ui 
are  independent of the  path used to  reach this state. 

If a code is not  required to be memoryless, then  clearly 

!bi 5 1 I{P:j(N))I 2-a'v+j, (10) 
Ar.N 

since  the number of independent paths used  from a state 
may be a  function of the way this state was entered. A 
state ui entered by a path of length N W  must  have  a sub- 
set of independent paths  whose  combined weight is an 
integer  multiple of 2-"'.""'. 

4. Candidate  coding  states 
If a conventional variable length code is to be constructed 
(i.e., one  where all terminal state weights are I), then [ 101 
describes  an algorithm,  based on  dynamic programming, 
for finding a set of feasible  coding states.  In  the terminol- 
ogy of this paper, this is a set of coding states  each of 
which is of weight no smaller  than one, termed theprinci- 
pal  states. 

This section  describes a generalization of the above al- 
gorithm. The result of performing the computation is a set 
of states {ui} which are candidate  coding states. If this set 
is empty,  no  code  can be constructed with  the given con- 

46 straints of delay M and rate R .  Otherwise, a subset of the 
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paths connecting  these  states might satisfy the conditions 
specified in the previous  section for coding either with or 
without memory. 

In the  case of conventional  variable length codes,  the 
set of paths leading  from each principal state mi and  termi- 
nating at  other principal states satisfies the Kraft inequal- 
ity.  It is not difficult to show that, given such a set of 
paths, a subset (of weight one)  exists which can be used 
as code words. The analogous property  does not hold for 
the case of fractional  weights. If a set of paths  exists with 
weight greater  than r2-"" (with r a n  integer),  this does not 
necessarily imply that a subset  can be found with weight 
exactly r 2 F .  

Suppose {+;}, uj E S, is an initial set of approximations 
for  the  state weights. A procedure is described below 
which maximizes the weight of a state ui, + i ,  in terms of 
the {+;}. The  technique is based on  the  observation  that a 
path is not  worth  extending (in terms of the contribution 
to +J past a  given state  at  depth N (times  the basic code 
word length W )  unless  there are enough  path extensions 
to  states of sufficient weight. States beyond which paths 
of length N W  are not  worth extending will be called rnd 
states for  depth NW.  The  set of paths leading from ui to 
such states  then yields a maximum value for +{. 

Let T(u,, D )  be the  set of end states  for  paths of length 
DW leading from vi. Initially T(cr,, M )  = S and T(ui ,  D )  is 
empty  for D < M .  

Let {Pr,(D) luj, F }  be the set  of  paths of length DW 
from ui to u, which enter uj at  depth FW and which do 
not enter a  member of T(ui, Q) for Q < D at  depth QW. 

Note  that  the  quantity  rj(F) is an  upper bound for the us- 
able weight (from Proposition 2)  of state +i for  a path of 
length F terminating there. It is not  necessarily  the maxi- 
mum usable weight since  there may not  exist  a subset of 
paths from u, which  actually yield this weight. 

Given that  end  state  sets Ti(ui, N )  have been obtained 
for N > F ,  a state uj is assigned to T(cri, F )  if 

2 - " " ' r j (~ ) /{~ t  (F)}J 

2 5 2? I{PTk(D)Iuj, F}Ir,(D), (12) 

where I{x}l is the cardinality of {x}, and {P: j (F) }  is the  set 
of paths of length FW which lead  from ui to u,. 

D = F + l  q E T ( u , , D )  
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Once the  end  states have  been  determined for D = 1 , 2 ,  
. . . , M ,  an  upper bound for +i can  be  obtained in terms of 
the initial {$*}: 

$$ 5 1 1 2-d' l { l ' & W k ,  W l r k ( L 4 ,  (13) 

subject to  the condition  that +i 5 1. 

M 

D=l  u k E T ( u , , D I  

The following is an algorithm for finding a set  of  can- 
didate  coding states. 

0 Algor i thm I 
Initially: 

Flag = 1 ,  
4; = 1 ,  ( T i  E S 
Start: 

If Flag = I ,  then  do; 
Flag + 0; 
Do for ui E S, i = I ,  2, . . ., 
(a) Maximize the weight $i in terms  of the {$;>. 
(b) If +i # +:, then do; 

4: +- 4i 
Flag + 1; 

END; 

END; 

END; 

If Flag = I ,  go to  start; 
END; 0 

The resulting set {$I:} are  upper bounds  for the  actual 
state weights. If all are  zero, clearly no code can be con- 
structed within the given constraints. Otherwise, a set of 
paths may exist which yield solutions to Eqs. (7). 

5. Example 
An example of code generation is given in this section. 
The  constraints  are  those shown in Fig. 1 .  The capacity of 
this channel is exactly one bit per symbol. 

An attempt will be made to  construct a  memoryless 
R = 1 code with M = 3. 

Initially (Algorithm l ) ,  4; = I ,  i = I ,  2, . . ., 5.  In  the 
first pass of the algorithm 4: = 1. (There are  four  paths of 
length 1 from ul, each terminating in states whose current 
estimated weight is 1.) Similarly, 4; = 4; = $2 = 1/2, 
4: = 1 .  Several of the 4; have  been  changed, so that a 
second pass is necessary. 

The  second  pass yields 4: = I .  It should be noted that 
paths of length 3 can only terminate in states of weight I .  
Thus 4; is the largest of (218, 114, 114) depending on  the 
length of the  paths  chosen.  Thus, 4; = 114. Similarly, one 
obtains 4; = 114, 4: = 314, and 4; = 112. 

W 

Figure 2 A coding  trellis. Letters in parentheses are channel 
symbols. 

Table 1 Source letter assignments. 

Source  letters  Code  word  New  state 

a *I 

eab V I  

dab r1 
C r4 

b r4 

ab m1 

The third pass yields 

4: = 1 ,  

4: = 112, 

4; = 112. (14) 

4; = 4; = 114, 

The  above value of 4; is obtained  from 

4: 5 1/2[4*, + 4;] = 5 / 8 .  (15) 

But 4; must be an integer multiple of 114. Thus, 4: = 

1/2. A fourth  path yields the  source values  for  the 4i, so 
that  these  are final. These values  satisfy the equation 47 
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4, = 2(+, + +z + +3 + 44L 
+z = 2-l(+Jt 

+3 = 2-’(+& 

+4 = 2- IM4 + +J. (16) 

Table 1 is an assignment of source  letters  to  the  paths. 
The notation I I 1 denotes that the  source letter 1 is to be 
transmitted  given  knowledge the  next  source  letter is a 1. 
Note  that  paths  that  enter  states of weight 1/4 at  depth 1 
have  three  letters specified. Figure 2 shows a coding 
trellis. 

6. Summary 
A set of necessary conditions were derived for the exis- 
tence of instantaneously  decodable, bounded  delay codes 
for input restricted channels. An algorithm  based on  dy- 
namic programming  was described  for bounding the  set of 
state weights. 
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