32

ARVIND M. PATEL

Arvind M. Patel

Error Recovery Scheme for the IBM 3850 Mass Storage
System

The IBM 3850 Mass Storage System (MSS) stores digital data on flexible magnetic tape media; however, it is different in
many respects from the conventional multitrack tape machines. In particular, the use of a single-element rotary read-
write head imposes new demands in the areas of data encoding and error recovery. This paper presents a comprehensive
scheme for error recovery for the 3850 MSS which features a new error-correction code in a serial, single-stripe data
SJormat. The recovery procedure is designed around resynchronizable sections of data which are rendered independent
of each other in error modes through the use of zero-modulation encoding and self-contained error-detection pointers.
These error-detection pointers and the resynchronization signals are utilized in conjunction with interleaved codewords
of the error-correction code. The code is designed with a generating polynomial in which the roots are chosen from the
set of elements of a 16-element subfield of the Galois field GF(2%). This choice provides the necessary code structure for
desired code capabilities and facilitates fast decoding of errors with an economical implementation of the decoder. The
scheme provides correction capabilities for various combinations of mixed-mode short and long errors common to

magnetic tape recording of digital data.

Introduction

The IBM 3850 Mass Storage System (MSS) consists of an
array of data cartridges about 1.9 in. (4.8 ¢cm) in diameter
and 3.5 in. (8.9 cm) long, with a capacity of 50 million
characters each. Each cartridge contains magnetic tape
2.7 in. (6.9 cm) wide and 64 ft (19.5 m) long, on which
data are organized in cylinders analogous to those of a
disk file and can be transferred to the disk file one cylin-
der at a time. Up to 4720 cartridges are stored in hexago-
nal compartments in a honeycomb-like apparatus that in-
cludes mechanisms for fetching cartridges from the com-
partments, for the reading and writing of data on them,
and for the replacement of cartridges in the com-
partments.

The data are recorded as coded binary sequences cor-
responding to the presence or absence of magnetic flux
transitions in slanted, fixed-length stripes across the tape
at a density of 67 stripes per inch (26.4 stripes per cm) and
lineal density ranging from 3444 to 6888 flux transitions
per inch (1356 to 2712 flux transitions per cm). A read-
write operation always involves the processing of whole

stripes, with each data stripe containing exactly 4096 net
data bytes after decoding. If the staging adaptor is destag-
ing more than 4096 bytes, it must format the data to fit
within stripe boundaries. One destage order can transfer
up to 61 stripes, the equivalent of one cylinder of a disk
file.

Unlike the conventional fixed head in the multitrack
tape machines, the 3850 uses a rotary read-write head.
The high cost of a multiclement head and the need for a
multiple number of read-write electronic channels are
eliminated by replacing parallel multitrack recording with
serial single-stripe recording. The data are recorded in
short slanted stripes across the tape instead of in long
tracks along the tape. In this way the jittery motion of the
flexible tape over a fixed head is replaced by a smooth,
controlled motion of the rotary head over a steady-state
tape. The tape follows a helical path around a mandrel
and is stepped in position from one slanted stripe to the
next over a circular slit in the mandrel which houses the
continuously moving read-write transducer element of

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. & VOL. 24 & NO. 1 ®# JANUARY 1980

the rotary head. These new approaches in transport de-
sign bring various improvements in the design of mechan-
ical hardware, reducing head-tape wear and providing
controlled spacing between the magnetic transducer and
the recording media. However, they also demand new so-
phistications in data encoding techniques for purposes of
waveform design and error recovery.

The read-write signal to the rotary transducer is
coupled through a transformer whose primary and sec-
ondary coils are in continuous relative motion. This ar-
rangement requires read-write signals with zero dc com-
ponent. Previous papers [1, 2] reported a novel waveform
design scheme referred to as ‘‘zero modulation” (ZM),
which was created especially for the 3850 application.
Zero modulation features waveforms with zero dc com-
ponent and yet retains the advantages of other commonly
known encoding methods, including high efficiency. Fur-
thermore, the stringent coding constraints of ZM provide
powerful checks on errors in decoding the read data. Zero
modulation is used in the 3850 not only as a waveform
encoding method but also as a powerful error-detection
code.

This paper describes the design and implementation of
the 3850 error recovery scheme which features a new
error-correction code fitted into a serial, single-stripe data
format. The second section begins with a discussion of
the error recovery problem, which is followed by the
rationale and approach for the design of the data format
with resynchronizable sections, ZM encoding, and inter-
leaved codewords of the error-correction code. In the
third section, the design of the error-correction code is
given, with a discussion of the salient characteristics and
features of the code. This is followed by a description of
the implementation of the encoding process, syndrome
computation, and decoding process, providing correction
of one or two erroneous bytes in a codeword.

A brief summary of zero modulation code is given in
Appendix 1; proofs of theorems on the capability of the
error-correction code are presented in Appendix 2; and
Appendix 3 provides an example, with step-by-step re-
sults, of the encoding and decoding process of the error-
correction codeword.

Error recovery scheme and data format

Errors in magnetic tape recording are primarily caused by
defects on the magnetic media or variations in head-me-
dia separation in the presence of dust particles. These er-
rors often affect as many as 100 bits at a time, depending
on the density of recording. Furthermore, long errors are
often associated with loss of synchronization of the read
clock, which renders subsequent data unreadable. In the

IBM J. RES. DEVELOP. e VOL. 24 ¢ NO. 1 » JANUARY 1980

<

L—Z.’r’in.—»

Magnetic recording tape

Segment
Stripe L 1 /, 2 l\ 3 |
/ ~~

/ ~~

/ S~
/ S
/ Section Codeword S~
Segment [/ 14 13 12 1 0 A~
/ ~~. 77

/ ~
-———— 13 data sections ——= | 2check___,
| / e S~ ~ I sections
/ S
/ RN
~
/ T~
/ Byte N -
. / ~
Section ° 0, 1 4 2 | 3 1 14 15 R Sync~

Sync
|<———— 128 binary bits ——-————-————-»I
} bits
Odd parity bit

Figure 1 Stripe data format.

standard nine-track 800-bpi magnetic tape machines the
errors are identified as track errors and are corrected by
means of a specially designed error-correction system [3].

As the recording density is increased, another error
mode plays an important role. This is the well-known bit-
shift phenomenon where a magnetic flux transition is
shifted from its normal position due to interference from
neighboring flux transitions. The bit shift usually results
in a two-bit error, where 01 is read in place of 10 or vice
versa. The nine-track 6250-bpi tape machines feature an
error-correction code [4] which corrects various combi-
nations of one or two full tracks and multiple numbers of
one-bit and two-bit errors.

The parallel multitrack data format is not available in
the 3850 MSS. Instead, the data are organized in resyn-
chronizable sections in order to facilitate recovery from
mixed-mode errors in magnetic recording read-write pro-
cesses involving one-bit errors caused by random noise,
multiple two-bit errors caused by bit shift, and clusters of
errors caused by defects and dust particles—including the
capability to resynchronize the clock. The data format of
the 3850 stripe is illustrated in Fig. 1. The stripe is divided
into 20 segments. The segments are appended to each
other, forming a continuous waveform; however, each
segment is a separate entity and can be decoded without
reference to the data in other segments. Each segment
consists of 13 data sections followed by two check sec-
tions. In a write operation, the bit values for the two
check sections are computed in accordance with an error-

33

ARVIND M. PATEL

34

Odd
g Codeword parity
3 0 1&2 304 ——— k -——— 14 15¢
1%
14 B84 Blaz BIAJBM—A___BMA ___314-14314-15f5>’“c~'
13 B30B154| 8122 31373813,4___3131(_By34By5, 5P Syne
12 850858152 312-3312-4___BI7A ___312-14312-1sfsy“°
By o8| 8112 BiaBiia B BiiaBiigsPSyne ZE
- - T =]
@ 8
I Big Biy [Bio By By By By, B 5 PSync
2 Byo By |Baa |Baa Bay By Bayy Bogs P Syne
L By By [Biay |Bis Bia ___Bl-k ___31—14 Biis ESync f‘ié
==
O Boo By Boa [Boa Bos __ Bou __ Bouy Boys PSync[S =

Figure 2 A segment: 15 sections formed with 16 interleaved
codewords. (Sections are appended to each other to form a seg-
ment.)

correction code by processing the 13 data sections as they
are being recorded. The computed check sections are
then appended to the 13 data sections, thus completing a
segment.

Each section is 129 bits long, consisting of 16 bytes of
binary information with an overall odd-parity bit. This se-
quence of 129 bits is encoded into a 258-digit zero modu-
lation waveform followed by a known unique synchro-
nization signal (see Appendix 1 for details on ZM). The
odd-parity bit serves the dual purpose of checking data
errors and of limiting the memory requirement in the en-
coding process by setting the look-back parity of ZM to
zero at the end of each section. The sections are ap-
pended to one another to form a continuous ZM wave-
form. Thus, each section is protected by the synchro-
nization signal at both of its ends. This allows resynchro-
nization of the decoding clock, at the beginning and at the
end of each section, in the event of a long error causing
loss of synchronization.

In a read operation, each section is read through the
ZM decoding algorithm, which also checks for errors
through stringent runlength and dc charge constraints.
Error-free ZM patterns possess runlengths of at least one
and at most three zeros between two ones and the dc
charge value is always constrained within *3 units.
Thus, two consecutive ones or four consecutive zeros in-
dicate an error. Acquisition of dc charge in excess of *3
units can be detected with an up-down counter which in-
crements for every digit position recorded with a positive
level; decrements likewise when the level is negative; and
signals an error if the total exceeds =3 at any time. The
charge value must also be zero at the end of the section,
excluding the synchronization pattern. These checks and
the odd parity at the end of each section detect most er-

ARVIND M. PATEL

rors, including the two-bit errors caused by bit shift and
drop out, and synchronization errors caused by defects
and dust particles. It should be noted that the decoding
errors in ZM do not propagate and that the decoding pro-
cess always terminates at a section boundary. Thus, the
presence of an error is usually detected by the ZM error-
detection circuits in the vicinity of the error within the
same section. The resynchronization signal at the begin-
ning and at the end of each section provides or confirms
the proper phase of the ZM double-frequency clock,
thereby rendering each section independent in error
modes.

All detected errors are reported to the decoder of the
error-correction code for error recovery. Errors in up to
two full sections in a segment can be recovered by means
of this error-correction code, including the longest error
in a worst-case situation when the defect coincides with a
section boundary and affects two adjacent sections. A
wide variety of shorter multiple errors is also detected
and corrected by the same error-correction code.

The data format for the error-correction code is de-
signed around the resynchronizable sections. The 16 bytes
in each section belong to 16 different codewords, as
shown in Fig. 2. Each codeword consists of 15 bytes—
one from each of the 15 sections in a segment. Let & be
the index for the codewords and j be the index for the
sections in a segment, where 0 = Ak = 15Sand 0 = j = 14.
Then B, denotes the byte in position & in section j. The
group of bytes B,,, B, B,,. - - -, B,,, are recorded in po-
sition k of the sections 0, 1, 2, - - -, 14, respectively, and
form the kth codeword W,. Thus, the 16 codewords are
interleaved in the data format of 15 sections in a segment.
This interleaving of the codewords facilitates correction
of mixed-mode errors. When a defect or dust particle af-
fects up to two full sections, the resultant error is recover-
able by correcting the corresponding two bytes in each of
the 16 codewords. On the other hand, many combinations
of multiple one-bit and two-bit errors in a segment are
also recoverable, since each codeword can detect and
correct any one of its bytes. Any stripe with a defect
length of more than 128 bits is demarked by the write op-
eration. Every write operation is followed by a read-back
check. Every demarked stripe is bypassed by the read
operation.

Excluding the two error-checking sections in each seg-
ment, the 20 segments in a stripe provide a net recording
space for a data stream of 4160 bytes (Fig. 3). The first
two bytes in this data stream are reserved for stripe iden-
tification. This is followed by a block of 4096 bytes of
data, 60 bytes of filler zeros, and two bytes of Cyclic Re-
dundancy Check (CRC) code. The two-byte CRC code

IBM J. RES. DEVELOP. e VOL. 24 ¢ NO. 1 e JANUARY 1980

provides an overall check for the data integrity of the
stripe, including errors caused by malfunctions in the data
flow hardware and error-correction process. The read
operation is retried both with and without a change in the
read amplifier gain setting when an uncorrectable error is
encountered in any codeword or when a miscorrected
error is detected by the CRC at the end of the stripe.

Aside from the main body of 20 segments, each stripe
begins with one start-up section recorded with an all-ones
signal and a special sync character. The leftover space
at the end of the stripe is recorded with an all-zeros signal.
The start-up section provides a known uniform signal for
the purpose of priming the clock and the detection cir-
cuits, and the special sync character marks the beginning
of the data. The all-zeros signal at the end ensures re-
moval of any previously written data which may be pres-
ent beyond the twentieth segment due to minor variations
in the stripe length.

Error-correction code
As just described, the 3850 error recovery scheme is de-
signed around the concept of resynchronizable sections.
The basic building block of this scheme is a 15-byte code-
word W, designated as

W =[B,, B,, B,. - - -, B,,].

For simplicity of notation, the word index k has been
dropped from the notation for bytes; thus the byte B, is
denoted simply by B,. In this codeword, B, and B, are the
check bytes, and the remaining 13 bytes are the data
bytes. The coding rules are given in the form of the fol-
lowing matrix (modulo-2) equations:

B,®B ®&B,® - ®B,=0, ()
B,&T'B,®T"B,&---T"B, =0, (2)
where

@ signifies modulo-2 sum,

B, is an eight-bit column vector, i = 0, I, - - -, 14,

A is 68,
T denotes T multiplied by itself iA times, and

T isan8 X 8 matrix given by

00000001
10000001
01000000
00100001

T=1 00010000 | (3)

00001001

00000100

| 00000010_]

IBM J. RES. DEVELOP. & VOL. 24 § NO. 1 & JANUARY 1980

------ e e I [P

Allones 2 bytes 4096 bytes 60 bytes 2bytes All zeros
start-up stripe information filler CRC end
1D (zeros)

Figure 3 Data stream of 4160 bytes in a stripe (before encod-
ing).

The code given by the coding rules (1) and (2) is derived
from single-symbol-correcting Bose-Chaudhuri-Hoc-
quenghem (BCH) codes [5-7] over symbols from the
Galois field GF(2"). It is well known [4, 7-9] that the er-
ror-correcting codes for symbols from GF (2%) can be used
for correction of groups of b adjacent errors. Here we
present a modification to this concept where a code for
symbols from GF(2") is used for correction of m X b adja-
cent errors. The modification relates to the representation
of the elements of the Galois field. We use elements of a
16-element subfield of GF(2°) in the parity check matrix in
place of the conventional elements of GF(2*). The idea of
substituting the subfield elements is a novel contribution
in code design. It makes the code applicable to eight-bit
binary bytes, provides the necessary code-structure for
multiplexed code capabilities, and yet retains the same
decoding steps as those for the code over GF(2"). The
resultant code possesses the following two basic capabili-
ties of two different well-known [9, 10] codes:

1. It detects all double bit-errors and corrects all single
bit-errors.
2. Tt detects and corrects all single byte-errors.

This multiplexed capability makes the code applicable
in two different ways. More importantly, it provides an
effective method of reducing the probability of mis-
corrections in tape-like, mixed-mode error environment.
In particular, the following two assertions are proved in
Appendix 2:

1. If the code is used for correction of single byte-errors,
then it will not miscorrect any combination of two
one-bit errors.

2. If the code is used for correction of single bit-errors,
then it will not miscorrect any combination of one
byte-error with one bit-error in another byte.

In the 3850 MSS application, the code is used for cor-
rection of single byte-errors in the absence of error point-
ers. In this mode, the code exhibits a high level of pro-
tection against miscorrection of noise-induced bit-errors
in more than one byte. In the presence of error pointers,
the code corrects two erroneous bytes.

The matrix T represents a primitive element of GF(2%).
Thus, the matrices T, T, T, - - -, T>> represent distinct

35

ARVIND M. PATEL

36

Figure 4 Block diagram of encoding network.
1: Storage of field element.
2: Addition of field elements.
3: Multiplication by a field element.

L] -
~<
=
ial
-]
&
L0 o
ngi"b Gated output
=0
38
.gé

- 7@%
L TL_}Q*

: /
g:’zrgi element Is\l’f;dlllo'z l H l l | l B,

Eight-bit input

Figure 5 Encoding shift register.
All feedback connections gated open for output.
Generator polynomial: g(x) = "D ID THx O £~

non-zero elements of GF(2*). The matrix T* represents a
primitive element of the 16-element subfield of GF(2%),
where A is a multiple of 17 and prime to 15. The choice of
A = 68 was made simply because it provided a minimum
number of hardware connections in the implementation of
multiplication by matrix T*. The matrix T* can be com-
puted from T and is given by

ARVIND M. PATEL

00001000
10001100
01000110
00101011
10010101
01000010
00100001
| 00010000_]

The matrices T", T*", T*, , T represent distinct
non-zero elements of the subfield, and T'™ = I where 1 is
the 8 x 8 identity matrix. Thus the inverse T ™* of the
matrix T is the matrix T'> “*. The modulo-2 sum and
product operations of these matrices are closed, in the
sense that the result is always one of the elements of the
subfield. It will be seen later that these properties of the
subfield elements facilitate implementation of the decoder
and save hardware and decoding time.

® Encoding process

The code described by Eqgs. (1) and (2) is a cyclic code
with a generator polynomial g(x) with roots from the set
of elements of a 16-element subfield of GF(2%):

g0 = (18 0 @ x), C))

where « is a primitive element of GF' (2% and A = 68. The
roots 1 and a" are subfield elements corresponding to the
matrix representations I and T*, respectively. On multi-
plying out the factors of g(x), we have

gx) =" DU Da)x DA)

The elements of GF(2%) can also be represented by the
eight-digit binary bytes. For example, the first column of
the matrix T', for any i, is the commonly used eight-digit
binary representation of the field element o'. Then, any
15-byte codeword represents a polynomial over GF 2%
that is divisible by g(x). Note that although the coefficients
of g(x) are restricted to the subfield elements, the co-
efficients of the codeword polynomial are from the com-
plete set of elements of the field GF(2%). This allows all
possible eight-bit patterns in the codeword and restricts
the encoding and decoding operations within the subfield.

The encoding can be performed by a shift register net-
work built for modulo g(x) operations. Figure 4 shows a
block diagram of this shift register, which can be con-
structed from the conventional binary network elements.
The sum of any field elements 8, and B,, represented by
eight-digit binary vectors B, and B,, can be accomplished
by the modulo-2 matrix sum of B, and B,. The multiplica-
tion of any field element B by the elements o and 1® o'
can be accomplished by the modulo-2 matrix multiplica-
tions T'B and [I & T*IB, respectively, where the eight-
digit binary vector B represents 8. The resulting encoding

IBM J. RES. DEVELOP. ¢, VOL. 24 ¢NO. 1/ % JANUARY 1980

network is, in fact, an eight-channel binary shift register
as shown in Fig. 5, in which each storage element of Fig.
4 is replaced by eight binary storage elements, and the
modulo-2 matrix multiplication or addition is realized by
means of a set of binary modulo-2 gates (XOR circuits).
Figure 6 shows separately a network of modulo-2 gates for
mutltiplication of any eight-bit vector with the matrix T,

The check bytes B, and B, are computed by processing
the data bytes B,, B,, B,, - - -, B, in the encoding shift
register of Fig. S. Initially, the storage elements of the
shift register are all set to zero. The ordered sequence of
data bytes B ,, B,, B ,, - - -, B, are entered into the shift
register in 13 successive shifts, as eight-bit-parallel vector
inputs. At the end of this operation, the shift register con-
tains the check bytes B, and B, in its high- and low-order
positions, respectively. Then B, and B, are gated out
without feedback and appended to the data bytes to form
a 15-byte codeword. Appendix 3 presents an example
where this encoding process and also the following de-
coding process, including syndrome computation and
correction of one and two byte-errors, are illustrated in
detail.

& Syndromes of error

The read data are checked for errors by means of the cod-
ing equations (1) and (2). All 16 codewords of a segment
are stored in a temporary storage pending any correction
of errors. The decoding process is carried out by applying
the decoding algorithm to each of the 16 codewords inde-
pendently. The algorithm will correct any one byte in an
unknown position or any two bytes in indicated positions
in each of the 16 codewords. Let B,, B,, B,, - - -, B,, de-
note the read bytes corresponding to the written bytes B,
B, B,, - -, B,, respectively. Let §, and §, denote the
results of computations when the read byte values are
substituted in place of the written byte values in the left-
hand side of Eqgs. (1) and (2). If the read codeword is error
free, then S, and S, both will be zero, as seen from Egs.
(1) and (2); however, a non-zero value in §, or S, indicates
that one or more read bytes are in error. The eight-bit vec-
tors S, and S, are called *‘syndromes of error’” and are
given by

S,=B,®B,®B,® - DB, (6)
and
S, =B OTE®TB,® - ©T"B,,. (7

The syndrome vectors S, and S, can be computed in a
manner similar to the encoding process by means of the
shift register of Fig. 5. Alternatively, we compute S, and
§, by means of two separate eight-bit shift registers SR
and SR, respectively. These shift registers are shown in
Fig. 7. The shifting operation in SR and SR, corresponds

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. 1 5 JANUARY 1980

\

1

/ \//T |
g

)

11
k\
1]
-
B gauues T8
E Input " T »—%_ OQutput
eight-bit > [— eight-bit
vector ,/”'7" vector
|4
-
T
] \\ Modulo-2 sum

A=6

©

Figure 6 Network for multiplication by T*.

O O |
- - -
O-12 1 ® -
&=
i<
=
® O -
Eight-bit H Eightbit Eight-bit 2% | Eightbit
input output input g [output
el el 5
£3
2 8
—> — o
ogy pOullly
O-h Nk
Shift register SR, Shift register SR |

Figure 7 Decoding shift registers.
All feedback connections gated open for output.
Shifting operation in SR, is equivalent to multiplication by
matrix 1.
Shifting operation in SR, is equivalent to multiplication by
matrix T". 37

ARVIND M. PATEL

38

Table 1 Parameter p as a function of /.

i 0 1 2 3 4 56 7 89 10 11 12 13 14

p 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Table 2 Parameter ¢ as a function of (j — i).

j—-i 1.2 3 45678 910 11 12 13 14 *

q 36 11 12 57 29 1310 1 14 8 40

*J is undefined and error pattern e, is zero.

to multiplying the content vector by the matrix I and by
the matrix T, respectively. Initially, the registers are set
to contain zeros. The ordered sequence of read bytes Bl 2
B, B, ---, B, B, is entered into both registers, SR,
and SR, in 15 successive shifting operations, with 314 en-
tering first. As a result, SR, contains the syndrome §,
and SR, contains the syndrome S,. The correction of er-
rors is accomplished by further processing of these syn-
dromes.

e Correction of two bytes

When the erroneous sections are indicated by ZM detec-
tion, this information is passed on to the decoder in the
form of error pointers. Let i and j denote the position val-
ues of the two erroneous bytes in a codeword, where i <
J. The symbols e, and e, are used to represent the un-
known error patterns in bytes B, and B,, respectively, so
that

B =B ®e, ®
and
B =B ®e,)

When the indices i and j are known, the unknown error
patterns ¢, and ¢, can be determined by processing the
syndromes §, and S, provided all other bytes are error
free. The syndrome equations (6) and (7) can be reduced
in terms of these unknown error patterns by combining
with the coding equations (1) and (2), respectively. Thus
we have

S, =¢,De, (10)
and
S, =T, @ T"e, (11)

Since i and j are known, the two simultaneous equations

ARVIND M. PATEL

(10) and (11) may be solved for the two unknown vari-
ables e, and ¢, to obtain

e, =TTV S, & TS| (12)
and
e, =S5, De, (13)

Equations (12) and (13) may be implemented with simple
hardware. For this, the closure property and the multipli-
cative inverse of the subfield elements which were dis-
cussed before are used. In particular, we note that

™ =7 (14)
and
TUA — [I @ T(j—i)/\]—l’ (15)

where p and g depend only on the known values of i and j.
The parameters p and ¢ are precalculated for all possible
values of i and j and are given in Tables 1 and 2, respec-
tively.

Thus, the decoding equations (12) and (13) can be re-
written into much simpler form as

e, = T(S,® T"S,] (16)
and
e =8,De,. (17

The decoder then consists of the following four simple
steps:

Step 1: Multiply S, by the matrix ™.
Step 2: Add S, to the result of step 1.
Step 3: Multiply the result of step 2 by T
Step 4: Add S to the result of step 3.

ar

The multiplication by T** and T** of steps 1 and 3 can
be performed by means of the shift register SR, of Fig. 7
with p and g shifting operations, respectively. The addi-
tion of S, of steps 2 and 4 can be accomplished by enter-
ing the vector S into SR, at the time of the last shifting
operation of the previous step. The results of steps 3 and
4 provide the correction patterns ¢, and ¢, for bytes Bi and
B,, respectively. When only one byte is in error, as in-
dicated by pointer i, and the second pointer value j is un-
defined, the syndrome processing still determines ¢, and
e, in which ¢, must result in a zero value. A non-zero val-
ue of ¢, in this case indicates an uncorrectable error in one
or more unknown byte positions.

® Detection and correction of one byte

Through violations of one or more ZM constraints, al-
most all errors are detected. However, if any error es-
capes this detection, the decoder may encounter a code-

IBM J. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 1 e JANUARY 1980

word with non-zero syndromes and absence of error
pointers. In this case the syndromes are processed for de-
tection and correction of one-byte error. Here the decod-
er determines the index i of the erroneous byte and the
corresponding error pattern ¢,. When all other bytes are
error free, the syndrome equations (6) and (7), in view of
the coding equations (1) and (2), reduce to

S, = e, (18)
and
5, =T, (19)

Thus, the error pattern ¢, is determined by the syndrome
S,. Also, from Eqgs. (18) and (19) we have

TS =S, (20)
that is,
T(l;’)*ib)\s — S (21)

1 0°

Once again, using the shift register SR, of Fig. 7, the in-
dex i can be determined. With S| as the initial content,
SR, is shifted and its contents are compared with S, while
counting down from 15 with each shift. When the con-
tents do compare with S, the count indicates the index i
of the erroneous byte. If the contents do not compare
with S, even when the counter reaches zero, then this
indicates the presence of two or more erroneous bytes
which cannot be corrected without ZM (or other) point-
ers. The occurrence of two erroneous bytes in one code-
word without ZM pointers is not very likely.

Summary and comments

The error recovery scheme for the IBM 3850 MSS is de-
signed to deal with mixed-mode errors comprised of
single-bit errors caused by random noise, two-bit errors
caused by the bit-shift phenomenon, and the long-burst
errors caused by media defects, dirt particles, etc. The
loss of clock synchronization over a media defect was an
added problem, and the transformer coupling of the ro-
tary transducer was a given constraint.

In this paper, the error recovery scheme as it is imple-
mented in the IBM 3850 system has been described. It
features a new error-correction code, with dual capabil-
ity, designed with a polynomial whose roots are chosen
from the set of a 16-element subfield of GF(2°). This code
not only possesses the necessary code capability for a
mixed-mode error environment, but also provides the
structure for economy in decoder hardware. The concept
of multiplexed code capability can be extended for appli-
cations with other special error environments.

Another feature of this error recovery scheme is the
zero modulation encoding and its dual-function role. Zero

IBM J. RES. DEVELOP. & VOL. 24 & NO. 1 & JANUARY 1980

modulation ensures the absence of dc component in the
recording signal passing through the transformer coupling
and also provides very reliable error-detection pointers in
the read process. The error recovery scheme is designed
around a data format consisting of resynchronizable sec-
tions which are rendered independent in error modes
through the use of zero modulation encoding and self-
contained error-detection pointers. A segment of 15 re-
synchronizable sections is formed by interleaving 16
codewords. Each 15-byte codeword provides correction
of one unknown or two known erroneous bytes. As a re-
sult, the scheme provides correction of various combina-
tions of mixed-mode short and long errors—ranging from
a multiple number of one-bit and two-bit errors to one or
two full sections in each segment.

Appendix 1: Zero modulation

The ZM algorithm maps every data bit sequentially into
two binary digits. The mapping is described in terms of a
data bit to be encoded, one preceding data bit, and the
two coded digits corresponding to the preceding data bit;
and in terms of two parity functions that look ahead and
back relative to the bit being encoded. Look-ahead parity
P(A) is the count, modulo 2, of ones in the data stream,
beginning with the data bit being encoded and counting
forward to the next zero bit; look-back parity P(B) is the
count, modulo 2, of all zeros in the data stream from its
beginning up to the present bit. For example, in the data
sequence 01011110, with bit positions considered from
left to right, P(A) = 1 at the second, fifth, and seventh bits
and P(B) = 1 at the first, second, and eighth bits.

The encoding and decoding rules are expressed in the
form of binary logic functions. The encoding function is

07 —1

b, = d[P(A)d_, + P(B) + b_|);

a,=dd_, +dd_PAPB) +d_a_b_,

and the decoding function is

d,=b, +aab +aa_ b_,
where the symbol d represents a data bit; a and b repre-
sent coded digits; and subscripts —1, 0, and 1 signify pre-
ceding, current, and succeeding bits, respectively. For
convenience, the nonexistent bit preceding the first data
bit is assumed to be one and its look-back parity is zero;
the nonexistent bit following the last bit is zero.

Look-back parity P(B) can be obtained by updating a
one-bit storage cell for every zero in the data as data bits
are encoded. Look-ahead parity P(A) depends on the
length of a string of ones in the succeeding data sequence.
When the algorithm imposes no limit on the length of this
string, the computation of P(A) requires an encoder with

39

ARVIND M. PATEL

40

Table A1 Computation of check bytes B, and B,.

Write data Shift Contents Contents
input count low-order byte high-order byte

B,, 10010111 1 00000111 10010000
B, 11101000 2 11101111 10010000
B,, 10101010 3 [RERRRNNN 00101010
B, 11111000 4 01010001 01111100
B, 11011001 5 00101000 11011100
B, 10010001 6 10000110 11100011
B, 00010101 7 00101011 01011011
B, 01111111 8 01111010 01110101
B, 00000000 9 01001101 01000010
B, 00100111 10 01000100 01101100
B, 10000001 11 11011100 01110101
B, 01010101 12 00010010 11101110
B, 10111110 13 [oo10t101 = B] [ot101111 = B)]

Table A2 Syndrome computation (one byte in error).

Read data Shift Contents Contents
input count of SR, of SR,

B, 10010111 1 10010111 10010111
B, 11101000 2 o111 11101111
B,, 10101010 3 11010101 01000010
B, 11111000 4 00101101 11101000
B, o1110011 5 01011110 11011101
B, 10010001 6 11001111 01010110
B, 00010101 7 11011010 01100100
B, o1mn 8 10100101 00100001
B, 00000000 9 10100101 00001000
B 00100111 10 10000010 11110111
B, 10000001 11 00000011 10110000
B, o1010101 12 01010110 00000110
B, 10111110 13 11101000 11100010
B ote111 14 10000111 00100101
B, oo101101 13 10101010 = 5] [01001101 = S|

infinite memory. In order to limit the amount of memory,
a parity is inserted at the end of every section of f data
bits, which makes P(B) equal to zero at position f + 1 at
the end of each section. When P(B) is zero, the encoding
functions no longer depend on P(A). Thus, P(A) has no
effect on ZM mapping at the boundary of every section of
S+ 1 bits in the data sequence with parity bits, and the
computation of P(A) at any data bit need not extend far-
ther than f bits. Then P(A) is given by the binary logic
function of the data stored in f bits of memory:
P(A)=dd +ddd, + dddd + - -

0727475

+ddd, - d_d,_, +ddd, - d_d

t—47t-3 t—47-27

where t = fif fisevenand t = f — 1 if fis odd.

The encoding process is delayed by f bit periods in a
continuous stream of data for computing P(A), but the

ARVIND M. PATEL

decoding process is delayed by only one bit period. The
decoding errors in ZM do not propagate, and the decod-
ing process always terminates at the section boundary.

In the coded ZM binary sequence, any two consecutive
ones are separated by at least one and at the most three
zeros. This sequence is converted into a waveform using
a transition for a one and no transition for a zero in the
binary sequence. Consequently, the narrowest pulse in
the ZM waveform spans two digits in the coded sequence,
thus keeping the ratio of the data density to the highest
recorded transition density close to one. Similarly, the
widest pulse spans four digits, thus limiting the range of
different pulse widths. The ZM waveform has zero dc
component, the accumulated dc charge being the dif-
ference between the numbers of positive and negative
pulses from the beginning to any digit position in the
waveform. In the ZM waveform, the accumulated dc
charge value always remains within =3 units, and it al-
ways returns to a zero value at the section boundary.

In the IBM 3850 MSS the value of fis 128. A known
unique pattern is inserted at the end of each section and
used as a synchronization pattern. This pattern is

S = 010001001010001010001000101001.

The waveform corresponding to S satisfies the ZM pulse-
width constraints. It has zero dc component, but does not
satisfy the =3 charge constraint. The pattern S contains
the sequence 00101000101000, which is the shortest
among those that never occur in the valid ZM pattern in
its original or shifted position. Thus, when the synchro-
nization is lost, the sequence S can be still identified from
the shifted data, which then re-establishes the synchro-
nization.

The reverse of the waveform corresponding to S also
makes a good sync mark. The IBM 3850 MSS uses this
distinction to mark the beginning of the data in a segment
by means of the reverse sync waveform in contrast with
the regular sync waveform at the end of each section.

One interesting property of the ZM coded waveform
that is not used in 3850 MSS and not reported in previous
papers [1, 2] is read-backward symmetry. A properly ter-
minated ZM waveform, when read backward, is a ZM
waveform corresponding to the same data in reverse. In
particular, when a parity bit is appended to the data to
make P(B) equal to zero at the end, the encoding process
terminates the dc charge value at zero at the end of the
corresponding waveform. It can be shown that such a
waveform, which has zero dc component, can be decoded
forward or backward by means of the ZM decoding al-
gorithm.

IBM J. RES. DEVELOP. ® VOL. 24 & NO. | ® JANUARY 1980

Appendix 2: Theorems on code capability

Theorem | When the code given by coding equations
(1) and (2) is used for correction of single byte-errors, it
will not miscorrect any combination of two one-bit errors.

Proof The syndrome expressions for two one-bit errors
are

S,=¢,De, (AD
and
S, =T, ®T", x#y, (A2)

where ¢, and e, are error patterns with weight one, and x
and y denote the locations of bytes in error.

The syndrome expressions for single byte-error are

S,=e (A3)
and
S, =T, (A4)

where e is the error pattern and z denotes the location of
the erroneous byte.

A miscorrection of two one-bit errors as one byte-error
implies that e = e, @ ¢, and

T (e, e,) = T™e, ® T"e,. (AS)

Equation (A5) can be rewritten as
[T & T[T © T™e, = ¢, (A6)

Using the closure property of the subfield elements, we
can write Eq. (A6) as

T"e, = e, for some m # 0. (A7)

From the properties of algebraic elements represented by
e, €,, and T™, it can be shown that Eq. (A7) presents a
contradiction. This proves the theorem.

Theorem 2 When the code given by coding equations
(1) and (2) is used for correction of single bit-errors, it will
not miscorrect any combination of one byte-error with
one bit-error in another byte.

Proof The syndrome expressions for a combination of
one byte-error with one one-bit error are

S,=eDe (A8)
and
S, =T & T e, (A9)

where e and e, are error patterns for a byte-error and a
one-bit error, respectively, and z and x are corresponding

IBM J. RES. DEVELOP. e VOL. 24 ® NO. | e JANUARY 1980

Table A3 Syndrome processing for one erroneous byte.

Shift Contents Contents Equal?
count of SR, of SR,
15 10101010 01001101 No
14 10101010 10000110 No
13 10101010 00010100 No
12 10101010 01100001 No
11 10101010 00101100 No
10 10101010 10101010
Erroneous byte position = 10
B, = 01110011
Error = 10101010 (contents of SR)

Corrected B,, = 11011001

error locations. The syndrome expressions for a single
bit-error are

S, = e, (A10)
and
S, =T",, (A1)

where ¢, is an error pattern with weight one and y is the
error location.

A miscorrection of one as the other implies that e =
e, D e, and

TNe, D e,) = Te, © Te,. (A12)

As seen in Theorem 1, Eq. (A12) leads to a contradiction
except when x = y and e, = ¢,. Thus miscorrection is not
possible.

Appendix 3: Example

® Encoding process
The check bytes B, and B, are computed by shifting the
databytes B,,, B ,, - - -, B, into the encoding shift register
of Fig. 5. Table A1 presents the contents of this shift reg-
ister after each shift.

e Decoding process (one unknown byte in error)

The syndromes S, and 8, are computed by processing the
read data bytes B ,, B,,, - - -, B,, B,, B, into shift regis-
ters SR, and SR, of Fig. 7. Table A2 presents the contents
of these shift registers after each shift. The error in one
byte is detected and corrected by further processing the
computed syndromes in the same shift registers. Table A3
presents the steps of this decoding process.

e Decoding process (two known bytes in error)
Table A4 presents the steps of the syndrome computation
process. The erroneous bytes are 34 and Bm. Thus, i = 4

41

ARVIND M. PATEL

42

Table A4 Syndrome computation (two known bytes in error).

Read data Shift Contents Contents
input count of SR, of SR,

B, 10010111 1 10010111 10010111
B, 11101000 2 o111 11101111
B, 10101010 3 11010101 01000010
B, 11111000 4 00101101 11101000
B, 01110011 5 01011110 11011101
B, 10010001 6 11001111 01010110
B, 00010101 7 11011010 01100100
B, or111111 8 10100101 00100001
B, 00000000 9 10100101 00001000
B 00100111 10 10000010 11110111
B, 00000111 11 10000101 00110110
B, 01010101 12 11010000 00010010
B, 10111110 13 01101110 10000011
B, 01101111 14 00000001 00001001
B, 00101101 15 [00101100 = 5 [11100111 =S,

Table A5 Syndrome processing for two erroneous bytes.

Step Operation Contents of SR
1 Shift SR, p = 11 times 10111110
2 Add contents of SR to SR, 10010010
3 Shift SR, ¢ = 7 times 10101010 = e
4 Add contents of SR, to SR, 10000110 = ¢,
B, = 00000111 B, = 01110011
e, = 10000110 e, = 10101010

i i

Corrected B, = 10000001 11011001

I

Corrected B,

and j = 10. From Table 1 we find p = 11 corresponding to
i = 4. From Table 2 we find g = 7 corresponding to (j — {)
= 6. Table AS presents the steps in the syndrome decod-
ing process for correction of the erroneous bytes.

Acknowledgments

The author gratefully acknowledges the interest and co-
operation of the various members of the IBM Pough-
keepsie Laboratory, particularly the support and encour-
agement provided by J. A. Haddad, during the design and

ARVIND M. PATEL

development phase of the work reported in this paper.
Thanks and appreciation are also due J. T. Smith and
R. B. Humphrey for creating an environment for quick
acceptance of new ideas relative to the 3850 MSS project
at the IBM Boulder Laboratory.

References

1. A. M. Patel, ‘‘Zero Modulation Encoding in Magnetic Re-
cording,”” IBM J. Res. Develop. 19, 366-378 (1975).

2. A. M. Patel, ‘“New Method for Magnetic Encoding Com-
bines Advantages of Older Techniques,”” Computer Design
15, 85-91 (1976).

3. D. T. Brown and F. F. Sellers, Jr., ‘‘Error Correction for
IBM 800-bit-per-inch Magnetic Tape,”” IBM J. Res. De-
velop. 14, 384-389 (1970).

4. A. M. Patel and S. J. Hong, **Optimal Rectangular Code for
High Density Magnetic Tapes,”” IBM J. Res. Develop. 18,
579-588 (1974).

5. R. C. Bose and D. K. Ray-Chaudhuri, *“On a Class of Error
Correcting Binary Group Codes,”’ Info. Control 3, 68-79
(1960).

6. D. C. Gorenstein and N. Zeirler, ‘* A Class of Error Correct-
ing Codes in p™ Symbols,” J. Soc. Indust. App. Math. 9,
207-214 (1961).

7. W. W. Peterson, Error Correcting Codes, M.L.T. Press,
Cambridge, MA, 1961, pp. 162.

8. D. C. Bossen, ‘‘b-Adjacent Error Correction,”” IBM J. Res.
Develop. 14, 402-408 (1970).

9. 1. S. Reed and G. Solomon, ‘‘Polynomial Codes over Cer-
tain Finite Fields,”” J. Soc. Indust. Appl. Math. 8, 300-304
(1960).

10. R. W. Hamming, ‘‘Error Detecting and Error Correcting
Codes,”” Bell Syst. Tech. J. 29, 147-160 (1950).

Received March 13, 1979, revised June 13, 1979

The author is located at the IBM General Products Divi-
sion laboratory, 5600 Cottle Road, San Jose, California
95193.

IBM J. RES. DEVELOP. e VOL. 24 ® NO. 1 ® JANUARY 1980

