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Error Recovery Scheme for the IBM 3850 Mass Storage 
System 

The IBM 3850 Mass  Storage  System  (MSS)  stores  digital  data  onflexible  magnetic  tape  media;  however, it is  different in 
many  respects  from  the  conventional  multitrack  tape  machines. In particular,  the  use of a  single-element  rotary  read- 
write head  imposes  new  demands  in  the  areas of data  encoding  and error recovery.  This  paper  presents  a  comprehensive 
scheme  for error recovery for  the 3850 MSS which features  a  new  error-correction  code in a  serial,  single-stripe  data 
format.  The  recovery  procedure  is  designed around resynchronizable  sections of data which are  rendered  independent 
of each  other  in error modes  through  the  use of zero-modulation  encoding  and  self-contained  error-detection  pointers. 
These  error-detection  pointers  and  the  resynchronization  signals  are utilized  in conjunction with interleaved  codewords 
of the  error-correction  code.  The  code is  designed with a  generating  polynomial  in  which  the  roots  are  chosen from  the 
set of elements of a  16-element  subfield of the  Galoisfield  GF(2').  This  choice  provides  the  necessary  code  structurc>fiw 
desired code  capabilities  and  facilitates fast  decoding of errors  with an  economical  implementation o f the  decoder.  The 
scheme  provides  correction  capabilities  for various combinations of mixed-mode  short  and long errors common  to 
magnetic  tape  recording of digital data. 

Introduction 
The IBM 3850 Mass  Storage  System  (MSS)  consists of an 
array of data  cartridges  about 1.9 in. (4.8 cm) in diameter 
and 3.5 in. (8.9 cm) long, with a capacity of 50 million 
characters  each.  Each cartridge contains magnetic tape 
2.7 in. (6.9 cm)  wide and 64 ft (19.5 m) long, on which 
data  are organized in cylinders  analogous to those of a 
disk file and  can be transferred to  the disk file one cylin- 
der  at a time. Up  to 4720 cartridges are stored in hexago- 
nal compartments in a  honeycomb-like apparatus  that in- 
cludes mechanisms  for  fetching cartridges from the  com- 
partments,  for  the reading  and writing of data  on  them, 
and  for  the replacement of cartridges in the  com- 
partments. 

The  data  are recorded as  coded binary sequences  cor- 
responding to  the  presence or absence of magnetic flux 
transitions  in slanted, fixed-length stripes  across  the  tape 
at a density of 67 stripes per inch (26.4 stripes per cm) and 
lineal density ranging from 3444 to 6888 flux transitions 
per inch (1356 to 2712 flux transitions per cm). A read- 
write operation always  involves the processing of whole 

stripes, with each  data stripe  containing  exactly 4096 net 
data  bytes  after decoding. If the staging adaptor is destag- 
ing more than 4096 bytes, it must format  the  data  to fit 
within stripe  boundaries.  One destage  order can transfer 
up to 61 stripes,  the equivalent of one cylinder of a disk 
file. 

Unlike the conventional fixed head in the multitrack 
tape  machines, the 3850 uses a rotary read-write  head. 
The high cost of a multielement head  and  the  need for a 
multiple number of read-write electronic channels are 
eliminated by replacing parallel multitrack  recording  with 
serial  single-stripe  recording. The  data  are recorded in 
short  slanted  stripes  across  the  tape instead of in long 
tracks along the  tape. In this way the  jittery motion of the 
flexible tape  over a fixed head is replaced by a smooth, 
controlled  motion of the rotary  head over a steady-state 
tape.  The  tape follows  a helical path  around a  mandrel 
and is stepped in position from one slanted  stripe to  the 
next over a circular slit in the mandrel which houses  the 
continuously moving read-write transducer element of 
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the rotary head.  These new approaches in transport de- 
sign bring various  improvements in the design of mechan- 
ical hardware, reducing  head-tape  wear  and  providing 
controlled  spacing  between the magnetic transducer and 
the  recording  media. However,  they also  demand new so- 
phistications in data encoding techniques  for  purposes of 
waveform  design and  error  recovery. 

The read-write signal to  the  rotary  transducer is 
coupled through a transformer  whose primary and sec- 
ondary  coils are in continuous  relative motion. This  ar- 
rangement requires read-write  signals with zero  dc  com- 
ponent. Previous papers [ 1, 21 reported a novel waveform 
design scheme referred to as "zero modulation" (ZM), 
which was  created especially for  the 3850 application. 
Zero modulation features waveforms with zero  dc  com- 
ponent and  yet retains the  advantages of other commonly 
known encoding methods, including high efficiency. Fur- 
thermore,  the stringent coding constraints of ZM provide 
powerful checks on errors in decoding the read data.  Zero 
modulation is used in the 3850 not  only as a waveform 
encoding  method  but also as  a  powerful error-detection 
code. 

This  paper describes  the design and  implementation of 
the 3850 error  recovery scheme which features a new 
error-correction  code fitted into a  serial, single-stripe data 
format.  The  second section begins with  a  discussion of 
the error  recovery problem, which is followed by the 
rationale  and approach  for the  design of the  data format 
with resynchronizable sections, ZM encoding,  and  inter- 
leaved codewords of the  error-correction  code. In the 
third section,  the design of the  error-correction  code is 
given, with a  discussion of the  salient characteristics and 
features of the code. This is followed by a  description of 
the  implementation of the encoding process, syndrome 
computation, and decoding process, providing correction 
of one or  two  erroneous  bytes in a codeword. 

A brief summary of zero modulation code is given in 
Appendix 1 ;  proofs of theorems on  the capability of the 
error-correction  code  are  presented in Appendix  2; and 
Appendix  3  provides an  example, with step-by-step  re- 
sults, of the  encoding and decoding process of the error- 
correction  codeword. 

Error recovery scheme and data format 
Errors in magnetic tape recording are primarily caused by 
defects on the magnetic media or variations in head-me- 
dia separation in the presence of dust particles. These  er- 
rors  often affect as many as 100 bits at a  time,  depending 
on the  density of recording. Furthermore, long errors  are 
often associated with loss of synchronization of the read 
clock, which renders  subsequent  data  unreadable.  In  the 

Stripe , 1 
Segment 

1 2 1 3 1  """ I 20 , 
I . . 

/ . 
/ 

. . . 
/ . . 

/ x. . C o d e w o r d T - ; . - ,  . 
.. 

/ . 
/ 

""" . -- 13 data sections ' . . 
' /  

+2 check+ . . sections 

/ 
. . . 

/ 
, 

/ 
. . . . 

/ Byte . 
Section 1' o I I 2 I 3 , _"" I 14 I 15 lI;S&l 

b- 12R binary bits 

Odd parity bit 

Figure 1 Stripe data  format. 

standard nine-track 800-bpi magnetic tape machines the 
errors  are identified as track errors  and  are  corrected by 
means of a  specially  designed error-correction system [3]. 

As the  recording  density is increased,  another  error 
mode  plays an important  role.  This is the well-known bit- 
shift phenomenon where  a  magnetic flux transition is 
shifted from its normal position due  to interference from 
neighboring flux transitions. The bit shift usually results 
in a  two-bit error, where 01 is read in place of 10 or vice 
versa. The nine-track 6250-bpi tape machines feature  an 
error-correction  code [4] which corrects various  combi- 
nations of one  or  two full tracks  and multiple numbers of 
one-bit and  two-bit  errors. 

The parallel  multitrack data  format is not  available in 
the 3850 MSS. Instead,  the  data  are organized in resyn- 
chronizable sections in order  to facilitate  recovery  from 
mixed-mode errors in magnetic recording  read-write  pro- 
cesses involving  one-bit errors  caused by random noise, 
multiple two-bit errors caused by bit shift,  and clusters of 
errors  caused by defects  and dust particles-including the 
capability to resynchronize the  clock.  The  data format of 
the 3850 stripe is illustrated in Fig. 1 .  The stripe is divided 
into 20 segments.  The segments are appended to  each 
other, forming a continuous  waveform;  however,  each 
segment is a separate  entity  and can  be decoded without 
reference to  the  data in other  segments.  Each segment 
consists of 13 data sections  followed by two check  sec- 
tions. In a  write operation,  the bit values for  the  two 
check  sections  are  computed in accordance with an error- 33 
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Figure 2 A segment: 15 sections  formed with 16 interleaved 
codewords.  (Sections  are  appended to each  other to form a seg- 
ment .) 

correction code by processing the 13 data sections as  they 
are being recorded.  The  computed  check sections are 
then appended  to  the 13 data  sections,  thus completing a 
segment. 

Each  section is 129 bits  long,  consisting of 16 bytes of 
binary information with an overall odd-panty bit.  This se- 
quence of  129 bits is encoded  into  a 258-digit zero modu- 
lation waveform followed by a known unique synchro- 
nization signal (see Appendix 1 for details on ZM). The 
odd-parity bit serves  the dual purpose of checking data 
errors  and of limiting the memory requirement in the  en- 
coding process by setting the look-back  parity of ZM to 
zero at the  end of each  section.  The sections are  ap- 
pended to  one  another  to form a  continuous ZM wave- 
form.  Thus,  each section is protected by the  synchro- 
nization signal at both of its ends. This allows resynchro- 
nization of the decoding clock,  at  the beginning and at  the 
end of each  section, in the  event of a long error causing 
loss of synchronization. 

In a read operation,  each section is read  through the 
ZM decoding  algorithm, which also checks  for  errors 
through stringent runlength and dc charge constraints. 
Error-free ZM patterns  possess runlengths of at least one 
and at most three  zeros  between  two  ones and the  dc 
charge  value is always constrained within k 3  units. 
Thus, two consecutive  ones  or four  consecutive zeros in- 
dicate an  error. Acquisition of dc charge in excess of 5 3  
units can be detected with an up-down counter which in- 
crements  for  every digit position recorded with a positive 
level; decrements likewise when the level is negative; and 
signals an  error if the  total exceeds t 3  at any  time. The 
charge  value  must  also be zero  at  the end of the  section, 
excluding the synchronization pattern.  These  checks  and 

34 the odd parity at  the  end of each  section  detect most er- 

rors, including the two-bit errors  caused by bit shift and 
drop  out, and  synchronization errors  caused by defects 
and  dust  particles.  It should be noted that the  decoding 
errors in  ZM do not  propagate  and that  the decoding  pro- 
cess always terminates at a section  boundary. Thus, the 
presence of an  error is usually detected by the ZM error- 
detection circuits in the vicinity of the  error within the 
same  section.  The resynchronization signal at  the begin- 
ning and  at  the end of each section  provides or confirms 
the proper  phase of the ZM double-frequency clock, 
thereby  rendering each section  independent in error 
modes. 

All detected  errors  are reported to  the  decoder of the 
error-correction  code  for  error  recovery. Errors in up to 
two full sections in a segment can be recovered by means 
of this error-correction  code, including  the longest error 
in a  worst-case situation when the  defect coincides with a 
section boundary and affects two adjacent sections.  A 
wide variety of shorter multiple errors is also detected 
and corrected by the same error-correction  code. 

The  data  format  for  the  error-correction  code is de- 
signed around  the resynchronizable sections.  The 16 bytes 
in each  section belong to 16 different codewords, as 
shown in Fig.  2. Each codeword consists of IS bytes- 
one from each of the I5 sections in a segment.  Let k be 
the index for  the  codewords and j be the index for the 
sections in a segment, where 0 5 k 5 15 and 0 5 j 5 14. 
Then Bjk denotes  the byte in position k in section j .  The 
group of bytes Bo,, B,,, B,,, . . ., B,4k are recorded in po- 
sition k of the  sections 0, l ,  2, . . ., 14, respectively,  and 
form the  kth  codeword W,. Thus,  the 16 codewords  are 
interleaved in the  data format of 15 sections in a  segment. 
This  interleaving of the codewords facilitates correction 
of mixed-mode errors. When a  defect  or dust  particle af- 
fects  up to  two full sections, the  resultant error is recover- 
able by correcting  the corresponding  two  bytes in each of 
the 16 codewords. On the  other  hand, many combinations 
of multiple one-bit and  two-bit errors in a segment are 
also recoverable, since  each codeword can detect and 
correct any one of its  bytes. Any stripe with a  defect 
length of more than 128 bits is demarked by the  write op- 
eration.  Every write  operation is followed by a read-back 
check.  Every  demarked stripe is bypassed by the read 
operation. 

Excluding the  two error-checking  sections in each seg- 
ment,  the 20 segments in a stripe  provide a net  recording 
space  for a data  stream of  4160 bytes  (Fig. 3). The first 
two bytes in this data  stream  are  reserved for  stripe  iden- 
tification. This is followed by a block of 4096 bytes of 
data, 60 bytes of filler zeros, and two bytes of Cyclic Re- 
dundancy Check (CRC) code.  The  two-byte CRC code 
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provides an overall  check  for the  data integrity of the 
stripe, including errors caused by malfunctions in the data 
flow hardware  and error-correction  process.  The read 
operation is retried both with and without  a  change in the 
read amplifier gain setting when an uncorrectable error is 
encountered in any  codeword or when  a  miscorrected 
error is detected by the CRC at  the  end of the  stripe. 

Aside from  the main body of 20 segments,  each stripe 
begins with one  start-up section recorded with an all-ones 
signal and  a  special sync  character.  The leftover  space 
at the end of the stripe is recorded with an all-zeros signal. 
The start-up section  provides  a  known uniform signal for 
the  purpose of priming the clock  and  the  detection  cir- 
cuits, and the special sync  character marks the beginning 
of the data.  The all-zeros signal at  the end ensures re- 
moval of any previously  written data which may be pres- 
ent beyond the twentieth segment  due to minor variations 
in the  stripe  length. 

Error-correction  code 
As just  described,  the 3850 error recovery scheme is de- 
signed around  the  concept of resynchronizable sections. 
The basic building block of this scheme is a 15-byte code- 
word W ,  designated as 

For simplicity of notation,  the word index k has been 
dropped from  the notation  for bytes;  thus  the byte Bj,  is 
denoted simply by B,. In this codeword, Bo and B ,  are  the 
check bytes,  and  the remaining 13 bytes  are  the  data 
bytes.  The coding  rules are given in the form of the fol- 
lowing matrix (modulo-2) equations: 

Bo ‘3 B ,  CB B, CB . . . CB B , ,  = 0 ,  (1) 

Bo @ TABl  @ T2”B, @ . . . @ Tl4”Bl, = 0 ,  (2) 

where 

f€ signifies modulo-2 sum, 

Bi is an eight-bit column vector, i = 0, I, . . ., 14, 

A is68, 

Ti” denotes T multiplied by itself iA  times, and 

T i  

T =  

T i  

T =  

s an 8 X 8 matrix given by 

‘ 0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 1  
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 1  
0 0 0  I O 0 0 0  
0 0 0 0 1 0 0 1  
0 0 0 0 0 1 0 0  

- 0 0 0 0 0 0 1 0 ,  

Ln 8 X 8 matrix given by 

- 0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 1  
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 1  
0 0 0  I O 0 0 0  
0 0 0 0 1 0 0 1  

. 

~ o o o o o o l o l  0 0 0 0 0 1 0 0  
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Figure 3 Data stream of 4160 bytes in a stripe  (before encod- 
ing). 

The  code given by the coding rules (1) and (2) is derived 
from single-symbol-correcting  Bose-Chaudhuri-Hoc- 
quenghem (BCH)  codes [5-7] over symbols from the 
Galois field GF(2,). It is well known [4, 7-91 that  the  er- 
ror-correcting codes  for symbols  from GF(2*) can be used 
for  correction of groups of b adjacent  errors.  Here we 
present a modification to this concept where  a code  for 
symbols from GF(2*) is used for  correction of rn x b adja- 
cent  errors.  The modification relates  to  the representation 
of the  elements of the Galois field. We use elements of a 
16-element subfield of GF(28) in the parity check matrix in 
place of the  conventional elements of GF(2,). The idea of 
substituting the subfield elements is a  novel  contribution 
in code design.  It  makes  the code applicable to eight-bit 
binary bytes, provides  the necessary  code-structure  for 
multiplexed code capabilities, and yet  retains the  same 
decoding steps  as  those  for  the  code  over GF(Z4). The 
resultant code  possesses  the following two  basic  capabili- 
ties of two  different well-known [9, 101 codes: 

1. It  detects all double  bit-errors  and corrects all single 

2. It detects  and  corrects all single byte-errors. 
bit-errors. 

This  multiplexed  capability  makes  the code applicable 
in two different  ways.  More importantly, it provides an 
effective method of reducing the probability of mis- 
corrections in tape-like,  mixed-mode error  environment. 
In particular,  the following two assertions  are proved in 
Appendix 2 :  

1 .  If the  code is used  for correction of single byte-errors, 
then it  will not  miscorrect any combination of two 
one-bit errors. 

2. If the code is used for  correction of single bit-errors, 
then it  will not  miscorrect  any  combination of one 
byte-error with one bit-error in another byte. 

In the 3850 MSS application, the  code is used  for cor- 
rection of single byte-errors in the  absence of error point- 
ers. In this mode,  the  code exhibits a high level of pro- 
tection  against  miscorrection of noise-induced  bit-errors 
in more than  one  byte. In the presence of error  pointers, 
the  code  corrects two erroneous  bytes. 

The matrix T represents a  primitive  element of CF@).  
Thus, the matrices  T,  T2, T 3 ,  . . ., TZ5’ represent distinct 35 
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Figure 4 Block diagram of encoding network. 
1: Storage of field element. 
2: Addition of field elements. 
3: Multiplication by a field element. 

Figure 5 Encoding shift register. 
All feedback connections gated open for output. 
Generator polynomial: g ( x )  = T” @ (I @ T”)x @ xz.  

non-zero elements of GF(2’). The matrix T” represents a 
primitive element of the 16-element subfield of GF(2*), 
where A is a multiple of 17 and  prime to 15. The choice of 
A = 68 was made simply because it provided  a minimum 
number of hardware connections in the implementation of 
multiplication by matrix T”. The matrix T6’ can be com- 

36 puted  from T and is given by 

T6’ = 

The n 

- 0 0 0 0 1 0 0 0  
1 0 0 0 1 1 0 0  
0 1 0 0 0 1 1 0  
0 0 1 0 1 0 1  1 
1 0 0 1 0 1 0 1  . 
0 1 0 0 0 0 1 0  
0 0 1 0 0 0 0 1  

~ 0 0 0 1 0 0 0 0  1 
ttrices T”, T‘”, PA, . . .. T15” remesent distinct 

non-zero elements of the subfield, and TI5” = I where I is 
the 8 x 8 identity  matrix. Thus  the inverse T“” of the 
matrix Ti” is the matrix T‘15-i)A. The modulo-2 sum and 
product operations of these  matrices are  closed, in the 
sense  that  the result is always one of the  elements of the 
subfield. It will be seen later that  these properties of the 
subfield elements facilitate  implementation of the  decoder 
and save  hardware and  decoding time. 

0 Encoding process 
The code  described by Eqs. (1) and (2) is a cyclic code 
with a generator polynomial g(x) with  roots from the  set 
of elements of a 16-element subfield of GF(28): 

where a is a  primitive  element of GF(2’) and A = 68. The 
roots 1 and a” are subfield elements corresponding to  the 
matrix representations I and T”, respectively. On multi- 
plying out  the  factors of g(x), we have 

g(x) = a” @ (1 @ a”)x CB x*. ( 5 )  

The  elements of GF(2’) can  also be represented by the 
eight-digit binary bytes.  For  example,  the first column of 
the matrix Ti, for any i, is the commonly used eight-digit 
binary representation of the field element a‘. Then, any 
15-byte codeword  represents a  polynomial over GF(2’) 
that is divisible by g(x). Note that although the coefficients 
of g(x) are  restricted  to the subfield elements,  the co- 
efficients of the  codeword polynomial are from  the  com- 
plete set of elements of the field CF(2’). This allows all 
possible eight-bit patterns in the  codeword and  restricts 
the  encoding  and decoding  operations within the subfield. 

The encoding can be performed by a shift register net- 
work built for modulo g(x) operations. Figure 4 shows a 
block diagram of this  shift register, which can be con- 
structed  from  the conventional  binary  network elements. 
The sum of any field elements /3, and P I ,  represented by 
eight-digit binary vectors B, and B, ,  can be accomplished 
by the modulo-2 matrix  sum of B ,  and B, .  The multiplica- 
tion of any field element f l  by the  elements a” and 1 @ a* 
can be accomplished by the modulo-2 matrix multiplica- 
tions TAB and [I @ T”]B, respectively, where the eight- 
digit binary vector B represents /3. The resulting encoding 
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network is, in fact,  an eight-channel binary shift register 
as shown in Fig. 5, in which each  storage element of Fig. 
4 is replaced by eight binary storage  elements, and the 
modulo-2 matrix multiplication or addition is realized by 
means of a set of binary modulo-2 gates (XOR circuits). 
Figure 6  shows  separately  a  network of modulo-2 gates for 
multiplication of any eight-bit vector with the matrix TA. 

The check  bytes Bo and B ,  are  computed by processing 
the  data  bytes B,, B,, B,, . ' ., B,, in the encoding  shift 
register of Fig. 5. Initially, the  storage  elements of the 
shift register are all set  to  zero.  The  ordered  sequence of 
data  bytes B,,, B,,, B,,, . . ., B, are  entered into the shift 
register in  13 successive shifts, as eight-bit-parallel vector 
inputs. At the  end of this operation,  the shift register con- 
tains the  check  bytes B,  and Bo in its high- and low-order 
positions,  respectively.  Then B, and Bo are gated out 
without feedback and  appended to the  data  bytes  to  form 
a 15-byte codeword. Appendix 3 presents  an example 
where  this encoding process and  also  the following de- 
coding process, including syndrome computation  and 
correction of one  and two byte-errors,  are illustrated in 
detail. 

Syndromes of error 
The read data  are  checked for errors by means of the cod- 
ing equations (1) and (2). All 16 codewords of a segment 
are stored in a temporary storage  pending  any correction 
of errors.  The decoding  process is carried  out by applying 
the decoding algorithm to  each of the 16 codewords inde- 
pendently. The algorithm will correct any one byte in an 
unknown position or  any two bytes in indicated positions 
in each of the 16 codewords.  Let bo, B , ,  8,' . . ., b14 de- 
note the  read  bytes corresponding to  the written  bytes Bo, 
B,, B,, . . ., B,,, respectively. Let So and S, denote  the 
results of computations when the read byte values are 
substituted in place of the written byte values in the left- 
hand  side of Eqs. (1) and (2). If the read  codeword is error 
free, then So and SI both will  be zero,  as  seen from Eqs. 
(1) and  (2); however, a  non-zero  value in So or S, indicates 
that  one or more read bytes are in error.  The eight-bit vec- 
tors So and S, are called "syndromes of error"  and  are 
given by 

so = Bo @ B ,  @ B, @ ' . . CE B,,  (6) 

and 

S, = Bo CE TB, CD T2", @ . . . CE T'4AB,4. (7) 

The  syndrome  vectors So and S, can be computed in a 
manner  similar to  the encoding process by means of the 
shift register of Fig. 5. Alternatively, we compute So and 
S, by means of two  separate eight-bit shift registers SR, 
and SR,, respectively. These  shift  registers are shown in 
Fig. 7. The shifting  operation in SR, and SR, corresponds 
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Figure 6 Network for multiplication by T* 
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Figure 7 Decoding  shift  registers. 
All feedback connections gated open for output. 
Shifting operation in SR, is equivalent to multiplication by 

Shifting operation in SR, is equivalent to multiplication by 
matrix I .  

matrix T ~ .  37 
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Table 1 Parameter p as a  function of i .  

i 0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

p 15 1 4 1 3   1 2 1 1   I 0 9 8 7 6  5 4 3 2 1 

Table 2 Parameter 4 as a function of ( j  - i). 

j - i  1 2  3 4 5 6 7 8   9 1 0 1 1 1 2 1 3 1 4 ~  

4 3 6 1 1 1 2 5 7 2 9 1 3 1 0   1 1 4  8 4 0  

*j is undefined  and error pattern e, is ~ c m .  

to multiplying the content  vector by the matrix I and by 
the matrix TA, respectively.  Initially, the registers are  set 
to contain zeros.  The  ordered  sequence of read bytes A,,, 
h13, B 1 2 ,  . . ., B , ,  A, is entered  into  both registers, SR, 
and SR,, in 15 successive shifting operations, with b,, en- 
tering first. As a result, SR, contains  the syndrome So, 
and SR, contains  the syndrome SI. The  correction of er- 
rors is accomplished by further processing of these  syn- 
dromes. 

0 Correction of two  bytes 
When the  erroneous sections are indicated by ZM detec- 
tion, this information is passed on  to  the  decoder in the 
form of error  pointers.  Let i and j denote  the position val- 
ues of the  two  erroneous bytes in a codeword, where i < 
j .  The  symbols ei and e, are used to  represent the  un- 
known error  patterns in bytes Bi and B,, respectively, so 
that 

bi = Bi C€ e, (8) 

and 

Bj = B, €3 e,. (9) 

When the  indices i and j are  known,  the unknown error 
patterns e, and ej can be  determined by processing the 
syndromes So and S,, provided all other  bytes  are  error 
free.  The  syndrome equations (6) and (7) can be reduced 
in terms of these unknown error  patterns by combining 
with the coding equations (1) and (2), respectively. Thus 
we have 

and 

Since i and j are  known, the two simultaneous equations 
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(10) and ( I  1) may be solved for  the two  unknown  vari- 
ables ei and ej to obtain 

e ,  J = [I @ T‘”’*]”[S, €3 T“’S,] 

and 

ei = So @ e,. 

Equations (12) and (13)  may  be implemented with simple 
hardware. For  this,  the closure property and the multipli- 
cative inverse of the subfield elements which were  dis- 
cussed before are  used. In particular, we note that 
Tp” = T - ~ A  

where p and q depend only on the known values of i and j .  
The parameters p and q are precalculated for all possible 
values of i and j and  are given in Tables 1 and 2, respec- 
tively. 

Thus,  the decoding  equations (12) and (13) can be  re- 
written into  much simpler form as 

e, = TYAISo @ T”‘S,] 

and 

e, = So @ ej. 

The decoder  then  consists of the following four  simple 
steps: 

Step 1:  Multiply S, by the matrix PA. 
Step 2: Add So to  the result of step 1 .  
Step 3: Multiply the result of step 2 by T“’. 
Step 4: Add S,, to  the result of step 3. 

The multiplication by PA and TyA of steps 1 and  3 can 
be performed by means of the shift  register SR, of Fig. 7 
with p and q shifting operations, respectively. The addi- 
tion of So of steps 2 and 4 can  be  accomplished by enter- 
ing the  vector So into SR, at  the time of the last shifting 
operation of the previous step.  The  results of steps 3 and 
4 provide  the correction patterns ei and e, for  bytes bi and 
B,, respectively. When only one byte is in error,  as in- 
dicated by pointer i, and the  second pointer  value j is un- 
defined, the  syndrome processing still determines e, and 
e, in which e, must  result in a zero value.  A non-zero val- 
ue of e, in this case indicates an  uncorrectable  error in one 
or more  unknown  byte  positions. 

0 Detection  und  correction of one byte 
Through  violations of one  or more ZM constraints, al- 
most all errors  are  detected.  However, if any error  es- 
capes this detection,  the  decoder may encounter a code- 
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pointers. In this case  the  syndromes  are processed for de- 

er  determines  the index i of the  erroneous byte  and the 
corresponding error pattern ei. When all other  bytes  are 
error  free,  the  syndrome  equations (6) and (7), in view of 
the  coding equations (1) and ( 2 ) ,  reduce  to 

S, = ci (18) 

and 

S, = TiAei. (19) 

Thus,  the  error  pattern ci is determined by the  syndrome 
S,. Also, from Eqs. (18) and (19) we have 

5 tection  and correction of one-byte  error.  Here  the  decod- 

l 

I T-"SS, = S,; (20) 

that is, 
T""-i)"S, = s,,. ( 2  1) 

Once  again, using the shift register SR, of Fig. 7, the in- 
dex i can be determined. With S I  as  the initial content, 
SR, is shifted and its contents  are  compared with So while 
counting down  from 15 with each shift. When the  con- 
tents  do  compare with s,,, the count indicates the index i 
of the  erroneous  byte. If the contents  do not compare 
with S, even when the  counter  reaches  zero, then  this 
indicates the  presence of two or more erroneous  bytes 

ers.  The  occurrence of two erroneous bytes in one  code- 
word without ZM pointers is not very likely. 

Summary and comments 
The  error  recovery scheme for  the IBM 3850 MSS is de- 
signed to deal with mixed-mode errors comprised of 
single-bit errors  caused by random noise, two-bit errors 
caused by the bit-shift phenomenon, and the long-burst 
errors  caused by media defects,  dirt particles, etc.  The 
loss of clock  synchronization over  a media defect  was an 
added problem,  and  the transformer  coupling of the ro- 
tary  transducer was a given constraint. 

I which cannot be corrected without ZM (or other) point- 

~ 

In this paper,  the  error recovery scheme  as it  is imple- 
mented in the IBM 3850 system has been described. It 
features  a new error-correction code, with dual  capabil- 
ity, designed with a polynomial whose roots are  chosen 
from the  set of a  Idelement subfield of GF(2'). This code 
not only possesses  the necessary code capability for  a 
mixed-mode error  environment, but  also  provides the 
structure  for  economy in decoder  hardware.  The  concept 
of multiplexed code capability can be extended  for appli- 
cations  with other special error  environments. 

I 

Another feature of this error  recovery  scheme is the 
zero modulation  encoding and its dual-function  role. Zero 
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modulation ensures the absence of dc  component in the 
recording signal passing through the  transformer coupling 
and  also provides very reliable error-detection pointers in 
the read process.  The  error recovery scheme is designed 
around a data  format consisting of resynchronizable sec- 
tions which are rendered  independent in error modes 
through the  use of zero modulation  encoding and self- 
contained error-detection  pointers. A segment of 15 re- 
synchronizable  sections is formed by interleaving 16 
codewords.  Each 15-byte codeword provides correction 
of one  unknown or two  known erroneous bytes. As a re- 
sult, the scheme provides correction of various  combina- 
tions of mixed-mode short and long errors-ranging from 
a multiple number of one-bit and two-bit errors  to  one  or 
two full sections in each segment. 

Appendix 1: Zero modulation 
The ZM algorithm maps every  data bit sequentially  into 
two binary digits. The mapping is described in terms  of  a 
data bit to be encoded,  one preceding data bit,  and the 
two coded digits corresponding to  the preceding data  bit; 
and in terms of two parity  functions that look ahead  and 
back  relative to  the bit being encoded. Look-ahead  parity 
P(A) is the  count, modulo 2 ,  of ones  in the  data  stream, 
beginning with the  data bit being encoded and  counting 
forward to  the  next zero bit;  look-back  parity P(B) is the 
count, modulo 2 ,  of all zeros in the data  stream from  its 
beginning up to  the present  bit. For  example, in the data 
sequence 0101 I 1  10, with bit positions  considered from 
left to right, P(A)  = 1 at  the second, fifth, and seventh bits 
and P(B) = 1 at  the first, second, and  eighth bits. 

The  encoding  and decoding  rules are  expressed in the 
form of binary logic functions. The encoding  function is 

a ,  = d"d-, + d,d-,P(A)P(B) + d ~ , a - , 6 ~ , ,  

h, = d,,[P(A)d-, + p(B) + b-,I; 

and the  decoding function is 

d, = bo + aoi16, + a,a~,6- , ,  

where the symbol d represents  a  data  bit; a and h repre- 
sent coded digits;  and subscripts - I ,  0, and 1 signify pre- 
ceding, current, and  succeeding bits, respectively. For 
convenience,  the nonexistent bit preceding the first data 
bit  is assumed  to be one and its  look-back  parity is zero;  
the nonexistent bit following the last bit is zero. 

Look-back  parity P(B) can be obtained by updating a 
one-bit storage cell for  every zero in the  data  as  data bits 
are  encoded. Look-ahead  parity P(A)  depends  on  the 
length of a string of ones in the succeeding data  sequence. 
When the algorithm  imposes no limit on  the length of this 
string, the computation of P(A)  requires  an  encoder with 39 
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Table A1 Computation of check bytes Bo and B,.  

Write  data 
input 

B14 100101 11 
B,, 11 101000 
B,, 10101010 
B,,  1 1  11 1000 
B,, 11011001 

B, 00010101 
B, 01111111 
B, 00000000 
B, 00100111 
B4 1000000 1 
B, 01010101 
B, 10111110 

B, 10010001 

Shift 
count 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
1 1  
12 
13 

Contents 
low-order  byte 

00000 1 1 1 
11101111 
1 1 1 1 1 1 1 1  
01010001 
00101000 
100001 I O  
0010101 1 
01111010 
01001101 
01000100 
11011100 

Contents 
high-order  byte 

1 00 10000 
100 1 0000 
00101010 
01111100 
1101 1 100 
11 10001 1 
0101101 1 
011 10101 
01000010 
01 101 100 
01 110101 

00010010  11101110 
100101101 = B,l lo1101111 = B .  I 
I I I  I 

Table A2 Syndrome  computation (one byte in error). 

Read  data Sh$t Contents Contents 
input count of SR, of SR, 

100101 11 
11 101000 
10101010 
11111000 
01110011 
10010001 
00010101 
01111111 
00000000 
00100111 
1000000 1 
01010101 
10111110 
01101111 
00101 101 

1 10010111 
2 01111111 
3 11010101 
4 00101101 
5 01011110 
6 11001111 
7 11011010 
8 10100101 
9 10100101 

I O  1o0o0010 
11 00000011 
12 010101 10 
13 1 1  101000 
14 Io0oO111 
15 ptmim-q 

1001011 1 
11101111 
01000010 
1 1  101000 
1101  1101 
01010110 
01100100 
00100001 
0000  1000 
1111011I 
101 1oOoo 
000001 I O  
11 100010 
00100101 pimGq 

infinite memory.  In  order  to limit the  amount of memory, 
a  parity is inserted  at the  end of every section off  data 
bits, which makes P(B)  equal to zero at position f + I at 
the end of each  section. When P(B)  is zero, the encoding 
functions no longer  depend on P ( A ) .  Thus, P(A) has no 
effect on ZM mapping at  the boundary of every section of 
f + 1 bits in the  data  sequence with parity  bits,  and the 
computation of P(A) at any data bit need  not extend far- 
ther than f bits. Then P(A) is given by the binary logic 
function of the  data stored in f bits of memory: 

P(A)  = d,d, + dnd2d3 + d,,d,d4d5 + . . . 

+ d,d,d4 ' . . dt-4dt-3 + d,d,d, . . . d,_,d,-,, 

where t = f if f is even  and t = f - 1 iff is odd. 

The  encoding  process is delayed by f bit periods in a 
continuous  stream of data  for computing P ( A ) ,  but the 40 
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decoding process is delayed by only one bit perio d. The 
decoding errors in ZM do not propagate, and the  decod- 
ing process  always  terminates  at  the section boundary. 

In the  coded ZM binary sequence, any two  consecutive 
ones are  separated by at  least  one  and at  the  most three 
zeros. This sequence is converted  into a waveform using 
a  transition for a one and no transition  for a zero in the 
binary sequence.  Consequently,  the  narrowest pulse in 
the ZM waveform spans two digits in the coded sequence, 
thus keeping the ratio of the data density to  the highest 
recorded  transition  density  close to one.  Similarly, the 
widest  pulse spans four  digits, thus limiting the range of 
different pulse  widths. The ZM waveform has  zero  dc 
component,  the accumulated dc  charge being the dif- 
ference  between  the numbers of positive and negative 
pulses  from the beginning to  any digit position in the 
waveform. In  the ZM waveform, the accumulated dc 
charge value always  remains within *3 units, and it al- 
ways returns  to a zero value at  the section boundary. 

In  the IBM 3850 MSS the  value off is 128. A known 
unique pattern is inserted at  the  end of each section and 
used as a synchronization  pattern. This  pattern is 

s = 010001001010001010001000l01001. 

The waveform  corresponding to S satisfies the ZM pulse- 
width constraints. It has  zero  dc  component, but does not 
satisfy the 2 3  charge constraint.  The  pattern S contains 
the  sequence 00101000101000, which is the  shortest 
among those  that  never  occur in the valid ZM pattern in 
its original or shifted  position. Thus, when the  synchro- 
nization is lost,  the  sequence s can be still identified from 
the shifted data, which then  re-establishes  the synchro- 
nization. 

The  reverse of the waveform corresponding  to S also 
makes  a good sync mark. The IBM 3850 MSS uses this 
distinction to mark the beginning of the data in a segment 
by means of the reverse sync  waveform in contrast with 
the regular sync waveform  at  the end of each section. 

One  interesting  property of the ZM coded  waveform 
that is not used in 3850 MSS and not  reported in previous 
papers [ 1,  21 is read-backward symmetry. A properly ter- 
minated ZM waveform, when read  backward, is a ZM 
waveform corresponding  to  the  same  data in reverse.  In 
particular, when a parity bit is appended  to  the  data  to 
make P(B)  equal to zero at the end,  the encoding process 
terminates the  dc charge value at  zero  at the  end of the 
corresponding  waveform.  It  can be shown that  such a 
waveform,  which has  zero  dc  component,  can be decoded 
forward or backward by means of the ZM decoding al- 
gorithm. 
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Appendix 2: Theorems on code capab Iility Table A .3 Syndrome processing for one erroneous b] {te. 

Theorem I When the code given by coding equations 
(1) and (2) is used for  correction of single byte-errors, it 
will not miscorrect  any combination of two  one-bit errors. 

Proof The  syndrome  expressions for two one-bit errors 
are 

So = e ,  @ e2 (A11 

and 

S, = TShe l  @ TyAe2 x # y ,  ('42) 

where e ,  and e2 are  error  patterns with weight one, and x 
and y denote  the locations of bytes in error. 

The  syndrome  expressions  for single byte-error are 

So = e (A31 

and 

S, = Tzhe ,  

where e is the  error  pattern  and z denotes the  location of 
the  erroneous  byte. 

A miscorrection of two  one-bit errors  as  one  byte-error 
implies that e = e ,  @ e2 and 

TzA(e l  @ e2)  = TShel  @ T"'e2. ('45) 

Equation (A5) can be rewritten as 

[TzA @ TYh] - ' [Tzh  @ T S A ] e ,  = e2. (A61 

Using the  closure  property of the subfield elements, we 
can  write Eq. (A6) as 

Tmhe ,  = e2 for some rn # 0. (A71 

From the  properties of algebraic elements represented by 
e , ,  e2, and T m A ,  it can be shown that  Eq. (A7) presents a 
contradiction.  This proves  the theorem. 

Theorem 2 When the  code given by coding equations 
(1) and (2) is used for correction of single bit-errors, it will 
not  miscorrect any combination of one  byte-error with 
one bit-error in another byte. 

Proof The  syndrome  expressions  for a  combination of 
one  byte-error with one one-bit error  are 

S , = e @ e ,  (A81 

and 

S, = TZAe  @ TsAe l ,  (A91 

where e and e ,  are  error  patterns  for a byte-error and a 
one-bit error,  respectively, and z and x are  corresponding 

Sh$t Contents Contents Equal? 
count of SR, of SR, 

15 10101010 01001101 No 
14 10101010 1oO00110 No 
13 10101010 00010100 No 
12 10101010 01  100001 No 
I 1  10101010 00101100 No 
10  10101010 10101010 

Erroneous byte position = 10 

B,, = 01 1 1 0 0 1  1 
Error = 10101010 (contents of SR,) 

Corrected B, ,  = 1101 1 0 0 1  

error  locations.  The syndrome expressions  for a single 
bit-error are 

So = e,  (A101 

and 

S, = T""e,, (A1 1) 

where e2 is an  error  pattern with weight one and y is the 
error  location. 

A miscorrection of one  as  the  other implies that e = 

e ,  @ e2 and 

As seen in Theorem 1 ,  Eq. (A12) leads to a contradiction 
except when x = y and e ,  = e2. Thus miscorrection is not 
possible. 

Appendix 3: Example 

Encoding  process 
The  check  bytes Bo and B,  are  computed by shifting the 
data  bytes B,,,  B,,, . . ., B, into the  encoding shift register 
of Fig. 5.  Table A1 presents  the  contents of this shift reg- 
ister  after  each shift. 

0 Decoding  process  (one  unknown  byte in error) 
The  syndromes So and S,  are  computed by processing the 
read data  bytes 8,,, 8,,, . . ., B 2 ,  8,, 8, into shift regis- 
ters SR, and SR, of Fig. 7. Table A2 presents  the  contents 
of these shift  registers after  each shift. The  error in one 
byte is detected  and  corrected by further processing the 
computed syndromes in the same shift registers.  Table A3 
presents  the  steps of this  decoding process. 

0 Decoding  process ( t l c w  known  bytes in error) 
Table A4 presents  the  steps of the  syndrome computation 
process.  The  erroneous bytes are B 4  and b,,. Thus, i = 4 41 
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Table A4 Syndrome computation (two  known  bytes in error). 

Read  data 
input 

8,, 100101 1 1  
A,, 11101000 
8,, 10101010 
A,, 11111000 
A,, 01 11001 1 

B9 00010101 
BE 01111111 
8’ 00000000 

B5 00000111 
8, 01010101 
B 10111110 
8: 01 101  111 
8, 00101101 

8 10010001 

001001 11 

Shift 
count 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Contents 
of SR, 

Contents 
of SR,  

100101  11 
01111111 
11010101 
00101 101 
01011110 
11001111 
11011010 
10100101 
10100101 
10000010 
I0000101 
11010000 
01 101 110 

100101 11 
11101111 
01000010 
11 101000 
1101  1101 
010101  10 
01100100 
001o0001 
00001000 
11110111 
001 101 10 
00010010 
1000001 1 

0000000 I 0000 100 1 
pjmmGq 111100111 = s.1 

Table A5 Syndrome processing for  two  erroneous  bytes. 

Step  Operation  Contents of SR, 

1 Shift SR, p = 11 times 1011 11 10 
2 Add contents of SR, to  SR, 
3 Shift SR, q = 7 times 
4 Add contents of SR, to  SR, 

8, = 000001 1 1 Bj = 01110011 
ei = 1ooOo110 ej = 10101010 

Corrected B, = 10000001 Corrected Bj = 1101 1001 

and j = 10. From Table 1 we find p = 1 1 corresponding to 
i = 4. From Table 2 we  find q = 7 corresponding  to ( j  - i )  
= 6. Table A5 presents  the  steps in the syndrome decod- 
ing process  for  correction of the  erroneous  bytes. 

Acknowledgments 
The  author gratefully  acknowledges the interest  and co- 
operation of the various  members of the IBM Pough- 
keepsie Laboratory, particularly the  support and encour- 
agement provided by J. A. Haddad, during the design and 

42 

ARVIND M. PATEL 

development  phase of the work reported in this paper. 
Thanks  and appreciation are also due J .  T. Smith and 
R. B. Humphrey  for creating an environment for quick 
acceptance of new ideas relative to  the 3850 MSS project 
at  the IBM Boulder Laboratory. 

References 
1. A. M. Patel,  “Zero Modulation  Encoding in Magnetic Re- 

cording,” IBM J .  Res.  Develop. 19, 366-378 (1975). 
2. A. M. Patel,  “New Method for Magnetic  Encoding  Com- 

bines  Advantages of Older Techniques,” Computer  Design 

3. D. T. Brown and F. F. Sellers, Jr.,  “Error  Correction for 
IBM  800-bit-per-inch Magnetic Tape,” IBM J .  Res.  De- 
velop. 14, 384-389 (1970). 

4. A. M. Patel and S. J. Hong,  “Optimal Rectangular Code  for 
High Density  Magnetic Tapes,” IBM J .  Res.  Develop. 18, 
579-588 (1974). 

5. R. C. Bose and D. K. Ray-Chaudhuri, “On a  Class of Error 
Correcting  Binary Group  Codes,” Info. Control 3, 68-79 
(1960). 

6. D. C.  Gorenstein and N. Zeirler, “A Class of Error  Correct- 
ing Codes in p m  Symbols,” J .  Soc.  Indust.  App.  Math. 9, 

I .  W.  W. Peterson, Error Correcting Codes, M.I.T.  Press, 
Cambridge,  MA, 1961, pp. 162. 

8. D. C. Bossen, “b-Adjacent Error  Correction,” IBM J .  Res.  
Develop. 14, 402-408 (1970). 

9. I.  S .  Reed and  G. Solomon,  “Polynomial  Codes over Cer- 
tain  Finite Fields,” J .  Soc. Indust.  Appl.  Math. 8, 300-304 
(1960). 

10. R. W. Hamming, “Error Detecting and Error Correcting 
Codes,” Bell Syst.  Tech. J .  29, 147-160 (1950). 

15, 85-91 (1976). 

207-214 (1961). 

Received  March 13, 1979; rcwised  June 13, 1979 

The  uuthor i s  locuted  at   the IBM General  Products Divi- 
sion  laboratory,  5600 Cottle  Road,  Sun  Jose,   Culifornia 
95193. 

IBM J .  RES. DEVELOP. VOL. 24 NO. I JANUARY 1980 


