
R. L. Golden
P. A. Latus
P. Lowy

Design Automation and the Programmable Logic Array
Macro

The Programmable Logic Array (PLA) macro is a physical structure which simpl8es LSZ chip design while yielding high
density and good performance. Zn addition, the inherent order and regularity of this structure provide opportunities to
speed design through automated logic documentation, design vergcution by computer simulation, and computer-auto-
mated physical design. In this paper a chip design methodology is described which is based on the use of PLA structures
(or macros) within a chip. Logic functions in array form are speciJed in a compact notation that i s automatically convert-
ed either to army personulization patterns or to conventional logic blocks for input to existing checking and testing
softwure. Simulation of any logic urray is performed by a single program subroutine operating on these patterns. In
addition, the simple, regular nature of the logic array lends itself to automutic generation of the layout geometries
necessary to actually build the array on a silicon chip. Progrums developedfor these purposes and the PLA mucro design
procedures are described in the context of an engineering design system.

Introduction
With Large Scale Integration (LSI) technology, a typical A design based on a particular data flow and clocking
chip, such as a microprocessor, may contain thousands of method is chosen. Preliminary circuit design is un-
transistors, and the chip may be fabricated from masks dertaken, and-on the basis of this early design-the
made up of hundreds of thousands of shapes. A great deal circuit areas, their placement, and their inter-
of engineering judgment, skill, and effort is required to connections are estimated. These steps proceed iter-
meet design objectives; yet, to design such a chip without atively until a design that gives the minimum area
errors requires a high degree of automation. This paper and that satisfies objectives is achieved.
describes a chip design methodology that permits a blend
of manual engineering and automated design, and that is
based on the use of programmable array logic structures
(PLAs) within the chip.

Once the preliminary design is chosen, logical and
physical designs are begun. In Fig. 1 , the logic design
steps are illustrated on the left and the physical design
steps are shown on the right. In some methodologies,

illustrated, while in others the physical design is delayed
until logic verification is complete.

Figure the general design flow Or logic and physical designs are accomplished in parallel as
ogy that is followed in designing a chip. In the preliminary
design phase, logic and circuit designers determine the
proper technology, e.g., bipolar or field-effect transistor
(FET), to meet the design specifications and the cost and
schedule objectives. Preliminary designs are then under- Logic design is generally comprised of the following
taken to determine how large the chip must be. The pre- steps (numbered items are keyed to those on the left in
liminary design is accomplished as follows. Fig. 1):

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor. 23

IBM J . RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 R. L. GOLDEN ET AL.

24

design
I I

Circuit
specification

documentatlon

Simulation

Test pattcrn
generation

Performance
evaluation

ground rules

To manufacturing

Figure 1 Methodology of chip design.

1. Transformation of the specification into logic primi-
tives (AND, OR, INVERT, etc.) and storage elements
(LATCHES, MEMORY, etc.); the elements and their in-
terconnections are recorded on hand-drawn diagrams.
The objective of this step is to obtain an accurate
transformation using a minimum number of elements.

2 . Entry of this logic into a computer data base. IBM has
developed a standardized logic specification language
for this purpose; this language will be described in
some detail later in this paper. Logic descriptions are
either encoded and entered into the computer system
or are entered graphically. Computer-generated draw-
ings are then produced from these.

3. Simulation of a chip model derived from this data base
to verify logic function. The IBM Engineering Design
System includes a software logic simulator that per-
mits users to apply inputs to the software model and to
obtain resulting outputs. This simulation is based on
both function and timing data, and it can operate on
primitive models or on higher-level models such as a
memory or a logic macro. Logic may be simulated
separately or in interconnected groups.

4. Creation of test patterns from the same model. These
test patterns are used after manufacturing to test the
chip. It is desirable to verify that every input, output,
and circuit on the chip functions properly before the

R. L. GOLDEN ET AL

chip is placed in use. Testing of circuits not externally
accessible is achieved by a combined hardware-soft-
ware approach. First, every latch element is designed
so that, in addition to its normal logic function, it is
connected in series with similar elements to form con-
tinuous shift registers that are externally controllable
for testing. This method, known as “Level Sensitive
Scan Design” (LSSD) [I], allows test patterns to be
shifted in and applied to combinatorial logic. The re-
sults are loaded into the shift registers and then are
shifted out for analysis. Second, the IBM Engineering
Design System includes programs [2] that generate the
proper test patterns and the expected results for chips
designed in this manner. In practice, for chips of this
kind, over 98% of all circuit inputs and outputs are
tested.

Physical design is basically comprised of the following
(numbered items correspond to those on the right in Fig.
1):

1 . Design of circuits for logic primitives and storage ele-
ments, and the creation of mask shapes in a graphic
language for these circuits. Circuit designs are verified
analytically to operate under worst-case conditions
using the Advanced Statistical Analysis Program
(ASTAP) [3]. Mask shapes are created using a system
such as the IBM Interactive Graphics System IGS/370

2 . Chip layout, i.e., the interconnection of these circuits
on the chip. This may be accomplished in a number of
ways; for example, by using IGS/370, or a digitizing
system such as an IBM 1130 system with a digitizer-
plotter, or automatic wiring programs such as those
described in [5] .

3. Evaluation of circuit path delays to ensure that the re-
quired performance is achieved. One method for ac-
complishing this is to calculate delays for individual
circuits as a function of load; compute the load auto-
matically from the mask data; compute the delays for
the circuits on the chip based on the preceding; and
finally, repeat the simulation using these delays.

4. Checking the chip layout against technology ground
rules for minimum line spacing, maximum parallel line
lengths, etc. The IBM Unified Shapes Checker pro-
gram [6] is used for this purpose. The program incor-
porates a high-level language that permits users to
code checks for their applications.

5. Checking the chip layout against the logic design for
correctness of circuit layout topology and circuit inter-
connections. Since both logical and physical data
bases exist, it is possible to compare the two by auto-
mated means; this is known as logical/physical check-
ing.

~41.

IBM J. RES. DEVELOP. VOL. 24 NO. 1 0 JANUARY 1980

After both logical design and physical design are com-
pleted, the geometric data and test patterns are sent to the
manufacturing facility, where the chip is built and tested.

Design approaches
The methodology just described can make use of design
automation to varying degrees. Unfortunately, the degree
to which automation can aid in the design process de-
creases when the chip and circuit layout must be opti-
mized for maximum circuit density, and for performance
at minimum power. This optimization may partially con-
sist of the following:

1. Changing the layout of mask shapes for a particular
circuit so that the circuit will fit into a smaller area and
still retain its electrical characteristics.

2. Designing unique circuits for particular applications,
e , g . , an internal driver circuit for heavy loads.

3. Changing the routing of circuit interconnections to re-
duce capacitance.

Clearly, these steps are manual and require expertise and
time; as a result, they can only be justified for large-vol-
ume production. A chip designed in this way is said to be
tailored or customized, and this first approach is known
as custom design.

A second approach to LSI design that reduces develop-
ment cost and time at the expense of increased silicon
area is the master slice concept. In this approach, circuits
are predesigned in an array; these basic circuits or cells
are then interconnected with metal according to the logic
design. The designer works in a constrained environment
since the circuit design is fixed, as are the number of cells,
fan-out limits, and other design parameters. These con-
straints, however, make it practical to automate the phys-
ical design process. Programs have been written for both
the placement of cells and the wiring of the entire chip
[5, 71. The circuits on the master slice are of a fixed de-
sign; therefore, cell delays based on the worst placement
can be calculated before the actual physical design, After
the logic has been verified by simulation, a performance
analysis is obtained by once again simulating the logic
verification patterns, before physical design with these
estimated delays. When physical design is complete, de-
lays based on the actual interconnective wiring are used
in simulation to verify performance.

A third approach that can significantly reduce design
time is to utilize PLA chips of the type described by J . C.
Logue et al. [8]. In this PLA chip approach, the designer
must work within the bounds of a fixed number of product
terms, inputs, outputs, and feedback elements, and with a
fixed chip delay. Since the PLA chip layout is fixed, the
remaining physical design effort consists only of adding or

deleting devices and connecting the proper partitioning
and output circuits as chosen by the logic designer. That
these tasks are easily automated is evident from the fact
that devices which form the crosspoints within the array
are located in the same relative location as the logic de-
signer’s symbol for the device. As in the master slice ap-
proach, the silicon area is not as fully exploited as it is in
custom design.

PLA macro approach
Unfortunately, the design constraints imposed by the
master slice or PLA chip approaches are in many cases
too severe to produce a cost-effective product. Con-
versely, the development cost for a custom design may be
too great to warrant its production. To overcome this di-
lemma, we adopted a compromise approach known as
macro design.

Macro design is based on the observation that circuits
with a high degree of logical connectivity will fit closely
together when physically implemented. These aggrega-
tions of circuits are called macros. Examples of these
macros, shown in Fig. 2, are a multiplexer-register, an
EXCLUSIVE-OR tree, and a most important macro-the
PLA. The PLA macro discussed in this paper consists of
input partitioning circuits, an AND array, and an OR array.
It combines the PLA chip’s ease of automation with the
flexibility of custom design regarding the choice of the
number of inputs, outputs, and product terms, as well as
the control of input-to-output delay.

A microprocessor was designed by our group using
PLA macros. The chip consists of 35 macros, 19 of which
are PLAs, and these account for half of the chip circuit
area. The remaining 16 were assembled from smaller
macros such as those shown in Figs. 2(a) and (b), and are
referred to as random logic macros. Some of the custom
design techniques described earlier were used to optimize
these random logic macros. The choice of PLAs and ran-
dom logic macros resulted in high circuit density and
good performance. To illustrate, a study was made to
compare this design with another design using the same
technology but a different design approach. The devices
in each design are totaled and the number of equivalent
NOR circuits of fan-in 2.5 is calculated from the total. The
results, illustrated in Table 1, demonstrate that the macro
design approach is superior to the master slice approach
by a factor of 1.8 in circuit area, and by a factor of 1.7 in
power for the same or better performance.

Figure 3 illustrates how programs for PLA macro de-
sign, which will be elaborated on in more detail in the
remainder of this paper, fit into the methodology of Fig. 1.
The first step is the logical design of the PLA macros. 25

R. L. GOLDEN ET AL. IBM I . RES. DEVELOP. VOL. 24 NO. I JANUARY 1980

26

Clock
1

Inputs

I
Multiplexers Polarity hold (P H) EXCLUSIVF-ORs /

latches
(a) (b) (C)

Figure 2 Examples of macros: (a) multiplexer-register macro; (b) EXCLUSIVE-OR macro; (c) PLA macro.

I design I Chip logic

language

!D documentation

design desig

I 1 data base J

subroutine expand generate

Chip
design

t
data
Merge

r.
checking

I'
1

gencration
Test pattern

Figure 3 Detailed design flow.

LL.

\patterns

\
Chip

checking

Geometric
data for

PLA macro logic specification and documentation
The regular structure of the PLA macro makes a tabular
format convenient for specifying and recording the logic
function. The format used is a matrix in which the col-
umns are the AND-array input and the OR-array output
lines of the macro, and the rows are the product terms.
The logic functions of the PLA macro are defined by the
following symbols:

1 . In the AND array:
I -match on a logical one.
0 -match on a logical zero.
. -match on either a logical one or zero (don't care

state).

2 . In the OR array:
I -set output to logical one if any input product term

is selected; or to logical zero if no input product
terms are selected.

. -ignore this product term.

The AND array symbols are for input partitioning circuits
which are one-bit (or one-input) decoders. Additional
symbols specify partitioning circuits which are two-to-
four-bit (or two-input) decoders [9], but they will not be
defined here. An example of PLA logic documented in
this notation is shown in Fig. 4.

The matrix is numbered from left to right, and from top
to bottom, as indicated on the top and left sides of the

R. L. GOLDEN ET P 1BM 1. RES. DEVELOP. VOL. 24 NO. I JANUARY 1980

figure. Consider the third row. Product term 3 will be
selected when column 5 is a logical zero and column 6
is a logical o n e . In this event, output columns 13, 15,
and 16 will each be logical one conditions.

The PLA macro logic specification describes the logical
functions within the macro itself. However, the inter-
connections of the PLAs to the other macros on the chip,
and the circuit connections within the other macros, must
also be specified to fully describe the logical function of
the chip. This global representation of the chip uses the
IBM standardized logic specification language mentioned
previously to form a data base for documentation, simula-
tion, and test pattern generation.

In our use of the language, a primitive, a register ele-
ment (latch), or a PLA macro is represented as one logic
block. Each block is given a unique identification and is
described by one statement. Each interconnecting net is
given a symbolic name. A simplified example of this rep-
resentation is shown in Fig. 5 . The PLA macro block de-
scription includes a pointer (INTR) to the macro logic
specification table (Fig. 4). Thus, the periphery of the
PLA macro is stored with the chip's logic description,
and the internal logic of the PLA macro is stored separate-
ly in a table. This approach permits changes to the logical
function of the macro without changing the global repre-
sentation, as long as the PLA macro input and output nets
remain the same.

The one-block and one-table representation for the
PLA reduces the documentation over an equivalent ran-
dom logic approach. The 19 PLAs were shown as 19
blocks supplemented with 19 tables. The equivalent logic,
assuming that one were to map the PLAs directly into
primitives, e.g. , one product term = one NOR, would be
over 1000 blocks.

A convenient language was also developed for the PLA
logic designer. An abbreviated format specifies only the
significant (I and 0) table entries of the macro by column
for each row (Fig. 6). For example, the third row in the
array section of the data, corresponding to line 3 in Fig. 4,
indicates that column 5 is 0, followed by an I in column 6.
The next column specified is 13, which contains an I, fol-
lowed by a don't care term in 14, I in 15, and I in 16. This
PLA macro design language also includes features for de-
scribing partitioning circuit types, e.g. , one-input or two-
input partitioning, for assigning symbolic net names to the
inputs and outputs, and for recording descriptive com-
ments associated with the logic specification.

A program, Macro Picture (block A of Fig. 3), was de-
veloped to read this abbreviated format specification and

n Columnnumbers
123456789012 34567) 1-17
""""""

2 I.. 1 ... I........
3 01

8 I.
9 . . o

11 I

""_ ~ . .
11111
11.1.
1.11.
I..I.
.III.
.I.I.
..II.
. . . I.
11111
11111 . . . I.

Figure 4 Example of PLA representation.

Log~c block ,Symbolic name

J
X + MMSKIN I - M M S K h N - I + N L V d R L . I + N L V d Z N

I + MMSKRI.
PLA PHLATCH

- -
- -

I
identifier

Pomterto

table

I A (I - M M S K h N) = N O R (X f M M S K I N , I + M M S K R L) ;

2A (l + N L V ~ R l . , ~ t ~ .) = P L A (I - M M S K 6 N , ~ t C .) P I = I N T R ~

3A (I + N L V @ Z N) = P H L A T C H (I + N I . V @ R L , X + C L O C K I) ;

Figure 5 Example of standardized logic representation.

Table 1 Results from design approach comparison study. (Re-
sults shown as ratios.)

Macro chip
Master slice chip

Equivalent NORsicm' 1.8
Average delay/circuit 0.8
Average capacitanceicircuit 0.5
Average powericircuit 0.6

to produce a printed picture of the PLA macro logic in a
tabular format similar to that shown in Fig. 4. In addition
to providing design documentation, this program also
produces a data file to serve as a PLA macro master data
base for design steps that follow, including simulation, 27

R. L. GOLDEN ET AL. IBM I. RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980

HEADER I N T R ;
DIMENS INPUTS '012,

OUTPUTS=005.
TERMS - 0 1 1 .

GENERAL BP:(
ANDOUT " 0 0 0 ;

T C = (0 0 5 , 0 0 6 , 0 0 7 . 0 0 9) r
1.

I ~ ~ 0 0 1 , 0 0 4 , 0 0 8 , 0 1 0 . 0 1 1) .
D ~ (0 0 2 , 0 0 3 , 0 1 2) ~
<I : I >:

ARRAY

NETNAME

PICTURE

END

GliIIIii,
5 1 1 3 1 1 . 1 ,
5 0 1 1 3 1 . 1 1 ,
7 1 1 3 I . . I ,
5 0 0 0 1 1 4 1 1 1 ,
6 0 0 . 1 1 4 1 . 1 ,
5 0 . 0 . 0 1 1 5 1 1 .

3 0 1 3 1 1 1 1 1 ,
1 1 1 1 6 1 .

2 0 1 2 0 1 1 1 1 1 ,

1 = ' I -MMSK6N1,
1 1 1 6 1 ;

4 = ' I t L V L O A N ' .
7 : ' I + L V L J 4 N ' ,
1 0 = ' J + L V L 6 A N ' ,
1 4 = ' I t N L V l R L ' ,
1 7 = ' I - R E P O R L t ,
0 1 , c = (1 - 1 2 , S , s ,

I N T R ;
R = (l - l l . S . W I

2 =' I -MCPCON' ,
5 = ' I t L V L l A N ' ,
8 = ' I t L V L 4 A N ' ,
1 1 = ' I + L V L 7 A N ' ,
15='I+NL:;RL',

1 2 = ' C t R S E T C N
, 1 3 - 1 7 . 5 , 5 ,) ,
. S) i

Figure 6 Abbreviated format example.

Table 2 Simulation run time and data volume.

3 ='C-LCHKON',
6 = ' I t L V L Z A N ' ,
9 = ' I t L V L 5 A N ' ,
13: ' I+NLVORL' ,
1 6 = ' I + W A I T R L ' r

A11 primi- Only latches PLAs and
tives, no modeled by latches

modeling with subroutines modeled by
subroutines subroutines

~ ~

Number of

Chip model
logic blocks 6363 1846 845

generation
time, 370/168
(min) 27 1 1 4

All events trace
data set size
(13 000-byte
disk tracks) 2040 197 122

time, 370/168
(min) 45 12 12

Simulation

physical design, and test pattern generation. The pro-
grams used in these steps can easily read this data base
because of its fixed tabular format, which minimizes the
processing needed to read the data.

The Macro Picture program also provides syntax
checks, such as verifying that only valid array symbols
are used. The program guarantees that further processing
can continue only when the logic specification has correct
syntax. This is accomplished by recording a success or
failure code in the data base produced.

PLA macro logic simulation
After the master data base has been successfully created
for each PLA macro and the global chip logic has been
correctly documented, the entire chip can be simulated to
verify that it performs the intended function before hard-
ware is designed and built.

R. L. GOLDEN ET AL.

The logic simulator described earlier can be utilized for
chips containing both primitive logic functions (AND, OR,
INVERT, etc.) and higher-level logic entities such as a
memory or a macro. Nonprimitives are simulated by al-
lowing macro modeling subroutines to be linked to the
main program. The system is therefore well suited for
simulating a design containing PLA macros.

A single subroutine (block B of Fig. 3) was developed
to simulate the internal function of any PLA macro. The
subroutine function is controlled by each individual PLA
macro master data base, so that the PLA internal logic
can be changed without altering the global logic or the
subroutine. In addition, this subroutine produces diag-
nostic tracing of the simulation activity within each
macro. The use of this PLA simulation program com-
bined with the existing computer simulation system al-
lows a PLA macro to be simulated by itself, or with any
collection of logic blocks defined by the logic input lan-
guage, including the global chip function. In addition,
since the circuit design and the layout of the PLA are
known, delays for the PLA macros can be calculated.
The simulation subroutine and system can include these
delays in order to identify timing problems.

When high-level models are used in lieu of primitives,
larger designs can be simulated with less computation
than for an all-primitive design, since fewer blocks and
fewer transitions need be simulated. Table 2 shows the
results from a comparative experiment. Our micro-
processor was simulated for 320 instructions using three
equivalent logic representations as detailed in the table.
The entry "chip model generation" refers to the proce-
dure for converting the logic language to a more efficient
data base for simulation. The "all events trace" is a rec-
ord of each net's transitions.

It can be seen from Table 2 that high-level modeling
reduces computer run time and data volume. The advan-
tage of the PLA macro-modeling subroutine is subtle but
important. Suppose a logic error in a PLA is uncovered in
simulation and is to be corrected. If the PLA were repre-
sented by primitives, the original data base would have to
be updated, and chip model generation would be required
before simulation could begin. On the other hand, using
the subroutine, a change to a bit in a PLA is corrected by
updating the table and running the picture program
(which takes about five seconds of System 370/168 time).
No chip model generation is required since the PLA sub-
routine is controlled by each individual master data base.
This procedure saved several weeks during the design
cycle of our chip.

1BM J . RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980

Expansion of the PLA to equivalent circuits
When the logic designer has gained confidence in the de-
sign through simulation, the symbolic array is expanded
(block C of Fig. 3) to an equivalent logic primitive form.
Expanding the array serves two purposes. First, it pro-
vides input for test pattern generation and logical-to-
physical checking programs. Second, the array logic sym-
bol matrix is translated into an array of binary ones and
zeros representing the presence or absence of a field ef-
fect transistor. The pattern of ones and zeros forms a map
from which the physical design of the PLA can be con-
structed. This information is of the form shown in Fig.
7(a) and is stored for later use by the program that ac-
tually performs the physical design.

The primitive logic representation of a PLA depends
upon its circuit technology and design. The expansion
discussed herein is for an n-channel MOSFET tech-
nology, where the basic circuit is a NOR; however, the
program can easily be modified for any circuit family.

Each AND-array product term and OR-array output col-
umn becomes a NOR block, as illustrated in Fig. 7(b). The
partitioning circuits are each represented as a single macro
block, which is later expanded to one or more NORS ac-
cording to an expansion definition for each partitioning
circuit type. The same logic text language used for de-
scribing the global block connectivity is used to represent
the internal PLA connections.

The PLA equivalent logic data are merged with the other
macros to form a chip data base compatible with the test
pattern generators, which create fault detection and isola-
tion tests for logic in primitive form. In addition, since
this merged data base contains all the connectivity infor-
mation for the chip, it can be used to verify the con-
nectivity in the physical design.

Physical design of the PLA
To understand how the mask data for PLA macros can be
automatically generated, consider how the data would be
generated manually. The engineer would probably use an
interactive graphic computer design system such as IGS
[4] to create geometric data. Such a system consists of a
central computer, disk storage, and a printer, as well as a
graphic video display terminal and a plotter. The geomet-
ric data produced with this system consist of rectangles,
lines, and polygons. These data are the input to an auto-
matic mask generation machine called a “flasher,” which
exposes selected areas of a photosensitive emulsion to ul-
traviolet light, thus building up the desired image on the
mask.

A N D A R R A Y

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 1 1 1 1 1 1

I I C I I I I I I I I I I I I C

4ML4L44LL 44L444R
O “ O + O O + + o o + o o o +

o c c o v o o v v o o v o o o s
O P H O L O O L L O l L l l l E

P O O P A P P A A P P A P P P C
1 C K 4 1 5 7 2 3 9 1 5 2 4 5 T

l N N l N l 2 N N l l N l l l N

...
2 l...
1 l.....

3 1.1..

O R A R R A Y

1 2 3 4 5

1 1 1 1 1

N N N W R

V V V I Q
L L L A E

O l 2 T O
R R R R R
L L L L L

1 1 1 1 1
11.1.
1.11.

++++-

4 l...... 1..1
5 1..11 .1..... . 1 1 1

7 1...1 ..1.1.. ..11

9 . . I...... 1 1 1 1

6 1 1 . . . l... .1.1

8 1. ...I
1

1 0 .1....... 1 1 1 1 1 1
1 1 l........ 1 .

(a)

NOR

-k WAlTRL

-
1A

(b)

Figure 7 Example of PLA expansion: (a) bit map; (b) equiva-
lent NORs for product term 1 1 , output column 4.

In the manual process, certain collections of shapes
representing circuits or circuit elements that will be used
repeatedly are designed first. These are stored as named
graphic entities called “cells.” When designing a particu-
lar PLA, shapes of unique dimensions are specified indi-
vidually, while shapes common to many PLAs are added
to the design by invoking predesigned cells at the desired
locations. Such cells are used for the FET gate at the
crosspoint, for the AND-array and OR-array load devices,
and for the various partitioning circuits. The invocation of
a cell is called a “cell transform.” An examination of this
task suggested that automation might be practical. We
therefore wrote a PLA generation program (block D of
Fig. 3) that creates the geometric data for a PLA in the
same fashion as the manual design process. The geomet-
ric elements unique to a particular PLA, in this case rec- 29

R. L. GOLDEN ET AL. IBM J . RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980

4-
J

bus

Metal

Difiusion

:::;:;? r
Figure 8 Example of AND-OR layout. Note: Figure not drawn to scale; diffusion-metal connects (contacts) omitted.

tangles representing AND input lines, product terms, and
ORoutput lines, are specified using program-calculated di-
mensions and locations. These are based on the number
and desired spacing of array rows and columns. Identi-
fying labels are applied to rectangular row and column
shapes for later automatic cross-checking against the
logic interconnection list, which uses the same labels as
symbolic net names. In this way, proper interconnection
of the physical design can be verified against that speci-
fied in the logic design. The program calculates the posi-
tion to which a needed cell, for example an FET gate or a
product term FET load cell, should be transformed, and
codes the transform operation to that cell. (The physical
design of these fixed cells is left to the designer because
automation of this aspect was judged not to be cost ef-
fective.) The bit map previously stored by the logic
block expansion program is used to calculate the posi-
tions where the FET gates are needed to create the re-
quired logic function in the PLA. Figure 8 is a sketch of a

30 PLA macro layout as it would be automatically gener-

ated. The resulting graphic data are transferred to the
graphic design computer as a new cell. The PLA cell is
then manually positioned and added to the desired loca-
tion in the global chip data base for later interconnection
with other circuits. This merges the automatically gener-
ated graphic data for the PLA with the graphic data for
the other macros used on the chip. After the global con-
nections are made, the entire chip data base is checked
for technology rule violations and is also checked against
its logical counterpart for interconnection errors. After
these automatic checks are successfully performed, the
geometry data set is ready for mask generation.

Efficiency of PLA macro physical design
How much design time is saved by this automated ap-
proach? For the microprocessor we designed, the PLA
macros contained an average of 16 inputs, 12 outputs, 28
product terms, and 238 crosspoints. As calculated in
Table 3 , over 400 operations would be required for each
PLA if it were implemented manually on the graphic sys-

R. L. GOLDEN ET A L IBM J . RES. DEVELOP. VOL. 24 NO. I JANUARY 1980

tem. Since any manual process is prone to error, at least
two design passes would be required, and these would
take an experienced designer two to three days to accom-
plish. The automatic method requires one minute of com-
puter time on a System 370/168. Further, a change to the
design requiring the addition of an input, an output, or a
product term would be accomplished by re-executing the
program. Of the 19 PLAs, 17 were implemented using the
PLA Generate program, saving seven to ten man-weeks
of effort. Graphic system usage was also reduced.

The design time savings of an automated PLA macro
approach versus implementing the functions as in a CUS-
tom design are significant. The 17 PLAs contain 4800 de-
vices, equivalent to almost 1400 NOR circuits of fan-in 2 . 5 .
It would take an experienced designer four to six months
to lay out, interconnect, and check this many circuits
manually, as compared to less than a week using the auto-
matic PLA macro generator.

Conclusions
The programs described in this paper are part of a meth-
odology for designing chips containing PLA macros. Doc-
umentation, design verification, and physical design for
the PLA portion of the chip are automated; at the same
time, however, a considerable degree of design freedom
for the chip as a whole is retained. An NMOS FET micro-
processor chip containing PLA macros and random logic
macros has been successfully designed with this method-
ology. The automated design of SO% of the circuits on the
chip saved one-third to one-half of the design effort re-
quired for a totally manual custom design. A comparison
of the circuit density and performance of this chip with
those of a master slice demonstrated that the macro de-
sign methodology results in higher density and less power
than the fully automated master slice approach.

Acknowledgments
The input language and the documentation and simulation
model programs for the PLA macros were based on prior
work at IBM Kingston by D. J . Donaghy, T. G. Foote,
and W . Snyders. The authors thank D. A. Conrad for the
concept of the PLA generator and for his help in the initial
design of the program. The effort of J . Dedrick, who
wrote the PLA Macro Picture program, is also gratefully
acknowledged.

References
1 . E. B. Eichelberger and T. W. Williams, “A Logic Design

Structure for LSI Testability,” Proceedings of the 14th De-
sign Automation Conference, New Orleans, LA, June 1977,
pp. 462-468.

2. P. S. BottorE, R. E. France, N. H. Garges, and E. J. Orosz,
“Test Generation for Large Logic Networks,” Proceedings
of the 14th Design Automation Conference, New Orleans,
LA, June 1977, pp. 479-485.

IBM J . RES. DEVELOP. \ ‘OL. 24 NO. I JANUARY I 980

Table 3 Calculation of manual graphic operations to implement
a PLA.

For the average PLA macro (Fig. 8), there were:

16 inputs

28 product terms
12 outputs

238 crosspoint devices

Number ojshapes
AND array input columns = 2 X number of logical col-
umns = 2 X 16 =

AND array diffusion rails = 3 shapes for every 2 product
terms = 28 X 3/2 =
OR array diffusion rails = 3 shapes for every 2 output
columns = 12 X 3/2 =

Number of cell transforms

Crosspoint device gates =
AND load and bus cells

OR load and bus cells

AND-OR interface cells

(1 for every 2 product terms) = 1/2 x 28 =

(1 for every 2 output columns) = 1/2 X 12 =

(1 for every 2 product terms) = 1/2 x 28 =

Number of lubrls
AND input columns =
AND product terms =
OR output columns =

32

42

18

92
-

238

14

6

14
272
-

32
28
12

72
~

Total operations = 436

3.

4 .

5 .

6.

7.

8.

Advanced Statistical Analysis Progrum (ASTAP), Program
Reference Manual, Program Number 5796-PBH, IBM Data
Processing Division, White Plains, NY 10604.
P. Carmody, A. Barone, J . Morrell, and C . Lovejoy, “An
Interactive Graphics System for Large Scale Integration De-
sign,” Proceedings of the International Conference on Inter-
active Techniques in Computer Aided Design, Bologna, Italy,
September 1978, pp. 281-294.
K. A. Chen, M. Feuer, K. H. Khokhani, N. Nan, and S.
Schmidt, “The Chip Layout Problem: An Automatic Wiring
Procedure,” Proceedings of the 14th Design Automation
Conference, New Orleans, LA, June 1977, pp. 298-302.
C. R. McCaw, “Unified Shapes Checker-A Checking Tool
for LSI,” Proceedings of the 16th Design Automation Con-
ference, San Diego, CA, June 1979, pp. 81-87.
K. H. Khokhani and A. M. Patel, “The Chip Layout Prob-
lem: A Placement Procedure for LSI,” Proceedings of the
14th Design Automation Conference, New Orleans, LA, June
1977, pp. 291-297.
J. C. Logue, N. F. Brickman, F. Howley, J . W. Jones, and
W. W. Wu, “Hardware Implementation of a Small System in
Programmable Logic Arrays,” IBM J . Res. Develop. 19, 110
(1975).

Logic,” ZBM J . Res. Develop. 19, 98 (1975).

Received April 16, 1979; revised June 20, I979

The authors are located at the IBM System Communicu-
tions Division laboratory, Kingston, New York 12401.

9. H. Fleisher and L. I. Maissel, “An Introduction to Array

31

R. L. GOLDEN ET AL.

