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Design  Automation  and  the  Programmable  Logic  Array 
Macro 

The  Programmable  Logic  Array  (PLA)  macro  is  a  physical  structure which simpl8es LSZ chip  design while yielding  high 
density  and  good  performance. Zn addition,  the  inherent  order  and regularity of this  structure  provide  opportunities  to 
speed  design  through  automated  logic  documentation,  design  vergcution  by  computer  simulation,  and  computer-auto- 
mated  physical  design. In this paper  a  chip  design  methodology is described  which is based on the  use of PLA structures 
(or  macros) within a  chip.  Logic  functions in  array form are  speciJed in a  compact  notation  that i s  automatically  convert- 
ed either  to  army  personulization  patterns or to  conventional logic blocks for  input  to  existing  checking  and  testing 
softwure.  Simulation of any  logic urray is performed  by  a  single  program  subroutine  operating on these  patterns. In 
addition,  the  simple, regular nature of the logic  array lends  itself  to  automutic  generation of the  layout  geometries 
necessary  to  actually build the array on a silicon chip.  Progrums  developedfor  these  purposes  and  the PLA mucro  design 
procedures  are  described in the  context of an  engineering  design  system. 

Introduction 
With Large  Scale Integration (LSI) technology, a typical A design based on a  particular data flow and  clocking 
chip,  such  as a  microprocessor, may contain thousands of method is chosen. Preliminary circuit design is un- 
transistors, and the chip may  be fabricated from masks dertaken, and-on the basis of this  early design-the 
made up of hundreds of thousands of shapes. A great  deal  circuit areas, their placement, and  their  inter- 
of engineering judgment, skill, and effort is required to  connections  are  estimated.  These  steps proceed  iter- 
meet  design objectives;  yet,  to design such a  chip  without atively until  a design that gives  the minimum area 
errors requires  a high degree of automation. This paper and that satisfies  objectives is achieved. 
describes  a chip design methodology that permits  a blend 
of manual engineering  and automated design,  and that is 
based on  the use of programmable array logic structures 
(PLAs) within the chip. 

Once the preliminary design is chosen, logical and 
physical designs are begun. In Fig. 1 ,  the logic design 
steps  are illustrated on the left and the physical design 
steps  are  shown  on  the right. In some  methodologies, 

illustrated, while in others  the physical design is delayed 
until logic verification is complete. 

Figure the general design flow Or logic and  physical  designs are accomplished in parallel as 
ogy that is followed in designing a chip. In the preliminary 
design phase, logic and circuit  designers  determine the 
proper  technology, e.g., bipolar or field-effect transistor 
(FET),  to meet the design specifications  and  the cost and 
schedule objectives. Preliminary designs are then under- Logic design is generally  comprised of the following 
taken to  determine how large the  chip must be. The pre- steps  (numbered items are keyed to those on the left in 
liminary design is accomplished as follows. Fig. 1): 

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of  royalty provided that (1) 
each reproduction is done without alteration and (2) the Journal reference and  IBM copyright notice are included on the first page. 
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission 
to republish other  excerpts should be obtained from the Editor. 23 

IBM J .  RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 R.  L.  GOLDEN ET AL. 



24 

design 
I I 

Circuit 
specification 

documentatlon 

Simulation 

Test pattcrn 
generation 

Performance 
evaluation 

ground rules 

To manufacturing 

Figure 1 Methodology of chip design. 

1. Transformation of the specification  into logic primi- 
tives (AND,  OR,  INVERT, etc.)  and storage elements 
(LATCHES,  MEMORY, etc.);  the  elements and their in- 
terconnections  are recorded on hand-drawn  diagrams. 
The  objective of this step is to  obtain an accurate 
transformation using a minimum number of elements. 

2 .  Entry of this logic into a computer  data  base. IBM has 
developed a standardized logic specification language 
for this purpose; this language will be described in 
some  detail later in this paper. Logic descriptions are 
either  encoded and entered  into  the  computer  system 
or are  entered graphically.  Computer-generated draw- 
ings are  then produced  from these. 

3. Simulation of a chip model derived  from this data  base 
to verify logic function. The IBM  Engineering Design 
System  includes a  software logic simulator that  per- 
mits users  to apply  inputs to  the software model and  to 
obtain  resulting outputs. This  simulation is based on 
both  function  and timing data, and it can operate on 
primitive  models or on higher-level models such  as a 
memory or a logic macro.  Logic may be simulated 
separately or in interconnected groups. 

4. Creation of test  patterns  from  the  same model. These 
test  patterns  are used after manufacturing to  test  the 
chip. It is desirable to verify that  every  input,  output, 
and  circuit on  the chip  functions  properly  before the 
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chip is placed in use.  Testing of circuits not externally 
accessible is achieved by a  combined  hardware-soft- 
ware approach.  First,  every  latch element is designed 
so that, in addition to  its normal logic function, it is 
connected in series with similar elements  to form con- 
tinuous  shift  registers that  are externally  controllable 
for testing.  This  method,  known as  “Level Sensitive 
Scan Design” (LSSD)  [I], allows test  patterns  to be 
shifted in and applied to combinatorial logic. The  re- 
sults are loaded  into the shift  registers  and then  are 
shifted out  for analysis. Second,  the IBM Engineering 
Design System includes  programs [ 2 ]  that  generate  the 
proper  test  patterns  and the expected results for chips 
designed in this  manner. In practice,  for chips of this 
kind, over 98% of  all circuit inputs and outputs  are 
tested. 

Physical  design is basically comprised of the following 
(numbered items  correspond  to  those  on  the right in Fig. 
1): 

1 .  Design of circuits  for logic primitives  and  storage  ele- 
ments,  and  the creation of mask shapes in a graphic 
language for  these circuits.  Circuit designs are verified 
analytically to  operate  under worst-case  conditions 
using the Advanced  Statistical Analysis Program 
(ASTAP) [3]. Mask shapes  are  created using a system 
such  as  the IBM  Interactive Graphics System IGS/370 

2 .  Chip layout, i.e., the  interconnection of these  circuits 
on  the  chip. This may be accomplished in a  number of 
ways;  for  example, by using IGS/370, or a digitizing 
system  such  as  an IBM 1130 system with a digitizer- 
plotter, or automatic wiring programs  such as  those 
described in [ 5 ] .  

3. Evaluation of circuit  path delays  to  ensure  that  the re- 
quired performance is achieved.  One method for  ac- 
complishing  this is to calculate delays for individual 
circuits as a function of load;  compute the load auto- 
matically from  the mask data;  compute the  delays for 
the circuits  on  the chip  based on  the preceding; and 
finally, repeat  the simulation using these  delays. 

4. Checking the  chip layout  against  technology  ground 
rules for minimum line spacing, maximum parallel line 
lengths, etc.  The IBM Unified Shapes  Checker  pro- 
gram [6] is used for this purpose.  The program incor- 
porates a high-level language that permits users to 
code  checks  for  their applications. 

5. Checking the chip  layout  against the logic design for 
correctness of circuit  layout  topology  and  circuit  inter- 
connections. Since both logical and physical data 
bases  exist, it is possible to  compare  the two by auto- 
mated means; this is known as logical/physical check- 
ing. 

~41. 
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After both logical design and physical design are com- 
pleted, the geometric data and test  patterns  are  sent  to  the 
manufacturing  facility,  where the  chip is built and  tested. 

Design  approaches 
The methodology just described can make use of design 
automation to varying  degrees. Unfortunately,  the degree 
to which automation  can aid in the design process  de- 
creases when the chip  and  circuit  layout  must  be  opti- 
mized for maximum  circuit density, and  for  performance 
at minimum power.  This  optimization may partially con- 
sist of the following: 

1. Changing the layout of mask shapes  for a  particular 
circuit so that  the circuit will  fit into a smaller area  and 
still retain its electrical characteristics. 

2. Designing unique  circuits for particular  applications, 
e , g . ,  an internal  driver circuit for heavy  loads. 

3. Changing the routing of circuit  interconnections to  re- 
duce  capacitance. 

Clearly, these  steps  are manual and require expertise  and 
time; as a result, they  can only be  justified for large-vol- 
ume  production.  A  chip designed in this way is said to be 
tailored or  customized, and this first approach is known 
as custom  design. 

A second  approach  to LSI design that  reduces develop- 
ment cost  and time at the  expense of increased silicon 
area is the master slice concept. In this approach,  circuits 
are predesigned in an  array;  these basic  circuits or cells 
are then interconnected with metal according to  the logic 
design. The designer  works in a constrained environment 
since the circuit design is fixed, as  are  the number of cells, 
fan-out  limits, and  other design parameters.  These con- 
straints,  however, make it practical to automate the phys- 
ical design process. Programs have been  written for  both 
the placement of cells  and the wiring of the entire  chip 
[5, 71. The  circuits  on  the  master slice are of a fixed de- 
sign; therefore, cell delays based on the  worst  placement 
can be calculated  before  the  actual  physical  design,  After 
the logic has been verified by  simulation,  a  performance 
analysis is obtained by once again simulating the logic 
verification patterns, before  physical design with these 
estimated delays. When physical design is complete,  de- 
lays based on the actual  interconnective wiring are used 
in simulation to verify performance. 

A  third approach  that can significantly reduce  design 
time is to utilize PLA chips of the  type described by J .  C. 
Logue et al. [8]. In this PLA chip approach,  the designer 
must  work within the bounds of a fixed number of product 
terms,  inputs,  outputs,  and  feedback  elements,  and with  a 
fixed chip  delay. Since  the PLA  chip layout is fixed, the 
remaining physical  design effort consists only of adding or 

deleting devices and  connecting the  proper partitioning 
and  output  circuits as chosen by the logic designer. That 
these  tasks  are easily  automated is evident  from the  fact 
that  devices which  form the  crosspoints within the  array 
are located in the same  relative  location as  the logic de- 
signer’s symbol  for  the device.  As in the  master slice ap- 
proach,  the silicon area is not as fully exploited as it is in 
custom design. 

PLA macro approach 
Unfortunately,  the design constraints imposed by the 
master slice or PLA chip approaches  are in many cases 
too  severe  to produce  a  cost-effective  product.  Con- 
versely, the  development  cost  for a custom design may be 
too great to  warrant its production.  To overcome  this di- 
lemma, we adopted a compromise approach known as 
macro design. 

Macro  design is based on  the  observation  that circuits 
with a high degree of logical connectivity will  fit closely 
together  when  physically  implemented. These aggrega- 
tions of circuits  are called macros. Examples of these 
macros, shown in Fig. 2, are a  multiplexer-register, an 
EXCLUSIVE-OR tree, and a most important macro-the 
PLA.  The  PLA macro  discussed in this paper  consists of 
input  partitioning circuits,  an AND array,  and  an OR array. 
It  combines the  PLA chip’s ease of automation with the 
flexibility of custom design regarding the choice of the 
number of inputs,  outputs, and product  terms,  as well as 
the  control of input-to-output delay. 

A microprocessor was  designed by our  group using 
PLA  macros.  The chip  consists of 35 macros, 19 of which 
are  PLAs,  and  these  account  for half of the  chip circuit 
area.  The remaining 16 were  assembled  from  smaller 
macros such  as  those shown in Figs. 2(a) and  (b), and are 
referred to as random logic macros. Some of the  custom 
design techniques described  earlier were used to optimize 
these  random logic macros. The  choice of PLAs  and ran- 
dom logic macros resulted in high circuit  density and 
good performance.  To illustrate,  a  study  was  made to 
compare this  design with another design using the  same 
technology but a different design approach.  The  devices 
in each design are totaled and  the number of equivalent 
NOR circuits of fan-in 2.5  is calculated  from the  total.  The 
results,  illustrated in Table 1, demonstrate  that  the  macro 
design approach is superior to  the  master slice approach 
by a factor of 1.8 in circuit area,  and by a factor of 1.7 in 
power for  the  same or better  performance. 

Figure 3 illustrates how programs for  PLA macro  de- 
sign, which will be  elaborated on in  more  detail in the 
remainder of this paper, fit into the methodology of Fig. 1. 
The first step  is  the logical design of the  PLA macros. 25 

R. L. GOLDEN ET AL. IBM I .  RES. DEVELOP. VOL. 24 NO. I JANUARY 1980 



26 

Clock 
1 

Inputs 

I 
Multiplexers  Polarity  hold ( P H )  EXCLUSIVF-ORs / 

latches 
( a )  ( b )  (C) 

Figure 2 Examples of macros: (a) multiplexer-register  macro; (b) EXCLUSIVE-OR macro; (c) PLA macro. 
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PLA macro logic specification and documentation 
The  regular structure of the  PLA  macro makes a tabular 
format convenient  for specifying and  recording  the logic 
function.  The  format used is a  matrix in which the col- 
umns are  the AND-array input and the OR-array output 
lines of the  macro, and the rows  are  the product terms. 
The logic functions of the  PLA macro  are defined by the 
following symbols: 

1 .  In the AND array: 
I -match on a logical one. 
0 -match on a logical zero. 
. -match on  either a logical one or zero (don't  care 

state). 

2 .  In  the OR array: 
I -set output  to logical one if any input  product  term 

is selected;  or  to logical zero if no input  product 
terms  are  selected. 

. -ignore this product  term. 

The AND array  symbols  are for  input  partitioning  circuits 
which are one-bit  (or one-input) decoders. Additional 
symbols  specify  partitioning circuits which are two-to- 
four-bit (or two-input) decoders [9], but  they will not be 
defined here. An example of PLA logic documented in 
this  notation is shown in Fig. 4. 

The matrix is numbered from left to right,  and from top 
to  bottom,  as indicated on  the  top  and left sides of the 

R. L. GOLDEN ET P 1BM 1. RES. DEVELOP. VOL. 24 NO. I JANUARY 1980 



figure. Consider the third row. Product term  3 will be 
selected when column 5 is a logical zero and  column 6 
is a logical o n e .  In this event,  output columns 13, 15, 
and 16 will each  be logical one conditions. 

The PLA  macro logic specification describes the logical 
functions within the macro  itself. However,  the inter- 
connections of the  PLAs  to the other macros on  the  chip, 
and the  circuit connections within the  other  macros, must 
also be specified to fully describe the logical function of 
the  chip.  This global representation of the chip uses  the 
IBM standardized logic specification language mentioned 
previously to form  a data base for  documentation, simula- 
tion,  and test  pattern generation. 

In our use of the language, a  primitive,  a  register  ele- 
ment (latch),  or a  PLA  macro is represented  as  one logic 
block. Each block is given a  unique identification and is 
described by one  statement.  Each interconnecting net is 
given a  symbolic  name.  A simplified example of this  rep- 
resentation is shown in Fig. 5 .  The  PLA macro block de- 
scription includes  a  pointer (INTR) to the  macro logic 
specification table (Fig. 4). Thus,  the periphery of the 
PLA macro is stored with the  chip's logic description, 
and the internal logic of the PLA macro is stored  separate- 
ly in a table. This  approach permits changes to the logical 
function of the macro without  changing the global repre- 
sentation,  as long as  the PLA macro input  and output  nets 
remain the  same. 

The one-block  and  one-table  representation for  the 
PLA reduces  the documentation over  an equivalent  ran- 
dom logic approach.  The 19 PLAs were  shown as 19 
blocks supplemented with 19 tables.  The equivalent  logic, 
assuming that  one were to map the  PLAs directly  into 
primitives, e.g. ,  one  product term = one NOR, would be 
over 1000 blocks. 

A  convenient language was also developed for  the  PLA 
logic designer. An abbreviated format specifies only the 
significant (I and 0) table entries of the macro by column 
for each row (Fig. 6). For  example,  the third row in the 
array  section of the  data, corresponding to line 3 in Fig. 4, 
indicates that column 5 is 0, followed by an I in column 6. 
The next column specified is 13, which  contains an I, fol- 
lowed by a don't  care  term in 14, I in 15, and I in 16. This 
PLA  macro  design language also includes features  for  de- 
scribing partitioning  circuit types, e.g. ,  one-input or two- 
input partitioning, for assigning symbolic net names to  the 
inputs and  outputs, and  for  recording  descriptive  com- 
ments associated with the logic specification. 

A program, Macro Picture  (block  A of Fig. 3), was de- 
veloped to read this  abbreviated format specification and 

n Columnnumbers 
123456789012 34567) 1-17 
"""""" 

2 .... I.. . . . . .  1 ... I........ 
3 . . . .  01 . . . . . .  

8 . . . . . . . . . .  I. 
9 . .  o . . . . . . . . .  

11 I . . . . . . . . . . .  

""_ ~ . .  
11111 
11.1.  
1.11. 
I..I. 
.III. 
.I.I. 
..II. 
. . .  I. 
11111 
11111 . . .  I. 

Figure 4 Example of PLA  representation. 

Log~c block ,Symbolic name 

J 
X + MMSKIN I - M M S K h N  - I + N L V d R L  . I + N L V d Z N  

I + MMSKRI. 
PLA PHLATCH 

- - 
- - 

I 
identifier 

Pomterto 

table 

I A  ( I - M M S K h N ) = N O R ( X f M M S K I N , I + M M S K R L ) ;  

2A ( l + N L V ~ R l . , ~ t ~ . ) = P L A ( I - M M S K 6 N , ~ t C . ) P I = I N T R ~  

3A ( I + N L V @ Z N ) = P H L A T C H ( I + N I . V @ R L , X + C L O C K  I ) ;  

Figure 5 Example of standardized logic representation. 

Table 1 Results  from  design  approach  comparison  study.  (Re- 
sults  shown  as  ratios.) 

Macro chip 
Master slice chip 

Equivalent  NORsicm' 1.8 
Average  delay/circuit 0.8 
Average  capacitanceicircuit 0.5 
Average  powericircuit 0.6 

to produce  a  printed  picture of the  PLA macro logic in a 
tabular  format similar to  that  shown in Fig. 4. In addition 
to providing design documentation, this  program also 
produces  a data file to  serve  as a PLA macro  master data 
base for design steps  that follow, including simulation, 27 

R. L. GOLDEN ET AL. IBM I. RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 



HEADER I N T R ;  
DIMENS  INPUTS  '012,  

OUTPUTS=005. 
TERMS - 0 1 1 .  

GENERAL BP:( 
ANDOUT " 0 0 0 ;  

T C = ( 0 0 5 , 0 0 6 , 0 0 7 . 0 0 9 ) r  
1. 

I ~ ~ 0 0 1 , 0 0 4 , 0 0 8 , 0 1 0 . 0 1 1 ) .  
D ~ ( 0 0 2 , 0 0 3 , 0 1 2 ) ~  
<I : I  >: 

ARRAY 

NETNAME 

PICTURE 

END 

GliIIIii, 
5 1 1 3 1 1 . 1 ,  
5 0 1 1 3 1 . 1 1 ,  
7 1 1 3 I . . I ,  
5 0 0 0 1 1 4 1 1 1 ,  
6 0 0 . 1 1 4 1 . 1 ,  
5 0 . 0 . 0 1 1 5 1 1 .  

3 0 1 3 1 1 1 1 1 ,  
1 1 1 1 6 1 .  

2 0 1 2 0 1 1 1 1 1 ,  

1 = ' I -MMSK6N1,  
1 1 1 6 1 ;  

4 = ' I t L V L O A N ' .  
7 : ' I + L V L J 4 N ' ,  
1 0 = ' J + L V L 6 A N ' ,  
1 4 = ' I t N L V l R L ' ,  
1 7 = ' I - R E P O R L t ,  
0 1 , c = ( 1 - 1 2 , S , s ,  

I N T R ;  
R = ( l - l l . S . W I  

2 =' I -MCPCON' ,  
5 = ' I t L V L l A N ' ,  
8 = ' I t L V L 4 A N ' ,  
1 1 = ' I + L V L 7 A N ' ,  
15='I+NL:;RL', 

1 2 = ' C t R S E T C N  
, 1 3 - 1 7 . 5 , 5 , ) ,  
. S ) i  

Figure 6 Abbreviated  format  example. 

Table 2 Simulation run time and data volume. 

3 ='C-LCHKON',  
6 = ' I t L V L Z A N ' ,  
9 = ' I t L V L 5 A N ' ,  
13: ' I+NLVORL' ,  
1 6 = ' I + W A I T R L ' r  

A11 primi-  Only  latches PLAs and 
tives,  no  modeled  by  latches 

modeling  with  subroutines  modeled  by 
subroutines  subroutines 

~ ~ 

Number  of 

Chip model 
logic  blocks 6363 1846 845 

generation 
time, 370/168 
(min) 27 1 1  4 

All events  trace 
data set size 
(13 000-byte 
disk tracks) 2040 197  122 

time, 370/168 
(min) 45 12  12 

Simulation 

physical design,  and test pattern generation. The pro- 
grams  used in these  steps can  easily  read  this data  base 
because of its fixed tabular format, which minimizes the 
processing needed  to read the  data. 

The  Macro Picture  program  also  provides syntax 
checks,  such  as verifying that  only valid array symbols 
are  used.  The program guarantees  that  further processing 
can  continue only when the logic specification has  correct 
syntax.  This  is accomplished by recording a success or 
failure code in the  data base produced. 

PLA macro logic simulation 
After the  master  data  base has  been  successfully created 
for  each  PLA  macro  and  the global chip logic has  been 
correctly documented,  the  entire  chip  can be  simulated to 
verify that it performs the intended  function  before  hard- 
ware is designed  and built. 
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The logic simulator described earlier  can be utilized for 
chips containing  both primitive logic functions (AND, OR, 
INVERT, etc.)  and higher-level logic entities such  as a 
memory or a macro.  Nonprimitives are simulated by al- 
lowing macro modeling subroutines  to be linked to  the 
main program. The system is therefore well suited for 
simulating a design containing PLA  macros. 

A single subroutine (block B of Fig. 3) was  developed 
to simulate the internal  function of any  PLA macro. The 
subroutine  function is controlled by each individual PLA 
macro master  data  base, so that  the  PLA internal logic 
can be changed  without altering the global logic or the 
subroutine. In  addition, this subroutine produces diag- 
nostic tracing of the simulation activity within each 
macro.  The  use of this  PLA  simulation  program com- 
bined with the existing computer simulation system al- 
lows a PLA  macro  to be simulated by itself, or with any 
collection of logic blocks defined by the logic input lan- 
guage,  including the global chip function. In addition, 
since the circuit design and the layout of the PLA  are 
known, delays  for  the  PLA  macros  can be calculated. 
The simulation subroutine and system  can include  these 
delays in order  to identify timing problems. 

When high-level models are used in lieu of primitives, 
larger designs can be simulated  with  less  computation 
than for  an all-primitive design, since fewer  blocks and 
fewer transitions need  be  simulated.  Table 2 shows the 
results from a  comparative experiment. Our micro- 
processor  was simulated for 320 instructions using three 
equivalent logic representations  as detailed in the table. 
The  entry "chip model generation"  refers to the proce- 
dure  for  converting  the logic language to a more efficient 
data base for simulation. The "all events trace" is a  rec- 
ord of each net's  transitions. 

It  can  be seen from  Table 2 that high-level modeling 
reduces computer run  time  and data volume. The  advan- 
tage of the  PLA macro-modeling subroutine is subtle  but 
important. Suppose a logic error in a PLA is uncovered in 
simulation and  is  to be corrected. If the  PLA were repre- 
sented by primitives, the original data base would have to 
be updated, and chip model generation would be required 
before  simulation could begin. On the  other  hand, using 
the  subroutine, a  change to a bit in a PLA is corrected by 
updating the  table and running the picture  program 
(which takes  about five seconds of System 370/168 time). 
No chip  model  generation is required since  the  PLA  sub- 
routine is controlled by each individual master  data  base. 
This procedure  saved several weeks during the design 
cycle of our chip. 
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Expansion of the PLA to  equivalent  circuits 
When the logic designer  has  gained confidence in the  de- 
sign through  simulation,  the  symbolic  array is expanded 
(block C of Fig. 3) to an equivalent logic primitive form. 
Expanding the  array  serves  two  purposes.  First, it pro- 
vides  input for  test pattern  generation and logical-to- 
physical checking programs. Second,  the  array logic sym- 
bol matrix is translated into an  array of binary ones and 
zeros representing the presence or absence of a field ef- 
fect transistor.  The  pattern of ones and zeros forms a map 
from which the physical design of the PLA can be con- 
structed.  This information is  of the  form shown in Fig. 
7(a) and is stored  for  later use by the program that ac- 
tually performs the physical design. 

The primitive logic representation of a PLA depends 
upon  its  circuit  technology and design. The  expansion 
discussed  herein is for  an n-channel MOSFET tech- 
nology, where  the basic circuit is a NOR;  however,  the 
program can easily be modified for any  circuit family. 

Each AND-array product term and OR-array output col- 
umn becomes a NOR block, as illustrated in Fig. 7(b). The 
partitioning circuits are each  represented as a single macro 
block,  which is later expanded to  one or more NORS ac- 
cording to  an  expansion definition for  each partitioning 
circuit type.  The  same logic text language  used for de- 
scribing the global block connectivity is used to  represent 
the internal PLA connections. 

The PLA equivalent logic data are merged with the  other 
macros to  form a chip  data  base compatible  with the  test 
pattern  generators, which create fault  detection  and isola- 
tion tests  for logic in primitive form.  In addition,  since 
this merged data  base contains all the connectivity infor- 
mation for  the  chip, it can be used to verify the  con- 
nectivity in the physical design. 

Physical  design of the PLA 
To  understand how the mask data  for PLA macros can be 
automatically generated, consider how the  data would be 
generated  manually. The engineer would probably  use an 
interactive  graphic computer design system  such  as IGS 
[4] to  create geometric data.  Such a  system consists of a 
central  computer, disk storage,  and a printer,  as well as a 
graphic  video  display terminal and a plotter.  The geomet- 
ric data produced with this system  consist of rectangles, 
lines,  and  polygons. These  data  are  the input to  an  auto- 
matic mask generation machine called  a  “flasher,”  which 
exposes  selected  areas of a  photosensitive  emulsion to ul- 
traviolet  light, thus building up the desired image on  the 
mask. 
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Figure 7 Example of PLA expansion:  (a) bit map; (b) equiva- 
lent NORs for product term 1 1 ,  output column 4. 

In the manual process, certain  collections of shapes 
representing circuits or circuit elements  that will be used 
repeatedly are designed first. These  are stored as named 
graphic entities called “cells.”  When designing a particu- 
lar PLA, shapes of unique dimensions are specified indi- 
vidually, while shapes common to many PLAs are  added 
to  the design by invoking predesigned  cells at  the desired 
locations. Such cells are used for  the  FET gate at  the 
crosspoint,  for  the AND-array and OR-array load devices, 
and  for the various  partitioning circuits.  The invocation of 
a cell is called  a  “cell  transform.” An examination of this 
task suggested that automation might be  practical. We 
therefore wrote a PLA generation  program  (block D of 
Fig. 3) that  creates  the geometric data  for a PLA in the 
same  fashion as  the manual design process.  The geomet- 
ric elements unique to a particular PLA, in this case rec- 29 
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Figure 8 Example of AND-OR layout. Note: Figure not drawn to scale; diffusion-metal connects (contacts) omitted. 

tangles representing AND input  lines,  product terms,  and 
ORoutput lines,  are specified using program-calculated di- 
mensions and locations. These  are based on the number 
and  desired  spacing of array rows  and columns. Identi- 
fying labels are applied to rectangular row and column 
shapes  for  later automatic  cross-checking  against the 
logic interconnection list, which uses  the same  labels as 
symbolic net  names. In this way,  proper interconnection 
of the physical design can be verified against that speci- 
fied in the logic design. The program  calculates  the posi- 
tion to which  a  needed  cell, for  example  an  FET gate or a 
product term  FET load cell, should  be  transformed, and 
codes  the  transform operation to that cell. (The physical 
design of these fixed cells is left to  the designer because 
automation of this aspect was judged not to be cost ef- 
fective.)  The bit map  previously stored by the logic 
block expansion program is used to calculate the posi- 
tions where  the  FET gates are needed to  create  the re- 
quired logic function in the PLA. Figure 8 is a sketch of a 

30 PLA macro layout  as it would be automatically  gener- 

ated.  The resulting  graphic data  are transferred to  the 
graphic  design computer  as a new cell. The PLA cell is 
then manually positioned and added  to the  desired  loca- 
tion in the global chip data base for  later interconnection 
with other  circuits. This merges the automatically  gener- 
ated  graphic data  for the PLA with the graphic data  for 
the other macros used on the chip. After the global con- 
nections are  made, the entire  chip  data base is checked 
for technology rule violations and is also checked  against 
its logical counterpart  for interconnection errors. After 
these  automatic  checks  are successfully  performed, the 
geometry data  set is ready for mask  generation. 

Efficiency of PLA macro physical design 
How much design time is saved by this automated ap- 
proach?  For  the microprocessor we designed, the PLA 
macros contained  an average of 16 inputs, 12 outputs, 28 
product terms, and 238 crosspoints. As calculated in 
Table 3 ,  over 400 operations would be required for  each 
PLA if it were implemented manually on the  graphic sys- 
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tem.  Since  any manual process is prone  to  error, at least 
two design passes would be required, and these would 
take an experienced designer  two to  three  days  to accom- 
plish. The  automatic method requires  one minute of com- 
puter time on a System 370/168. Further, a  change to  the 
design requiring the addition of an  input, an output,  or a 
product term would be accomplished by re-executing the 
program. Of the 19 PLAs, 17 were  implemented using the 
PLA Generate program, saving seven  to ten  man-weeks 
of effort.  Graphic  system usage was  also reduced. 

The design time savings of an automated PLA macro 
approach versus implementing the functions as in a CUS- 
tom design are significant. The 17 PLAs contain 4800 de- 
vices,  equivalent to almost 1400 NOR circuits of fan-in 2 . 5 .  
It would take an experienced  designer four  to six months 
to lay out,  interconnect, and check this many circuits 
manually, as  compared  to less  than  a  week using the  auto- 
matic PLA macro  generator. 

Conclusions 
The programs  described in this paper  are part of a  meth- 
odology for designing chips  containing PLA macros. Doc- 
umentation, design verification, and physical design for 
the PLA portion of the chip are  automated; at the  same 
time, however, a  considerable  degree of design freedom 
for the  chip as a whole is retained. An NMOS FET micro- 
processor  chip containing PLA macros and random logic 
macros has been successfully designed with this  method- 
ology. The  automated design of SO% of the circuits on  the 
chip saved one-third to one-half of the design effort re- 
quired for a  totally manual custom  design. A comparison 
of the circuit  density  and  performance of this chip  with 
those of a master slice demonstrated  that  the macro  de- 
sign methodology  results in higher density  and  less power 
than  the fully automated master slice approach. 
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