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A Heuristic Test-Pattern Generator for Programmable

Logic Arrays

This paper describes a heuristic method for generating test patterns for Programmable Logic Arrays (PLAs). Exploiting
the regular structure of PLAs, both random and deterministic test-pattern generation techniques are combined to achieve
coverage of crosspoint defects. Patterns to select or deselect product terms are generated through direct inspection of an
array; test paths to an observable output are established by successive, rapidly converging assignments of primary input
values. Results obtained with a PL/I program implementation of the method are described; these results demonstrate
that the method developed is both effective and computationally inexpensive.

introduction

Previous work in test-pattern generation [1-5] has shown
that random patterns can be used to easily and efficiently
achieve stuck fault test coverage in excess of 90% for
most combinational logic networks. Unfortunately, ran-
dom patterns have proved to be ineffective for testing
faults in Programmable Logic Arrays (PLAs) [5]. In this
paper, a heuristic method will be described that exploits
the concepts of random test patterns and extends their
application to generating tests for PLAs. This method is
called PLA/TG, an acronym for programmable logic ar-
ray/test generator.

Random test patterns do not give high test coverage for
PLLAs mainly because the AND array in a PLA normally
has a relatively large number of used crosspoints in each
product term (Fig. 1). The probability of detecting a miss-
ing crosspoint with a random pattern is no better than
1/2", where n is the number of used crosspoints in the
product term. Since 7 is frequently greater than 10, the
test coverage using random tests is quite low. The prob-
lem is solved in the PLLA/TG procedure by deterministi-
cally generating embryonic tests for each used crosspoint
in the AND array. These tests are then combined using a
procedure that exploits the PLA structure and utilizes
random input values wherever possible.

The following concepts are employed by PLA/TG to
achieve further efficiencies in test generation and fault
evaluation.
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Figure 1 PLA logic schematic and terminology.
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Figure 2 Embryonic test patterns for an AND block.
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Figure 3 Embryonic test patterns for an AND block together
with a sensitized test path.
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. Direct (nonexpanded) representation of the PLA: a
matrix representation is used for test generation with-
out expansion into equivalent logic blocks.

. Reduced fault assumptions: one stuck condition is
modeled at each personalized crosspoint in the AND
and OR arrays. Through the use of an additional clos-
ing routine, all testable stuck conditions in the bit par-
titioning circuitry are covered.

3. Pattern subsumption: the embryonic patterns are sub-
sumed as long as such subsumption is effective (i.e.,
additional test coverage is gained), thereby producing
a nearly minimum test set.

4. Elimination of the need for conventional fault simula-
tion: given the PLA structure, a simple analytic check
can determine if a candidate pattern detects a given
fault, thus obviating the primary need for the most
costly part of test pattern preparation in an LSI envi-
ronment, fault simulation.

N

This paper presents a detailed description of the PLA/
TG method. First the test objectives and fault assump-
tions are discussed. This is followed by descriptions of
the test-generation procedures and of special closing rou-
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tines required for complete test coverage. Then, in the
sections following, the assumptions behind the fault mod-
eling utilized in the method are discussed. Finally, the re-
sults obtained with a PL/I implementation of PLA/TG are
described.

Test objectives and fault assumptions

Working with a digitized description of information for a
particular PLA, such as that contained in Fig. 1, the gen-
erator creates a set of patterns that consists of the follow-
ing two types of embryonic tests.

1. Test Type 1 (T1): All used crosspoints on a given word
line are set to logic one.

2. Test Type 2 (T2): One selected used crosspoint on a
given word line is set to zero; the rest of the used
crosspoints are set to one.

These two test types are precisely the familiar embryonic
patterns for an AND block in stuck-fault practice as shown
in Fig. 2. The total number of Type 1 tests is equal to the
number of product terms and the total number of Type 2
tests is equal to the number of used crosspoints in the
AND array.

For cither of the two types of tests to be successful
there must also exist a sensitized test path through the orR
array as illustrated in Fig. 3.

Probably the major difference between PLA/TG and
other PLA test approaches is the method by which paths
are sensitized through the OR array. Normally this is done
in a deterministic manner that results in decision trees
that can have relatively long program run time. In PLA/
TG, a set of primary input values is randomly assigned
and then a check is made to determine whether a path has
been sensitized. If the path is not sensitized the process is
repeated until all tests have been established or a maxi-
mum number of iterations has been reached.

It is worth noting that the PLA characteristic causing
random test patterns to be ineffective (i.e., many used
crosspoints per product term) is also the characteristic
that renders the procedure of combining random patterns
with T1 and T2 tests effective for sensitizing test paths.
That is, if the n inputs to an AND gate are randomly as-
signed, then the probability of the output being zero is
(2" — 1)/2". Thus, randomly assigning other inputs not
specified by a T1 or T2 test will usually result in a sen-
sitized path.

Although both T1 and T2 tests are sensitized the same
way, as illustrated in Fig. 3, they do have different re-
quirements. The T1 test will test the input to the OR block
‘*stuck-at-zero.”’ Thus all OR blocks fed by the AND block
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must be sensitized for some T1 test. The T2 tests will test
the inputs to the AND block “‘stuck-at-one.”” Thus it is suf-
ficient to sensitize the path to any OR block fed by the AND
block.

These facts suggest the following approach to com-
bining the embryonic T1 and T2 tests. First, two or more
T1 tests should not be combined since they might both
feed the same OR block and combining them would pre-
vent the testing of their inputs to this common OR block.
On the other hand, combining a T2 test with a T1 test is
acceptable since the T2 test will usually help sensitize the
T1 test path, and the associated product term of the T2
test will have a high probability of feeding at least one OR
gate not fed by the T1 product term. Also, two or more T2
tests can usually be combined without causing any path-
sensitizing problem.

This suggests the following simple procedure that is
fast and results in relatively few test patterns.

Step 1 Specify and assign each T1 embryonic test to a
unique test pattern.

Step 2 Specify each T2 embryonic test, one at a time,
and try to combine it with one of the test patterns.
It will combine if no specified bit value is different
from the corresponding specified bit value in the
test. If it will not combine with any existing test
pattern, then assign it to a new test pattern.

This procedure will be described in more detail in the next
section.

It is the objective of the generator to see that there is a
valid T1 test for each use of each word line in the OR array
and one T2 test for each use of a bit line in the AND array.
This objective can be viewed as equivalent to modeling a
single stuck-fault at each used crosspoint. The PLA/TG
procedure does just that; its fault list is equal in length to
the number of used crosspoints in the entire PLA. Figure
4 illustrates, with a portion of the two-level PLA viewed
as conventional AND-OR logic, which stuck-faults are as-
sumed. Coverage of this limited set of stuck-faults will
ensure that all gates in the AND or OR arrays operate prop-
erly. A complete set of T1 and T2 patterns will detect any
missing-crosspoint defect.

Test generation procedure

The generation procedure begins by specifying a set (PT1)
of T1 patterns. A T1 test consists of all the primary input
(PD) values required to ‘‘turn on’’ —set to logic one—a
given word line (see Fig. 5). For word line 1 in Fig. 5 this
would be

a b ¢ d ---
1 U 1 Uu --- 1,
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f = stuck-at-one

* = stuck-at-zero

Figure 4 Missing-crosspoint faults viewed as conventional
logic stuck-faults.
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Figure 5 PLA logic schematic with labeled crosspoints.

where ““U’’ stands for ‘‘unspecified.”’ This is the embry-
onic condition required to turn or WLI1 via its used cross-
points at coordinates (1, 1), (1, 3), and (1, {) and to test the
potential stuck-at-zero condition at (1, 101) in the OR ar-
ray. This partial pattern does nothing, however, to ensure
a sensitized path to an observable output. Next, a set of
T2 patterns is specified (PT2). The subset for WLI1 in
Fig. 5 would be
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Figure 6 Two-bit partitioning (two-to-four decode) circuitry.
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Figure 7 Average test coverage versus number of passes
through PLA/TG for the 19 PLAs listed in Table 1.
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These constitute a necessary condition for testing the
stuck-at-one conditions at coordinates (1, 1), (1, 3), and
(1, 9. In specifying either of the partial test types, if the
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bit line in question is driven by a two-bit partitioning
(2BP) circuit [6] (Fig. 6) rather than a PI, then a reverse
transform to PI values is performed via a table. When a
logic zero is desired on any 2BP output, a unique set of PI
values is required. In the case of a logic one on a 2BP
output, there may be one, two, or three PI choices that
will satisfy this. The choice is made at random in PLA/TG
to increase the likelihood of reaching a valid detection
test and to increase the chance for stuck-fault coverage in
the 2BP logic itself, a topic which will be discussed in a
later section.

In the interest of final test pattern economy, a subsume
operation is now performed with PT1 and PT2. First all
patterns in PT1 are placed directly in a new set, P. Then,
for each pattern in PT2, the question is asked, ‘*Can it be
subsumed under any pattern in P?”° In general, pattern B
will subsume under pattern A if for every P1 position one
of the following conditions is true:

Al (1] [0] U 1 0 U| |U
(o) = (o[ ok ful 5ol
If a pattern B from PT2 will subsume under a pattern A
in P, then any U in A that has a logic one or zero, in a
corresponding PI position in B, is changed to that value;
the pointer of the fault for which B was designed is
changed to refer to A. If a partial pattern from PT2 will

not subsume under any pattern in P, it is added, without
change, to P.

When subsumption is complete, the next step is to ran-
domly assign values (1, 0) to all unassigned PIs in the pat-
terns in P. This is done in lieu of the forward drive opera-
tions in deterministic test generation, where, having set
the required PI values to obtain an embryonic test condi-
tion, choices are made on the remaining PIs to ensure a
detection path to an observation point. The PLA/TG pro-
cedure makes a random attempt to establish such a path.

At the end of the random assignment step, what has
been generated is a fully specified set of candidate pat-
terns P which have the following two properties.

1. They contain the necessary embryonic conditions to
test all modeled faults in the AND and OR arrays.

2. They contain arbitrary attempts at sensitizing detec-
tion paths for these test conditions.

The next step is pattern evaluation; i.e., does a pattern
detect the fault(s) for which it was designed after random
assignment of unspecified PIs or has detection been
blocked? For either T1 or T2 patterns, this amounts to
exactly the same question: Are all word lines that are
ORed with the word line under test set to the non-
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Table 1 PLA/TG results for 19 custom PLAs.

PLA Product Inputs Outputs Used Test Number of Faults Time
number terms crosspoints coverage patterns untested 370/168 CPU

(%) (s

1 16 15 9 145 100 77 1.0

2 20 13 9 168 100 64 1.0

3 21 18 4 147 100 108 2.7

4 27 21 9 108 100 92 1.0

b 16 15 7 123 100 59 0.9

6 30 15 4 222 100 112 2.0

7 17 14 3 130 100 67 1.2

8 30 16 8 226 100 107 2.8

9 21 17 6 137 100 70 1.3

10 35 17 21 245 100 85 1.5

11 36 15 7 296 98.9 150 3 5.2

12 17 15 6 179 99.4 125 1 3.1

13 21 16 4 168 100 109 2.3

14 54 14 51 987 99.4 252 5 23.0

15 74 23 24 547 99.6 152 2 17.2

16 19 21 4 133 97.7 51 3 1.8

17 11 12 5 52 100 45 6.1

18 32 21 17 228 100 70 4.9

19 34 13 34 244 100 41 0.9

Average 28 16 12 238 99.7 97 4.1

Table 2 PLA/TG results for 12 fixed-size-module PLAs.

Part Product Inputs Outputs Used Test Number of Faults Time

number terms crosspoints coverage patterns untested 3701168 CPU
(%) (min:s)

1 62 40 41 1257 97.5 342 31 :57

2 107 52 39 1317 96.5 389 46 1:16

3 98 50 35 819 92.5 388 61 :53

4 66 46 24 733 97.2 186 20 28

5 73 51 26 622 98.3 304 10 :59

6 104 52 25 1691 98.2 408 29 1:16

7 95 47 41 1315 99.0 301 12 :45

8 92 49 45 1446 97.9 548 30 1:41

9 106 52 32 783 96.6 156 26 23

10 73 51 29 702 98.7 192 9 :17

11 84 S1 28 489 100.0 123 0 :08

12 66 47 35 825 99.6 216 3 :25

Average 85 49 33 999 97.2 296 23 47

controlling value, i.e., logic zero? In proceeding through
the fault list, a single analytic question determines if the
candidate pattern is valid: Is at least one bit line *‘turned
off”” in each of the other ANDs ORed with the AND under
test? If the answer is yes, the corresponding fault is marked
as having been detected. At the end of the pattern evalua-
tion operation any pattern in P that does not uniquely
detect a fault is deleted.

If any faults remain undetected, passes are taken
through the procedure in the following manner.
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1. The partial tests required for the untested faults are
retrieved from PT1 and PT2.

2. Subsumption, as defined, is performed on this subset.

. Unspecified PIs are randomly assigned values.

4. Pattern evaluation is performed.

(98

Test coverage climbs quickly on these successive passes.
Figure 7 presents fault-coverage percentages versus the
number of passes through the PLA/TG procedure for 19
PLAs used in an actual product design (discussed in a
subsequent section and detailed in Table 1). The average

19
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Figure 8 Example of a PLA personality not susceptible to ran-
dom test path sensitization.

number of passes required to generate a complete set of
patterns was 16 for this group of PLAs; the largest num-
ber was 45.

In the interest of breaking possible detection ‘‘blocks,”
the following two variations are introduced on these addi-
tional passes.

1. If 2BP circuitry is used in the PLA and if 100% cov-
erage is not obtained by the tenth pass, then new par-
tial tests are generated rather than retrieving them
from PT1 or PT2. Since there may be more than one
way to set up a particular T1 or T2 through the parti-
tioning logic, another random choice may aid fault de-
tection.

2. If on any additional pass no more faults are detected,
then the subsume step is dropped on the next pass. It
is possible that two patterns ‘‘deadlock’ so long as
one subsumes the other.

In the manner described, PLA/TG continues until all
faults are detected or until T, , additional passes result in
0% added fault coverage, where T, is set by the user.
For the results presented in Tables 1 and 2, T, , was set
equal to 25.

Special closing routines
Although the previously described heuristic procedure
works very well for most PLA personalizations, for a

small percentage of personalizations it may not work as
well. An example of this is shown in Fig. 8. For these
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particular personalizations, a special closing routine is
utilized at the end of pattern generation. In this case, the
generator sets up one bit and then randomly searches for
the single, unique sensitizing pattern. This results in a
success probability of only 1/128 for the configuration il-
lustrated in Fig. 8.

In general, if a large number of product terms having
relatively few used crosspoints in the AND array all feed a
single OR line, the probability of obtaining a test is low.

The problem is essentially the same for both T1 and T2
tests. That is, it is necessary to force all other product
terms feeding the OR line to zero. This can be done on the
residual untesteds by selecting each of the related product
terms whose output is not zero and setting one of its un-
specified inputs to zero. Since setting one product term to
zero can result in another product term being forced to a
one, the closing algorithm must also iterate » times, using
random selection techniques, where »n is a user-specified
variable.

It should be noted that the program used to obtain the
results described in this paper employed a much less gen-
eral closing algorithm. In fact, the basic algorithm has al-
most always obtained a test for all nonredundant cross-
points.

The other question to be considered at the end of pat-
tern generation is the following: If two-bit partitioning is
used, are all stuck-faults in the partitioning circuitry cov-
ered? If all modeled faults in the AND or OR arrays are
covered, then the only exposure is the input stuck-at-zero
fault on the lines labeled I1, 12, I3, - - -, I8 in Fig. 6. We
know that BP1 has been set to one in a T1 pattern for each
word line it is used in, but unless both choices

(I1, 12) = (1, 0) and (0, 1)

have been employed, we are not sure that each node
stuck at zero is covered. The more frequently the bit line
is used, the more likely, given our random choice of input
A and B values, that we have tested both faults. But, to
guarantee coverage, the following function is performed
on any PLA with two-bit partitioning. Pattern set P is
searched for the T1 tests for all the uses of a given 2BP
output line. The question asked is this: Have both of the
required sets of PI values for A and B been used? If yes,
go to the next partitioned output. If no, generate one
(two) new T1 test(s) according to the standard procedure
using the alternate A, B choice(s).

Remarks on fault modeling
It has understandably been argued that, for complete-
ness, a PLA test generator should fault-model all cross-
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point defects, extra as well as missing devices [7-10]. We
did not do this in PLA/TG, primarily for the following two
reasons.

1. To associate a stuck-fault with each intended cross-
point as we have done, and thereby to ensure detec-
tion of any missing device, is effectively the same fault
model that would have been used had the circuit been
designed in traditional logic. Both manufacturing ex-
perience and engineering analysis have shown that
coverage of this model gives acceptable coverage of
multiple stuck-fauits and net-to-net shorts. Without
experience to the contrary, we did not want to inflate
the fault list by something more than a factor of two.
In PLA Number 15 in Table 1| there were 547 used
crosspoints and, in its logical matrix representation,
2750 unused crosspoints.

2. In the custom physical design of PLAs, many unused
crosspoints are dropped. To avoid genération of use-
less patterns for nonexistent, ‘‘unused’’ crosspoints,
test generations would have to be fed a description of
layout, which is not normally a requirement for the
missing-crosspoints model.

If, however, experience dictated the need, the extra
crosspoint defect could easily be accommodated by
PLA/TG.

A valid T1 test through one or more outputs can be
used to test for extra personalized crosspoints in both the
AND and the OR arrays.

Consider Fig. 9. If the AND gate has a T1 test and the bit
line for an unused crosspoint, «,, is zero, then the value of
the product term will also be zero if the crosspoint u, is
incorrectly personalized. The presence of this extra per-
sonalization is detected at f,. The same test will also de-
tect an extra personalization in the OR array at v;. This is
detected on the output f,.

Thus, for a sensitized T1 test, the unused crosspoints in
that *“‘row’ will be tested wherever the input bit line is
zero and wherever the output bit line is zero. In most
cases, all unused crosspoints in a given row can be tested
by adding at most three additional T1 tests, one for each
other possible input value combination of the two-bit par-
titioning circuits.

Results

The PLA/TG program was run on all 19 custom PLAs
used in an actual product design. Initially, 3% of the mod-
eled faults were untested; on analysis all the correspond-
ing gates (used crosspoints) proved to be redundant. As a
result all but 14 of these gates were removed prior to de-
sign freeze, and the program was run again. Results are
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Figure 9 One ‘“‘row’ of a PLA with extra crosspoint con-
nections viewed as conventional AND-OR logic.

givenin Table 1. The times given are total IBM 370/Model
168 CPU seconds, measured from the access of the per-
sonality description from the matrix-format data base
through to the completion of the PLA/TG procedure.

To gain perspective on these results, these same 19
PLAs were converted to conventional logic and then sub-
mitted to a well-established, conventional logic test-pat-
tern generation program implemented in assembly lan-
guage. The run time required for the conventional tech-
nique was 6.5 times greater than for PLA/TG. If,
however, the times required to convert the PLAs to con-
ventional logic and to create the files for the test generator
are included, then this ratio becomes 20-to-1.

Additional results for the larger, fixed-size arrays used
in another design are tabulated in Table 2, where again
each untested crosspoint was, on inspection, shown to be
redundant.

Conclusions

The PLLA/TG procedure addresses a subset of the com-
binatorial logic test generation problem, i.e., program-
mable logic arrays. Crosspoint defect detection patterns
are generated through direct inspection of the array per-
sonality plus a random sensitizing of the required bias
conditions. The advantage of this procedure over classi-
cal combinatorial methods or other PLA test-pattern gen-
erators lies in its computational speed.

A valuable by-product of the procedure is its use as a
design aid in the elimination of logic redundancies in
PLAs. In practice, PLA/TG quickly enumerates all un-
necessary crosspoints.

As described in this paper, PLA/TG is limited to PLAs
with optional input bit partitioning. A natural extension of
the work would include PLA offerings that included input
and output latching.
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