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Design of Large ALUs Using Multiple PLA Macros

This paper describes methods of designing large Arithmetic and Logical Units (ALUs) using multiple Programmable
Logic Array (PLA) macros in which the outputs are obtained in one cycle corresponding to one pass through any PLA.
The design is based on the well-known technique of providing conditional sums and group carries in parallel and selecting
the proper sum using gating circuits. The PLA for each group of bits uses an adder design published by Weinberger in
which each bit of the sum is formed from the EXCLUSIVE-OR of two outputs of the OR array. By placing the gating circuits
in front of the EXCLUSIVE-OR circuits, the sums can be obtained using two OR array outputs for each bit and one additional
OR array output for each internal string of bits. Also discussed are how ALUs containing more than two groups can
obtain the group carries using a separate carry-look-ahead PLA macro and how this macro can be compressed by using
special decoders and special physical design layout techniques. Additionally, the paper demonstrates how the PLAs can

be used to provide detection of overflow and of zero results, and to also provide Boolean operations.

Introduction

Early forms of Programmable Logic Arrays (PLAs) [1]
consisted of single chips with input phase splitters, an
AND array, and an OR array. Both arrays were essentially
Read-Only Memory (ROM) matrices which could be per-
sonalized by changing a single mask. These chips were
useful for implementing combinational logic. Through the
addition of flip-flops at the outputs and the feeding of the
flip-flop outputs back to the phase splitters, these PLAs
could also be used for sequential logic. The advantage of
these devices was that unique functions could be devel-
oped by creating a single mask which defined the data
content of the arrays; therefore, even the mask itself
could be created using a simple automated process. These
chips were useful for the design of control logic and coun-
ters; but for the addition function only small adders were
implemented, and these were used iteratively since large
adders required too many product terms, as will be
shown.

More recently, PLA macros have been used for imple-
menting control functions in microprocessor chips [2-4],
often in place of conventional ROMs for holding micro-
programs. In these applications, PLA macros, like ROM
macros, permit a high degree of engineering change (EC)
capability as well as automated physical design, thereby

reducing design time and development costs. Addition-
ally, PLA macros can be tailored to specific functions
without compromising too much EC capability. For ex-
ample, one can use additional logic circuits at the inputs
and outputs of the PLA to enhance its functional capabil-
ity. Such enhancements, recently described, permit
larger adders to be implemented with only one pass
through a PLA. This paper will describe several tech-
niques for optimizing one-pass PL A adders and for ex-
tending previously published techniques to larger-width
adders. This paper will also discuss how additional func-
tions may be included in the PLA so that it may be used
as a general-purpose Arithmetic and Logical Unit (ALU).
The designs to be described herein are most useful in a
custom chip environment, since additional circuits are
employed in conjunction with the PLAs, and since the
PLAs themselves are compressed to eliminate large
unused portions of the arrays.

The design technique to be described in this paper, as
well as other techniques which are continuing to evolve,
will permit the design of large PLA ALUs which will
compare favorably in silicon area and in performance
with custom-designed ALUs. Their advantage will result
mainly from the use of automated physical design pro-
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cesses and from their regular structure which can be eas-
ily implemented with dynamic circuitry, thereby reducing
the power-delay product.

Figure 1 illustrates a straightforward method of design-
ing a one-pass PLA adder for eight bits (A, B; A,, B,;
; A, B;) and input carry (C, ). For each bit position /,
the logical functions G, = A, - B,, P, = A, + B, and H, =
A, @B, = A, B, + A, - B, are defined. The number of
product terms is minimized by producing the complement
output carry ( Om) enabling it to share product terms
with the high-order sum bit (S,). The adder design of Fig.
1 uses two-input decoders on corresponding bits from the
two operands and requires 73 product terms. For an N-bit
adder, the number of product terms N, is given by

ND:N2+N+I, (1)

while the number of bits per word, or the number of col-
umns, is given by

N, = N_(AND) + N_(OR)

c

=@AN+2)+ N+ 1)=5N+ 3. 2

An eight-bit adder would thus have 73 product terms and
43 columns, for a total array size requirement of 3139 bits.

Without two-input decoders, an eight-bit one-pass
adder would be impractical because with one-input de-
coders the number of product terms would grow ex-
ponentially, as shown by
N =2V _

D

4N - 7, (3)

which would require 2009 product terms and 86 387 total
array bits. A four-bit adder, which would appear to be the
practical limit for the one-input partitioned design, would
require 105 product terms and 2415 array bits.

Even with two-input decoders, however, this approach
becomes impractical for N much greater than eight; and
even for eight-bit adders it is not very efficient, as it re-
quires too much chip area, and the large number of prod-
uct terms required increases the delay through the PLA.

A recent paper by A. Weinberger [5] demonstrates an
efficient way to use the EXCLUSIVE-OR (XOR) functions
available at the outputs of some PLAs. Weinberger shows
that the eight-bit adder can be reduced to 25 product
terms. However, since two output columns are needed
for each xXOR output, the number of columns in the array
is N.= (4N + 2) + 2N + 2) = 6N + 4. Therefore, an
eight-bit adder would have 1300 array bits. Larger adders
would also be practical. A 16-bit adder would have 68
product terms, 100 columns, and 6800 array bits.
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Figure 1 Eight-bit PLA adder: (a) PLA arrangement, and (b)
equations. Note: - is the logical product (AND), + is the logical
sum (OR), and @ is the logical exclusive-or (XOR) function.

An alternative approach which has been suggested by
Peter Cook of the IBM Research Laboratory in Yorktown
Heights, New York also relies on using external circuits
at the array outputs. A separate PLA adder is used for
each group of, say, eight bits (Fig. 2). The lowest-order
group could provide the carry to the next-higher group. If
there were more than two groups, a separate carry-look-
ahead (CLLA) PLA could be used to provide carries to the
higher-order groups. Each group PLA adder, except the
low-order PLA, would be modified to provide two sepa-
rate conditional sums, one assuming an input carry to the
group, the other assuming no input carry. The carry to
each group would then select the proper sum using ex-
ternal AND gates. The same number of product terms are 3
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Figure 2 32-bit adder using carry-look-ahead (CLA) PLA and
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Figure 3 External circuit for Weinberger adder with condi-
tional sums. § = U @ V where only V is dependent upon C, .
S, =UBV,S,=U®BV,.

needed to produce two conditional sums as to produce an
unconditional sum. Therefore, an eight-bit adder could
consist of two four-bit adders, each having only 21 prod-
uct terms, while a 16-bit adder could have two eight-bit
adders with 73 product terms in each.

Table 1 compares the sizes of PLA adders for the four
different types of designs heretofore discussed. These
are:
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1. Single PLA with one-input decoders (phase splitters).

2. Single PLA with two-input decoders.

3. Weinberger PLA adder with two-input decoders and
XOR output circuits.

4. Cook adder with two PLAs having N/2 bit positions
each. Each PLA has two-input decoders, and the high-
order PLA produces conditional sums which are se-
lected by the output carry from the low-order PLA.

The expressions for the total number of bits &V, in Table
1 show that the Weinberger adder exhibits the slowest
growth with respect to N, but the Cook adder is more
economical for up to 16-bit adders. However, for adders
greater than eight bits, neither design as shown so far
compares well with adders designed using conventional
logic circuits, for which the growth is approximately pro-
portional to N. Some additional techniques described in
Weinberger’s paper, such as the use of custom decoders
and compressed arrays, permit practical PLA adders
beyond eight bits.

In the next section a scheme will be presented which
combines Cook’s idea of using multiple PLAs and condi-
tional sum outputs with Weinberger’s methods for imple-
menting each PLA. The result will be a much more eco-
nomical design than either design by itself. Furthermore,
as will be demonstrated, this scheme can also take advan-
tage of custom decoders and compression in order to re-
duce the silicon area even further. It will also be shown
that further benefits can be derived from the use of mul-
tiple PLAs when designing a complete ALU containing
Boolean functions as well.

Design of large adders using multiple PLAs

® Direct implementation of Weinberger adder with
conditional sums

For adders of 16 bits or more, it is more efficient to com-
bine the two approaches. The group PLLA adders shown
in Fig. 2 could be replaced by Weinberger eight-bit add-
ers. The low-order PLA need not be modified. The other
group adders must be modified to provide two conditional
sums. As before, no additional product terms are needed,
and the product term corresponding to the input carry is
eliminated.

Although each bit of an unconditional sum requires two
output columns for the XOR circuit, no more than three
columns are needed for each pair of conditional sum bits.
The reason for this is that one column, which is not de-
pendent on the input carry, may be common to both con-
ditional sums. The low-order bit of a modified PLA adder
has only two columns, one for each conditional sum, and
no output XOR circuits are needed.
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Table 1 Number of product terms N, number of columns N, and total number of bits N, for four types of PLA adders.

Number of adder bits
4 8 12 16 32 N

Type ! 5 10 N+3

N, 105 2,009 32,713 5.2 % 10 3.4 % 10 PARIES S

N, 23 43 63 83 163 SN+3

N, 2,415 86,387 2.1 x 10° 4.3 x 107 5.6 x 10 =40N x 2"
Type 2

N, 21 73 157 273 1,057 N+ N+1

N, 23 43 63 83 163 SN +3

N, 483 3,139 9,891 22,659 1.7 x 10° =5(N + 0.5)°
Type 3

N, 10 25 44 68 195 =1.07N"®

N, 28 52 76 100 196 6N + 4

N, 280 1,300 3,344 6,800 38,220 =6.6N"*
Type 4

N, 7 21 43 73 273 (NRY + NIy + 1

N, 27 49 71 93 181 55N +5

N, 189 1,029 3,053 6,789 49,413 =1.4(N + 1)°

The output circuits for each of the other bits can consist
of two XOR circuits plus the gating circuits for selecting
the appropriate sum, as shown in Fig. 3(a). However, by
placing the gating circuits before the XOR, as shown in
Fig. 3(b), one of the XORs can be removed. This sim-
plification is based on the following identity:

C-flU,V)+C-fUV)=fU,C-V, +C-V),

where the function f, in this case, is the XOR function.
The circuit shown in Fig. 3(b) should require fewer de-
vices, but may increase the delay from the input carry.

It will be shown in the next section that the modified
PLA adder can be simplified even further, resulting in
fewer output columns and fewer output gates.

o Simplified Weinberger adder with modified conditional
sums

Figure 4 illustrates Weinberger’s latest version of an
eight-bit adder with two-input decoders. The bits are sub-
divided into strings of consecutive bits. For each string,
there is a set of product terms which, when ORred, form
either the true or the complement of the input carry to
that string. These product terms are included in one of the
two output columns of each bit in the string. Each true
sum (i.e., S, S,, S,, ¢, or §,) has the form

S, ={F} @D, + C}, @)

where C, represents the set of product terms for the com-
plement of the string input carry, and F, and D, represent
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groups of product terms unique to S, and dependent only
on inputs contained within the string. For the low-order
strings, C, equals C,. For the other strings, C, has the
form

C,=P +H -P _+H -H_-P_+...

s s+1 s+2

+H -H_-...-H - C_, %)

s s+1 ‘ 7

which can be rewritten as
C,={K}+{H} C,, (6)

where K represents a group of product terms common to
all of the sums in the string. Therefore, for true sums
above the low-order string,

S, ={F}®[D, + K} +{H}- C,] 7

Letting each group of terms enclosed in { } correspond
to an output column of the OR array, each §, can be
formed externally from three columns and C,, . Since C,,
is used only in the external circuit, it does not incur the
delay of the PLA. Therefore, it may come from the PLA
adder of a lower-order group or from a CLA PLA.

The product {H} - C,, is common to all of the bits in the
string. Thus, only two columns are needed for each bit,
plus one for each string above the low-order string.

The complement sums 3, S,, and S, are formed in a
similar way, except that C,_ is used in place of Cin.
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Figure 4 Weinberger's eight-bit PLA adder. Note: for H*, H or P may be used; and for H**, H or G may be used.

Only two columns are needed for the low-order group
consisting of S, and §:

S, =iH}®C, (8)
and
S,={H,-G,+ H,-G}O[{H} + C,_], )

where {H_} is common to both sums.

If needed, the output group carry C’Dut has the same
form as the sum bits of the high-order string. However,
the output circuit can be slightly simplified, which will
also reduce the delay. Designating the two inputs to the
XOR circuit as C; and Cp, respectively, then

Cu=C0C,=C -C,+C -C,.

But C, = Gf, is the carry-generate condition for the high-
6 order string, and C, = H, - C,, where H; is the strict
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carry-propagate condition for the string and is therefore
mutually exclusive with Gf). Therefore, C, - C‘R =0, and

c =C -C. (10)

out L R

Thus, we can replace the XOR circuit with the simpler and
faster AND circuit if the left column output is com-
plemented.

Figure 5 shows the modified PL A adder. It has one less
product term and two less columns in the AND array than
the unmodified PLA adder. For an eight-bit group, they
each have the same number of columns in the OR array. If
the output carries are not needed from the intermediate
groups of the adder, then one product term and two OR
array columns can be removed from each.

Additional product terms can be removed by using ex-
ternal NOR circuits in place of the AND circuits. The out-
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Figure 5 ‘‘Modified conditional sum™ eight-bit Weinberger PLA adder.

put functions Hj and H,, which correspond to product
terms 5 and 16, respectively, can be replaced by their
complements. The complement of H; is given by

the input carry and one is removed for the string output
carry. Therefore, | + 2 + 4 + ... + 2(K — 1) product
terms are required for a string of K sum bits, and one ad-

I:I; - I:IG N FI7 _ }-16 ) G7 N fl7 (since fI7 ~ G, + P7), ditional unique product term is required for the string out-

put carry. The resulting expression for T, is given by
which can be obtained by ORing product terms 1 and 2.
Similarly, the complement of H; is the OR of product To=l+2+4+. .. +2K-1]+1
terms 1, 2, 6, 7, and 10. In general, one less product term K- K+2 forK=1. (11)

is needed for each internal string carry.
(Here, as in the Weinberger definitions, T is the number

The expressions given by Weinberger for determining
the number of unique product terms required for each
string are easily modified. The low-order string has two
less product terms than before, since one is removed for
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of product terms and K is the string size.)

For intermediate strings, the output string carry has L
additional product terms, where L is the number of bit
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Table 2 Number of product terms N, number of columns N,
and total number of bits N, for two Weinberger PLA adders with
N/2 modified conditional sums each.

Number of adder bits

4 8 12 16 32 N
N, 4 8 14 22 63 =034N"’
N, 24 50 76 100 200 =6.25N
N, 96 400 1,064 2,200 12,600 =22N"°

positions of lower order than the string. Therefore,

T,=K'-K+2+L forK=1. 12)

The number of product terms needed for the high-order
string is unchanged, since no internal string carry is
formed, and is therefore given by

T

high

=K*-K+2 forK=1. (13)

Although the use of modified conditional sums has been
illustrated for an eight-bit adder using standard PLAs
with two-input decoders, this approach is applicable also
to larger adders, including those having custom decoders
with more than two inputs, which are also described in
the Weinberger paper.

Complete adder

® Adders with two or more groups

Since the input carry is usually available at the same time
as the operands which are to be added, the PLA used for
the low-order group does not have to produce conditional
sums. However, an adder which provides modified condi-
tional sums requires almost the same area as one which
provides unconditional sums. Therefore, the PLAs for all
groups can be identical, with no additional cost in area.

The output carry from the low-order group may be used
directly as the input carry by the output circuits of the
adjacent group. For adders consisting of only two groups,
no additional circuits or PLAs are needed for providing
input carries to each group. For comparison with the PLLA
adders listed in Table 1, the sizes of several PLA adders
are given in Table 2, with each adder consisting of two
Weinberger adders with modified conditional sums. Each
PLA has N/2 bit positions and uses two-input decoders.
Fewer than one-third as many bits are needed when com-
pared with a Weinberger adder using a single PLA.

If the adder consists of several groups, there are sev-
eral alternatives available. The simplest is to connect the
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output carry from each group PLA adder to the external
output circuits of the next group. Thus, the carry from the
low-order group will ripple through the output circuits
which form the carries for each of the other groups. If
these circuits are considerably faster than a PLLA, the to-
tal delay should be adequate.

The ripple delay can be reduced if each modified PLA
produces carry-generate and carry-propagate functions
for the group instead of the output carry. These functions,
combined in a carry-look-ahead circuit, can be obtained
with minor changes in the PLA arrays or with changes in
the external circuit. As shown in Fig. 5, C'Om is obtained

from three array outputs and C;, . Using the same notation
as in Eq. (7), it has the form

C.={F} D+ K +{H} C,1
Then

G ={F}-[{D + K} + {H}}]

and

P={D + K},

which can be obtained from the same array outputs, may
be used as the carry-generate and carry-propagate func-
tions of the group, respectively.

Another alternative which eliminates the delay of the
external carry-look-ahead circuit is the use of a separate
carry-look-ahead (CL.A) PL.A as shown in Fig. 2 for pro-
viding the carries C, and C, to the two high-order groups.
In a custom macro environment there are several tech-
niques available which will reduce the size of this PLA to
a fairly small area.

® Description of the carry-look-ahead PLA

The CLA PLA for Fig. 2 has 42 product terms; however,
as shown in Fig. 6, it can be compressed into two separate
but interlocking PLAs having only 25 rows. The separa-
tion of the two PLAs is indicated by the heavy lines in the
AND array. Both rows and columns are shared by the two
arrays, and separate sets of decoders are needed, one at
the top and one at the bottom. However, we will see that
only a very simple decoder is needed for each bit, and
therefore the bottom set of decoders should fit within the
rectangular boundary defined by the 25 rows. The OR ar-
rays, which consist of one column each, are placed one
on each side.

Since the PLA has 49 inputs at the top, it might appear
that it needs 100 columns, including two output columns.
However, the only logic functions used are the bit-propa-
gate and bit-generate functions. We can use a special
decoder which provides only two columns per adder bit,
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Figure 6 Carry-look-ahead PLA with split OR array.

resulting in 52 columns for the entire PLA. The special
decoder itself is much simpler than the decoder normally
used with two-input partitions, consisting of just an AND
and an OR circuit. Furthermore, since the two columns are
never both selected in the same product term, they may
share a single device, as with single-input partitions; and
for some circuit layouts, this can reduce the spacing be-
tween columns. Figure 7 illustrates a decoder and one
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pair of columns with shared devices. With NMOS devices
the AND array consists of NOR circuits, and each decoder
consists of a NAND and a NOR circuit.

Techniques for reducing PLA delay

Although the speed of a PLA is mostly dependent on de-
vice and circuit design, there are ways for the logic de-
signer to reduce the delay of a PLA macro. For the pur-
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Figure 7 Special decoder for CLA PLA.

pose of illustration, FET devices will be assumed in the
following discussions. The total delay typically consists
of the input decoder delay, the AND array delay, and the
OR array delay. Generally, the delays for each are depen-
dent on device sizes and output capacitance. Since there
is a relatively small number of decoder circuits, large de-
vices can be used without greatly increasing the total
area. The capacitance of the AND array columns, which
affects the decoder delay, can be reduced by minimizing
both the total number of rows and the number of person-
alized rows along any column.

The OR array can be split, with some outputs on one
side of the AND and some on the other. This allows two
product terms, in some cases, to share the same row of
the AND array, and results in a compressed PLA. It re-
duces both the size of the PLA and its delay. Figure 8
illustrates the 22 product terms compressed into 13 rows.
(Product terms 5 and 16 have been deleted using the
method previously described.) Compression reduces the
column capacitance, therefore reducing both the decoder
and the OR array delays.

Figure 8 also demonstrates that the propagate function
H = A @ B can be replaced by the OR function P = A + B
for propagating true carries, and by G = A + B for propa-
gating complement carries. Since the H function is formed
by ANDing columns corresponding to both P and G, the
replacement reduces the maximum number of personal-
ized bits both in a column and in a product term. For Fig.
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8, the maximum column personalization in the AND array
is reduced from six to five (A4 + 54 column), and the max-
imum product term personalization is reduced from
eleven to seven (product term 15). Therefore, both the
decoder delay and the AND array delay are reduced.

Column personalization in the AND array can also be
reduced by duplication of the columns. This can be espe-
cially useful for the function select lines of an ALU which
contains both an adder and the Boolean functions.

The AND array delay is also improved when special
decoders are used, such as previously described for the
CLA PLA. The special decoders reduce the number of
columns in the AND array and may also reduce the number
of personalized bits in a product term.

If all of the personalized bits in a product term are adja-
cent to unpersonalized bits, it may be feasible to use
larger devices for the personalized bits and for the load
device too, if necessary, therefore reducing the AND array
delay.

The OR array is frequently quite sparse. If such is the
case, it may be possible to order the rows as shown in
Fig. 8, where every personalized bit in the OR array has an
adjacent unpersonalized bit in the same column. This
makes device sharing possible using two devices for
every three rows. If one blank row were added to Fig. 8,
the rows could be arranged to permit one device for every
pair of rows. Either way, device sharing could reduce the
spacing between rows for the entire PLA. Alternatively,
it could permit the use of larger devices in the OR array,
which might possibly reduce the OR array delay.

PLA adder as part of an ALU

® Other ALU functions

A general-purpose Arithmetic and Logical Unit (ALU)
should provide capability for other arithmetic and logical
operations in addition to addition. It should also provide
detection of specific conditions such as overflow or zero
result. Some of these functions can easily be included in
the PLAs used for the adder. Others require additional
circuits external to the PLAs. Some other functions, such
as multiply and divide, require use of algorithms which
use the ALU iteratively. The least important functions
can be provided by software subroutines. The choice of
how each function should be provided will depend on the
application of the ALU as well as consideration of cost
and performance trade-offs.

For discussions of arithmetic operations which follow,
only fixed point binary operands with negative numbers
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Figure 8 Compressed eight-bit adder. Notes: (1) Product term (P.T.) numbers reference corresponding terms in Fig. 5. (2) Product
terms 5 and 16 have been eliminated by replacing external ANDs with NORs. (3) For H*, H or P may be used; and for H**, H or G

may be used.

represented in two’s-complement notation will be consid-
ered. Consideration of other number representations
would require discussion of possible algorithms which are
outside the scope of this paper. Operations with other
number representations are usually provided by micro-
programs or by software subroutines.

The ALU must provide some means of doing sub-
traction. If this function is included directly in the PLAs
with the adder, it will require as many product terms as
are needed for addition, with no common terms between
the two functions. Instead, one operand can first be com-
plemented and then added to the other operand. If two
machine cycles are permitted, the operand can be com-
plemented during the first cycle by using some additional
product terms in the PLAs; if subtraction needs to be
completed in one cycle, additional gates can be provided
at the inputs to the PLAs for complementing one oper-
and.

Multiplication and division are usually implemented by
iterative addition or subtraction. However, the ALU
must provide some means of shifting the partial result af-
ter each iteration. Again, shifting functions can be pro-
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vided in the PLAs with additional product terms. How-
ever, it will take fewer machine cycles and probably less
space if shift gates external to the PLAs are used.

During the addition cycle the ALU must also detect
specific conditions which may result. It must detect the
sign of the result and the occurrence of an output carry.
For two’s-complement representation, the sign bit is the
sum S, so both of these are available as direct outputs
from the adder. Other conditions which are usually de-
tected are overflow and zero result. In the following sec-
tions, we will show how each of these can be detected
using a combination of external circuits and additional
product terms in each PLA.

® Overflow detection

Overflow occurs when two numbers having the same sign
are added and the result has an opposite sign. This can be
expressed as

A, - B, -

B, -S

0 0

ov

0+A0'
G -SO+P0~SO. (14)

0

It is probably desirable that the overflow signal should be

11
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no slower than the other adder outputs, and therefore
should not be developed from the S, output. Using

S, =(H, G HT-Cp, (15)

where K is the number of bits in the high-order string, and
using the fact that G, H,, and PO are all mutually exclu-
sive, we obtain

~K— K—1

ov=¢G,-G"'®G,-H " -C,
s K— B K—

@Po'Gll@Po'Hl tc

K
=G, - G'®P,-GTHYSG,®PYHT - Cp

0

G7+P-GhYeH -HT-C

1 K

= (G, -
={G,-G"'+P,-G"Y®{H, + H + C}.

1

(16)
The expression in the left braces expands into 2(K — 1)
product terms. Except for the product term H, the ex-
pression in the right braces is identical to the right-hand
output for S,. Therefore, a total of (2K — 1) additional
unique product terms are needed. The adder shown in
Fig. 8 would require five additional rows in order to pro-
vide overflow detection.

e Zero sum detection

The simplest way to detect a result of all zeros is to OR all
of the output sums and then complement the result. This
results in a detection signal which is slower than the other
outputs. This method, however, provides valid detection
regardless of the operation performed by the ALU.

For some operations, detection of a zero result can be
provided directly as an output from the PLA adder, using
just one product term for each operation. In some appli-
cations of the adder, it may only be necessary to detect a
zero result when one operand is being subtracted from
the other, such as when comparing or decrementing the
operands. For such cases, a zero result can only occur
when the two operands are identical. Since the sub-
trahend is complemented before it enters the adder, the
XOR of each pair of adder inputs must be true. Then the
zero result can easily be detected using a single product
term based on the following equation:

Zeros = H,-H -H, ... H

N—-1
=Hy . amn

This method could also be used for addition in systems
which use sign and magnitude representation, since addi-
tion of numbers with opposite signs would be done by
subtraction.

We will show subsequently that if Boolean operations
are also included in the ALU, then a zero result can be
detected with just one product term for each operation.

MARTIN S. SCHMOOKLER

For general applications, zero detection must also in-
clude addition. A patent by Weinberger [6] shows that a
zero result for an eight-bit adder can be obtained using the
equation

Zeros = [H,- G, - G,-... - G] - C_
+[H,-P, +H -P,+...+H, P]
+[H,]C,, (18)

which can be rewritten as

Zeros = (2]-C, +1[2+1(2]-C,

=({Z,+2}+C)-(Z,+ 2} + C). (19

If each set of braces represents an output from the
PLA, these outputs can be combined with the input carry
using external circuits. For an adder containing several
PLAs, the outputs from ali of the PLAs can be combined
to obtain the zero result signal.

Equation (18) contains nine product terms, or (N + 1)
product terms for an N-bit adder. However, the product
term H,_, is already contained in the adder, and each
string of complement sums contains one common product
term. For the eight-bit adder of Fig. 8, product term H )
P, is common, so that only seven additional unique prod-
uct terms are needed. If the outputs are taken from the
right-hand OR array, five of those product terms can share
the five additional rows that were needed for overflow de-
tection. Therefore, this method of zero sum detection re-
quires two additional rows for either an eight-bit adder or
for an adder composed of several PLAs of eight bits each.

Since the number of additional product terms is nearly
equal to the number of bits being added in each PLA, we
can see another advantage of using several small PLAs
for a large adder.

® Boolean operations

The ALUs contained in most general-purpose micro-
processors are also capable of doing Boolean operations
on corresponding bits of two operands. They usually con-
tain instructions for three Boolean functions: AND, OR,
and XOR. With two-input decoders, any Boolean function
can be obtained with a single product term for each bit.
Separate product terms are needed for each Boolean
function. However, the AND, OR, and XOR operations can
be provided with only two product terms per bit, since the
OR function can be provided by selecting both the AND
and XOR operations. For those bit positions whose output
is complemented, we can take advantage of the XORs at
the PLA outputs, since forcing a logical one into one in-
put of the XOR will complement the function at the other
mput.

IBM J. RES. DEVELOP. e VOL. 24 @ NO. 1 ® JANUARY 1980




X 4, A, A4 . 4, 4, As A4 4, X

il

Two-input decoderL
TITTTTTTTT T =7 P, H | X7 |1 IR EENL
[ X¥ | H, | G H, Py XY 1 2
(o) ] g b 44 A, H | G, | xv |1 1)1 3
1R Xv | H, | Hf | G, | Hy | G, XY 1 4
o) [ Xy H G, Gy Xy 1 1] |1 5
g ! b'44 G, H | HX Py X7 |11 6
.§ 11 Xy H, | H» | G, 75 xv (1] {1] |11 7
< 1 1 vy 1] [1f x¥ Hy Hyx | P 1 8
1 XY H | G, Hy | G, | xv INEEEEE 9
oloqr] D ] i Y Hy | P, 1 10
v ] f] || | X HE* | H3* | Hi* | P X+Y 1] |t i |t
1 v | H, | P H, Py xv [1] 1] 1] 2
| of [l ]y | xE Hy* | Hy* | HY* | HE= | Py 13
+h ¥v | G, P, a, Py XY 11} |14
1 Xy Gy a6, H, Py Xy e
1 XY | Py | G sy p XV 1|1 |16
é 1 Xy Py HY G, Hy P, Xy Ll 17
éﬁ 1 X | H | p, xv 1] |8
S Hy P Xy | {19
g H, | G, | G, | G | G | G | G, | & | xv [ | Jo
G, | G, G, G, G, | G, Ge | G, | Xv 12t
o P, P, P, P, P, Py P, | XV 1]22
A, | H H, H, | H, H A, H | xv 1|23
Ky i x®vrl G, G, xX®@vy| |1 24
1 X®vy G, G, X®vy 1 25
2 1| [x®r G, G, X®y 1 26
G x®y 1 27
G, [x®v 1 28
¥ 1 X H H, X 1 29
1 X H H, X 1 30
g 1 X H, Hy X | 31
H X 1 32
H, X 1 33
X | 1ol
NAE
ov T, S S S Zeros
5, 5, 5 S S ¢,
Figure 9 Complete eight-bit ALU.
A zero result for any Boolean function can be detected For example, a result of zeros for an OR operation can be
using a single product term containing the product of the obtained using the product term P - P - P, ... - P,_,
complement of the Boolean function for each bit position. since each P, is the OR of A, and B,. The zero result for the 13
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Boolean functions must be combined externally with the
zero result for addition, since the latter, as given by Eq.
(19), is in complement form.

In order to provide both arithmetic and Boolean func-
tions, each PLLA must have additional columns of inputs
for the function selection bits. These bits must be en-
coded in a way that permits some product terms to be
selected by more than one function.

All of the 16 possible two-variable Boolean functions
can be obtained using only four product terms per bit cor-
responding to the four minterms A - B, A - B, A - B, and
A - B. With four corresponding function selection bits,
any combination of the minterms can be selected.

Inclusion of the Boolean functions provides another
good reason for breaking the ALU into small groups of
bits, each with a separate PLA. If the AND, OR, and XOR
functions are provided for a 32-bit ALU using only one
PLA, it will need two product terms per bit, or 64 total.
By sharing rows between corresponding terms of high-
order and low-order bits, approximately 32 rows will be
needed. If four eight-bit PLLAs are used, each will need
only 16 product terms for these functions.

o PLA for complete ALU

Figure 9 shows a PLA for an eight-bit group for an
ALU containing overflow, zero detection, and the three
Boolean functions. It contains a total of 54 product terms
which are compressed into 33 rows: 22 for the basic add
function, 12 additional for overflow and zero detection, 16
more for the Boolean functions, three for zero detection
of the Boolean functions, and one for forcing ones to ex-
ternal XORs for the complement sum outputs.

Two function selection bits, X and Y, are used to select
any one of four functions. They are encoded as follows:
00, 01, 10, and 11 for ADD, AND, OR, and XOR, respec-
tively. There are two function select decoders, one for
each side of the AND array. Each provides a complete
two-input decode of X and Y. This permits any product
term to be selected by any combination of the four func-
tions.

Conclusions

A practical method has been presented for designing large
adders in which the outputs are obtained in one pass
through any PLA. The adders are broken into small
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groups of bits, each using a separate PLA. The input
carry to each group enables the correct sums to be formed
using additional circuits at the outputs of the PLAs. As
improvements continue to evolve in the design of PLA
adders, this technique should still permit significant re-
duction of silicon area for large adders.

The use of separate PLAs for each small group of bits
also allows other common ALU functions, such as detec-
tion of a zero sum, and Boolean operations, to be effi-
ciently included in the PLAs. Use of smaller PLAs, along
with other techniques described herein, will also help to
reduce the delay of the ALU and thus reduce the cycle
time of the system.

While PLA macros have already appeared in com-
mercially available microprocessors for use in control
logic, it is now becoming practical to use them for the
ALU as well. This will permit use of common automated
design processes for both control logic and data paths.
Use of dynamically clocked logic will also become more
practical and will result in lower power levels and higher
levels of integration.
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