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Design of Large  ALUs  Using Multiple PLA  Macros 

This  paper  describes  methods of designing large Arithmetic  and  Logical  Units  (ALUs)  using  multiple  Programmable 
Logic  Array (PLA)  macros  in  which  the  outputs  are  obtained  in one cycle  corresponding  to  one  puss  through  uny  PLA. 
The  design i s  based on the  well-known  technique  ofproviding  conditional  sums  and  group carries in purullel und  selecting 
the  proper  sum  using gating circuits.  The PLA for  each  group of bits  uses  an  adder  design  published  by  Weinberger  in 
which each  bit of the  sum  isfi)rmedf,.orn  the EXCLUSIVE-OR of two  outputs  ofthe OR array.  By  placing  the  gating  circuits 
in front of the EXCLUSNE-OR circuits,  the  sums  can  be  obtained  using  two OR array outputs  for  euch bit and  one  additional 
OR array output  for  each  internal string of bits. Also discussed are how ALUs containing  more  than  two  groups  can 
obtain  the  group  carries  using u separate carry-look-11heud PLA macro  and  how  this  macro  can be compressed  by  using 
special decoders  and  special  physical  design  layout  techniques.  Additionally,  the  puper  demonstrates  how  the  PLAs  can 
be  used  to  provide  detection of overflow  and ofzcro  results, and to  also  provide  Boolean  operations. 

Introduction 
Early forms of Programmable  Logic Arrays  (PLAs) [ l ]  
consisted of single chips with input  phase  splitters, an 
AND array,  and  an OR array. Both arrays were  essentially 
Read-only  Memory (ROM) matrices  which could be per- 
sonalized by changing  a single mask. These chips were 
useful for implementing  combinational logic. Through the 
addition of flip-flops at the  outputs and the feeding of the 
flip-flop outputs back to  the  phase  splitters,  these  PLAs 
could also be used for sequential logic. The advantage of 
these  devices was that unique functions could be devel- 
oped by creating a single mask which defined the data 
content of the  arrays;  therefore,  even  the mask itself 
could be created using a simple automated  process.  These 
chips  were  useful for  the design of control logic and coun- 
ters; but for  the addition  function  only small adders were 
implemented,  and  these  were  used  iteratively  since  large 
adders required too many product  terms, as will be 
shown. 

More recently,  PLA macros have been  used for imple- 
menting control functions in microprocessor  chips [2-41, 
often in place of conventional ROMs for holding micro- 
programs. In  these applications, PLA  macros, like ROM 
macros, permit a high degree of engineering  change (EC) 
capability as well as automated  physical  design, thereby 

reducing  design  time  and development  costs. Addition- 
ally, PLA  macros  can be  tailored to specific functions 
without  compromising too much EC capability.  For ex- 
ample,  one  can  use additional logic circuits at  the  inputs 
and outputs of the  PLA  to  enhance  its functional  capabil- 
ity. Such  enhancements, recently described, permit 
larger adders  to be implemented with only one  pass 
through a PLA. This  paper will describe  several  tech- 
niques for optimizing  one-pass PLA  adders  and  for  ex- 
tending  previously published techniques  to larger-width 
adders. This paper will also discuss how additional func- 
tions may be  included in the  PLA so that it may be used 
as a general-purpose Arithmetic and Logical Unit (ALU). 
The designs to be  described  herein are most useful in a 
custom chip  environment, since  additional  circuits are 
employed in conjunction with the  PLAs, and  since the 
PLAs  themselves  are  compressed  to eliminate large 
unused  portions of the arrays. 

The design technique to be described in this paper,  as 
well as  other  techniques which are continuing to  evolve, 
will permit the design of large PLA  ALUs which will 
compare  favorably in silicon area  and in performance 
with custom-designed ALUs.  Their advantage will result 
mainly from  the use of automated  physical design pro- 
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cesses  and from their regular structure which can be eas- 
ily implemented  with  dynamic circuitry, thereby  reducing 
the  power-delay product. 

Figure 1 illustrates a straightforward method of design- 
ing a one-pass  PLA  adder  for eight bits (An, Bo; A , ,  B , ;  
. . . ; A, ,  B7) and  input  carry (C,). For  each bit position i, 
the logical functions Gi = At . Bi ,  Pi = At + Bi, and Hi = 
Ai CB Bi = Ai . B2 + A, . Bi are defined. The number of 
product terms  is minimized by producing the complement 
output  carry (couJ, enabling it to  share product terms 
with the high-order  sum bit (SJ. The  adder design of Fig. 
1 uses  two-input decoders  on  corresponding bits from the 
two operands  and requires 73 product  terms.  For an N-bit 
adder,  the  number of product terms  NP is given by 

N p = N 2 + N +  I ,  (1) 

while the  number of bits per word, or the number of col- 
umns, is given by 

N, = N c ( ~ ~ ~ )  + N c ( 0 ~ )  

= (4N + 2) + ( N  + 1) = 5N + 3. (2) 

An eight-bit adder would thus have 73 product terms and 
43 columns,  for a  total  array  size  requirement of 3139 bits. 

Without two-input decoders,  an eight-bit one-pass 
adder would be impractical because with one-input  de- 
coders  the number of product terms would grow  ex- 
ponentially, as  shown by 

N = Tvf3 - 4N - 7,  P (3) 

which would require 2009 product terms and 86 387 total 
array bits.  A  four-bit adder, which would appear  to be the 
practical limit for  the one-input  partitioned  design, would 
require 105 product terms and 2415 array bits. 

Even  with  two-input decoders,  however, this approach 
becomes  impractical for N much greater than  eight; and 
even  for eight-bit adders it is not very efficient, as it re- 
quires too much  chip area, and the large number of prod- 
uct terms required  increases the delay  through the  PLA. 

A recent  paper by A. Weinberger [5] demonstrates an 
efficient way to use  the EXCLUSIVE-OR (XOR) functions 
available at the outputs of some PLAs. Weinberger shows 
that  the eight-bit adder can be reduced to 25 product 
terms. However, since two output columns are needed 
for  each XOR output,  the number of columns in the array 
is Nc = (4N + 2) + (2N + 2) = 6N + 4. Therefore,  an 
eight-bit adder would have 1300 array bits.  Larger adders 
would also be practical.  A 16-bit adder would have 68 
product terms, 100 columns,  and 6800 array bits. 
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Figure 1 Eight-bit PLA adder: (a)  PLA arrangement, and (b) 
equations.  Note: . is the logical product (AND), + is the logical 
sum (OR), and €0 is the logical exclusive-or (XOR) function. 

An alternative  approach which has been suggested by 
Peter Cook of the IBM Research Laboratory in Yorktown 
Heights,  New  York also relies on using external  circuits 
at  the  array  outputs. A separate  PLA  adder is used for 
each group of,  say, eight bits  (Fig. 2). The lowest-order 
group  could  provide the  carry  to  the next-higher group. If 
there were  more  than  two groups, a separate carry-look- 
ahead (CLA)  PLA could be used to provide carries  to  the 
higher-order groups.  Each  group  PLA  adder,  except  the 
low-order PLA, would be modified to provide  two sepa- 
rate conditional sums, one  assuming an input  carry to  the 
group,  the  other assuming no input carry.  The  carry  to 
each  group would then  select the  proper sum using ex- 
ternal AND gates.  The same  number of product terms  are 3 
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Figure 2 32-bit  adder using carry-look-ahead (CLA)  PLA and 
conditional sum PLAs. 
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Figure 3 External circuit for Weinberger  adder  with condi- 
tional sums. S = U CB V where only V is dependent upon C,". 
s, = u CB v,, s, = u @ VE. 

needed to  produce two  conditional sums  as  to produce an 
unconditional sum.  Therefore,  an eight-bit adder could 
consist of two four-bit adders,  each having only 21 prod- 
uct terms, while a 16-bit adder could have two  eight-bit 
adders with 73 product terms in each. 

Table 1 compares the  sizes of PLA adders  for  the  four 
different types of designs heretofore discussed.  These 

4 are : 

1. Single PLA with  one-input decoders (phase  splitters). 
2. Single PLA with  two-input decoders. 
3 .  Weinberger PLA adder with two-input decoders and 

XOR output circuits. 
4. Cook adder with two PLAs having N / 2  bit positions 

each.  Each PLA has two-input decoders, and the high- 
order PLA produces conditional sums which are se- 
lected by the  output carry  from the low-order PLA. 

The  expressions  for  the total number of bits N b  in Table 
1 show that  the Weinberger adder exhibits the slowest 
growth  with respect  to N ,  but the Cook adder is more 
economical for  up  to 16-bit adders.  However,  for  adders 
greater  than eight bits, neither  design as shown so far 
compares well with adders designed using conventional 
logic circuits,  for which the growth is approximately  pro- 
portional to N .  Some additional  techniques  described in 
Weinberger's paper,  such  as  the use of custom decoders 
and compressed  arrays, permit practical PLA adders 
beyond eight  bits. 

In the  next  section a scheme will be  presented  which 
combines Cook's  idea of using multiple PLAs and condi- 
tional sum outputs with Weinberger's  methods for imple- 
menting each PLA. The result will be a much more eco- 
nomical design than  either design by itself. Furthermore, 
as will be demonstrated, this scheme can  also take advan- 
tage of custom  decoders and compression in order  to re- 
duce  the silicon area  even  further.  It will also be shown 
that  further benefits can be derived  from  the  use of  mul- 
tiple PLAs when designing a complete ALU containing 
Boolean functions  as well. 

Design of large adders  using multiple PLAs 

0 Direct  implementation of Weinberger  adder  with 
conditional  sums 
For adders of 16 bits or more, it is more efficient to  com- 
bine the  two  approaches.  The  group PLA adders  shown 
in Fig. 2 could  be  replaced by Weinberger eight-bit add- 
ers.  The low-order PLA need not  be modified. The  other 
group adders must be modified to  provide two  conditional 
sums. As before, no additional product  terms  are  needed, 
and the  product  term corresponding to the  input carry is 
eliminated. 

Although each bit of an unconditional sum requires two 
output  columns  for  the XOR circuit, no more than three 
columns are needed for  each pair of conditional  sum bits. 
The reason for  this is that  one  column, which is not  de- 
pendent on  the  input  carry, may be  common to  both  con- 
ditional sums.  The low-order bit of a modified PLA adder 
has only two  columns,  one for each conditional sum, and 
no output XOR circuits  are needed. 
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Table 1 Number of product terms Nu, number of columns N,, and total number of bits Nb for four types of PLA adders. 

Number of adder bits 

4 8 12 16 32 N 
- 

Type 1 
N u  105 2,009 32,713 5.2 x lo5 3.4 x 10'O 
N c  23 43 63 83 163 5N + 3 

N u  21 73  157 273 1,057 N ' + N + I  
N c  23 43 63 83 163 5N + 3 

N P  10 25 44 68 195 - 1.07N'" 
N c  28 52 76 100  196 6 N  + 4 
N b  280 1,300 3,344 6,800 38,220 

Nu 7 21 43 73  273 (NI2)' + (Nl2) + 1 
N c  27 49 71 93  181 5.5N + 5 

2N'3 - 4 N  - 7 

-40N x 2" 
Nb 2,415 86,387  2.1 x lo6  4.3 X 10' 5.6 x 10" 

Type 2 

Nb 483 3,139 9,891 22,659 1.7 x lo5 -5(N + 0.5)3 
Type 3 

~ 6 . 6 N ' . ~  

Type 4 

Nb 189 1,029 3,053 6,789 49,413 =11.4(N + 113 

The  output  circuits  for  each of the  other bits can  consist 
of two XOR circuits plus the  gating circuits  for selecting 
the  appropriate  sum,  as shown in Fig. 3(a). However, by 
placing the gating  circuits before the XOR, as shown in 
Fig. 3(b), one of the XORS can be removed. This sim- 
plification is based on  the following identity: 

c . f( u, V1) + c * f ( U ,  V,) = f ( U ,  c * v, + c * V,) ,  

where  the  function f ,  in this case, is the XOR function. 
The circuit shown in Fig. 3(b) should  require fewer de- 
vices,  but may increase the  delay  from  the  input carry. 

It will  be shown in the next section that the modified 
PLA  adder  can be simplified even  further, resulting in 
fewer output  columns and  fewer output gates. 

Simplijied Weinberger  udder  with modijied conditionul 
sums 
Figure 4 illustrates  Weinberger's latest version of an 
eight-bit adder with two-input decoders.  The bits are sub- 
divided into strings of consecutive  bits. For  each string, 
there is a set of product  terms which, when oaed, form 
either  the  true or the complement of the input carry  to 
that string. These product terms  are included in one of the 
two output  columns of each bit in the string. Each  true 
sum ( i .e . ,  S,, SI, S,,  S,, or S,) has  the form 

where c, represents  the  set of product  terms  for  the com- 
plement of the string input carry,  and Fi and Dj represent 

groups of product  terms unique to Si and dependent only 
on inputs contained within the string. For the low-order 
strings, c, equals c,. For the other strings, c, has  the 
form 

C, = P, i- H ,  . P s + ,  i- H,  . Hs+l ' P,+, + . . . 
+ H ,  ' Hs+l ' . . . ' H ,  . C,,,, ( 5 )  

which can be rewritten as 

c, = {K,}  + {HZ} . Gin, (6)  

where K ,  represents a  group of product  terms common to 
all of the  sums in the  string. Therefore,  for  true  sums 
above  the  low-order string, 

Si = {Pi} @ [{Di + K,} + { H : } .  Gin]. (7) 

Letting each  group of terms enclosed in { } correspond 
to  an  output column of the OR array,  each Si can be 
formed externally from  three columns and C,. Since Ci, 
is used only in the external circuit, it does not incur  the 
delay of the  PLA.  Therefore, it  may come from the  PLA 
adder of a lower-order group or from a CLA  PLA. 

The  product {H:}  . C, is common to all of the bits in the 
string. Thus, only two columns are needed for  each bit, 
plus one  for  each string  above the low-order  string. 

The  complement sums s,,  s,, and 3, are formed in a 
similar way,  except  that Cin is used in place of tin. 5 
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Figure 4 Weinberger's  eight-bit PLA adder.  Note:  for H * ,  H or P may  be  used;  and for H **, H or G may  be used. 

Only two  columns  are needed for  the low-order group 
consisting of S, and S,: 

and 

where {A,} is common to both sums. 

If needed,  the  output group carry tout has  the  same 
form as  the  sum bits of the high-order  string. However, 
the  output circuit can be slightly simplified, which will 
also reduce  the  delay. Designating the  two  inputs to  the 
XOR circuit as C, and C,, respectively,  then 

c,,, = c, @ c, = c, . e, + e, . c,. 
But C, = G', is the carry-generate  condition for  the high- 
order  string,  and c, = H', . C,, where H', is the strict 

carry-propagate  condition  for the  string and is therefore 
mutually exclusive with G:. Therefore, C, . c, = 0, and 

= e, . c,. (10) 

Thus, we can replace the XOR circuit with the simpler and 
faster AND circuit if the left column output is com- 
plemented. 

Figure 5 shows  the modified PLA  adder. It  has one less 
product term  and two  less  columns in the AND array than 
the unmodified PLA  adder. For an eight-bit group, they 
each  have  the  same number of columns in the OR array. If 
the output  carries  are not needed from  the intermediate 
groups of the  adder, then  one product  term and  two OR 

array columns can be  removed from  each. 

Additional product  terms can  be  removed by using ex- 
ternal NOR circuits in place of the AND circuits. The  out- 
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Figure 5 "Modified conditional sum" eight-bit  Weinberger PLA adder. 

put  functions H i  and H i ,  which correspond  to  product 
terms 5 and 16, respectively, can be replaced by their 
complements. The complement of H i  is given by 

A' = H + H = H . G 7  + H (since H, = G, + P 7 ) ,  

which can be obtained by  oRing product terms 1 and 2. 
Similarly, the complement of H i  is the OR of product 
terms I ,  2 ,  6, 7 ,  and 10. In general, one less  product  term 
is needed for  each internal  string carry. 

6 6 7 6  

The  expressions given by Weinberger for determining 
the  number of unique  product terms required for  each 
string are easily modified. The  low-order string has two 
less product  terms than  before,  since one is removed for 
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the input carry  and  one is removed  for the string output 
carry.  Therefore, I + 2 + 4 + . . . + 2(K - 1) product 
terms  are required for a  string of K sum bits, and one  ad- 
ditional unique product term is required for  the string out- 
put carry.  The resulting  expression  for T,,lw is given by 

TIOW= [ I  + 2 + 4 + . . . + 2(K - l ) ]  + 1 

= K ' - K + z  f o r ~ z 1 .  ( 1   1 )  

(Here,  as in the Weinberger definitions, T is the number 
of product terms and K is the  string  size.) 

For intermediate  strings, the  output string carry has L 
additional product  terms, where L is the number of bit 7 

MARTIN S. SCHMOOKLER 



Table 2 Number of product  terms N , number of columns N,. 
and total number  of  bits Nb for two Winberger PLA adders  with 
N / 2  modified conditional sums each. 

Number of adder  bits 

4 8  I2  16 32 N 
~~ 

NP 4 8  14 22 63 -0.341VI.~ 

Nc  24 50 76 100 200 =6.25N 

N b  96  400 1,064 2,200 12,600 ~ 2 . 2 N ' . ~  

positions of lower  order than the string. Therefore, 

T i = K 2 - K + 2 + L  f o r K z 1 .  (12) 

The number of product terms  needed  for the  high-order 
string is unchanged, since no internal  string carry is 
formed,  and is therefore given by 

Thigh = K 2  - K + 2 for K 2 1 .  (13) 

Although the  use of modified conditional  sums has been 
illustrated for  an eight-bit adder using standard PLAs 
with two-input decoders, this approach is applicable also 
to larger adders, including those having custom decoders 
with more than  two  inputs, which are  also described in 
the Weinberger paper. 

Complete adder 

Adders   wi th  two or more groups  
Since the  input  carry  is usually available at  the  same time 
as  the  operands which are  to be added,  the PLA used for 
the low-order group  does not have  to  produce conditional 
sums. However, an adder which provides modified condi- 
tional sums requires almost the  same  area  as  one which 
provides  unconditional  sums. Therefore,  the PLAs for all 
groups  can be identical, with no additional cost in area. 

The  output  carry from the  low-order group may be used 
directly as  the input carry by the  output circuits of the 
adjacent group.  For  adders consisting of only two groups, 
no additional circuits or PLAs are needed for providing 
input carries  to  each group. For comparison with the PLA 
adders listed  in  Table 1 ,  the sizes of several PLA adders 
are given in Table 2 ,  with each  adder consisting of two 
Weinberger adders with modified conditional  sums. Each 
PLA has N / 2  bit positions and  uses two-input decoders. 
Fewer than  one-third as many bits are needed  when com- 
pared with a  Weinberger adder using a single PLA. 

If the adder  consists of several  groups,  there  are  sev- 
8 era1 alternatives available. The simplest is to  connect  the 
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output  carry  from  each group PLA adder  to  the  external 
output  circuits of the next  group. Thus,  the  carry from the 
low-order group will ripple through the  output  circuits 
which form the  carries for each of the  other  groups. If 
these  circuits  are considerably faster  than a PLA, the  to- 
tal delay  should be adequate. 

The ripple  delay can be reduced if each modified PLA 
produces  carry-generate and  carry-propagate  functions 
for  the  group  instead of the  output  carry.  These  functions, 
combined in a carry-look-ahead circuit,  can be  obtained 
with minor changes in the PLA arrays or with changes in 
the external circuit. As shown in Fig. 5, C?<,;,,, is obtained 
from three  array  outputs and Gin. Using the same  notation 
as in Eq. (7), it has  the form 

C0,, = { E }  . [ {D  + K }  + {H:}  . c,,]. 
Then 

G = { E }  . [ { D  + K }  + {Hi } ]  

and 

P = {D  + K } ,  

which can be obtained from  the same  array  outputs, may 
be used as  the carry-generate and  carry-propagate  func- 
tions of the  group, respectively. 

Another alternative which eliminates the delay of the 
external carry-look-ahead  circuit is  the use of a separate 
carry-look-ahead (CLA) PLA as  shown in Fig. 2 for pro- 
viding the  carries C, and C,, to  the  two high-order groups. 
In a custom  macro environment there  are several  tech- 
niques  available which will reduce the size of this PLA to 
a fairly small area. 

Description of the  carry-look-ahead PLA 
The CLA PLA for Fig. 2 has 42 product  terms;  however, 
as shown in Fig. 6, it can be compressed into  two separate 
but interlocking PLAs having only 25 rows. The  separa- 
tion of the  two PLAs is indicated by the heavy lines in the 
AND array. Both rows  and columns are  shared by the  two 
arrays,  and  separate  sets of decoders  are  needed,  one  at 
the  top  and  one  at  the bottom. However, we will see  that 
only  a  very  simple decoder is needed  for  each bit, and 
therefore the bottom set of decoders should fit within the 
rectangular  boundary defined by the 25 rows. The OR ar- 
rays, which consist of one  column each,  are placed one 
on each  side. 

Since  the PLA has 49 inputs at  the  top, it might appear 
that it needs 100 columns, including two  output columns. 
However,  the only logic functions  used are  the bit-propa- 
gate and bit-generate  functions. We can use a  special 
decoder which  provides only two  columns  per  adder  bit, 
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1 

Figure 6 Carry-look-ahead PLA with split OR array. 

resulting in 52 columns  for  the  entire  PLA.  The special  pair of columns with shared devices. With NMOS devices 
decoder itself is much simpler than  the  decoder normally the AND array  consists of NOR circuits, and each  decoder 
used with two-input  partitions,  consisting of just  an AND consists of a NAND and a NOR circuit. 
and an OR circuit.  Furthermore,  since  the  two columns are 
never both  selected in the same product  term, they may Techniques for reducing PLA delay 
share a single device,  as with single-input partitions; and Although the  speed of a  PLA is mostly dependent  on  de- 
for some  circuit layouts, this can  reduce the  spacing  be- vice and  circuit design, there are ways for  the logic de- 
tween columns. Figure 7 illustrates a decoder and one signer to  reduce  the delay of a PLA macro. For  the  pur- 9 
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Figure 7 Special decoder for CLA PLA. 

pose of illustration,  FET devices will be assumed in the 
following discussions.  The  total delay typically consists 
of the input decoder  delay, the AND array  delay, and the 
OR array  delay. Generally,  the delays  for  each  are  depen- 
dent  on  device sizes  and output  capacitance. Since there 
is a  relatively small number of decoder  circuits, large de- 
vices can be used  without  greatly  increasing the  total 
area.  The  capacitance of the AND array  columns, which 
affects the  decoder  delay, can be reduced by minimizing 
both  the total  number of rows  and the number of person- 
alized rows  along  any  column. 

The OR array  can be split,  with  some outputs on one 
side of the AND and some on  the  other. This allows two 
product terms, in some cases,  to  share  the  same row of 
the AND array,  and results in a compressed  PLA.  It re- 
duces  both  the size of the PLA and  its delay. Figure 8 
illustrates the 22 product terms  compressed into 13 rows. 
(Product  terms 5 and 16 have been  deleted using the 
method previously  described.)  Compression  reduces the 
column capacitance, therefore  reducing  both the  decoder 
and the OR array delays. 

Figure 8 also  demonstrates  that the  propagate  function 
H = A CB B can be replaced by the OR function P = A + B 
for  propagating true  carries, and by G = A + B for  propa- 
gating complement  carries. Since the H function is formed 
by ANDing columns corresponding to  both P and c, the 
replacement reduces  the maximum number of personal- 
ized bits both in  a  column  and in a product  term.  For Fig. 

8, the maximum  column  personalization in the AND array 
is reduced from six to five (A, + 8, column), and the max- 
imum product  term personalization is reduced from 
eleven to  seven  (product term 15). Therefore, both the 
decoder delay  and the AND array  delay are reduced. 

Column  personalization in the AND array  can also be 
reduced by duplication of the columns. This  can be espe- 
cially useful for  the function  select lines of an  ALU which 
contains both  an  adder and the  Boolean  functions. 

The AND array delay is also  improved when special 
decoders  are  used,  such  as previously  described for  the 
CLA  PLA.  The special decoders  reduce the  number of 
columns in the AND array and may also reduce the number 
of personalized  bits in a  product term. 

If all of the personalized  bits in a product term are adja- 
cent  to unpersonalized  bits, it may be feasible to use 
larger devices  for  the personalized  bits  and for  the load 
device too, if necessary, therefore  reducing the AND array 
delay. 

The OR array is frequently  quite sparse. If such is the 
case, it may be possible to  order  the rows  as shown in 
Fig. 8, where every personalized bit in the OR array has an 
adjacent  unpersonalized bit  in the  same column.  This 
makes device sharing possible using two devices for 
every  three  rows. If one blank row were  added to Fig. 8, 
the rows  could be arranged to permit one device for  every 
pair of rows.  Either  way, device  sharing could reduce  the 
spacing between  rows  for  the  entire  PLA. Alternatively, 
it could permit the use of larger devices in the OR array, 
which might possibly  reduce  the OR array delay. 

PLA adder as part of an ALU 

Other ALU functions 
A general-purpose Arithmetic and Logical Unit (ALU) 
should provide capability for  other arithmetic and logical 
operations in addition to addition.  It should also  provide 
detection of specific conditions such  as overflow or  zero 
result.  Some of these functions  can  easily be included in 
the PLAs used for  the  adder.  Others require  additional 
circuits external  to  the  PLAs.  Some  other  functions,  such 
as multiply and divide,  require  use of algorithms which 
use the ALU iteratively. The  least important  functions 
can be provided by software subroutines.  The choice of 
how each function  should be provided will depend on  the 
application of the ALU as well as consideration of cost 
and performance trade-offs. 

For discussions of arithmetic operations which follow, 
only fixed point  binary operands with negative numbers 
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Figure 8 Compressed eight-bit adder. Notes: ( I )  Product term (P.T.) numbers reference corresponding terms in Fig. 5.  (2) Produc-t 
terms 5 and  16 have  been eliminated by replacing external ANDs with NORs. (3) For H * ,  H or P may be used; and for H * * ,  H or G 
may be used. 

represented in two’s-complement  notation will be consid- 
ered.  Consideration of other  number representations 
would require  discussion of possible  algorithms which are 
outside the  scope of this paper.  Operations with other 
number representations are usually provided by micro- 
programs or by software subroutines. 

The  ALU must  provide  some  means of doing sub- 
traction. If this  function is included  directly in the  PLAs 
with the adder, it will require as many product terms  as 
are needed for addition, with no common  terms  between 
the  two  functions.  Instead,  one  operand can first be com- 
plemented  and then added to  the  other  operand. If two 
machine cycles  are permitted, the  operand can be com- 
plemented  during the first cycle by using some  additional 
product terms in the  PLAs; if subtraction  needs  to be 
completed in one  cycle, additional gates can be provided 
at the  inputs  to  the  PLAs for  complementing one  oper- 
and. 

Multiplication and division are usually implemented by 
iterative  addition or subtraction.  However, the ALU 
must  provide some means of shifting the partial  result af- 
ter  each  iteration. Again, shifting functions  can be pro- 

vided in the  PLAs with additional product  terms.  How- 
ever, it  will take fewer machine cycles  and probably less 
space if shift gates external to  the  PLAs  are used. 

During the addition  cycle  the ALU must  also detect 
specific conditions which may result. It  must detect  the 
sign of the result and the occurrence of an  output  carry. 
For two’s-complement representation, the sign bit is the 
sum So, so both of these  are available as direct outputs 
from the  adder.  Other conditions  which are usually de- 
tected are overflow  and  zero  result. In the following sec- 
tions, we  will show how each of these can be detected 
using a  combination of external circuits  and  additional 
product terms in each PLA. 

Overjow detection 
Overflow occurs when two  numbers  having the  same sign 
are added  and the result  has an  opposite sign.  This can be 
expressed  as 

OV = A,  . Bo . so + A, . Bo . So 

= Go . So + Po . So. (14) 

It is probably  desirable that  the overflow signal should be 11 
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no slower than  the  other  adder  outputs, and therefore 
should  not be developed  from the So output. Using 

So = (H,  @ G:-') @ (H:-' . C,), (15) 

where K is the number of bits in the high-order  string,  and 
using the  fact  that Go, H,, and P,, are all mutually exclu- 
sive, we obtain 
OV = G . G I K -  @ Go . H:-' . CK 

@ Po . G:-' @ Po . H:-' . C, 

= (Go . C:-' @3 Po . G:-') @ (Go @ P,)(H:-' . C,) 

= (Go . G:-' + Po . G:-') @ Bo . H:-' * C, 

= { G o  . G:-' + Po . G:-'} @ { H ,  + fi:-' + C,}. 
(16) 

The  expression in the left braces expands into 2(K - 1) 
product terms.  Except  for  the  product  term H,, the  ex- 
pression in the right braces is identical to  the right-hand 
output for So. Therefore, a  total of (2K - 1) additional 
unique product  terms  are  needed.  The  adder shown in 
Fig. 8 would require five additional rows in order  to pro- 
vide overflow detection. 

0 Zero sum detection 
The simplest way to  detect a  result of all zeros  is  to OR all 
of the  output  sums and then  complement the result. This 
results in a detection signal which is slower  than  the other 
outputs.  This  method, however,  provides valid detection 
regardless of the  operation performed by the ALU. 

For some operations,  detection of a zero result can be 
provided directly as  an  output from the PLA adder, using 
just  one  product  term  for  each  operation. In some  appli- 
cations of the  adder, it may only be necessary to  detect a 
zero result when  one operand is being subtracted from 
the  other,  such  as when comparing or decrementing the 
operands. For such  cases, a zero result can only occur 
when the  two  operands  are identical.  Since  the  sub- 
trahend is complemented before it enters  the  adder,  the 
XOR of each pair of adder inputs  must be true.  Then  the 
zero result can easily be detected using a single product 
term  based on  the following equation: 

Zeros = H ,  . H ,  . H z .  . . . ' HN- ,  

= f f - ' .  (17) 

This method  could  also be used for addition in systems 
which use sign and magnitude representation, since  addi- 
tion of numbers with opposite signs would be done by 
subtraction. 

We  will show subsequently that if Boolean operations 
are also included in the ALU, then a zero result can be 

12 detected with just  one  product  term  for  each  operation. 

For  general applications, zero  detection must also in- 
clude  addition. A patent by Weinberger [6] shows  that a 
zero result for an eight-bit adder  can be  obtained using the 
equation 

Zeros = [ H ,  . G, . G z  . . . . . G7] . cin 
+ [H, . P, + A, . P, + . . . + H 6  . P7] 
+ [A,] . Gin, (18) 

which can be rewritten as 

Zeros = [ Z , ]  . cin + [Z21 + [Z,I . ci, 
= (12, + Z,} + C,) . ({Z, + Z,} + Gin). (19) 

If each  set of braces represents  an  output from  the 
PLA, these  outputs  can be combined  with the input carry 
using external  circuits.  For  an  adder containing several 
PLAs, the  outputs  from all of the PLAs can be combined 
to obtain the  zero result signal. 

Equation (18) contains nine product  terms, or (N + 1) 
product  terms  for  an N-bit adder.  However,  the product 
term H N - ,  is already  contained in the  adder,  and  each 
string of complement sums  contains one common product 
term.  For  the eight-bit adder of Fig. 8, product term H 4  . 
P, is common, so that only seven  additional unique prod- 
uct terms  are  needed. If the outputs  are taken  from the 
right-hand OR array, five of those product  terms  can  share 
the five additional  rows that were  needed for overflow de- 
tection. Therefore, this method of zero sum detection re- 
quires two additional  rows  for either  an eight-bit adder or 
for  an  adder  composed of several PLAs of eight bits each. 

Since the number of additional product  terms is nearly 
equal to  the number of bits being added in each PLA, we 
can see  another advantage of using  several small PLAs 
for a large adder. 

0 Boolean  operations 
The ALUs contained in most  general-purpose micro- 
processors  are  also capable of doing Boolean operations 
on  corresponding bits of two operands.  They usually con- 
tain instructions  for  three Boolean functions: AND, OR, 

and XOR. With two-input decoders, any Boolean function 
can be obtained with a single product term for each bit. 
Separate  product  terms  are  needed for each Boolean 
function. However,  the AND, OR, and XOR operations  can 
be provided with only  two  product terms per  bit,  since the 
OR function can be provided by selecting  both the AND 

and XOR operations.  For those bit positions  whose output 
is complemented, we can take advantage of the XORS at 
the PLA outputs, since forcing a logical one into one in- 
put of the XOR will complement the function at  the  other 
input. 
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Figure 9 Complete eight-bit ALU. 

A zero result for any Boolean function  can be detected For example, a  result of zeros  for  an OR operation  can be 
using a single product term  containing the product of the obtained using the product  term P, . P ,  . P 2  . . . . . P N - , ,  

complement of the Boolean function for each bit position. since each Pi is the OR of Ai and Bi. The  zero result for  the 



14 

MARTIN S. SCHMOOKLER IBM J. RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 

Boolean functions must be combined  externally with the 
zero result for addition,  since the  latter,  as given by Eq. 
(19), is in complement form. 

In  order  to provide both arithmetic and Boolean func- 
tions,  each PLA must  have  additional  columns of inputs 
for  the  function selection  bits. These bits  must be en- 
coded in a way that permits some  product  terms  to be 
selected by more  than one  function. 

All of the 16 possible  two-variable  Boolean  functions 
can be obtained using only  four product  terms  per bit cor- 
responding to  the four  minterms A . B ,  A . B ,  A . B ,  and 
A * B. With four corresponding  function  selection bits, 
any  combination of the minterms can be selected. 

Inclusion of the Boolean  functions  provides another 
good reason for breaking the ALU into small groups of 
bits, each with  a separate PLA. If the AND, OR, and XOR 

functions are provided for a 32-bit ALU using only one 
PLA, it will need two product  terms  per  bit,  or 64 total. 
By sharing rows between corresponding  terms of high- 
order  and low-order  bits,  approximately 32 rows will be 
needed. If four eight-bit PLAs are  used,  each will need 
only 16 product  terms  for  these  functions. 

PLA  for  complete ALU 
Figure 9 shows a PLA for  an eight-bit group for  an 
ALU containing  overflow, zero  detection,  and the  three 
Boolean functions.  It contains  a total of 54 product terms 
which are  compressed  into 33 rows: 22 for  the basic add 
function, 12 additional for overflow and  zero  detection, 16 
more for  the Boolean functions,  three  for  zero  detection 
of the Boolean functions, and one  for forcing ones to  ex- 
ternal XORS for  the complement sum  outputs. 

Two function  selection  bits, X and Y,  are used to  select 
any one of four functions.  They are  encoded  as follows: 
0 0 ,  01, 10, and 11 for ADD,  AND, OR, and XOR, respec- 
tively. There  are  two function  select decoders, one for 
each side of the AND array.  Each provides  a  complete 
two-input decode of X and Y .  This permits  any product 
term to be selected by any  combination of the four func- 
tions. 

Conclusions 
A practical method  has been presented  for designing large 
adders in which the  outputs  are obtained in one  pass 
through any PLA. The adders  are broken into small 

groups of bits,  each using a separate PLA. The input 
carry to  each  group enables  the correct  sums  to be formed 
using additional  circuits at the outputs of the PLAs.  As 
improvements continue  to evolve in the design of PLA 
adders, this  technique should still permit significant re- 
duction of silicon area  for large adders. 

The  use of separate PLAs for  each small group of bits 
also allows other common ALU functions, such as  detec- 
tion of a zero  sum, and Boolean operations, to be effi- 
ciently included in the PLAs. Use of smaller PLAs, along 
with other  techniques described herein, will also help to 
reduce the delay of the ALU and  thus reduce the  cycle 
time of the  system. 

While PLA macros have  already appeared in com- 
mercially available  microprocessors for use in control 
logic, it is now becoming practical to use them for  the 
ALU as well.  This will permit use of common automated 
design processes  for both control logic and data  paths. 
Use of dynamically  clocked logic will also  become  more 
practical and will result in lower power levels  and higher 
levels of integration. 
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