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An Elementary Proof of Nonexistence of Isometries

between ¢ and ¢/

For k = 2, the two-dimensional coordinate spaces [3 and ffo are isometric. Consequently, results on computational
complexity for one space can be transplanted to the other in a natural way. In this note, an elementary proof is given for

the nonisometry between (": and [’;for general k, p, and q.

Introduction

Let Q,, O, be two points in R* with coordinates (X1 X105

s xg)and (x, xg,, - o, xg,), Tespectively. The distance

d,(Q,, Q) between these two points is defined as d, (Q,,
1

Q) = (xy = xpl” + |y = 2" + -+ - + Iy = x, ) " forp

=1,2,---and d,(Q, Q) = max (x;, — x|, -, |x, —

x,[). Following the notation used in [1, p. 374], we de-

note the space with such distance function by (’;.

Recently, some attention has been given to the spaces (f
and ¢2 because of their natural applications to computer
science. (See, for example [2-4]). The isometry f((x, y)) =
v+ /2, vy — 0/2), (x,y) € (:, between fi and If
makes it sufficient to study only one of these two spaces
as far as computational complexity is concerned, since
the existence of a polynomial time algorithm for a prob-
lem in one space implies the existence of a polynomial
time algorithm for the same problem in the other space.
More recently, some other applications have been re-
ported that require the study of ('; and 5:‘0 (See, for ex-
ample [5].) The question of their being isometric came up
naturally. After a search of the literature, it seems that
people always assume they are nonisometric. However,
this fact usually has to be deduced by the reader from
some very powerful theorems. (See, for example [6].)

The purpose of this note is to give an elementary proof
of a more general fact concerning nonisometries between
f’; and (’;. We give a very simple proof of nonisometries

between f’; and ¢£. In the same spirit but with a more
complicated proof, we then establish the final result.

Lemma 1

It is impossible to put more than 2k points inside the unit
sphere in f’; which are separated by a distance = 2,
forl =p<wand k = 1.

Proof We proceed by induction on k. Obviously, it is

true for k¥ = 1. By induction hypothesis, we can put at

most 2k — 2 points on the intersection of the unit sphere

and the hyperplane x, = 0. Suppose we have two points

a=(a, --,a)andb= (b, -, b)inthe positive half of

the unit sphere: g, = b, > 0. Then define a = (—a,, a,,
-+, a,). We have

da, b) < d,a', b)
=dya’, 0) + d 0, b)
=1+1
=2,

where O is the origin. Note that the first inequality is
strict only for 1 < p < «. The second inequality is the
triangle inequality.

Consequently, there is at most one point with x, > 0
and at most one point with x, < 0. Thus, there are at most
2k points in the unit sphere in t’:‘,, separated by a distance

= 2.
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Theorem 1

1. For k = 1, ¢ and ¢% are isometric for 1 < p < o,

2. For k = 2, ¢; and ¢* are isometric for p = 1, but are
not isometric for 1 < p < o,

3. Fork =3, ¢, and ¢, are not isometric for 1 < p < .

Proof It suffices to prove (3) and the second part of (2).

Suppose f were an isometry from ¢, to ¢ mapping O to
O. Then f maps the ¢ :_f unit sphere to the f’; unit sphere.
But the ¢ : unit sphere has 2* points all distance 2 apart,
namely, the 2* vertices. Since fis an isometry, the images
of these points must satisfy the same property. For k = 3,
this is impossible by Lemma 1. For k = 2, again by
Lemma 1, the only possible candidates for the four points
distance 2 apart in the (;‘: unit sphere are (1, 0) (—1, 0) (0,
1) (0, —1) for p < «. However, they are distance 2 apart
only if p = 1. Thus, here is a contradiction for 1 < p < .

We now prove the following final result:

Theorem 2
Fork=2,1sp=wx1=g=<owx,the spaccs(ﬁand[’;are
nonisometric, except that ¢ = €.

Remark Fork=1,¢,=¢,.

Lemma 2 (unique midpoint)

If1<p <o, k=2, thenforx,y € ¢}, ifdx,y) = d(y, —x)
= d(x, —x)/2, theny = 0.

Proof We have 0 = 2(d(x, —x)/2)° — d(x, y)* — d(»,
%) = QS - b - ¥ - Ix, + y). Call the
summand S,. Then §, = 0 when y, = 0. Its derivative
38,/dy,is —pllx, + y["" — Ix, — ¥} sen (x) for |y <
|x,|. Thus, for 0 <y, <|x}, 85,/dy, < 0 so that §, < 0 for 0
<y,=|x|. For0>y,> —|x|, 85,/9y, > 0 so that §, < 0 for
0>y,= —|x/. For|y| > |x, we have S, < 0 by inspection.

So each S, < 0, and for 35, = 0 we must have each §, =
0; thus each y, = 0, implying y = 0.

Corollary Ifl<p<w kz=2,x,y,z€E€ f’;, d(x,y) = d(y,
z) = d(x, z)/2, then y = (x + z)/2.

Proof By linearity.

Remark Forp = 1orp =« k= 2, the lemma is not
true. To see this, just consider the points:

x=@1,1,0,---,0,y=(01,-1,0,---,0 for p=1
and the points
x=(,0,0,---,0,y=(0,1,0,:---,0) for p = .

Thus for k = 2 this property immediately separates the
case (p = 1 or p = ®) from the case (1 < p < o).
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Given a space (’; where we know £ but not p, we may
first test the ‘‘unique midpoint’’ property to see whether
1 <p<oo,

If p = 1 or p = =, there are only finitely many directions
in which the unique midpoint property holds. That is, fix-
ing an arbitrary origin O, there are only finitely many x €
¢%orx € ¢, such that d(0, x) = 1 and such that there is a
unique point y with d(0, y) = d(y, x) = 1/2. Namely, if
p = 1, there are 2k such values of x, namely those with one
coordinate equal to *1, therest 0: x = (1,0, - - -, 0), (0,
+1,0,--,0),---,(0,---,0,=1). If p = », there are 2"
such values of x, namely (xk*, £k, - - -, =k™"). For
k = 3, we have 2* > 2k, so that this count serves to distin-
guish €’§ from f: for k = 3. As noted above, for k = 2, the
spaces are actually isometric, as they are for k = 1.

Now suppose 1 < p < », For each point x define —x to
be the point z such that d(x, O) = d(z, O) = d(x, z)/2. (By
Lemma 2, 0 = (x + z)/2, so that z = —x.) Now choose
two points x, y on the unit sphere (d(x, 0) = d(y, O) = 1)
with d(x, y) = d(x, —y) = A(x, y). Choose x and y to
maximize A(x, y). Let the maximum value of A(x, y) be
A, le.,

A = sup {d(x, y)lx, y € ¢}, d(x, 0) = d(y, 0) = 1,
d(x, y) = d(x, —y)}-

A is an invariant of the space and almost serves to distin-
guish ¢% and ¢%.

Lemma 3
Ifl<p<2,thenA = 2" and is achieved for precisely
those x and y such that for each coordinate i, either x, = 0
ory = 0.

Proof SetS = d(x, y)’ + dx, —y)’ — 2d(x, 0)" — 2d(y,
O)’. For x, y such that A(x, y) = 2" we have § = 0. For
A(x, y) > 2" we would have § > 0. Now S = Z(jx, — y”
+x, + y[° = 2|x,” — 2|y,/"). Again call the summand S,.

Ifx,=0o0ry =0,then S, =0.

Otherwise assume, without loss of generality, that x; =
y;>0.Wemaysetx, = 1,y,=r.Ifr=1,then s, = 0"+
2 —-2-1-2-1=2"-4<0sincep < 2.

fo<r<l,sett=8/r"={1-r+10+r -2~
27 =21+ Clp, )r* + Cp, Ar* + - - -] =2-2"Y
P =2Cp, 2" + Cp, Hr "+ - ~1]. Asr—> 1, 1>
27 — 4 < 0. Clearly, since ¢ is a sum of positive multiples
of positive powers of r [note that C( p, 2N), the binomial
coefficient, is positive since 1 < p < 2], ¢ gets smaller as r
gets smaller in the range 0 < r < 1. Thus in that range, t <
Oand S, < 0. So the only way for §, = Ois forr = 0, i.e., x,
= 0 ory, = 0. Also it is impossible to have §, > 0.
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So for § = 0 we must have, for each i, x,=0ory, = 0,
and we always have § = 0.

Lemma 4
If2 < p < o, then A = 2'""” and is achieved when x, =
+y, forall i,

Proof Set § = 2d(x, y)" + 2d(x, —y)* — 2°d(x, O)" —
2d(y, O). Again, if A(x, y) = 2", then § = 0, and if
A(x, y) > 2" then S > 0. We rewrite S as

S= 2{2|x, - yilp + 2|xi + yilp - \2x1'P - |2yi‘p}’

with the summand denoted S§,.

Ify,=0,then S, = 2+ 2~ 2")x}" <Ounlessx, =0
also.
Ify,= *x,then §,=2-2"+0-2"-2"=0.

Assume x, > y, > 0, and we may assume x, = 1,0 <0y,
= r < 1. We want to show

20— +21+ 1" =20 + ) <.

Call the left-hand expression ¢; thenasr —> 1,1t — 0.
For0 < r < 1, we have at/ar = —2p(1 — n* ' + 2p(1 +

P =2 = 2p {1+ == = (20"} > 0

by the triangle inequality on f’;_l. Thus for 0 < r < 1 we
have ¢t < 0.

Thus we have S, = 0, and §, = 0 iff x, = *y,.
Thus S = 0,and § = Oiff for all i, x, = xy,.

Lemma 5
Ifp=24=2"

Proof Continuity in p.

Now, given a space f’; of unknown p, with 1 < p < e,
first find A as above.

IfA =2" thenp = 2.

If2 > A > 2", then either
p=1/log,A(1<p<2),or
p=1/(1-log, A) 2 < p < =).
If k = 3, we can distinguish these two cases immedi-
ately: Try to find an x, with d(O, x) = 1, such that there

are infinitely many y with d(0O, y) = 1, d(x, y) = d(x,
—y) = A. We will succeed iff 1 < p < 2.

fl<p<2thenx=(1,0,---, 0,y=(0,a,- -, b)
will work as long as d(0, y) = 1.
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If 2 < p < o, for any x there are at most 2* choices of y,
namely, the k choices of sign in y, = *x,.

If k = 2 we still have problems. For a given value of A,
with 2% < A < 2, we have two possible values of p, say p
and g, with 1 < p < 2 < g < », They are related by (1/p)
+ (/g = 1.

The solutions of (x, y) which led to our maximum value
of A(x, y)are (for 1l <p<2)x=(x1,0),y = (0, £1) or
vice versa; or (for 2 < g < ©) x = (271, 2719, y =
+(2™ —27Y% or vice versa. In either case, by our
unique midpoint lemma, we can determine the behavior
of d(x, 27"y) as n — =. That is, take the midpoint of (0, y)
and call it 2™'y; then find 2%y = midpoint (0, 27y), etc.

For 1 < p <2, we have d(x, 27"y) = (1° + 27")")'* =
(1+27"™)" =1+ 1/p27™ + 027*"™).

For2 < g < o, we have d(x, 27"y) = [(27"+ 277197 +
@71 - 27N = {10 + 27+ (1 - 27 =
{1+ Clg, 227" + 027" =1+ (g - 1)/27™" +
o@2™").

The leading terms differ unless ¢ = p = 2. [Compare
(1/p)27™ with ((g — 1)/2)27*".] So this test distinguishes
€2 from 2 for 1 <p<2<g<o.

To summarize, given an (z space withk =2, 1 = p =< o,
with k known and p unknown, these tests can determine p
intrinsically unless kK = 2 and p = 1 or «. First we distin-
guish among (p = 1 or p = ) and (1 < p < ). In the first
case we count the directions along which the unique mid-
point lemma holds. In the latter case we find A, which
narrows the possible values of p to two values, p and ¢,
1 <p<2<g<»,orelseidentifies p = 2. If k = 3, we can
then ask the number of solutions to the A equation for a
given x, which separates p < 2 from p > 2. If k = 2, the
behavior of d(x, 2~"y) as n — « distinguishes large p from
small p. So the only isometries that exist are between ¢ ,‘,
and ¢} and between ¢} and €.
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