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Communication 

An Elementary  Proof of Nonexistence  of  lsometries 
between e" P and e" Q 

For k = 2, the two-dimensional  coordinate spaces and are isometric.  Consequently, results on computational 
complexity for one space can be transplanted to  the  other in a natural way. In this  note, an elementary  proof is given for 
the  nonisometry  between e: and 8; for general k, p ,  and q, 

Introduction 
Let Qi, Q, be  two points in Rk with coordinates (xil, xiz,  
. . ., xik) and (x,,, xjz, . *,  xjk) ,  respectively.  The  distance 
d,(Qi, Q,) between  these two points is defined as d, (ei, 
QJ = ( [x i l  - XJ + [xi2 - XJ + . . + [xik - xJ)"~ fo rp  
= 1, 2, * . and d,(Qi, Q,) = max (/xil - xjJ, . . ., [xik - 
xjrl). Following the notation  used in [l,  p. 3741, we  de- 
note the  space with such distance  function  by 8:. 

Recently,  some  attention  has been given to  the spaces 
and 8: because of their natural  applications to  computer 
science.  (See, for example [2-41). The isometry f ((x, y ) )  = 
(01 + x)/2, ( y  - x)/2),  (x, y )  E e:, between e t  and 
makes it sufficient to study  only one of these  two  spaces 
as  far  as  computational complexity is concerned,  since 
the  existence of a polynomial time  algorithm  for  a prob- 
lem in one  space implies the  existence of a polynomial 
time  algorithm for  the  same problem in the  other  space. 
More recently, some other applications  have  been re- 
ported  that  require  the  study of e: and ef (See,  for  ex- 

between e: and 6':. In the  same spirit  but with a more 
complicated proof, we then  establish  the final result. 

Lemma 1 
It is impossible to  put more  than 2k points inside the unit 
sphere in which are  separated by a distance 2 2, 
f o r l < p < m a n d k >  1. 

Proof We proceed by induction on k. Obviously, it is 
true  for k = 1. By induction hypothesis, we can  put  at 
most 2k - 2  points on  the intersection of the unit sphere 
and  the hyperplane x ,  = 0. Suppose  we  have  two points 
a = (a,, . . ., ak) and b = (b,, . . ., bk) in the positive halfof 
the unit sphere: a, 2 b, > 0. Then define a' = (-al, a2, 
. . ., ak).  We have 

d,(a, b) < d,(a', b) 

5 d,(a', 0) + d,(O, b) 

1 1 + 1  

ample [5 ] . )  The  question of their being isometric came up = 2 ,  
naturally. After a search of the  literature, it seems  that 
people always  assume they are nonisometric. However, 
this  fact  usually has  to be deduced by the  reader  from 
some  very  powerful theorems.  (See,  for example [6].) 

where 0 is  the origin. Note  that  the first inequality is 
strict only for 1 5 p < m. The  second inequality is the 
triangle inequality. 

Consequently,  there is at most one point  with x ,  > 0 
The  purpose of this note is to give an  elementary proof  and at most one point with x, < 0. Thus, there are  at most 

of a more general  fact concerning  nonisometries between 2k points  in the unit sphere in e:, separated by a distance 
8: and 8:. We give a  very simple proof of nonisometries 2 2. 
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Theorem 1 
1. For k = 1,  e: and  are  isometric  for 1 5 p < m. 

2 .  For k = 2 ,  epk and ek, are isometric for p = 1 ,  but are 

3. Fork 2 3, e: and t‘: are not isometric  for 1 5 p < 03. 
Proof It suffices to  prove (3) and  the  second  part of ( 2 ) .  

not isometric  for 1 < p < m. 

Supposefwere  an isometry from e: to e; mapping 0 to 
0. Thenfmaps  the unit sphere  to  the e: unit sphere. 
But the unit sphere  has 2” points all ‘distance 2 apart, 
namely, the 2” vertices. Since f is  an  isometry,  the images 
of these  points  must satisfy  the same  property. For k 2 3, 
this is impossible  by Lemma 1. For k = 2 ,  again by 
Lemma 1 ,  the  only possible candidates  for  the  four  points 
distance 2 apart in the unit sphere  are (1, 0) (- 1 ,  0) (0 ,  
1) (0, - 1 )  for p < a. However,  they  are  distance 2 apart 
only ifp = 1 .  Thus, here is a contradiction for 1 < p < 00. 

We now prove  the following final result: 

Theorem 2 
For k 2 2 ,  1 5 p I 00, 1 I q 5 00, the  spaces and et are 
nonisometric,  except  that = e:. 
Remark For k = 1 ,  ti = e:. 

Lemma 2 (unique  midpoint) 
If 1 < p < m, k 2 2 ,  then  for x ,  y E e:, if d(x ,  Y )  = d ( y ,  -x) 
= d ( x ,   - x ) / 2 ,  then y = 0. 

Proof We have 0 = 2(d(x,   -x)/2)’ - d(x ,  Y)” - d ( y ,  
-x)” = C.(21xilp - Jxi - yilp - [xi  + yiIp). Call the 
summand Si. Then Si = 0 when y i  = 0. Its  derivative 
as i /ay i  is -p+, + yiIP--l - Ixi - yil ”“l} sgn (xi)  for lyil < 
lxil. Thus,  for 0 < y i  < Ixil, aSi /ay i  < 0 SO that Si < 0 for 0 
< y ,  5 [x i / .  For 0 > Yi > - lxil, aS i /ay i  > 0 so that Si < 0 for 
o > y i  2 - 1 ~ ~ 1 .  For lyil > lxil we have Si < 0 by  inspection. 

So each Si I 0, and  for 8Si = 0 we must have  each Si = 
0; thus  each y i  = 0 ,  implying y = 0. 

Corollary If 1 < p < m, k 2 2 ,   x ,  y ,  z E e;, d ( x ,  y )  = d(y, 
z )  = d ( x ,   z ) / 2 ,  then y = ( x  + z ) / 2 .  

Proof By linearity. 

Remark For p = 1 or p = m, k 2 2 ,  the lemma is not 
true.  To  see  this,  just consider the points: 

x = ( l , 1 , 0 , ~ ~ ~ , 0 ) , y = ( l , - 1 , 0 ; ~ ~ , 0 )  for p = l  

and the  points 

x = ( 1 , 0 , 0 ; ~ ~ , O ) , y = ( 0 , 1 , 0 ; ~ ~ , 0 ) f o r p = m .  

Thus  for k 2 2 this  property  immediately separates  the 
case (p = 1 or p = m) from the  case ( 1  < p < m). 

Given a space 8: where we know k but  not p ,  we may 
first test  the  “unique midpoint” property  to  see  whether 
l < p < m .  

I fp  = 1 or p = m, there  are only finitely many directions 
in which the  unique midpoint property holds. That  is, fix- 
ing an  arbitrary origin 0, there  are only finitely many x E 
C: or x E e:, such  that d(0 ,  x )  = 1 and  such  that  there is a 
unique  pointy with d ( 0 ,  y )  = d(y, x )  = 1 / 2 .  Namely, if 
p = 1 ,  there are 2k such values of x ,  namely those with one 
coordinate equal to & 1 ,  the  rest 0: x = (* 1 ,  0 ,  . . ., 0), (0, 
-+1,0,. . . , O ) ,  . . ., ( 0 , .  . . , O ,  * I ) .  I f p  = m,  thereare2” 
such values of x ,  namely (*k-’,  kk-’, . . ., +k-p) .  For 
k 2 3, we have 2“ > 2k, so that this count  serves  to distin- 
guish e: from fork 2 3. As noted  above,  for k = 2 ,  the 
spaces  are actually isometric,  as  they  are  for k = 1 .  

Now  suppose 1 < p < m. For  each point x define - x  to 
be the point z such  that d ( x ,  0) = d ( z ,  0) = d(x ,  z ) / 2 .  (By 
Lemma 2 ,  0 = ( x  + z ) / 2 ,  so that z = -x.) Now  choose 
two points x ,  y on  the unit sphere (d (x ,  0) = d(y, 0) = 1) 
with d(x ,  y )  = d ( x ,  - y )  = A ( x ,  y ) .  Choose x and y to 
maximize A ( x ,  y ) .  Let  the maximum  value of A ( x ,  y )  be 
A ,  i.e., 

A = sup {d (x ,  y)lx, y E e:, d ( x ,  0) = d(y ,  0) = 1 ,  
d(x ,  Y )  = 4 x 9  - Y ) l .  

A is an  invariant of the  space  and  almost  serves  to distin- 
guish and et. 

Lemma 3 
If 1 < p < 2 ,  then A = 2l” and is achieved for precisely 
those x and y such  that  for  each  coordinate i ,  either xi = 0 
or y i  = 0. 

Proof Set S = d ( x ,  y)” + d(x, -y)’ - 2d(x ,  0)’ - 2d(y ,  
0)’. For x ,  y such  that A ( x ,  y )  = 2l’” we have S = 0. For 
A ( x ,  y )  > 2l” we would have S > 0. Now S = x(lxi - yilP 
+ [xi + yilp - 21~~1” - 21~~1”). Again call the summand Si. 

If xi = 0 or y i  = 0, then Si = 0. 

Otherwise  assume, without loss of generality, that xi 2 

yf > 0. We may set xi = 1 ,  yi  = r .  If r = 1 ,  then Si = 0’ + 
2 ’ - 2 . 1 - 2 . 1 = 2 ’ - 4 < O s i n c e p < 2 .  

I f 0  < r < 1, set t = Si /rp  = { ( I  -r)’ + (1 + r)’ - 2 - 
2rp} / rp  = {2[1 + ~ ( p ,  2)r2 + ~ ( p ,  4)r4 + . . .I - 2 - 2rp}/  
r’ = 2 [ C ( p ,  2)r2-’ + C ( p ,  4)r4-’ + . * - 1 1 .  As r -+  1, t +  
2’ - 4 < 0. Clearly, since t is a sum of positive multiples 
of positive‘ powers of r [note that C( p ,   2 N ) ,  the binomial 
coefficient, is positive  since 1 < p < 21, t gets smaller as r 
gets smaller in the range 0 < r < 1 .  Thus in that  range, t < 
0 and Si < 0. So the only way for Si = 0 is for r = 0, i.e., xi 
= 0 or y i  = 0. Also it is impossible to  have Si > 0. 697 
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So for S = 0 we must have,  for  each i, xi = 0 or y, = 0, 
and we always  have S I 0. 

Lemma 4 
If 2 < p < 00, then A = 21-1/p and is achieved when xi = 

+y, for all i. 

Proof Set S = 2d(x, y)” + 2d(x, -y)” - 2”d(x, 0)” - 
2”d(y, 0)’. Again, if A(x, y) = 2l-””, then S = 0, and if 
A(x, y) > 21”’p, then S > 0. We rewrite S as 

S = B{2)Xi - yiJp + 2)Xi + yilp - )2XiJP - )2yiJ’}, 

with the  summand denoted Si. 

If yi = 0, then S, = (2 + 2 - 2’)(xi(’ < 0 unless xi = 0 
also. 

If y, = +xi,  then Si = 2 2” + 0 - 2” - 2” = 0. 

Assume xi > yi > 0, and we may assume xi = 1 , 0  < y, 
= r < 1. We want  to  show 

2(1 - r)’ + 2(1 + r)” - 2’(1 + P) < 0. 

Call the left-hand expression t ;  then  as r + 1, t + 0. 

For 0 < r < 1, we  have a t / a r  = -2p(l - r)””l + 2p(l + 

by the triangle  inequality on t?:-l. Thus  for 0 < r < 1 we 
have t < 0. 

r)’-l - 2pprp-1 = 2p {(I + - (1 - r)”--l - (2r)”-’} > o 

Thus we have Si 5 0, and Si = 0 iff xi = *yi. 

Thus S I 0, and S = 0 iff for all i, xi = kyi. 

Lemma 5 
I f p  = 2, A = 2l”. 

Proof Continuity in p. 

Now, given a space t?: of unknown p ,  with 1 < p < 00, 
first find A as  above. 

If A = 2l”, then p = 2. 

If 2 > A > 2l/’, then  either 

p = l/log,  A (1 < p < 2), or 

p = 1/(1 - log, A) (2 < p < a). 

If k 2 3, we can distinguish these  two  cases immedi- 
ately:  Try  to find an  x, with d(0 ,  x)  = 1,  such  that  there 
are infinitely many y with d(0 ,  y) = 1, d(x, y) = d(x, 
-y) = A. We will succeed iff 1 < p < 2. 

I f l < p < 2 , t h e n x = ( l , O ; . . ,   O ) , y = ( O , a ; . . , b )  
will work as long as d(0 ,  y) = 1. 

If 2 < p < a, for  any x there  are  at most 2k choices  of  y, 
namely, the k choices of sign in yi = fx,. 

If k = 2 we still have  problems.  For a given  value of A, 
with 2l” < A < 2,  we  have  two possible  values ofp ,   sayp  
and q ,  with  1 < p < 2 < q < a. They  are related by (l/p) 
+ (l/q) = 1. 

The  solutions of (x, y) which  led to our maximum value 
of A(x, y) are (for  1 < p < 2) x = (* 1, O), y = (0, + 1) or 
vice versa;  or (for 2 < q < 00) x = +(2-”q, 2-l’‘), y = 

k(2-”‘, -2-’/‘) or vice versa.  In  either  case, by our 
unique  midpoint lemma, we can  determine  the  behavior 
of d(x, 2-”y) as n -+ 43. That  is,  take  the midpoint of (0, y )  
and call it 2”y; then find 2-’y = midpoint (0, 2”y), etc. 

For 1 < p < 2 ,  we  have  d(x, 2-”y) = (1” + (2“’)p)1’p = 

(1 + 2-””)l/” = 1 + (I/p)2PP + 0(2-2””). 

For 2 < q < 0 3 )  we have d(x, 2-”y) = [(2-l” + 2”’”19)4 + 
(2-“4 - 2-”411‘4 = {(1/2)[(1 + 2-74 + (1 - 2-”)”}““ = 

(1 + q q ,  2)2-’” + 0(2 -~~)} l /~  = 1 + ( (q  - 1)/2)2-’” + 
0(2-~”). 

The leading terms differ unless q = p = 2. [Compare 
(l/p)Z-“” with ( (4  - 1)/2)2-’”.] So this test distinguishes 
t: from et for 1 < p < 2 < q < a. 

To  summarize, given an  space with k 2 2, 1 5 p 5 00, 
with k known  and p unknown, these  tests  can  determine p 
intrinsically unless k = 2  and p = 1 or 00. First we distin- 
guish  among (p = 1 or p = m) and (1 < p < m). In  the first 
case we count  the directions  along  which the unique mid- 
point lemma holds. In  the  latter  case we find A, which 
narrows  the possible values of p to two  values, p and q ,  
l < p < 2 < q < ~ , o r e l s e i d e n t i f i e s p = 2 . I f k z 3 , w e c a n  
then ask  the  number of solutions to  the A equation  for a 
given x, which separates p < 2 from p > 2. If k = 2, the 
behavior of d(x, 2-”y) as n -+ distinguishes large p from 
small p. So the only  isometries that  exist  are  between ti 
and and  between 6: and 8:. 
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