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Exploiting Symmetry in Electrical Packaging Analysis 

Many properties of physical systems can be expressed  by  symmetric  matrices of order n, where n is the number of 
components in the system. The computer  storage requirement for inverting the most general symmetric matrix is n ( n  + 
1)/2 storage  locations. For large values of n, the number of multiplications  required is proportional to n3. If the physical 
system  possesses certain geometrical  symmetries,  both the amount of storage and the number of multiplications  can be 
reduced substantially. I t  will be shown  that if the physical  system  possesses  p orthogonal planes of symmetry, where p = 
1, 2,  or 3 ,  and if n is suficiently  larger, then the storage requirement  can be reduced approximately  by 112’ and the 
number of multiplications by 114’. 

Introduction 
Real or  complex  matrices of rather high orders  are  com- 
monly encountered in electrical  packaging  analysis.  In- 
ductance,  capacitance, impedance, and  admittance matri- 
ces  are familiar examples. Quite often it is necessary  to 
construct  the  inverse of such  matrices,  or  to solve sys- 
tems of linear  equations in which these matrices appear  as 
coefficient matrices.  The  purpose of this paper is to  show 
how the physical  symmetry of a given  package  design can 
be exploited  to  reduce  the  amount of computer  storage 
and computer time  required for  these  operations. 

With few exceptions, the real matrices encountered in 
electrical  packaging  analysis are usually  symmetric and 
positive  definite. The complex matrices  are usually sym- 
metric and  have positive definite imaginary parts  and pos- 
itive semidefinite real  parts.  These  properties  are  quite 
general in that  they  are independent of any particular geo- 
metric symmetry  that a package might exhibit. For  real 
symmetric  positive definite matrices,  the  square  root 
method of Cholesky  provides  a convenient  and efficient 
technique for matrix  inversion or solution of linear equa- 
tions. By considering  complex square  roots,  one  can  ex- 
tend  the  Cholesky factorization to include  complex  matri- 
ces of the  type  described  above. When applying the  Cho- 
lesky method  to a  symmetric  matrix of order n ,  it is 
necessary  to  store only the n(n + 1)/2 elements of the 
upper triangle rather than the full n2 elements. 

If a physical  package possesses sufficient geometrical 
symmetry, it is often possible to  reduce  the storage re- 
quirements  to well below the generally  required n(n + 
1)/2 elements.  The following discussion will introduce  an 
abstraction, called an interaction matrix, of which  induc- 
tance,  capacitance,  impedance,  and  admittance  matrices 
are special cases.  The element aii of an interaction matrix, 
A, represents, in some sense,  the physical interaction  be- 
tween components i and j of a physical  system. The dis- 
tinguishing feature of an interaction  matrix is that, in gen- 
eral,  the  element au depends only on  the relative  positions 
of components i and j in the  array of components which 
make  up the physical  package. 

As an example of the effect of  symmetry,  consider  an 
interaction matrix  for  the  four-component system shown 
in Fig. 1 .  This configuration possesses a vertical  plane of 
symmetry, in that  the left half of the  system is the  mirror 
image of the right half. The  interaction matrix will have 
the form 

In addition to  the usual  symmetry  with respect  to reflec- 
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Figure 1 Single  plane of symmetry. 

The  general  form  for a  bisymmetric  matrix of even or- 
der, n = 2m, is 

Bm  CmJm 1, 
= [ J,Cm JmBmJm 

where B, and Cm are m X m symmetric matrices and J, is 
the m X m reversal matrix, 

0 0 * . *  0 1  
0 0 . . .  1 0  

. . . . . . . . . . . . . . 
0 1 . . .  0 0  
1 0 . . .  0 0  

tion through the diagonal,  this matrix is also symmetric 
with respect  to reflection through the quasi-diagonal ex- 
tending from  the  lower left-hand corner  to  the  upper right- 
hand corner.  The  latter symmetry is a direct  consequence 
of the right-left geometrical symmetry of the configura- 
tion of Fig. 1. Not all the  ten  elements of the  upper tri- 
angle are  distinct.  There  are  only six  unique elements, 
and one might suspect, quite correctly,  that  the  inverse 
matrix can  be  constructed using only six storage loca- 
tions. Consider now the generalization to matrices of ar- 
bitrary order. 

One plane of symmetry 
An n X n matrix  with elements a,  will be called bisym- 
metric if a, = a, and a, = u,+~-~,,+~-~ for i , j  = 1 ,  2 ,  * e ,  

n. The first condition  states  that  the matrix is symmetric 
with respect to reflection through  the main diagonal, 
which extends  from  the element a,, in the  upper left-hand 
comer to the  element ann in the  lower right-hand comer. 
The  second  condition  states  that  the matrix is unchanged 
when it is reflected  through the quasi-diagonal,  which ex- 
tends from the element an, in the  lower left-hand comer  to 
the  element a,, in the  upper right-hand comer. Bisymmet- 
ric matrices  are a subset of a class of matrices, called cen- 
trosymmetric, which are distinguished  by the  property 
that a, = an+l-i,n+l"j. The reduction of bisymmetric ma- 
trices  that will be  discussed  below is closely  related to  the 
reduction of centrosymmetric  matrices given by Good [I] 
and Andrew [2 ] .  

Bisymmetric  matrices are  encountered in physical 
problems  which have a plane of symmetry  that divides 
the configuration into  two halves  which are mirror images 
of each  other.  The bisymmetric  form will be obtained if 
the individual components of the physical system  are 
numbered so that if component i' is the mirror image of 
component i, then i + if = n + 1, where n is the  total 
number of components. 

having ones  on  the quasi-diagonal and  zeros  everywhere 
else. Postmultiplication of C, by J, reverses  the  order of 
the  columns of Cm, whereas premultiplication of Cm re- 
verses  the  order of the rows. The pre-  and  postmulti- 
plications of Bm by J, reverse  the  orders of both  the  rows 
and columns of Bm. 

Only the  upper triangles of Bm and Cm need  be stored. 
The remaining  matrix elements  can be  found by reflection 
through the diagonal  and  quasi-diagonal. The  number of 
storage locations required is 

m(m + 1)  m(m + 1)  n(n + 2 )  
= m(m + 1 )  = ~ + 

2 2 4 

The  general  form  for a bisymmetric  matrix of odd  degree, 
n = 2m + 1 ,  is 

D m  

(3) 

where B, and C m  are m X m symmetric  matrices, J, is the 
m x m reversal  matrix, Dm is an m X 1 column vector, D i  
is the  transpose of Dm, and E is a scalar. It is necessary 
only to  store  the  upper triangles of the matrices B, and 
C,, and  the  vector Dm and  scalar E. The number of stor- 
age locations  required is 

m(m + 1)  m(m + 1) + 
2 2 

+ m +  I = ( m  + 1)' 

( n  + 1)' -~ - 
4 

For  comparison, it should be recalled that a  general  sym- 
metric matrix of order n requires n(n + 1)/2 storage loca- 
tions. 

Thus,  approximately half the  storage  for a symmetric 
matrix is needed  for a bisymmetric  matrix 

The inversion  method is based  on  the identity 

TA"T" = [TAT"]", (4) 
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where T is a  non-singular  matrix. 

For  the matrix A,,+, of Eq. ( 3 )  the  appropriate T matrix 
is 

T = -[ 1 Irn 
2m fi -J, 

Observing that  the  square of J, is equal  to Im, it is easy  to 
show that  the  inverse of T,, is 

1 
l -  - -[Irn fi J, Im ] -Jm . 

From  Eqs. ( l ) ,  (5 ) ,  and (6) one finds 

For  the matrix A,,,, of Eq. ( 3 )  the  apropriate T matrix 
is 

The  inverse is 

L 

from Eqs. (3) ,  (8), and (9), 

Thus,  the similarity  transformation TAT" reduces a bi- 
symmetric matrix A to a block diagonal matrix with two 
blocks.  Both  blocks are  symmetric matrices. If A is of 
order 2m, both blocks are of order m. If A is of order 
2m + 1 ,  one block is of order m + 1 ,  the  order is of order 
m. Note  also  that if A is positive  definite,  then both blocks 
of TAT" are positive definite. To invert TAT" one in- 
verts  the  two blocks separately. Since the inverse of a 
symmetric  matrix is symmetric, one  obtains 

where 

Fm = [B, + C,]" 

and 

Gm = [Bm - C,]" 

are m X m symmetric matrices. or 

- - 

where 

F m  H m  0 
H i  K 0 
0 0 JmG,J, 

and 

G, = [Bm - C,]". 

In  Eq. (12), Fm and G, are m X m symmetric matrices, Hm 
is an m X 1 column  vector,  and K is a scalar. 

Inversion of  an n X n symmetric  matrix  by convention- 
al techniques  requires,  for large n ,  approximately cn3 
multiplications, where c is a constant independent of n. 
Inversion of two symmetric m X m matrices  requires 

operations.  Hence,  for large bisymmetric  matrices the 
two block diagonal submatrices in Eqs. (7) and (IO) can be 
inverted  with about  one-quarter  the  number of multiplica- 
tions required  to  invert  the original matrix  by convention- 
al methods. 

The  inverse of A can be obtained from  Eqs. (1   1)  or (12) 
by noting that 

A" = T"[TA"T"]T. 

Using Eqs. ( 9 ,  (6), and ( 1 1 )  one finds 

Using Eqs. (8), (9), and (12) one finds 

Fm + G, d H ,  (F, - G,)J, 
= [ 2K 

J , ( F ~  - G,) GJ~H, J,(F, + GJJm 

Comparison of Eqs. ( 1 )  with ( 1 3 )  and (3 )  with (14) 
shows that A" is bisymmetric. That  is,  the inverse of a 
bisymmetric  matrix is bisymmetric. 

No multiplications are required to  evaluate T, ,A, ,T~~,  
whereas m multiplications  by d are required to  evaluate 
T2m+lA2m+lT~~+1.  Also, m(m + 1) multiplications by 1/2 
are required to  construct Ai: from TzrnA2,T;:, according 
to  Eq. ( 1 3 ) ,  whereas (m + 1)' multiplications are  required 
to  construct Ai:+, from  Eq. (14). The  inversion of the di- 
agonal blocks in Eqs. (7) and (10) requires of the  order of 
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Figure 2 Two planes of symmetry,  case 1. 

m3 multiplications each  and hence dominates  the  compu- 
tation. Thus, in theory,  the method  described here  can be 
up to  four  times  faster  than  conventional  methods  for in- 
verting symmetric matrices. Also,  the  entire  computation 
can be done in n(n + 2) /4  storage locations i f n  is even, or 
in (n + 1)'/4 locations if n is odd,  compared with n(n + 
1)/2 for  conventional  methods. 

The  above  technique is easily modified to  obtain  the 
solution x of the linear system 

Ax = R, (15) 

where A is a known n x n bisymmetric  matrix,  R is a 
known n X 1 column  vector,  and x is an unknown n X 1 
column vector. Applying the  transformation matrix T to 
Eq. (15), one  obtains 

[TAT"]Tx = TR. (16) 

It is convenient  to introduce the auxiliary  solution vector 
Y defined by 

Y = ~ T X .  (17) 

In  the  case n = 2m, let 

Y = [  JmVm ] a n d R = [  JmQm "1, 
where U,, V,, P,, and Q, are m X 1 column vectors. 
Then  Eq. (16) partitions  into the  two  independent  sets of 
linear equations 

(B, + C,)Um = P, + Q, (19) 

and 

(B, - C,)Vm = -Pm + Q,, (20) 

which can  be  solved for the  vectors Urn and V, by any 
method  suitable for symmetric matrices.  The solution 

vector x is obtained by multiplying Eq. (17) on  the left  by 
T-'. In  particular, 

Since the  case n = 2m + 1 is analogous, details will be 
omitted. 

Two planes of symmetry 
Consider  next  the arrangement of eight components  as 
shown in Fig. 2. In this  configuration the right half is the 
mirror image of the left half, and  the  top half is the mirror 
image of the  bottom. Again assuming that  the electromag- 
netic interaction  between  components is a function  only 
of relative  position in the  array,  the interaction  matrix 
would have  the  form 

- 
'11  '12  '13  '14 

'12 '22 '23  '13 

'13  '23 '22 '12 

'14  '13  '12  '11 

A =  
'15  '16  '17 a18 

'16 '26 '27  '17 

'17 '27 '26 '16 

'18  '17  '16  '15 

'15  '16  '17  '18 

'16  '26 '27 '17 

'17 '27 '26  '16 

a18  a17 '16 a15 

'11  '12  '13  '14 

'12 '22 '23  '13 

'13  '23 '22 '12 

'14  '13  '12  '11 - 
Note  that A consists of four submatrices,  each of which is 
bisymmetric; the  two diagonal submatrices  are  identical, 
and the  two off-diagonal submatrices  are identical. 

Generally, if an  array  consists of n = 4m components 
that  can be generated by reflecting m components  through 
a plane and  then reflecting the resulting 2m components 
through  a second orthogonal plane,  the interaction  matrix 
has the  form 

where A!: and A:: are 2m X 2m bisymmetric matrices. 
The matrix A,, is then a bisymmetric matrix of order 
n = 4m. 

In  order  to  store  the matrix A,,, it is necessary only to 
store  the m(m + 1) distinct elements of Ai; and  the 
m(m + 1) distinct  elements of A?:. Thus,  the total amount 
of storage  required is 

2m(m + 1) = ___ 
n(n + 4 )  

8 '  
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as  opposed  to  the n(n + 1)/2 storage locations  required 
for a general  symmetric matrix. Thus,  for large n, only 
one-fourth the  storage required for a general symmetric 
matrix is  needed. 

Since Alm is bisymmetric, it Can be reduced to  two sym- 
metric  diagonal  blocks  by  means of a similarity transfor- 
mation with the matrix: 

Since AT: is bisymmetric, it follows that J2,Ar; = 

A:: Jzm; therefore 

Since J Z m A ~ ~  is bisymmetric and  the  sum  and  the dif- 
ference of  two bisymmetric matrices  are bisymmetric, the 
two diagonal blocks in Eq. (24) are bisymmetric and  can 
be  reduced further.  Let 

where Tzm is given  by Eq. ( 9 ,  and define 

T,, = T'Z'T"' 
4m 4m' (26) 

Then 

where A,, A,, A,, and A, are  symmetric m X rn matrices. 
Thus,  the  problem of inverting A,,,, has been  reduced to 
that of inverting four symmetric m X m matrices and 
forming the  inverse transformation 

Ai: = T~~(T4mAr;~T,-,')T4m. (28) 

The  inverse transformation requires  no multiplications, 
only additions  and  subtractions.  For large m, the in- 
version of the  four m X m matrices requires  approximate- 
ly 1/16 the  number of multiplications that would be re- 
quired to  invert  the original 4m X 4m matrix. 

Another interesting case is obtained by  starting  with an 
array of 2m + 1 components  which  are symmetrically 
placed  with respect  to a  plane of symmetry and reflecting 
them through a second orthogonal  plane as shown in Fig. 
3. The  interaction matrix for  the resulting system of 4m + 
2 components  has  the form 

I , Firqt planc o f  symmetry 

""""""""f~""""" 

5 e c o n d p l a " e  0 +J n of symmetry 
2 31 4 

I 
I 0 
I 5 
I 
I 

Figure 3 Two planes of symmetry, case 2. 

where A:;+, and A::+, are bisymmetric.  This  matrix can 
be reduced  to block  diagonal form by means of a similar- 
ity transformation with the matrix 

(2) T'2' 
T4m+2 = T4m+z 4m+2' (30) 

where 

and 

where T2m+l is given by Eq. (8). Upon forming the similar- 
ity transformation,  one finds 

(33) 

where A, and A, are symmetric matrices of order m + 1, 
and A, and A, are symmetric matrices of order m. Thus, 
A,,+, can be inverted by  inverting two matrices of order 
m + 1 and  two of order m. 

The  two  cases described above clearly do not exhaust 
the possibilities  with two planes of symmetry.  They  are, 
however, suggestive of the  approach  that  can be used. 

Three planes of symmetry 
A single class of configurations  with three orthogonal 
planes of symmetry will be examined. This class of con- 
figurations is  obtained by starting  with m components 
The m components  are reflected through a  plane to  obtain 673 
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Figure 4 Three planes of symmetry. 

a total of 2m components.  The 2rn components  are  re- 
flected through a  second  orthogonal  plane to obtain 4m 
components  and  the 4m components  are reflected through 
a  third orthogonal plane to obtain an  array of n = 8rn com- 
ponents. Figure 4 illustrates the  case of rn = 2. The inter- 
action  matrix for  such a  configuration has the form 

(34) 

where A:; is bisymmetric for i = 1, 2, 3 ,  4. Note  that 
4m(m + 1) = n(n + 8)/16 storage locations  are required to 
store A,,, as  opposed  to n(n + 1)/2 locations for a general 
symmetric matrix of the  same  order. 

In this case,  the appropriate transformation matrix is 

where 

and 

(37) 

where T4m is given  by Eq. (26), and TZm is given  by Eq. 
(5). A straightforward  calculation shows  that 

0 0 0 0 0 0 0  
O A z O O O O O O  
O O A , O O O O O  

0 0 A 4 0  0 0 0 
0 0 0 A , O  0 0 
0 0 0 0 A , O  0 
0 0 0 0 0 A , O  

O O O O O O O A ,  

=[: 1 2 (39) 

where the  matrices A, for i = 1 ,  2, . . ., 8 are rn x m 
symmetric  matrices. Thus, the  problem of inverting A,, is 
reduced to  that of inverting eight m X m symmetric ma- 
trices. Consequently,  for large value of m, A,, can  be in- 
verted  using  approximately 1/64 the number of multipli- 
cations  required  to invert  a  general  symmetric  matrix of 
order n = 8m. 

Conclusion 
It has been shown  that substantial reductions in storage 
and computing time can be  achieved for  the inversion of 
matrices  describing the electromagnetic  interaction be- 
tween components in an electrical  package  by  taking geo- 
metrical symmetry into account.  In  particular, it has been 
shown that  the  storage  requirements  for large matrices 
can  be reduced by  approximately 1/2', and  the number of 
multiplications by 1/4', where p is the number of orthogo- 
nal planes of symmetry. 

The  storage saving has  the  greater importance  since it 
is highly desirable  to include as many components  as pos- 
sible when analyzing  a  section from a  very large electrical 
package. 

The  transformations required to  take  advantage of the 
symmetry are relatively easy to code, since the  results of 
the transformation  are easily  recognized patterns of sums 
and  differences of the  elements of the original matrix. 
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