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Exploiting Symmetry in Electrical Packaging Analysis

Many properties of physical systems can be expressed by symmetric matrices of order n, where n is the number of
components in the system. The computer storage requirement for inverting the most general symmetric matrix is n(n +
1)/2 storage locations. For large values of n, the number of multiplications required is proportional to n°. If the physical
system possesses certain geometrical symmetries, both the amount of storage and the number of multiplications can be
reduced substantially. It will be shown that if the physical system possesses p orthogonal planes of symmetry, where p =
1,2, or 3, and if n is sufficiently larger, then the storage requirement can be reduced approximately by 112" and the

number of multiplications by 1/4".

Introduction

Real or complex matrices of rather high orders are com-
monly encountered in electrical packaging analysis. In-
ductance, capacitance, impedance, and admittance matri-
ces are familiar examples. Quite often it is necessary to
construct the inverse of such matrices, or to solve sys-
tems of linear equations in which these matrices appear as
coefficient matrices. The purpose of this paper is to show
how the physical symmetry of a given package design can
be exploited to reduce the amount of computer storage
and computer time required for these operations.

With few exceptions, the real matrices encountered in
electrical packaging analysis are usually symmetric and
positive definite. The complex matrices are usually sym-
metric and have positive definite imaginary parts and pos-
itive semidefinite real parts. These properties are quite
general in that they are independent of any particular geo-
metric symmetry that a package might exhibit. For real
symmetric positive definite matrices, the square root
method of Cholesky provides a convenient and efficient
technique for matrix inversion or solution of linear equa-
tions. By considering complex square roots, one can ex-
tend the Cholesky factorization to include complex matri-
ces of the type described above. When applying the Cho-
lesky method to a symmetric matrix of order n, it is
necessary to store only the n(n + 1)/2 elements of the
upper triangle rather than the full »* elements.

If a physical package possesses sufficient geometrical
symmetry, it is often possible to reduce the storage re-
quirements to well below the generally required n(n +
1)/2 elements. The following discussion will introduce an
abstraction, called an interaction matrix, of which induc-
tance, capacitance, impedance, and admittance matrices
are special cases. The element a,; of an interaction matrix,
A, represents, in some sense, the physical interaction be-
tween components i and j of a physical system. The dis-
tinguishing feature of an interaction matrix is that, in gen-
eral, the element a,; depends only on the relative positions
of components i and j in the array of components which
make up the physical package.

As an example of the effect of symmetry, consider an
interaction matrix for the four-component system shown
in Fig. 1. This configuration possesses a vertical plane of
symmetry, in that the left half of the system is the mirror
image of the right half. The interaction matrix will have
the form

[P
[ I

Q& 8 8
©

In addition to the usual symmetry with respect to reflec-
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Figure 1 Single plane of symmetry.

tion through the diagonal, this matrix is also symmetric
with respect to reflection through the quasi-diagonal ex-
tending from the lower left-hand corner to the upper right-
hand corner. The latter symmetry is a direct consequence
of the right-left geometrical symmetry of the configura-
tion of Fig. 1. Not all the ten elements of the upper tri-
angle are distinct. There are only six unique elements,
and one might suspect, quite correctly, that the inverse
matrix can be constructed using only six storage loca-
tions. Consider now the generalization to matrices of ar-
bitrary order.

One plane of symmetry

An n X n matrix with elements a,; will be called bisym-
metric ifaij =asanda;=a,, . .. fori,j=1,2,..",
n. The first condition states that the matrix is symmetric
with respect to reflection through the main diagonal,
which extends from the element a | in the upper left-hand
corner to the element q,, in the lower right-hand corner.
The second condition states that the matrix is unchanged
when it is reflected through the quasi-diagonal, which ex-
tends from the element a,, in the lower left-hand corner to
the element a,, in the upper right-hand corner. Bisymmet-
ric matrices are a subset of a class of matrices, called cen-
trosymmetric, which are distinguished by the property
that Ay = Ay i The reduction of bisymmetric ma-
trices that will be discussed below is closely related to the
reduction of centrosymmetric matrices given by Good [1]
and Andrew [2].

Bisymmetric matrices are encountered in physical
problems which have a plane of symmetry that divides
the configuration into two halves which are mirror images
of each other. The bisymmetric form will be obtained if
the individual components of the physical system are
numbered so that if component i’ is the mirror image of
component i, then i + i = n + 1, where n is the total
number of components.

The general form for a bisymmetric matrix of even or-
der, n = 2m, is
A = |: Bm Cme :|’
where B, and C_ are m X m symmetric matrices and J , is
the m X m reversal matrix,

n

o 0 -+ 0 1
o o0 -~ 1 0
= -+ o e e , )
o 1 - 0 0
1 0 -+ 0 0

having ones on the quasi-diagonal and zeros everywhere
else. Postmultiplication of C, by J, reverses the order of
the columns of C,, whereas premultiplication of C , re-
verses the order of the rows. The pre- and postmulti-
plications of B, by J, reverse the orders of both the rows
and columns of B,,.

Only the upper triangles of B, and C,, need be stored.
The remaining matrix elements can be found by reflection
through the diagonal and quasi-diagonal. The number of
storage locations required is

m(m+1)+m(m+1)=m(m+1)=n(n+2).
2 2 4

The general form for a bisymmetric matrix of odd degree,
n=2m+1,1is

Apin=| D, E DJ, |, 3)
Jmcm JmDm JmBme‘

where B, and C_ are m X m symmetric matrices, J,, is the
m X mreversal matrix, D, is an m X 1 column vector, D"'l
is the transpose of D, , and E is a scalar. It is necessary
only to store the upper triangles of the matrices B,, and
C,,. and the vector D, and scalar E. The number of stor-
age locations required is

m(m+1)+m(m+1)+
2 2

m+1=(m+1)?

(n+ 1)°
.

For comparison, it should be recalled that a general sym-
metric matrix of order n requires n(n + 1)/2 storage loca-
tions.

Thus, approximately half the storage for a symmetric
matrix is needed for a bisymmetric matrix

The inversion method is based on the identity

TA™'T' = [TAT '], (4)
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where T is a non-singular matrix.

For the matrix A of Eq. (3) the appropriate T matrix

18

2m+1

1 I J
T, =—f4¢| ™ mi, 5
2m \/E |:_Jm Im:| ( )
Observing that the square of J,, is equal to I, it is easy to
show that the inverse of T, is

_ 1 |1 —J
T!=—| ™ m |, 6
N2 {J,,. L, J ©
From Egs. (1), (5), and (6) one finds
- B +C 0
T2mA2mT2nt = ,: " 0 " J (B _ C )J :I (7)

For the matrix A,, ., of Eq. (3) the apropriate T matrix
is

| I, o J,
T2m+1 = ——— 0 \/E 01. (8)
V2| _ o0 I,
L J
The inverse is
: 1, o -J,]
TZ_ﬂ:+1 = — 0 \/5 0 . (9)
\/5 Jm 0 Im J
from Egs. (3), (8), and (9),
T2m+1A2m+1T2_ﬂll+l
B,+C, V2D, 0
0 0 J,. B, —-C)I,

Thus, the similarity transformation TAT ' reduces a bi-
symmetric matrix A to a block diagonal matrix with two
blocks. Both blocks are symmetric matrices. If A is of
order 2m, both blocks are of order m. If A is of order
2m + 1, one block is of order m + 1, the order is of order
m. Note also that if A is positive definite, then both blocks
of TAT ™' are positive definite. To invert TAT™' one in-
verts the two blocks separately. Since the inverse of a
symmetric matrix is symmetric, one obtains

[T,AsnTon] " = [T,,A5,T,0] = {FO'" Jmé)me]’ (11
where

F,=[B,+C,I"

and

G,=[B,-C,l"

are m X m symmetric matrices, or
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[T, A _ T 1'=[T, A’ T

2m+1""2m+1" 2m+1 2m+1""2m+1" 2m+1

F, H, 0
=|H K 0o | (12)
where
{Fm Hm} _ [Bm +C, V2, |
H K V2D, E
and

G,=[B,-C,I"

In Eq. (12), F,, and G, are m X m symmetric matrices, H
is an m X 1 column vector, and K is a scalar.

Inversion of an n X n symmetric matrix by convention-
al techniques requires, for large n, approximately cn®
multiplications, where c is a constant independent of n.
Inversion of two symmetric m X m matrices requires

n\® 1
cm® + em® = 2em® =~ 2¢ (—) =—cn’

2 4
operations. Hence, for large bisymmetric matrices the
two block diagonal submatrices in Eqgs. (7) and (10) can be
inverted with about one-quarter the number of multiplica-
tions required to invert the original matrix by convention-
al methods.

The inverse of A can be obtained from Egs. (11) or (12)
by noting that
A7l = T [TAT'TIT.
Using Egs. (5), (6), and (11) one finds

L, 1[ F +6G (F. —G)J ]
I m m m mm | 1
A= 3 |5,F, - G J,F, + G, 3

Using Eqs. (8), (9), and (12) one finds

(| Fat6, V2B, (¥, -G,
A= 5 VZH, 2K VZHJ,
J.F,-G,) V2H, JEF, +G),

14

Comparison of Eqs. (1) with (13) and (3) with (14)
shows that A™" is bisymmetric. That is, the inverse of a
bisymmetric matrix is bisymmetric.

No multiplications are required to evaluate szAzmT;,:,’

whereas m multiplications by v/2 are required to evaluate
T,, A Toms - Also, m(m + 1) multiplications by 1/2

are required to construct A, from T, A, T,! according

to Eq. (13), whereas (m + 1)° multiplications are required

to construct A;m’ ., from Eq. (14). The inversion of the di-

agonal blocks in Eqs. (7) and (10) requires of the order of
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Figure 2 Two planes of symmetry, case 1.

m® multiplications each and hence dominates the compu-
tation. Thus, in theory, the method described here can be
up to four times faster than conventional methods for in-
verting symmetric matrices. Also, the entire computation
can be done in n(n + 2)/4 storage locations if # is even, or
in (n + 1)*/4 locations if n is odd, compared with n(n +
1)/2 for conventional methods.

The above technique is easily modified to obtain the
solution x of the linear system

Ax = R, (15)

where A is a known n X n bisymmetric matrix, R is a
known n X 1 column vector, and x is an unknown n X 1
column vector. Applying the transformation matrix T to
Eq. (15), one obtains

[TAT 'ITx = TR. (16)

It is convenient to introduce the auxiliary solution vector
Y defined by

Y = V2Tx. (17)
In the case n = 2m, let

= Um = Pm
Y= [vam] and R [J,,,Qm]’ {18

where U, V_, P _, and Q, are m X 1 column vectors.
Then Eq. (16) partitions into the two independent sets of
linear equations

B,+C)U, =P +Q, (19)
and
B,-C)V,=-P +Q, (20)

which can be solved for the vectors U, and V_ by any
method suitable for symmetric matrices. The solution

vector x is obtained by multiplying Eq. (17) on the left by
T . In particular,

1 u,-v,
*= E[J,,,wm + Vm>]' @

Since the case n = 2m + 1 is analogous, details will be
omitted.

Two planes of symmetry

Consider next the arrangement of eight components as
shown in Fig. 2. In this configuration the right half is the
mirror image of the left half, and the top half is the mirror
image of the bottom. Again assuming that the electromag-
netic interaction between components is a function only
of relative position in the array, the interaction matrix
would have the form

all alZ a13 a14 a15 alG a17 alS
alZ a22 a23 a13 alG a26 a27 al7
alS a23 022 a12 a17 a27 a26 qu
a14 a13 alZ all alB al7 alS a15
A=
al5 alG a17 a18 all alZ a13 a14
alG aZG a27 al7 a12 a22 a23 alS
a17 a27 a26 alG a13 a23 aZ2 alZ
| alS al7 alG a15 a14 a13 alZ all _‘

Note that A consists of four submatrices, each of which is
bisymmetric; the two diagonal submatrices are identical,
and the two off-diagonal submatrices are identical.

Generally, if an array consists of n = 4m components
that can be generated by reflecting m components through
a plane and then reflecting the resulting 2m components
through a second orthogonal plane, the interaction matrix
has the form

(1) 2)
A, = [Azm Asz, 22)
"oLAG A,

where A and A?) are 2m X 2m bisymmetric matrices.
The matrix A, is then a bisymmetric matrix of order
n=4m.

In order to store the matrix A, , it is necessary only to
store the m(m + 1) distinct elements of A{) and the
m(m + 1) distinct elements of A? . Thus, the total amount
of storage required is

n(n + 4)

2m(m+1)=—8——,
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as opposed to the n(n + 1)/2 storage locations required
for a general symmetric matrix. Thus, for large n, only
one-fourth the storage required for a general symmetric
matrix is needed.

Since A, is bisymmetric, it can be reduced to two sym-
metric diagonal blocks by means of a similarity transfor-
mation with the matrix:

T(l) = 2m om

Lk ]
" V2 —sz Izm

Since AY is bisymmetric, it follows that J, Ay =

(23)

A2]),.; therefore
B A(l) + J A(Z) 0
-1 _ m
T®A, TV _[ A B I

Since J, A? is bisymmetric and the sum and the dif-
ference of two bisymmetric matrices are bisymmetric, the
two diagonal blocks in Eq. (24) are bisymmetric and can
be reduced further. Let

-l 1)
where T, is given by Eq. (5), and define
T,, = TETL. (26)
Then
A0 0 O
T, ApTin = g %“’ :3 8 , 27
0O 0 o0 A

'y

where A, A,, A,, and A, are symmetric m X m matrices.
Thus, the problem of inverting A, has been reduced to
that of inverting four symmetric m X m matrices and
forming the inverse transformation

A =T (T, AT T, . (28)

4m° "4am = 4am

The inverse transformation requires no multiplications,
only additions and subtractions. For large m, the in-
version of the four m X m matrices requires approximate-
ly 1/16 the number of multiplications that would be re-
quired to invert the original 4m X 4m matrix.

Another interesting case is obtained by starting with an
array of 2m + 1 components which are symmetrically
placed with respect to a plane of symmetry and reflecting
them through a second orthogonal plane as shown in Fig.
3. The interaction matrix for the resulting system of 4m +
2 components has the form

) @
A _ A2m+l A2m+1
am+2 AW A(“ ’

2m+1 2m+1

(29
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Figure 3 Two planes of symmetry, case 2.

where A" and A are bisymmetric. This matrix can
be reduced to block diagonal form by means of a similar-

ity transformation with the matrix

T4m+2 = T(427r)l+2T:277)l+2 ’ (30)
where
1 I J
T(:,: - [ 2m+1 2m+1] (31)
fmi V2 “Jomi I2m+l
and
T 0
Tm = [ 2m+1 ]’ 32)
am+2 0 T2m+1
where T is given by Eq. (8). Upon forming the similar-

2m+1
ity transformation, one finds

A, 0 0 0
. 0 A, 0 0
T4m+2A4m+2T47I11+2 = 0 02 A3 0 7 (33)
0 0 0 A

4

where A, and A, are symmetric matrices of order m + 1,
and A, and A, are symmetric matrices of order m. Thus,
A,,.., can be inverted by inverting two matrices of order
m + 1 and two of order m.

The two cases described above clearly do not exhaust
the possibilities with two planes of symmetry. They are,
however, suggestive of the approach that can be used.

Three planes of symmetry

A single class of configurations with three orthogonal
planes of symmetry will be examined. This class of con-
figurations is obtained by starting with m components.
The m components are reflected through a plane to obtain
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Figure 4 Three planes of symmetry.

a total of 2m components. The 2m components are re-
flected through a second orthogonal plane to obtain 4m
components and the 4m components are reflected through
a third orthogonal plane to obtain an array of n = 8m com-
ponents. Figure 4 illustrates the case of m = 2. The inter-
action matrix for such a configuration has the form

[§)) @) @ )

A2m A2m AZm A2m

2) ) ) (3)

A = A2m A2m A2m A2m s (34)

8m A® AW A A®)
2m 2m 2m 2m

@) 3) (2) (1

Agm AZm A2m A2m

where A" is bisymmetric for i = 1, 2, 3, 4. Note that
4m(m + 1) = n(n + 8)/16 storage locations are required to
store A, , as opposed to n(n + 1)/2 locations for a general
symmetric matrix of the same order.

In this case, the appropriate transformation matrix is

T, = TOTOTY, 69)
where
1 I
T = "—=| “"‘}, (36)
V2 Jim 4m
@ _ T4,,, 0
Tom = [ o T, | (37)
and
T,, 0 0 0
0o T 0 0
T® = 2m
8m 0 0 T,, 0|’ (38)
0 0 0 T

where T, is given by Eq. (26), and T, is given by Eq.
(5). A straightforward calculation shows that

T A T '

8m" "8m” 8m

A0 0 0 0o O 0 O

0 A 0O 0 0 0 0 O

6 0 A, 0O 0 O 0 0
1o o o A 0o 0 0 O , (39)

o 0o o o A 0 0 0

0 0 0 0 0 A, 0 O

6o 0 0 0 o0 0 A 0

o 0 0 0 0 0 O ASJ

where the matrices A, for i = 1,2, - -+, 8 are m X m

symmetric matrices. Thus, the problem of inverting A, is
reduced to that of inverting eight m X m symmetric ma-
trices. Consequently, for large value of m, A, can be in-
verted using approximately 1/64 the number of multipli-
cations required to invert a general symmetric matrix of
order n = 8m.

Conclusion

It has been shown that substantial reductions in storage
and computing time can be achieved for the inversion of
matrices describing the electromagnetic interaction be-
tween components in an electrical package by taking geo-
metrical symmetry into account. In particular, it has been
shown that the storage requirements for large matrices
can be reduced by approximately 1/2°, and the number of
multiplications by 1/4”, where p is the number of orthogo-
nal planes of symmetry.

The storage saving has the greater importance since it
is highly desirable to include as many components as pos-
sible when analyzing a section from a very large electrical
package.

The transformations required to take advantage of the
symmetry are relatively easy to code, since the results of
the transformation are easily recognized patterns of sums
and differences of the elements of the original matrix.
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