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Three-Dimensional  Inductance  Computations  with 
Partial  Element  Equivalent  Circuits 

Inductance  computations  represent  an  important  part in the design  of  hardware  packages,  especially  for high perform- 
ance  computers.  Partial  element  equivalent  circuits  (PEEC) [I] are  used in this  paper  to  investigate  two  problems,  viz., 
the  inductance  of  ground  plane  connections  and  the  reduction in inductance  due  to  eddy  currents  set  up in perpendicular 
crossing  wires.  The  results  from the PEEC  models  are  compared,  for  theJirst  problem,  to  experimental  hardware  mea- 
surements  and, in the  second  case,  to  simplijied  analytical  solutions. 

Introduction 
Inductances  represent  an important electrical quantity in 
the design of hardware packages for high performance 
computers.  The  term “high performance” generally im- 
plies very  fast  switching times (a few nanoseconds  or 
less) and large switching currents.  Large  unwanted induc- 
tive voltage drops may result because of the large,  fast 
switching currents.  The  purpose of this paper is to pre- 
sent  the  concept of partial  element equivalent circuits 
(PEEC [l]) and to illustrate  its use by  applying it to two 
geometries  where inductance is the main electrical quan- 
tity of importance. The first geometry is shown in Fig. 1 
where  the self- and mutual inductances  depend in large 
measure  on  the  current distribution in the  ground planes. 
This problem requires  the  PEEC  concept  to  represent the 
ground  plane. The  second problem chosen  is shown in 
Fig. 2. The problem is  to find the  reduction in inductance 
due  to crossing wires. This  requires PEEC  treatment of 
the secondary line due  to  the  eddy  currents induced 
there. 

Inductance  problems  have been considered previously 
by several  authors [2-51, and most of the  problems  are 
from  the microwave area [2-41 where  the low  frequency 
behavior is not of importance. This is in contrast  to digital 
systems applications where  the switching pulses, with 
fast rise times  and long durations,  cover a wide spectrum 
of frequencies. 

The next  section has  an introduction to  the  PEEC solu- 
tion method for  inductances.  The third section examines 
the plane connection  problem,  and in the  last section the 
crossing wire eddy  current problem is  considered. 

PEEC solution 
This  section presents  the  PEEC solution method as ap- 
plied to packaging problems.The  fundamental idea is  to 
represent packaging geometries by electrical equivalent 
circuits whose combined  elements can be  analyzed by 
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Figure 1 Geometry for two ground planes. Vertical  plane = 
chip carrier; horizontal plane = foot. 
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Figure 2 Crossing-line geometry. Z = primary current; J = 
eddy  current. 

a general purpose  network analysis program  such  as 
ASTAP [6, 71. The  currents  and voltages of interest can 
then  be obtained in the time or  frequency  domain in the 
usual  manner. 

It  is assumed that  the geometry consists of K con- 
ducting  bodies each having a conductivity uk. Since  the 
displacement current is assumed  to  be  zero  for induc- 
tance problems, there  are  two  contributions  to  the elec- 
tric field at a point i inside a conductor  [l], 

J ( i ,  t )  a&?, t )  Eo@, t )  = - + ' , 
0- a t  

where .i is the  current  density.  The  vector  potential, A ,  
for K conductors  is 

where vk is  the volume of conductor k ,  E o  is  an  external 
applied field, and  retardation effects are neglected.  As a 
result,  Eqs. (1) and (2) yield 

For a thick conductor,  the  current density can  be in an 
arbitrary direction at  point i. inside a conductor.  This is 
represented in terms of orthogonal components  as J = 

J , i  + J,9 + J z f ,  and  Eq. (3) can be rewritten  as  three 
integral equations,  one  for  each of the  orthogonal  current 
densities J,  = Jz ,   Jv ,   Jz .  

All inductors in the  geometry  are carefully  divided into 
cells and  the  surfaces laid out with  nodes as illustrated in 
Fig. 3. Each cell is rectangular  and  current flow is uniform 
along one axis of the cell.  Figure 3(a) shows  the horizon- 
tal current flow cells and Fig. 3(b) shows  the  vertical  cur- 
rent cells  only. With this  arrangement of cells the  current 
density can be  written  as 

N 1 k  

J t  = B!3tn, 
662 n=l 
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where B: = 1 for  the  nth cell of conductor k and is zero 
elsewhere and J t n  is  the uniform current  density in con- 
ductor k on  the cell n in the y = x, y ,  z direction. Con- 
ductor k is divided into N,, cells in the y direction. With 
Eq. (4), Eq. (3) is rewritten  as a system of equations 

for y = x, y ,  z. 

Up  to this  point it has  been  assumed  that i is inside any 
one of the K conductors.  Now we specifically assign i. to 
be inside a cell rn in conductor i and  Eq. (5) is integrated 
over  the volume of cell m: 

It  is now  possible to  rewrite  the  current density  in Eq. (6) 
in terms of the  total cell current I ,  = J p , .  Further, we 
divide by the  cross-sectional  area aml and  we obtain an 
equation  for each direction y of the  form 

Equation (7) is interpreted  as 

where  the left-hand  side is the voltage between  the  nodes 
at the ends of the cell i in conductor rn and  the first term is 
the  resistance of this cell. The summation  term  represents 
the coupling inductances  over all  cells in the  same direc- 
tion. Note  that  the cells  involved in the integration act  as 
conductors  and  the  inductances  among  these so-called 
"partial" conductors  or  elements  are called partial  induc- 
tances [8]. The equivalent  circuit  which evolves from  this 
technique is shown in Fig. 4 for the  example of Fig. 3. All 
the  nonperpendicular partial inductances  are  coupled. 

Ground  plane  problem 
Figure 1 illustrates  the  structure of a circuit  board assem- 
bly which is used in the  Josephson  junction  computer 
package [9]. This assembly consists of two pieces  joined 
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Figure 3 Cells for a comer geometry. (a) Horizontal  current flow cells. (b) Vertical  current flow cells.  (c) Combined cells. Arrows  indi- 
cate direction of current flow. 

at right angles. The vertical  piece has  the chips  mounted 
on it (chip  carrier) while the horizontal  piece (called the 
foot) is used to  connect signals to  the remainder of the 
package. The horizontal  foot has a ground  plane and su- 
perconducting signal transmission lines  on its  bottom sur- 
face, while the vertical  piece has a  ground  plane and  su- 
perconducting signal transmission  lines on  the inside sur- 
face.  Connections between  the  lines  and  planes are  made 
with solder  connectors which fall into  two  categories. 
Two of the  connectors, called G ,  link both ground  planes 
together, while the remaining solder  connections  carry 
signals (SI through S8 in the  example of Fig. 1).  Thus, a 
signal propagating  from the horizontal to  the vertical 
piece encounters discontinuities in both  the signal and 
ground because of the solder connectors. 

The  problem is to compute the  inductance resulting 
from the signal path discontinuities, including the mutual 
inductive  coupling between  the signal paths.  These induc- 
tances  determine  the magnitude of the cross-talk among 
signal paths  and  also  the rise time of a signal. Fabrication 
limits the  smallest  gap  between  the planes  given  by the 
parameters S and y indicated in Fig. 1 .  One way to limit 
the  inductances  is by the  number of ground connectors 
between signal connections.  In  the  example shown in Fig. 
1, eight signal connections  are placed between  the  two 
ground connections. We call this the signal to ground pin 
ratio. 

Using the  technique of the second  section,  the ground 
planes and  solder  connections  are divided  into PEEC  to 
evaluate  their  contribution  to  the  inductance.  The vertical 
and horizontal  ground  planes are very thin and  super- 
conducting so that  the cells have  zero  resistance.  The in- 
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Figure 4 PEEC for comer geometry of Fig. 3. 

ductive interaction is restricted to  the y-direction since 
the planes are perpendicular to  each  other.  These  factors 
permit both  ground planes to be represented by a single 
layer of overlapping cells. 

Each plane  allows a two-dimensional current flow 
along  the length  and width of the planes similar to  the 
situation shown in Fig. 3. Thus,  each of the  two  planes is 
replaced  with a PEEC as shown in Fig. 4, where all cells 663 
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Figure 5 Inductance model for solder fillet. 

connection 
Solder 

Figure 6 PEEC model for connection region. 

in the  same direction are coupled while the orthogonal 
cells  lead to  zero mutual inductance.  For  super- 
conducting  planes we must  add to  the partial inductance 
an additional inductance  term, which is the kinetic  induc- 
tance  [lo]  due  to  the kinetic  energy of the super-elec- 
trons.  However,  for  the  geometries  considered  here this 
term is negligible [l 11. 

So far we have considered  models  only for  the  planes. 
For a complete  PEEC model we  also  require  inductance 
models for  the  solder  connections. A typical connection 
is illustrated in bold  outline in Fig. 5 with the  approximate 
cell  divisions also  shown.  The  PEEC model is self-evi- 

664 dent from this.  The width of the  solder  connection is di- 
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vided into a single cell only.  In  the  subsequent models the 
solder connections  are  represented by a rectangular box 
for simplicity.  Specifically, Fig. 6 shows  the  PEEC  for  the 
solder connections  and  the  planar model for  the  nearby 
region. 

To obtain  the effective  discontinuity  inductance caused 
by the ground  plane  gap we short  the  top node of the sol- 
der  connections  to  the ground  plane as  shown in Fig. 6 by 
the  dashed line. A current  source,  also shown  by dashed 
lines, with  a  unit  slope Z = 1 is introduced between 
ground  and the  solder  connection BiG to Bi where i = 1, 
2, . . ., 8 and  the discontinuity  voltages Vi = VB{ - VBic 
are measured. The vector of voltages V and currents I leads 
to  the  inductance matrix of interest.  From  an analytical 
point of view the terminal  voltages of interest are  ob- 
tained  with  a  matrix  reduction step which corresponds  to 
the usual admittance matrix computation [ 121 or 

v = (AL;'A'')-'I, (9) 

where V is the  vector of terminal  voltages  and the I are 
given above.  Thus,  the  inductances of interest are 

% 
where i, j = 1 ,  2, . a ,  8.  

In  our  problem,  the L,, matrix in Eq. (9) for  the 434 cells 
used is a 434 x 434 matrix. Each plane is represented by 
142 cells while each solder connection involves 15 cells. 
The final symmetric 8 X 8 matrix corresponding  to  Eq. 
(10) is given by 

L =  

- 
119.2 76.4  62.7  52.53  43.48  34.8  25.93 

161.5 108.7 88.n2 71.78  56.92 42.15  25.99 

195.2 1 3 0 7  w . 1 5  7 1  76 43.54 
195.2 125 4 88 n 52.6 

184.6 108.7  62.78 

184.6 125.4 99.16 77.53  56.91  34.86 

161.5 76.5 
119.3 - 

where the  values  are in picohenries (pH). 

A copper model  scaled to  lo00  times  the  actual model 
was  fabricated  to verify these  results experimentally. 
Each plane in the model for Fig. 1 is 81.3 cm long, 
45.7 cm  wide,  and 1.59 mm thick. The plane  spacings are 
6 = 114.3 pm  and y = 50.8 pm. The ground connections 
form electrical  contacts while the signal connections  are 
insulated. The  measurements  were  made with a Hewlett- 
Packard 4815 vector impedance meter. A frequency  range 
of 2 MHz  to 15 MHz was covered  to  ensure  the  accuracy 
of the  measurement  and the absence of resonances. In 
addition, the measured data  were  corrected  for possible 
resonances.  The  copper planes and  the  actual package 
boards  are thin compared  to  the  other spatial  dimensions. 
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Figure 7 Measurements vs. PEEC  model  for  self-inductances 
for  geometry of  Fig. 1. Comparison geometry: +, measured; 0, 

calculated. 

It was observed  that skin effect along the model plane 
thickness  was small and that there  was a  linear depend- 
ency of inductance with frequency. Figure 7 shows  the 
agreement between  the  PEEC model  and the measure- 
ments for  the self-inductances. 

Inductance of crossing lines 
In this  section we  consider the reduction in inductance of 
a stripline shown in Fig. 2 due  to  the crossing secondary 
line. This  represents a small but  important part of a realis- 
tic geometry  for high performance  integrated circuits. 
Eddy  currents  are  set up in the  secondary line which are 
in the  same direction as  the primary line current  and this 
leads  to coupling between  the primary  and secondary 
line. These  induced  currents  cause a reduction in the pri- 
mary line inductance. 

In Fig. 8, the direction of current flow for both  the pri- 
mary and  the  secondary lines is indicated.  Note  that only 
the  parts of the  secondary line that  are important for  the 
eddy  current flow are shown. The  currents in the  second- 
ary line are confined to  the x-y plane since  the  currents in 
the z direction are small,  especially for closely spaced 
planes where  the impact of the  crossing lines is the larg- 
est. Figure 9 shows  the equivalent  circuit for  the model of 
Fig. 8 where  the  center  conductor is partitioned  into three 
divisions or cells in each direction  with half-cells always 
placed at  each  edge. We are  interested in the impedance 

Figure 8 Cell  divisions for secondary  line. 

J x  - 
B.  

L 
p22 

Figure 9 PEEC model. All inductances in parallel  are coupled. 

between  the  terminals A and B, which is given as a  func- 
tion of frequency, f, as 

Z(f)  = R ( f )  + W(f)  = V(f) /Z(f) .  (12) 

Since we want  to isolate the  reduction in L( f )  due  to  the 
eddy  currents in the crossing line,  the  top and  bottom 
conductors  are assumed to  be of zero  thickness, which 
eliminates their frequency dependence. 

To  establish  the  number of cells  required to  obtain  an 
accurate  equivalent circuit representation  for  the  center 
conductor,  an analytical  solution was  derived with the  as- 
sumption that fringing is ignorable. This analytical  solu- 
tion for  the  inductance is obtained  by solving the  bound- 
ary value  problem for  the geometry depicted in Fig. 10, or 665 
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Figure 10 Test model for analytical evaluation. 
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Figure 11 Frequency vs. inductance. Compares  analytical with 
PEEC solution. 

sinh (+) + sin (i) 
cosh + cos (i) ] , (13) 

where 6 = (.rrfpu)-'" is the skin depth. 

It is observed from Figs. 1 1  and 12 and Eq. (13) that 
there are  two limiting values for the inductance,  the low 
frequency  and high frequency limits. The low frequency 
limit is 

PIERCE A. BRENNAN ET AL. 

which is the inductance  without the presence of the  cen- 
ter  conductor.  The low frequency  inductance  for  the 
equivalent  circuit of Fig. 9 is simply 

where the Lp,,, i - 1 ,  . . ., n ,  are  the partial self-induc- 
tances and the Lp0, i = 1 ,  . . ., n , j  = 1 ,  . . ., n ,  i Zj, are 
the  partial  mutual  inductances of the  conductors.  The 
high frequency  inductance  for the theoretical  solution 
completely excludes fields from the  center  conductor so 
that 

L ,  = - 2s. 
W 

The  equivalent  circuit of Fig. 9 was modified to have  cur- 
rent in the direction of the  horizontal cells only, corre- 
sponding to the  test model. To keep the fringing fields 
small, the  dimensions  chosen (see Fig. 10) were 1 = 2 m, 
w = 4 cm, t = 1 mm and s = 0.25 mm. The  conductors 
were copper with u = 5.8 X lo7 mhos/m, while p is the 
permeability of air = 1.257 X H/m.  It  can  be seen 
from Fig. 1 1  that  the solution of Eq. (15) (where fringing is 
included) is about five percent lower than  the  theoretical 
(no fringing) solution of Eq. (14) for low frequencies. At 
high frequencies L, = 31.42 nH. From the curves it is 
clear that  an  accurate prediction of the high frequency 
inductor by the PEEC method depends  on the  number of 
cells into  which the  center  conductor is partitioned.  In- 
creasing the  number of cells provides a better  representa- 
tion of the  current distribution in the  conductor so that 
the  skin effect is properly depicted, particularly at high 
frequencies  where  it is fully developed. The prediction  for 
the  change in inductance as a function of frequency is 
seen  to be quite  accurate  over  the full range for  eleven 
cells per side. 

One of the results that can be obtained from Eqs. (14) 
and (16) is that the normalized change of inductance  be- 
tween the low and high frequency limits is approximated 
by 

- = k k x l l O O ,  
AL A 
L A T  

where A,  is the cross-sectional area of the center  con- 
ductor while A,  is the total area enclosed, by the  primary 
line and k is a constant determined by the  shape of the 
center  conductor.  For the  analytical model k = 1 ,  since 
the  length of the  center  conductor is the same as the pri- 
mary line.  Figure 13 shows three limiting cases for the 
center  conductor in which the total  area is  kept constant. 
The dimensions of the primary line are the  same as before 
except  the length (I) has  been shortened  to 4 cm with a 
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spacing s = 1 . 1  cm.  The  three  cases  for  the  center  con- 
ductor  have t = 0.1 cm and w = 1 cm; t = 1 cm  and w = 

0.1 cm; t = w = 0.333 cm,  respectively. As can  be  seen 
from Fig. 12, the reduction in inductance is a  function of 
the  center  conductor  shape being greater  for  the horizon- 
tal and square  cases.  One of the  reasons  for this is that  the 
coupling between  the primary and  center  conductors is 
accomplished  only  through the horizontal segments. 
Thus,  greater width causes  increased coupling  which  re- 
sults in lowered primary line inductance.  The  absolute 
value of the reduction in inductance  depends  on  the ge- 
ometry  at  hand.  The geometrical  dimensions are  chosen 
to  accommodate  the different positions of the  center con- 
ductor in Fig. 13. It  was also observed  that,  for  the  case 
where t = 0.1 cm, varying  the  location of the  center con- 
ductor  caused  no  change in inductance from the value  ob- 
tained when  the  conductor was centered with respect  to 
the primary  line.  Finally,  the  value for k in Eq. (17) was 
empirically found  to be 0.5 for  these  three  cases. 

The  complex micromodel representing  the crossing- 
line geometry  can be simplified to a network of the  type 
shown in Fig. 14. This is accomplished by synthesizing 
the  frequency  response of the impedance in Eq. (12). The 
simplified model in Fig. 14 is then used to analyze com- 
plex geometries. 

Summary 
The use of partial  element equivalent  circuits, in con- 
junction with a circuit  analysis  program such  as  ASTAP, 
is a powerful  method for solving three-dimensional  induc- 
tance  problems  for high performance  machines. It  can be 
applied to  both large  scale and micromodel geometries 
with  equally  good  results. 
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