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Three-Dimensional Inductance Computations with
Partial Element Equivalent Circuits

Inductance computations represent an important part in the design of hardware packages, especially for high perform-
ance computers. Partial element equivalent circuits (PEEC) [1] are used in this paper to investigate two problems, viz.,
the inductance of ground plane connections and the reduction in inductance due to eddy currents set up in perpendicular
crossing wires. The results from the PEEC models are compared, for the first problem, to experimental hardware mea-

surements and, in the second case, to simplified analytical solutions.

Introduction

Inductances represent an important electrical quantity in
the design of hardware packages for high performance
computers. The term ‘‘high performance’’ generally im-
plies very fast switching times (a few nanoseconds or
less) and large switching currents. Large unwanted induc-
tive voltage drops may result because of the large, fast
switching currents. The purpose of this paper is to pre-
sent the concept of partial element equivalent circuits
(PEEC [1]) and to illustrate its use by applying it to two
geometries where inductance is the main electrical quan-
tity of importance. The first geometry is shown in Fig. 1
where the self- and mutual inductances depend in large
measure on the current distribution in the ground planes.
This problem requires the PEEC concept to represent the
ground plane. The second problem chosen is shown in
Fig. 2. The problem is to find the reduction in inductance
due to crossing wires. This requires PEEC treatment of
the secondary line due to the eddy currents induced
there.

Inductance problems have been considered previously
by several authors [2-5], and most of the problems are
from the microwave area [2-4] where the low frequency
behavior is not of importance. This is in contrast to digital
systems applications where the switching pulses, with
fast rise times and long durations, cover a wide spectrum
of frequencies.

The next section has an introduction to the PEEC solu-
tion method for inductances. The third section examines
the plane connection problem, and in the last section the
crossing wire eddy current problem is considered.

PEEC solution

This section presents the PEEC solution method as ap-
plied to packaging problems.The fundamental idea is to
represent packaging geometries by electrical equivalent
circuits whose combined elements can be analyzed by

Figure 1 Geometry for two ground planes. Vertical plane =
chip carrier; horizontal plane = foot.
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Figure 2 Crossing-line geometry. I =
eddy current.

primary current; J =

a general purpose network analysis program such as
ASTAP [6, 7]. The currents and voltages of interest can
then be obtained in the time or frequency domain in the
usual manner.

It is assumed that the geometry consists of K con-
ducting bodies each having a conductivity o,. Since the
displacement current is assumed to be zero for induc-
tance problems, there are two contributions to the elec-
tric field at a point 7 inside a conductor [1],

JF, D AR, D

E@F, 1) = . + o ¢))

where J is the current density. The vector potential, A,
for K conductors is

A, 1) = i LL
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where v, is the volume of conductor &, Eo is an external
applied field, and retardation effects are neglected. As a
result, Egs. (1) and (2) yield
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For a thick conductor, the current density can be in an
arbitrary direction at point 7 inside a conductor. This is
represented in terms of orthogonal components as J =
J i+ J3 + JzZ, and Eq. (3) can be rewritten as three
integral equations, one for each of the orthogonal current
densities J, = J_, J, J,.

All inductors in the geometry are carefully divided into
cells and the surfaces laid out with nodes as illustrated in
Fig. 3. Each cell is rectangular and current flow is uniform
along one axis of the cell. Figure 3(a) shows the horizon-
tal current flow cells and Fig. 3(b) shows the vertical cur-
rent cells only. With this arrangement of cells the current
density can be written as

N’/k
Iy= % B, “)
n=1
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where B = 1 for the ath cell of conductor k& and is zero
elsewhere and J is the uniform current density in con-
ductor k on the cell n in the y = x, y, z direction. Con-
ductor k is divided into N, cells in the y direction. With
Eq. (4), Eq. (3) is rewritten as a system of equations

J (7, t
Eo (f) = _V(r_)
Y o
k V% 1 oJ
+ Z ._,L_J ~ - Yn dU’, (5)
k=1 n=1 477 Vg lr -r at
fory=ux,y,z

Up to this point it has been assumed that 7 is inside any
one of the K conductors. Now we specifically assign 7 to
be inside a cell m in conductor { and Eq. (5) is integrated
over the volume of cell m:

1
[ Eoydv = — J JF, Hdv
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It is now possible to rewrite the current density in Eq. (6)
in terms of the total cell current I, = J.a,. Further, we
divide by the cross-sectional area a, and we obtain an
equation for each direction y of the form

i
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J E,dl =
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Equation (7) is interpreted as

K 7
Vm, m‘ my z Z

where the left-hand side is the voltage between the nodes
at the ends of the cell i in conductor m and the first term is
the resistance of this cell. The summation term represents
the coupling inductances over all cells in the same direc-
tion. Note that the cells involved in the integration act as
conductors and the inductances among these so-called
**partial’’ conductors or elements are called partial induc-
tances [8]. The equivalent circuit which evolves from this
technique is shown in Fig. 4 for the example of Fig. 3. All
the nonperpendicular partial inductances are coupled.

dl,

s g ®)

Ground plane problem

Figure 1 illustrates the structure of a circuit board assem-
bly which is used in the Josephson junction computer
package [9]. This assembly consists of two pieces joined
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Figure 3 Cells for a corner geometry. (a) Horizontal current flow cells. (b) Vertical current flow cells. (c) Combined cells. Arrows indi-
cate direction of current flow.

at right angles. The vertical piece has the chips mounted
on it (chip carrier) while the horizontal piece (called the
foot) is used to connect signals to the remainder of the
package. The horizontal foot has a ground plane and su-
perconducting signal transmission lines on its bottom sur-
face, while the vertical piece has a ground plane and su-
perconducting signal transmission lines on the inside sur-
face. Connections between the lines and planes are made
with solder connectors which fall into two categories.
Two of the connectors, called G, link both ground planes
together, while the remaining solder connections carry
signals (S1 through S8 in the example of Fig. 1). Thus, a
signal propagating from the horizontal to the vertical
piece encounters discontinuities in both the signal and
ground because of the solder connectors.

The problem is to compute the inductance resulting
from the signal path discontinuities, including the mutual
inductive coupling between the signal paths. These induc-
tances determine the magnitude of the cross-talk among
signal paths and also the rise time of a signal. Fabrication
limits the smallest gap between the planes given by the
parameters & and vy indicated in Fig. 1. One way to limit
the inductances is by the number of ground connectors
between signal connections. In the example shown in Fig.

Figure 4 PEEC for corner geometry of Fig. 3.

1, eight signal connections are placed between the two ductive interaction is restricted to the y-direction since
ground connections. We call this the signal to ground pin the planes are perpendicular to each other. These factors
ratio. permit both ground planes to be represented by a single

layer of overlapping cells.
Using the technique of the second section, the ground

planes and solder connections are divided into PEEC to Each plane allows a two-dimensional current flow
evaluate their contribution to the inductance. The vertical along the length and width of the planes similar to the
and horizontal ground planes are very thin and super- situation shown in Fig. 3. Thus, each of the two planes is
conducting so that the cells have zero resistance. The in- replaced with a PEEC as shown in Fig. 4, where all cells 663
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Figure 6 PEEC model for connection region.

in the same direction are coupled while the orthogonal
cells lead to zero mutual inductance. For super-
conducting planes we must add to the partial inductance
an additional inductance term, which is the kinetic induc-
tance [10] due to the kinetic energy of the super-elec-
trons. However, for the geometries considered here this
term is negligible [11].

So far we have considered models only for the planes.
For a complete PEEC model we also require inductance
models for the solder connections. A typical connection
is illustrated in bold outline in Fig. 5 with the approximate
cell divisions also shown. The PEEC model is self-evi-
dent from this. The width of the solder connection is di-
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vided into a single cell only. In the subsequent models the
solder connections are represented by a rectangular box
for simplicity. Specifically, Fig. 6 shows the PEEC for the
solder connections and the planar model for the nearby
region.

To obtain the effective discontinuity inductance caused
by the ground plane gap we short the top node of the sol-
der connections to the ground plane as shown in Fig. 6 by
the dashed line. A current source, also shown by dashed
lines, with a unit slope I = 1 is introduced between
ground and the solder connection B,G to B, where i = 1,
2, - - -, 8 and the discontinuity voltages V, = V, — V.
are measured. The vector of voltages V and currents I leads
to the inductance matrix of interest. From an analytical
point of view the terminal voltages of interest are ob-
tained with a matrix reduction step which corresponds to
the usual admittance matrix computation [12] or

V = (ALJ'AN)T1, ®

where V is the vector of terminal voltages and the I are
given above. Thus, the inductances of interest are
(VB, - VB G)
o= (10)

By

where i,j=1,2, -+, 8.

In our problem, the L matrix in Eq. (9) for the 434 cells
used is a 434 X 434 matrix. Each plane is represented by
142 cells while each solder connection involves 15 cells.
The final symmetric 8 X 8 matrix corresponding to Eq.
(10) is given by

119.2 76.4 627 52.53 4348 3438 25.93 16.08
161.5 {087 88.02 7178 5692 42.15 2599
184.6 125.4 99.16  77.53 5691 34.86
195.2 130.7 99.15  71.76  43.54 (11)
195.2 1254 88.0 52.6
184.6 108.7 62.78
161.5 76.5
119.3

where the values are in picohenries (pH).

A copper model scaled to 1000 times the actual model
was fabricated to verify these results experimentally.
Each plane in the model for Fig. 1 is 81.3 cm long,
45.7 cm wide, and 1.59 mm thick. The plane spacings are
8 = 114.3 um and y = 50.8 um. The ground connections
form electrical contacts while the signal connections are
insulated. The measurements were made with a Hewlett-
Packard 4815 vector impedance meter. A frequency range
of 2 MHz to 15 MHz was covered to ensure the accuracy
of the measurement and the absence of resonances. In
addition, the measured data were corrected for possible
resonances. The copper planes and the actual package
boards are thin compared to the other spatial dimensions.
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Figure 7 Measurements vs. PEEC model for self-inductances
for geometry of Fig. 1. Comparison geometry: +, measured; e,
calculated.

It was observed that skin effect along the model plane
thickness was small and that there was a linear depend-
ency of inductance with frequency. Figure 7 shows the
agreement between the PEEC model and the measure-
ments for the self-inductances.

Inductance of crossing lines

In this section we consider the reduction in inductance of
a stripline shown in Fig. 2 due to the crossing secondary
line. This represents a small but important part of a realis-
tic geometry for high performance integrated circuits.
Eddy currents are set up in the secondary line which are
in the same direction as the primary line current and this
leads to coupling between the primary and secondary
line. These induced currents cause a reduction in the pri-
mary line inductance.

In Fig. 8, the direction of current flow for both the pri-
mary and the secondary lines is indicated. Note that only
the parts of the secondary line that are important for the
eddy current flow are shown. The currents in the second-
ary line are confined to the x-y plane since the currents in
the z direction are small, especially for closely spaced
planes where the impact of the crossing lines is the larg-
est. Figure 9 shows the equivalent circuit for the model of
Fig. 8 where the center conductor is partitioned into three
divisions or cells in each direction with half-cells always
placed at each edge. We are interested in the impedance
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Figure 8 Cell divisions for secondary line.

Figure 9 PEEC model. All inductances in parallel are coupled.

between the terminals A and B, which is given as a func-
tion of frequency, f, as

Z(f) = R(f) + joL(f) = V(£)/I(f). (12)

Since we want to isolate the reduction in L(f) due to the
eddy currents in the crossing line, the top and bottom
conductors are assumed to be of zero thickness, which
eliminates their frequency dependence.

To establish the number of cells required to obtain an
accurate equivalent circuit representation for the center
conductor, an analytical solution was derived with the as-
sumption that fringing is ignorable. This analytical solu-
tion for the inductance is obtained by solving the bound-
ary value problem for the geometry depicted in Fig. 10, or

665
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Figure 11 Frequency vs. inductance. Compares analytical with
PEEC solution.

sinh (—t) + sin (—t)
) 8

cosh (—t—) + cos (—t)
) 8

where 8 = (mfuc) " is the skin depth.

)
L= 25+ (13)
w

It is observed from Figs. 11 and 12 and Eq. (13) that
there are two limitinig values for the inductance, the low
frequency and high frequency limits. The low frequency
limit is

PIERCE A. BRENNAN ET AL.

0

L = # (2s + 1), (14)
w

which is the inductance without the presence of the cen-
ter conductor. The low frequency inductance for the
equivalent circuit of Fig. 9 is simply

LO = LDu + LPH - 2LD12’ (15)

where the LD“, i — 1, - -, n, are the partial self-induc-
tancesandthe L ,i= L., nj=1,---,n,i#j,are
the partial mutual inductances of the conductors. The
high frequency inductance for the theoretical solution
completely excludes fields from the center conductor so
that
wl
L, =—2s. (16)
w

The equivalent circuit of Fig. 9 was modified to have cur-
rent in the direction of the horizontal cells only, corre-
sponding to the test model. To keep the fringing fields
small, the dimensions chosen (see Fig. 10) were [ = 2 m,
w=4cm, t = 1 mm and s = 0.25 mm. The conductors
were copper with o = 5.8 x 10° mhos/m, while w is the
permeability of air = 1.257 x 10~° H/m. It can be seen
from Fig. 11 that the solution of Eq. (15) (where fringing is
included) is about five percent lower than the theoretical
(no fringing) solution of Eq. (14) for low frequencies. At
high frequencies L, = 31.42 nH. From the curves it is
clear that an accurate prediction of the high frequency
inductor by the PEEC method depends on the number of
cells into which the center conductor is partitioned. In-
creasing the number of cells provides a better representa-
tion of the current distribution in the conductor so that
the skin effect is properly depicted, particularly at high
frequencies where it is fully developed. The prediction for
the change in inductance as a function of frequency is
seen to be quite accurate over the full range for eleven
cells per side.

One of the results that can be obtained from Eqs. (14)
and (16) is that the normalized change of inductance be-
tween the low and high frequency limits is approximated
by
AL _ Ay 100, (7)

L A,
where A, is the cross-sectional area of the center con-
ductor while A is the total area enclosed by the primary
line and k is a constant determined by the shape of the
center conductor. For the analytical model k = 1, since
the length of the center conductor is the same as the pri-
mary line. Figure 13 shows three limiting cases for the
center conductor in which the total area is kept constant.
The dimensions of the primary line are the same as before
except the length (/) has been shortened to 4 cm with a
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spacing s = 1.1 cm. The three cases for the center con- 83— A=p=8vpg

ductorhave t =0.1cmandw =1cm;¢t=1cmand w = \U \\
0.1 cm; ¢t = w = 0.333 cm, respectively. As can be seen 8.70
from Fig. 12, the reduction in inductance is a function of
the center conductor shape being greater for the horizon-
tal and square cases. One of the reasons for this is that the
coupling between the primary and center conductors is
accomplished only through the horizontal segments. 8.65
Thus, greater width causes increased coupling which re-
sults in lowered primary line inductance. The absolute
value of the reduction in inductance depends on the ge-
ometry at hand. The geometrical dimensions are chosen
to accommodate the different positions of the center con- 8.60 - )

%~A——A——A—\A

8.63 -

ductor in Fig. 13. It was also observed that, for the case :Té
where ¢t = 0.1 cm, varying the location of the center con- 3 gssl DC,\
ductor caused no change in inductance from the value ob- § 0-"g o 4
tained when the conductor was centered with respect to :: 455
: Covind vyl Lorosd covvod el el 1ol

the primary line. Finally, the value for k in Eq. (17) was ol 102 0 10 10° 106 0 10t
empirically found to be 0.5 for these three cases.

Frequency (Hz)

. The complex mlcror‘nod(.tl representing the crossing- Figure 12 Frequency vs. inductance for vertical, horizontal,
line geometry can be simplified to a network of the type and square areas. All curves are for six cells per side: A, vertical
shown in Fig. 14. This is accomplished by synthesizing shape; B, horizontal shape; C, square shape.

the frequency response of the impedance in Eq. (12). The

simplified model in Fig. 14 is then used to analyze com-

plex geometries.

Summary

The use of partial element equivalent circuits, in con-
junction with a circuit analysis program such as ASTAP, o . T
is a powerful method for solving three-dimensional induc- fa—w—s| k2 U"f

tance problems for high performance machines. It can be —] _*'_
applied to both large scale and micromodel geometries
with equally good results.

H
]

(a) (b) (c)
Acknowledgment Figure 13 Cross-sectional shapes for secondary line. (a) Hori-
. . zontal shape with w = 1.0 cm and r = 0.1 cm. (b) Vertical shape
The usefulness of the zero resistance solution of the with w = 0.1 cm and ¢ = 1.0 cm. (c) Square shape with w =
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