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Resistive and Inductive Skin Effect in Rectangular

Conductors

A model based on network theory is presented for calculating the frequency-dependent resistance and inductance per unit
length matrices for transmission line systems consisting of conductors with rectangular cross sections. The calculated
results are compared with actual measurements. Excellent agreement is obtained over a wide range of frequencies,
including the mid-range where neither dc values nor high-frequency limit values apply.

Introduction

Modern technology has shown a relentless trend towards
faster circuits, shorter rise times, and smaller pulse
widths. Simultaneously, the geometric dimensions of
modern circuit packages have been shrinking. It is fairly
typical that the widths and thicknesses of intercircuit wir-
ing closely approximate the skin depths for non-negligible
frequency components in the pulses to be transmitted.
This greatly complicates the electrical analysis of pack-
ages. For the frequency range in question, the actual wir-
ing resistance may be much higher than the dc resistance.
Alternatively, the significant frequencies may be too low
to use the traditional high-frequency approximations,
which predict a skin resistance and inductance propor-
tional to the square root of frequency. The accurate cal-
culation of resistance and inductance through this rela-
tively unexplored mid-range of frequencies is the subject
of this paper. The frequency-dependent impedance per
unit length matrix will be obtained for a transmission line
system consisting of conductors with rectangular cross
sections.

At very low frequencies, current distributes itself uni-
formly throughout the cross section of a conductor. As
the frequency increases, the current redistributes, crowd-
ing towards the surface of the conductor until, at very
high frequencies, it is effectively confined to a thin skin

just inside the surface of the conductor. The determina-
tion of the current density as a function of frequency is
the major problem in developing a theory of skin effect.

Analytical methods, even approximate ones, are quite
limited. An excellent survey of the state of the art has
been given by Casimir and Ubbink [1]. Numerical meth-
ods tend to be more flexible, permitting analysis of sys-
tems of more than one conductor and of conductors hav-
ing a wide variety of cross sections. Silvester [2] has de-
scribed a method in which the current density is obtained
as an eigenfunction expansion, where each eigenfunction
represents an independent current density mode which
must be determined numerically. Silvester obtained ex-
cellent agreement with measurements of the resistance of
a rectangular bar. Popovi¢ and Popovié [3] and Popovi¢
and Filipovi¢ [4] have obtained the current density as an
approximate solution to an integral equation. They calcu-
late skin resistance from the average power dissipated in
the conductors.

A coupled circuit theory approach has been taken by
Graneau [5, 6]. Graneau proceeds by dividing each con- '
ductor into segments which run the length of the con-
ductor but have small cross-sectional areas. The resis-
tance and inductance of each segment and the mutual in-
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ductance between segments are calculated and the
coupled circuit equations set up. Segment currents are
obtained as power series expansions in frequency. With
trivial modifications, Graneau’s method can be adapted to
the calculation of the impedance per unit length matrix for
a transmission line system. Each matrix element can be
obtained as a ratio of power series expansions in fre-
quency. Graneau’s formulation is essentially the same as
the one used in this paper. The solution methods, how-
ever, differ dramatically. The formulation to be given
avoids the use of series expansions.

A partial element equivalent circuit method for calcu-
lating current distributions in three-dimensional multi-
conductor systems has been described by Ruehli [7, 8].
This method has been applied by Ruehli, Kulasza, and
Pivnichny [9] to obtain the frequency-dependent resis-
tance and inductance of an L-shaped conductor.

In the present paper, an explicit calculation of the cur-
rent density is avoided altogether. The conductors are di-
vided into parallel segments having small, rectangular
cross sections. The current density is assumed to be con-
stant throughout a segment, but is allowed to vary from
segment to segment so that, in principle, a step function
approximation to the current density is obtained. The dc
resistance and self-inductance of each segment and the
mutual inductance between all segments are calculated,
and the impedance per unit length matrix for the collec-
tion of segments is set up. The impedance per unit length
matrix for the system of conductors is obtained by form-
ing appropriate row and column sums over the segment
matrix, so that an explicit calculation of the segment cur-
rents is bypassed. Theoretical development will be lim-
ited to systems of parallel conductors having rectangular
cross sections, but can be generalized easily to con-
ductors having arbitrary cross sections.

Theoretical development

The calculation is begun by subdividing each conductor
into parallel segments having small cross-sectional areas
as shown in Fig. 1. Let the conductors be numbered from
0 to N in such a manner that conductor 0 is the ground
conductor, and the remaining N conductors are the active
conductors. Now divide the ith active conductor into N,
segments (i = 1, 2, - - -, N). Divide the ground conductor
0 into N, + 1 segments, selecting one segment near the
center of the conductor as a reference segment. The seg-

ments will be labeled as follows:

(i, j) refers to the jth segment of the ith conductor. Here,
j=1,2,-++ N,whilei=0,1,2,- -, N.

(0, 0) refers to the reference segment on the ground con-
ductor.
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Figure 1 Division of conductors into segments.

(i) Ax/‘

Figure 2 Current-voltage relationship of a length Ax of segment

(i, -

There are M + 1 conductor segments, where

N
M=) N; (1
i=0
M is the total number of segments not including the refer-
ence segment.

Taking the x-axis parallel to the long dimension of the
collection of conductor segments, consider a section of
length Ax as shown in Fig. 2. Let

e,. = voltage drop across a length Ax of segment (i, j),

(2)
I. = current through segment (i, j). 3)

It is assumed that all current flow is in the direction of the
x-axis, i.e., that current enters and leaves the end faces of
a segment but does not flow across the sides of the seg-
ment.

The purpose of dividing each conductor into segments
is to approximate the current density in the conductors. It
will be assumed that the current density is uniform and
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Figure 3 Voltage relationships between segment (i, j) and the
reference segment.

constant within a segment but varying from segment to
segment, so that one obtains a step function approxima-
tion of the actual current density within the conductors.

Assuming there is a uniform and constant density
within each segment, one has
! 4
T oA @
for the dc resistance per unit length of segment (i, j).
Here, o, is the conductivity of conductor /, and A, is the
cross-sectional area of segment (i, j). Under the same as-
sumptions. the partial inductance per unit length between
segments (i, j) and (k, m) is given by

In
L = - —”Hm[@ -y
* 4mA A,

+ (z — z')’Jdy'dz' dydz, &)

where the integration over y and z is taken over the cross
section of segment (7, j), and the integration over y’ and z'
is taken over the cross-sectional area of segment (k, m).
For segments having rectangular cross sections, the mul-
tiple integral in Eq. (5) can be evaluated in closed form by
observing that if

4 2 2 4
- 6yz" +z
Fo,2) = [2—2 2 "2 o + )
24
el (y2 tan™' = + 2’ tan™ X),
3 y z
then
FFy-y,z-12) 25
— = —1In +(z—-z - —.
ayozdy oz [y =) 0

Thus, the evaluation of the multiple integral reduces to 16
evaluations of the function F(y — y', z — z), with y, z and
y', z’, respectively, taking on values at the vertices of seg-
ments (i, j) and (k, m).
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The derivation of Eq. (5), starting from the expression
for the energy stored in the magnetic field, requires that
the sum of the currents through all the conductor seg-
ments be zero; otherwise, the replacement of volume in-
tegrals by surface integrals would be impossible because
of the logarithmic nature of the vector potential.

The voltages ¢,; and currents I, are related by the equa-
tions

N
2 (r.5.,8. + joL'® I

N
Z ij ik im ij.km kmAx
P
L: OOIOOAx (6)

and

k
eOO = (rOO + ij:)s?OO)IOOAx + jw Z z L:)‘()))km mAX, (7)
where 8, = 1, §,, = O when i # j, and j is the square root of
—1. The index j takes on values j = 1, 2, - - -, N, while
i=0,1,---, N.

There are M + 1 equations, one for each of the M + 1
segments, including the reference segment (0, 0).

It was pointed out above that in order for Eq. (5) to be
valid, it is necessary that the sum of the currents in the
system of conductor segments be zero. This condition is
fulfilled by requiring that

I, = — Z 2 I ®)

i=0 j=1

Substituting Eq. (8) into Egs. (6) and (7) and dividing by
Ax yields

4
=

e. N
i X (p) (p)
AJ - Z [ru 1k jm + Jw(L:km Llfoo)] km’ (9)
X k=0 m=1
N
€00 _ J . N » 10
= Z (=roo + JeLog s — Log.oo) Mion: 10
Ax k=0 m=1

In transmission line theory, it is convenient to in-
troduce the voltage drop from a conductor to the refer-
ence conductor at a fixed position x along the length of the
line. Thus, let

V,(x) = voltage of segment (i, j)
with respect to (0, 0) at position x.
Referring to Fig. 3, one sees that
eg + V) = Vx + Ax) + €
from which it follows that
00°

—AV, =V, () - Vix+Ax)=¢; — ¢ 48))
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If Eq. (10) is subtracted from Eq. (9), and Eq. (11) is used

to eliminate ey~ € the result is

N

AV, il
A z Z ijkm + JwLu km]Ikm’ (12)
X k=0 m=1
where
Rij,km + rlJSIkSJm’ (13)
Li]',km = L;Jp)km - L::p:)o - L;)l(;)k:m + L(;g)oo; (14)

or, if one defines

Z. .. =R

iikm ij,km

+ oLy, (15)

then

z Z ij.km km’ (16)

wherei=0,1,2,- -+ Nandj=1,2,- -, N, The matrix
Z, defined by Eq. (15), is an M X M matrix, where M is
given in Eq. (1). That is, the order of Z is one less than the
total number of conductor segments. Generally, this or-
der should be as large a number as possible.

The next step of the computation is to invert the matrix
Z of Eq. (15) to get

Y=27Z" (17)
With the aid of the inverse, Eq. (16) can be solved for I,
Thus
N N
AV, .
— . 18
IZ Zt ij,km Ax ( )

Now the total current in conductor i is the sum of the
currents in each of its N, segments. Thus,

= Z‘ 1 (19)

is the total current in the ith conductor. Summing Eq. (18)
over j and using Eq (19), one obtains

N ‘
I =~ Z Yij,ka;mL' (20)

It will be assumed that conductor cross sections per-
pendicular to the x-axis are equipotential surfaces; that is,
the voltage drop e,; across any segment (i, j) is the same as
the voltage drop e, across any other segment (i, J') on the
same conductor. In other words, it is assumed that e, de-
pends only on the conductor index i and not on the seg-
ment index j wherej = 1,2, - - -, N,. This, of course, is an
approximation, but probably a very good one. This as-
sumption, along with the defining equation (11), implies
that

J=1L2,--- N, (21a)

AV, =10 0
(21b)

AVijzAVij/ SJ =142 N,

1
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From Eq. (21b) it follows that one can write
AV, =AV, j=12,--- N, (22)

Consequently, Eq. (20) can be written as
N AV
== yikf, (23)
k=1 xr

where

N

Z i 4)

|| M_g

The matrix y of Eq. (24) is an N X N matrix and generally
N is much smatler than M.

Now invert the matrix y, defined by Eq. (24), to get the
N x N matrix

2=y 25)

With the aid of the inverse, Eq. (23) may be solved for
AV, /Ax to get

- —t=3 z,l,. (26)

Equation (26) approximates the familiar transmission line
equation

N
= Z z,J,
k=0

The accuracy of the approximation should improve as the
number of segments M is increased.

In order to obtain accurate results, the conductors
should be divided into segments whose dimensions are no
greater than the skin depth

9 12
=
now

at the angular frequency o under consideration. At high
frequencies this may be impractical. The total number of
segments M is the dimension of the complex impedance
matrix Z of Eq. (15). The maximum value of M is limited
by the amount of storage available in the computer sys-
tem being used for the analysis. Values of M larger than
700 are probably impractical for most present-day sys-
tems.

The following rule for dividing conductors into seg-
ments seems to work quite well. Let W be the widthand T
be the thickness of a conductor. Let » and m be the num-
ber of subdivisions into which the width and thickness,
respectively, are to be divided to obtain nm segments.
Let AW and AT be the dimensions of a segment. Then,
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Figure 4 Simplified drawing of experimental setup with both
striplines in place.

Table 1 Dimensions of the model shown in Fig. 4.

Striplines Width W, = 0952cm
Thickness T, = 0.368
Length L, =125.88
Center-to-center
separation s, = 5.08
Ground planes Width W, = 52.07
Thickness T, = 0.0940
Length L, =122.52
End tabs Width W, = 13.97
Thickness T, = 0.119
Length L, = 1683
Shorting pieces Diameter D, = 2223
Height H, = 421

-

1. If W/n < & choose AW = W/n,
2. If W/n > 8, then
a. If n = 2k + 2 choose AW = § for the 2k outermost
divisions and AW = (W/2) — k& for the two center
divisions.
b. If n = 2k + 1 choose Aw = § for the 2k outermost
divisions and AW = W — 248 for the center divi-
sion.

To calculate AT, replace W with T and n with m in the
above rule. Simply put, at high frequencies the segments
are chosen in layers one skin depth deep, starting from
the conductor surfaces, leaving a core of one, two, or four
large segments near the center of the conductor.

The computational procedure can be summarized as
follows:

1. Divide the conductors into segments according to the
rule described above.
2. Calculate the resistance of each segment, using Eq.

4.
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3. Calculate the matrix of partial inductances, using Eq.
(5).

4. Use Egs. (13) through (15) to calculate the complex
matrix Z at the angular frequency .

5. Invert the matrix Z to obtain the matrix Y.

6. Add the rows and the columns of Y, as indicated in Eq.
(24), to obtain the matrix y.

7. Invert y to obtain the desired impedance per unit
length matrix z.

The procedure is to be repeated for each frequency of
interest,

The limitation of the derivation to systems of con-
ductors having rectangular cross sections is somewhat ar-
tificial. Conceptually, the theory is easily generalized to
conductors having arbitrary cross sections. One approach
to such a generalization would be to approximate a con-
ductor having an arbitrary cross section by a union of dis-
joint segments having rectangular cross sections. The
practical difficulty with this approach is that it requires a
large number of segments to obtain a reasonable approxi-
mation of the conductor cross sections. Storage require-
ments for the matrix Z of Eq. (15) soon would exceed
available memory. Another approach is to admit con-
ductors whose perimeters are arbitrary polygons. The
conductors can then be divided into segments whose
cross sections are triangles. The difficulty with this ap-
proach is that the fourfold integral in Eq. (5) cannot be
evaluated in closed form, so that a costly numerical eval-
uation is necessary. Similarly, the evaluation of the in-
tegrals in Eq. (5) is a major obstacle to the introduction of
conductors with circular cross sections.

Experimental verification

Inductance and resistance measurements were made on a
large-scale madel of a single stripline and also of two
coupled striplines. The results of the measurements were
compared with calculated values based on the theory de-
scribed above.

The model, a simplified drawing of which is shown in
Fig. 4, consists of first one and then two striplines placed
over a ground plane. The ground plane has tabs attached
to each end. The end tabs are connected to the striplines
by cylindrical shorting pieces. The striplines, ground
plane, end tabs, and shorting pieces are all made of brass
having a measured resistivity of 1.231 x 107° Q-cm. Me-
chanical support of the striplines is provided by dielectric
supporting rods. The main frame supporting the whole
structure is made of aluminum. The pertinent dimensions
of the model are given in Table 1.

The frequencies at which measurements were made
were determined by the range of the impedance bridge
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available for the experiment. With the frequency range
fixed, the model dimensions were chosen so that the mea-
sured resistance would fall above the dc value but below
those values which show a dependence proportional to
the square root of frequency, a range not covered by
existing theoretical formulas.

Inductance and resistance measurements were made
using a Boonton Model 63H impedance bridge (Boonton
Electronics Corp., Parsippany, NJ). The specified accu-
racy of the bridge in the frequency range from S kHz to
500 kHz, in which the measurements were made, is
0.01% + 0.2 nH for inductance and 3% + 0.000252 Q for
resistance. The accuracy of the frequency setting is +3%
with a stability of 0.1%. The leads from the bridge to the
stripline were brought in at right angles to the latter, as
shown in Fig. 4, to eliminate inductive mutual coupling.
The shorting piece at the driving end consisted of two
pieces separated by an air gap at the center. The upper
lead from the bridge was attached to the shorting piece at
a distance H,/3 from the stripline. The lower lead was
attached at a distance H,/3 above the end tab.

Self-inductance and resistance measurements were
made before the second stripline and its shorting pieces
were mounted on the apparatus. Three sets of measure-
ments were required to determine the inductance and re-
sistance of the part of the circuit formed by the stripline,
ground plane, and end tabs.

The first measurement was to determine the inductance
and resistance of the shorting pieces. A square loop of
wire having perimeter P was constructed [Fig. 5(a)], and
its impedance Z, was measured. Next, a section of wire of
length H, was removed and was replaced with one of the
shorting pieces [Fig. 5(b)], and the impedance of the new
loop Z, was measured. The impedance of the shorting
piece Z is then

H4
Z,=2, - Zl(l - ?), @7

assuming that the sides of the squares are sufficiently sep-
arated so that their mutual inductance is negligible com-
pared with their self-inductance.

The second measurement was to determine the imped-
ance of the leads from the bridge to the split shorting
piece at the left end of the line (Fig. 4). The leads and the
shorting piece were disconnected from the apparatus.
The shorting piece was then used to short out the leads
while maintaining a separation of H,/3 between the leads.
The measured impedance Z, was the impedance of the
leads Z, plus one third the impedance Z of a full length of
a shorting piece. Thus,
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Figure 5 Determination of shorting piece impedance: (a)

square wire loop with perimeter P; (b) wire loop with section of
length H, replaced with shorting piece.
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The third measurement was made with the apparatus con-

nected as shown in Fig. 4, except that the second stripline

and its shorting pieces were absent. Let Z, be the mea-
sured impedance. Then,

. 5
Z=R+jol=27,-2 - 3Z, (29)
is the impedance belonging to the stripline, ground plane,
and two end tabs. The real functions R and L are, respec-
tively, the corresponding resistance and inductance.

The measured values of L and the value calculated
from the theory described earlier are listed in Table 2 and
plotted on a semilog scale in Fig. 6. The calculations were
made with the stripline cross section divided into 180 seg-
ments (20 divisions along its width and nine along its
thickness) and the ground plane divided into 120 seg-
ments (40 along its width and three along its thickness).
Separate calculations of impedance per unit length were
made for the part of the stripline over the ground plane
and the part of the line over the end tabs. The results were
multiplied by the appropriate line lengths and added to
obtain the results in Table 2. Finer subdivisions of the
conductors did not significantly alter the calculated val-
ues of L. With the exception of the value at 10 kHz, the
measured and calculated values of L agree to within less
than 1% over the frequency range from 5 kHz to
500 kHz.

The measured and calculated values of R are listed in
Table 3 and plotted on a log-log scale in Fig. 7. The dif-
ference between the measured and the calculated values
was reasonably small at low frequencies but increased
rapidly as the frequency increased. Furthermore, con-
vergence of the calculation of R was very slow as the
number of segments into which the conductors were di-
vided was increased. An increase in the total number of
segments from 300 to 660 only reduced the difference be-
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Figure 6 Measured and calculated self-inductance.

Table 2 Measured and calculated values of self-inductance L.

Frequency Inductance
(kHz)
Measured Calculated Difference
(nH) (nH) (%)
5 877.6 870.1 0.85
10 873.7 858.9 1.69
20 853.4 848.5 0.57
30 848.2 842.8 0.63
40 847.2 839.0 0.97
50 841.2 836.4 0.57
80 836.0 831.7 0.51
160 831.1 826.2 0.59
320 825.3 821.9 0.41
400 824.2 820.8 0.41
500 823.2 819.8 0.41

tween measured and computed values of R at 300 kHz
from 20% to 16%. The values of L, however, were not
changed significantly. That L can be calculated much
more accurately than R for a given division of the con-
ductors into segments is not surprising, since L is bound-
ed with increasing frequency, while R increases without
bound.

It is interesting to compare the measured values of R
with those given by published formulas for the high-fre-
quency limit. Pucel, Masse, and Hartwig [10, 11] have
derived the formula

R w'\2 h h 2t
R==|1-|—]|1+—+—(ln—-—]|, GO

th (M)H W ww'("t hﬂ()
where

Ry = (mfpu,)'"

and

' t 2h
w =w+—<1+ln—)
T t
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for the resistance per unit length of a stripline of width w
and thickness ¢ placed at a height 4 above a ground plane,
provided that 1/27 < w'/h = 2.

Applying Eq. (30) first with » = H, + T, and then with
h = H,, one finds that

R, = 8.9823 x 10V/f Q/cm
and
R, = 8.7476 x 107°Vf Q/cm,

respectively, for the parts of the stripline over the ground
plane and those over the end tabs. The total resistance is
then

R=R,L, + 2R,L, = 1.1299 x 107°\/f Q, (€3]

where f is given in kHz. Equation (31) yields 2.5265 x
107 Q at 5 kHz (36% below the measured values) and
2.5265 x 1072 Q at 500 kHz (17% below the measured
values), The dc resistance, R = 3.065 x 107 Q, and the
resistance calculated from Eq. (31) are plotted in Fig. 7
for easy comparison with the measured results and the
numerically computed results. Equation (31) coincides
with the numerically calculated resistance at 160 kHz and
gives a slightly better approximation for higher frequen-
cies.

In order to measure mutual inductance, the second
stripline and its two shorting pieces are installed to form a
shorted secondary circuit, as shown in Fig. 4. Let Z, be
the impedance measured with the bridge connected as
shown in Fig. 4. Then

L, =1Im(Z, - Z)/o 32)

is the inductance of the primary in the presence of the
shorted secondary. In Eq. (32), Z,_ is the known imped-
ance of the leads from the bridge. To extract the mutual
inductance between primary and secondary circuits, it is
necessary also to know the self-inductance L of the pri-
mary in the presence of an open secondary. For the 5.08-
cm line separation used in this experiment, L, is not mea-
surably different from the self-inductance of the primary
circuit in the absence of the secondary circuit. Thus,

L,=1m (Z, - Z)/w, (33)

where Z, is the measured impedance used in Eq. (29).

Consider again the apparatus connected with the short-
ed secondary circuit in place as shown in Fig. 4. Let V, be
the voltage drop between the leads from the bridge at
their point of contact on the two halves of the split short-
ing piece. Let I, and I,, respectively, be the primary and
secondary currents. Then, since the primary and second-
ary circuits are identical,
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(34
(35)

V,=LJ, + MJ,

T

0=M] + L],

where M is the mutual inductance between primary and 0.0]
secondary. Using Eq. (35) to eliminate I'2 from Eq. (34),

| LU

one obtains S
M = ._.-_-_;e_
V1 — inl — (Lo _ TQ)II’ (36) g | DC resistance © Measured
0 % A Calculated
or, solving for M, & 0001 L1 L1l L Lol
10 100
M, =~L(L, - L,). 37

. . Frequency, f (kHz)
The mutual inductance M, obtained from Eq. (37) con-

tains a small contribution AM due to the mutual coupling
between the shorting pieces. There does not appear to be
an easy way to measure AM. Fortunately, formulas exist
which permit the calculation of the contribution to the
mutual inductance due to the shorting pieces. Since the
geometric mean distance between two parallel circular
cylinders is equal to the distance between their centers,

Figure 7 Measured and calculated resistance.

Table 3 Measured and calculated values of resistance R.

the shorting pieces can be replaced by current filaments Frequency Resistance
along their centers. Then, formulas from the collection by (kHz)
Grover [12] can be used to calculate the contribution to Measured Calculated Difference
. ) (8] (%)
mutual inductance.
5 3.97 x107° 4.02 x 107 -1.26
For two parallel filaments of equal length x and center- 10 4.94 x 107° 475 x 107 3.85
. . . 20 6.47 x 107° 6.01 x 107 7.11
to-center distance y, placed so that the end points of one 30 786 x 10-° 709 x 10°° 9.80
fitament have coordinates (0, 0) and (x, 0) and those of the 40 840 x 1078 799 x 107 4.88
other have (0, y) and (x, y), Grover gives the formula 50 9.98 x 1072 877 x 107° 12.12
80 1.198 x 10‘: 1.058 x 10‘: 11.69
X x\2 2 y 160 1.693 x 10~ 1.428 x 10~ 15.65
m(x, y) = 2x[ln (— + \/1 + (—) ) —\/1 + (X)\ + = | 320 2.154 x 1072 1.962 x 1072 8.91
Y y X X 400 2.560 x 1072 2.182 x 107* 14.76
3.040 x 1072 2.430 x 107* 20.06

(38) 500

For two filaments, one of length x and the other of x/3,
with center-to-center spacing y, placed so that the coordi-
nates of the end points of the first are (0, 0) and (x, 0) and
those of the end points of the second are (0, y) and

(x/3, y), Grover gives
sured values of M are extracted from the measured values

of L, and L_ by means of Eqs. (37), (40), and (41). The
calculated values were obtained by calculating the mutual
inductance per unit length for the sections of striplines
over the ground plane and for those over the end tabs,
multiplying the results by the appropriate lengths and
adding them together to obtain the final results in Table 4
and Fig. 8. Since mutual inductance is a much less sensi-
tive function of current distribution than self-inductance
or resistance, convergence was obtained with the striplines
divided into 40 segments each (eight along the width and
five along the thickness), and the ground plane and the
end tabs divided into 90 segments (30 along the width and
three along the thickness). With the exception of the val-
ue at 10 kHz, the measured and calculated values agree to

, 1
m(x,y) = E[m(x, )+ m(x/3,y) — mQ2x/3,y)], (39

where m(x, y) is given by Eq. (38). The contribution AM
to the mutual inductance M, due to the shorting pieces is

then
AM = m(H,, S)) + 2m'(H,, ) = 5.51 nH. (40)

The part ot the mutual inductance attributable strictly to

the striplines, the ground plane, and the end tabs is then
M=M - AM, 40

where M is given by Eq. (37) and AM by Eq. (40).

The measured and calculated values of M are listed in
659

Table 4 and plotted on a semilog scale in Fig. 8. The mea-
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within 2%.
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Figure 8 Measured and calculated mutual inductance.

Table 4 Measured and calculated values of mutual inductance

M.
Frequency Mutual inductance
(kHz)
Measured Calculated Difference
(nH) (nH) (%)
5 184.4 186.89 —1.35
10 193.4 186.89 3.37
20 189.4 188.44 0.51
30 190.1 189.03 0.56
40 190.0 189.27 0.38
50 188.6 189.39 —0.42
80 186.7 189.52 -1.51
160 188.5 189.53 —0.54
320 188.1 189.44 —0.69
400 189.5 189.41 0.05
500 187.4 189.37 —1.05

Conclusions

A simple network model has been proposed for calcu-
lating the frequency-dependent inductances and resis-
tances per unit length for multiconductor transmission
lines. When restricted to conductors having rectangular
cross sections, numerical computation is feasible on pres-
ent-day computer systems.

A comparison has been made between calculated re-
sults and measurements made on a large-scale model of
one and two striplines over a ground plane. A reasonable
rate of convergence was observed with respect to the
number of segments into which conductors were sub-
divided, and very accurate results were obtained for both
self- and mutual inductance. A slower convergence and
poorer results were obtained for resistance, especially at
the higher frequencies. The computations, though

W. T. WEEKS ET AL.

lengthy, are of a reasonable magnitude. The calculations
using 300 segments, for example, required 500 000 bytes
of memory and slightly less than 1.5 minutes per fre-
quency on an IBM System 370/168.

The extremely large number of segments required to
obtain accurate resistance values at high frequencies is
troublesome, but is not an insurmountable difficulty. Ac-
curacy can be improved by using the formulas of Pucel,
Masse, and Hartwig, e.g., Eq. (30), to calculate resis-
tance whenever these formulas yield a resistance higher
than the numerically computed value.
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