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Resistive  and  Inductive  Skin  Effect  in  Rectangular 
Conductors 

A model  based on network  theory  is  presented for calculating  the  frequency-dependent  resistance  and  inductance  per unit 
length  matrices  for  transmission line systems  consisting  of  conductors  with  rectangular  cross  sections.  The  calculated 
results are compared with actual  measurements.  Excellent  agreement is obtained  over  a wide range  of  frequencies, ' including the  mid-range where neither  dc  values nor high-frequency limit values  apply. 

Introduction 
Modern  technology has shown  a  relentless trend  towards 
faster  circuits,  shorter rise times,  and smaller  pulse 
widths. Simultaneously,  the  geometric dimensions of 
modern  circuit  packages  have been shrinking.  It is fairly 
typical that  the  widths  and  thicknesses of intercircuit wir- 
ing closely approximate  the skin depths  for non-negligible 
frequency components in the pulses  to be transmitted. 
This  greatly  complicates the electrical  analysis of pack- 
ages. For  the  frequency range in question,  the  actual wir- 
ing resistance may be much  higher than  the  dc  resistance. 
Alternatively, the significant frequencies may be too low 
to use the traditional  high-frequency approximations, 
which predict a  skin  resistance and  inductance  propor- 
tional to  the  square  root of frequency.  The  accurate cal- 
culation of resistance  and  inductance through  this  rela- 
tively unexplored mid-range of frequencies is the  subject 
of this paper.  The  frequency-dependent impedance per 
unit  length  matrix will be  obtained for a  transmission line 
system consisting of conductors with  rectangular cross 
sections. 

just inside the  surface of the  conductor.  The  determina- 
tion of the  current density as a function of frequency is 
the major problem in developing  a theory of skin  effect. 

Analytical methods,  even  approximate  ones,  are  quite 
limited. An excellent  survey of the  state of the  art  has 
been  given  by  Casimir and Ubbink [l]. Numerical meth- 
ods  tend  to  be more flexible, permitting  analysis of sys- 
tems of more  than  one  conductor  and  of  conductors  hav- 
ing a wide variety of cross  sections. Silvester [ 2 ]  has  de- 
scribed  a method in which  the current density is obtained 
as  an eigenfunction expansion,  where  each eigenfunction 
represents  an  independent  current  density mode  which 
must  be determined numerically. Silvester  obtained  ex- 
cellent agreement with measurements of the  resistance of 
a rectangular  bar. PopoviC and PopoviC [3] and PopoviC 
and FilipoviC [4] have obtained the  current density as  an 
approximate solution to  an integral equation.  They calcu- 
late  skin resistance from the  average  power dissipated  in 
the  conductors. 

At  very  low frequencies,  current  distributes itself uni- A coupled  circuit  theory  approach  has been taken by 
formly throughout  the  cross  section of a conductor. As Graneau [5, 61. Graneau  proceeds by dividing each  con- 
the  frequency  increases,  the  current  redistributes,  crowd- ductor into segments which run  the length of the  con- 
ing towards  the  surface of the  conductor until, at very ductor  but  have small cross-sectional  areas.  The resis- 
high frequencies, it is effectively confined to a thin skin tance and inductance of each  segment  and  the mutual in- 
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ductance  between segments are calculated and the 
coupled  circuit equations  set  up. Segment currents are 
obtained as  power series expansions in frequency. With 
trivial modifications, Graneau's  method  can be adapted to 
the calculation of the impedance per unit length matrix for 
a transmission line system.  Each matrix  element can be 
obtained as a ratio of power series  expansions in fre- 
quency.  Graneau's formulation is essentially  the same  as 
the  one used in this  paper. The solution methods, how- 
ever, differ dramatically. The formulation to be given 
avoids the use of series  expansions. 

A partial element equivalent  circuit  method for  calcu- 
lating current distributions in three-dimensional multi- 
conductor  systems has  been described by  Ruehli [7, 81. 
This method  has been applied by  Ruehli, Kulasza, and 
Pivnichny [9] to  obtain the frequency-dependent resis- 
tance  and  inductance of an  L-shaped  conductor. 

In the  present  paper,  an explicit  calculation of the  cur- 
rent density is avoided altogether. The  conductors  are di- 
vided into parallel  segments  having  small,  rectangular 
cross  sections.  The  current  density is assumed  to be con- 
stant  throughout a  segment, but is allowed to vary  from 
segment to segment so that, in principle,  a step function 
approximation to  the  current  density is obtained.  The  dc 
resistance and  self-inductance of each segment  and the 
mutual inductance between all segments  are  calculated, 
and the  impedance per unit length  matrix for  the collec- 
tion of segments is set up. The impedance  per unit length 
matrix for  the  system of conductors is obtained by form- 
ing appropriate row and column sums  over  the segment 
matrix, so that  an explicit  calculation of the segment cur- 
rents is bypassed. Theoretical development will be lim- 
ited to  systems of parallel conductors having rectangular 
cross  sections,  but  can be generalized  easily to  con- 
ductors having arbitrary  cross  sections. 

Theoretical  development 
The calculation is begun by subdividing each  conductor 
into  parallel segments having small cross-sectional areas 
as shown in Fig. 1. Let the conductors be numbered from 
0 to N in such a manner that conductor 0 is the ground 
conductor,  and  the remaining N conductors  are  the  active 
conductors.  Now divide  the ith active  conductor into Ni 
segments (i = 1, 2, . . ., N ) .  Divide the ground conductor 
0 into No + 1 segments, selecting one segment near  the 
center of the  conductor  as a reference  segment.  The seg- 
ments will be labeled as follows: 

(i, j) refers  to  the  jth segment of the ith conductor.  Here, 
j = 1 , 2 ; . . , N i , w h i l e i = 0 , 1 , 2 ; . . , N .  

(0, 0) refers to the reference  segment on  the ground con- 
ductor. 

&- TtO A', = 5 

Figure 1 Division of conductors  into  segments. 

Figure 2 Current-voltage  relationship of a length Ax of segment 
(4 51. 

There  are M + 1 conductor  segments,  where 
Y 

M = Ni;  (1) 

M is the  total  number of segments  not including the refer- 
ence segment. 

i=O 

Taking the  x-axis parallel to  the long  dimension of the 
collection of conductor  segments,  consider a section of 
length Ax as  shown in Fig. 2. Let 

eij  = voltage drop  across a  length Ax of segment (i, j) ,  
(2) 

Zij = current  through segment (i, j). (3) 

It is assumed  that all current flow  is  in the direction of the 
x-axis, i . c . ,  that  current  enters and leaves  the  end  faces of 
a  segment but  does not flow across  the sides of the seg- 
ment. 

The  purpose of dividing each  conductor into segments 
is to  approximate  the  current density in the  conductors.  It 
will be assumed  that the current  density is uniform and 653 
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Figure 3 Voltage  relationships between  segment ( i ,  39 and the 
reference segment. 

constant within  a  segment  but  varying from segment to 
segment, so that  one  obtains a step function  approxima- 
tion of the  actual  current density  within the  conductors. 

Assuming there is a uniform and  constant density 
within each  segment,  one has 

1 
r . .  = __ 

l3 uiAij 

for the  dc  resistance  per unit length of segment (i, j ) .  
Here, mi is the conductivity of conductor i, and A, is the 
cross-sectional  area of segment (i, j ) .  Under  the  same  as- 
sumptions. the partial inductance  per unit length between 
segments (i, j )  and ( k ,  r n )  is given by 

+ (z  - z ' )2]dy 'dz 'dydZ,  ( 5 )  

where  the  integration  over y and z is taken  over  the  cross 
section of segment ( i , j ) ,  and  the integration over y' and z' 
is taken  over  the cross-sectional area of segment ( k ,  m ) .  
For segments  having  rectangular cross  sections,  the mul- 
tiple integral in Eq. (5) can be evaluated in closed  form by 
observing that if 

then 

a4F(y - y', z - z ' )  25 
ayazay'az' 

= - In [(Y - y')* + ( z  - z')'] - - . 
6 

Thus,  the  evaluation of the multiple integral reduces  to 16 
evaluations of the function FO, - y', z - z ' ) ,  withy, z and 
y ' ,   z ' ,  respectively, taking on values at  the vertices of seg- 
ments ( i , j )  and ( k ,  m) .  
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The  derivation of Eq. ( 9 ,  starting  from  the  expression 
for the  energy  stored in the magnetic field, requires  that 
the sum of the  currents through all the  conductor seg- 
ments be  zero;  otherwise,  the  replacement of volume  in- 
tegrals by surface integrals would be impossible because 
of the logarithmic nature of the  vector potential. 

The voltages eu and  currents Z i j  are related by the  equa- 
tions 

eij = 2 1 (rij8ik8jrn + ~ ~ I J L ~ ~ , ~ ~ ) Z ~ ~ A X  
N Nk 

k=O m = l  

+ jcIJL;~noznnAx 

and 

e,, = (roo + ~~IJL;&~)Z, , ,AX + ]a 1 2 L: ,~ ,  z k m h X ,  (7) 

where aii = 1, tiij = 0 when i # j ,  and] is the  square  root of 
- 1. The  index j takes  on values j = 1 ,  2 ,  . . ., N i ,  while 
i = 0,  1, . . ., N .  

N '"k 

k=n m=1 

There  are M + 1 equations,  one  for  each of the M + 1 
segments, including the reference  segment (0,  0). 

It  was  pointed out  above  that in order  for  Eq. ( 5 )  to  be 
valid, it is necessary  that  the  sum of the  currents in the 
system of conductor segments be  zero. This  condition is 
fulfilled by  requiring that 

N 

Substituting Eq. (8) into Eqs. (6) and (7) and dividing by 
Ax yields 

In  transmission line theory, it is convenient  to in- 
troduce  the voltage drop from  a conductor  to  the  refer- 
ence  conductor  at a fixed position x along the length of  the 
line. Thus, let 

V,(x) = voltage of segment (i, j )  

with respect  to (0 ,   0)  at position x .  

Referring to Fig. 3, one  sees  that 

e,, + V,(x) = Vij (x  + A x )  + eij ,  

from  which it follows that 

- A V ~ ~  = v,(x) - Vij (x  + A x )  = e" - enn. 
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If Eq. (10) is subtracted from Eq. (9), and  Eq. (1 1) is used 
to eliminate eij - eo,, the result is 

where 

or, if one defines 

where i = 0 ,  I ,  2, . . . Nand j = 1, 2, . . ., Ni.  The matrix 
Z, defined by Eq. (IS), is an M X M matrix,  where M is 
given in Eq. (1). That  is, the order of Z is one less  than the 
total number of conductor  segments. Generally,  this or- 
der should  be as large  a  number as possible. 

The  next  step of the computation is to invert  the  matrix 
Z of Eq. (15) to  get 

Y = z-l. (17) 

With the aid of the inverse, Eq. (16) can be solved for Z,,. 
Thus 

Now the  total  current in conductor i is the  sum of the 
currents in each of its Ni segments. Thus, 

N ,  
Ii = zij (19) 

j=1 

is the  total  current in the ith conductor. Summing Eq. (18) 
over j and using Eq. (19), one obtains 

,~ vi w 

I i  = - C C C L , k m  7 . A Vkm (20) 

It will be assumed  that  conductor  cross sections  per- 
pendicular to  the x-axis are  equipotential  surfaces;  that  is, 
the voltage drop e, across any segment (i, j )  is the same as 
the voltage drop e,,, across any other segment (i, j ' )  on  the 
same  conductor.  In  other  words, it is assumed that eij de- 
pends  only  on  the  conductor index i and not on  the seg- 
ment  index j where j = 1,2 ,  . . ., Ni .  This, of course, is an 
approximation,  but probably  a very good one.  This  as- 
sumption, along  with the defining equation (1 1), implies 
that 

AVoj = 0 j = 1 ,  2, . . ., No, (2 1 4  

AVij = AVij, j ,   j '  = 1 ,  2, . . ., Ni. (2 1b) 

k=o j=1 m = l  

From Eq. (21b) it follows that  one  can write 

AVij = AVi j = 1 ,  2, . . *, Ni. (22) 

Consequently,  Eq. (20) can  be  written  as 

I ; =  - c y .  - 
'' AVk 

k = l  l k  A, ' 

j=1 m=l 

The matrix y of Eq. (24) is an N X N matrix  and  generally 
N is much  smaller than M .  

Now invert  the matrix y, defined by Eq. (24), to get the 
N X N matrix 

2 = y-l. (25) 

With the aid of the inverse, Eq. (23) may be  solved for 
AVk/Ax to get 

AVi 
- __ = Z i k Z k .  

AX k=O 

Equation (26) approximates the familiar transmission line 
equation 

The  accuracy of the approximation  should  improve as  the 
number of segments M is increased. 

In order  to  obtain  accurate  results,  the  conductors 
should be divided  into  segments  whose  dimensions are  no 
greater  than  the skin depth 

112 

= (k) 
at  the angular frequency w under  consideration. At high 
frequencies this may be  impractical. The total number of 
segments M is the dimension of the complex  impedance 
matrix Z of Eq. (15). The maximum value of M is limited 
by the  amount of storage  available in the  computer  sys- 
tem being used for  the  analysis. Values of M larger than 
700 are  probably impractical for most  present-day sys- 
tems. 

The following rule for dividing conductors into  seg- 
ments seems  to  work quite well. Let W be the width and T 
be the  thickness of a conductor.  Let n and m be  the  num- 
ber of subdivisions into which the width  and thickness, 
respectively,  are  to be divided to  obtain nm segments. 
Let A W and A T  be the dimensions of a segment. Then, 655 
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Inductance- 
bridge 

Figure 4 Simplified drawing of experimental setup with both 
striplines in place. 

Table 1 Dimensions of the model shown in Fig. 4. 

Striplines Width W, = 0.952cm 
Thickness TI = 0.368 
Length 15, = 125.88 
Center-to-center 

separation S,  = 5.08 

Ground planes Width W, = 52.07 
Thickness T, = 0.0940 
Length L,  = 122.52 

End  tabs Width W ,  = 13.97 
Thickness T3 = 0.119 
Length L, = 1.683 

Shorting pieces Diameter D, = 2.223 
Height H ,  = 4.21 

1. If W / n  I 6 choose AW = W / n .  
2 .  If W / n  > 6, then 

a. If n = 2k + 2 choose AW = 6 for  the 2k outermost 
divisions and AW = ( W / 2 )  - k8 for  the  two  center 
divisions. 

b. If n = 2k + 1 choose Aw = 6 for  the 2k outermost 
divisions and AW = W - 2k6 for  the  center divi- 
sion. 

To calculate AT, replace W with T and n with rn in the 
above rule.  Simply put,  at high frequencies  the  segments 
are  chosen in layers  one skin depth  deep, starting from 
the  conductor  surfaces, leaving a core of one,  two,  or  four 
large segments  near  the  center of the  conductor. 

The  computational procedure can be  summarized as 
follows: 

1. Divide the  conductors into segments according to  the 

2. Calculate  the  resistance of each  segment, using Eq. 
rule described  above. 

656 (4) .  

3. Calculate the matrix of partial inductances, using Eq. 

4.  Use  Eqs. (13) through (15) to calculate the complex 

5. Invert  the matrix Z to obtain the matrix Y. 
6. Add the  rows  and  the columns of Y, as indicated in Eq. 

7. Invert y to  obtain the  desired  impedance per unit 

(5 ) .  

matrix Z at  the angular frequency o. 

(24),  to  obtain  the matrix y. 

length matrix z. 

The  procedure is to be repeated  for  each  frequency  of 
interest. 

The limitation of the derivation to  systems of con- 
ductors having  rectangular cross  sections is somewhat  ar- 
tificial. Conceptually,  the  theory is easily  generalized to 
conductors having arbitrary  cross  sections. One approach 
to  such a generalization would be  to approximate  a con- 
ductor having an  arbitrary  cross  section by a union of dis- 
joint  segments having  rectangular cross  sections.  The 
practical difficulty with  this approach is that it requires a 
large number of segments to  obtain a reasonable  approxi- 
mation of the  conductor  cross  sections. Storage require- 
ments for  the matrix Z of Eq. (15) soon would exceed 
available memory.  Another  approach is to admit con- 
ductors  whose  perimeters  are  arbitrary polygons. The 
conductors  can  then be  divided into segments  whose 
cross  sections  are triangles. The difficulty with  this  ap- 
proach is that  the fourfold  integral in Eq. (5) cannot be 
evaluated in closed  form, so that a costly  numerical  eval- 
uation is necessary. Similarly, the evaluation of the in- 
tegrals in Eq. (5) is a major obstacle  to  the introduction of 
conductors with circular  cross  sections. 

Experimental  verification 
Inductance  and  resistance  measurements were  made on a 
large-scale  model of a single stripline and also of  two 
coupled  striplines. The  results of the  measurements  were 
compared with  calculated  values based  on  the  theory de- 
scribed above. 

The model, a simplified drawing of which is shown in 
Fig. 4 ,  consists of first one  and then two striplines placed 
over a ground plane.  The ground  plane has  tabs  attached 
to  each  end.  The  end  tabs  are  connected  to  the striplines 
by cylindrical  shorting  pieces. The striplines,  ground 
plane,  end  tabs,  and shorting  pieces are all made of brass 
having  a measured resistivity of I .23 1 X 10" a-cm. Me- 
chanical  support of the striplines is provided by  dielectric 
supporting rods.  The main frame  supporting the whole 
structure is made  of aluminum. The  pertinent dimensions 
of the model are given in Table 1. 

The  frequencies  at which measurements were  made 
were  determined  by  the range of the impedance bridge 
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available  for the  experiment. With the frequency  range 
fixed, the model dimensions  were chosen so that  the mea- 
sured  resistance would fall above  the  dc value but below 
those values which show a dependence proportional to 
the  square  root of frequency, a range  not covered by 
existing theoretical formulas. 

Inductance  and resistance measurements were made 
using a Boonton Model 63H impedance bridge (Boonton 
Electronics  Corp., Parsippany, NJ). The specified accu- 
racy of the  bridge in the frequency range from 5 kHz  to 
500 kHz, in which  the measurements were made, is 
0.01% + 0.2 nH  for inductance  and 3% + 0.000252 R for 
resistance.  The  accuracy of the  frequency setting is +3% 
with  a stability of 0.1%. The leads from  the bridge to  the 
stripline  were  brought in at right angles  to the latter,  as 
shown in Fig. 4, to eliminate inductive mutual coupling. 
The shorting piece  at  the driving end consisted of two 
pieces separated by an air gap at the  center.  The upper 
lead from the  bridge  was attached  to  the shorting  piece at 
a distance H, /3  from  the stripline. The lower  lead  was 
attached  at a distance H,/3 above  the  end  tab. 

Self-inductance and resistance measurements were 
made  before the second  stripline  and  its  shorting  pieces 
were  mounted on the apparatus.  Three  sets of measure- 
ments  were required  to determine the  inductance  and re- 
sistance of the part of the  circuit  formed by the stripline, 
ground  plane, and end tabs. 

The first measurement was to  determine  the inductance 
and resistance of the shorting  pieces.  A  square loop of 
wire having perimeter P was  constructed [Fig. 5(a)], and 
its  impedance Z, was  measured.  Next, a section of wire of 
length H, was  removed  and  was  replaced with one of the 
shorting  pieces [Fig. 5(b)], and the  impedance of the new 
loop Z, was  measured. The  impedance of the  shorting 
piece Z, is then 

z s = z * - z , l - - - ,  3 
assuming that  the  sides of the squares  are sufficiently sep- 
arated so that  their mutual inductance is negligible com- 
pared  with their self-inductance. 

The second  measurement was  to  determine  the imped- 
ance of the  leads from the bridge to  the split shorting 
piece at the left end of the line (Fig. 4). The leads and the 
shorting  piece were disconnected from the apparatus. 
The shorting piece was then used to  short  out  the leads 
while maintaining  a  separation of H J 3  between the leads. 
The measured  impedance Z ,  was the impedance of the 
leads ZL plus one third the impedance Zs of a full length of 
a shorting piece.  Thus, 
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Figure 5 Determination of shorting  piece  impedance: (a) 
square wire loop with  perimeter P; (b) wire  loop with section of 
length H, replaced with shorting  piece. 

z = z  -5. 
L 3 3  (28) 

The third measurement was  made  with the  apparatus con- 
nected as  shown in Fig. 4, except  that  the second  stripline 
and its shorting  pieces  were absent.  Let Z ,  be the mea- 
sured impedance. Then, 

Z = R + ~ ~ L = Z , - Z ~ - - Z ~  5 
3 

(29) 

is the impedance belonging to the  stripline,  ground plane, 
and two end  tabs.  The real functions R and L are,  respec- 
tively,  the  corresponding resistance and inductance. 

The measured values of L and the value calculated 
from the  theory described  earlier are listed in Table 2 and 
plotted on a  semilog scale in Fig. 6. The calculations  were 
made with the stripline cross section  divided into 180 seg- 
ments (20 divisions along its width and nine along  its 
thickness)  and the ground  plane  divided  into 120 seg- 
ments (40 along  its width and three  along its thickness). 
Separate  calculations of impedance per unit length  were 
made for  the  part of the  stripline over  the ground plane 
and the part of the line over  the end tabs.  The  results were 
multiplied by the  appropriate line lengths and added  to 
obtain the  results in Table 2 .  Finer subdivisions of the 
conductors did not significantly alter  the calculated val- 
ues of L .  With the exception of the  value at 10 kHz, the 
measured and calculated values of L agree to within less 
than 1% over  the  frequency range from 5 kHz  to 
500 kHz. 

The measured and calculated  values of R are listed in 
Table 3 and plotted on a log-l?g scale in Fig. 7. The dif- 
ference between  the  measured and the calculated  values 
was reasonably small at low frequencies but increased 
rapidly as  the  frequency increased. Furthermore, con- 
vergence of the calculation of R was very  slow as  the 
number of segments into which the  conductors  were di- 
vided was increased. An increase in the total number of 
segments  from 300 to 660 only reduced the difference be- 657 
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Figure 6 Measured and calculated self-inductance. 

Table 2 Measured and calculated values of self-inductance L.  

Frequency  Inductance 
(kHz) 

Measured  Calculated  Difference 
(nH) (nH) (%I 

5 877.6 870.1 0.85 
10 873.7 858.9  1.69 
20 853.4 848.5  0.57 
30 848.2 842.8  0.63 
40  847.2 839.0 0.97 
50 841.2 836.4  0.57 
80 836.0 831.7  0.51 

160 831.1 826.2  0.59 
320 825.3 821.9  0.41 
400 824.2 820.8  0.4 1 
500 823.2 819.8  0.4 1 

tween  measured  and computed  values of R at 300 kHz 
from 20% to 16%. The  values of L ,  however,  were not 
changed significantly. That L can  be calculated much 
more accurately  than R for a given division of the con- 
ductors into segments is not surprising,  since L is bound- 
ed with  increasing frequency, while R increases without 
b u n d .  

It is interesting to  compare  the  measured values of R 
with those given  by  published  formulas for  the high-fre- 
quency limit. Pucel,  Masse, and Hartwig [lo, 1 1 1  have 
derived  the  formula 

where 

R, = (.rrfpPo)”z 

and 
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for the  resistance  per unit length of a stripline of width w 
and thickness t placed at a height h above a  ground plane, 
provided that 1125- < w’/h 5 2. 

Applying Eq. (30) first with h = H ,  + T, and  then with 
h = H,, one finds that 

R, = 8.9823 x 10-6flR/cm 

and 

R, = 8.7476 x 10-6flR/cm, 

respectively,  for  the  parts of the  stripline over  the ground 
plane and  those  over  the  end  tabs.  The  total  resistance is 
then 

R = R,L, + 2R,L, = 1.1299 X R, (31) 

where f is given in kHz.  Equation (31) yields 2.5265 x 
lo-, R at 5 kHz (36% below the measured  values) and 
2.5265 X lo-’ R at 500 kHz (17% below the  measured 
values). The  dc  resistance, R = 3.065 X lo-, R, and  the 
resistance  calculated from Eq. (31) are plotted in Fig. 7 
for  easy  comparison with  the measured  results  and  the 
numerically computed results. Equation (31) coincides 
with the numerically  calculated resistance at 160 kHz  and 
gives a slightly better approximation for higher frequen- 
cies. 

In  order  to  measure mutual inductance,  the  second 
stripline and its two shorting  pieces are installed to  form a 
shorted  secondary  circuit,  as  shown in Fig. 4. Let 2, be 
the  impedance  measured with the bridge connected  as 
shown in Fig. 4. Then 

Lx = Im (Z5 - Z, ) /w (32) 

is the  inductance of the primary in the  presence of the 
shorted  secondary.  In  Eq. (32), Z ,  is the known  imped- 
ance of the  leads  from  the bridge. To extract  the mutual 
inductance  between primary and  secondary  circuits, it is 
necessary  also  to know the self-inductance Lo of the pri- 
mary in the  presence of an  open  secondary.  For  the 5.08- 
cm line separation used in this experiment, Lo is not  mea- 
surably  different from  the self-inductance of the primary 
circuit in the  absence of the  secondary circuit. Thus, 

Lo = Im ( Z ,  - Z, ) /w ,  (33) 

where 2, is the  measured impedance  used in Eq. (29). 

Consider again the  apparatus  connected with the  short- 
ed  secondary circuit in place as  shown in Fig. 4. Let VI be 
the voltage drop  between  the  leads from the bridge at 
their  point of contact  on  the  two  halves of the split short- 
ing piece. Let I ,  and I,, respectively, be the primary and 
secondary  currents.  Then, since the primary and  second- 
ary  circuits  are identical, 
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V ,  = L,Z, + M,Z,, 

0 = M J ,  + L,Z,, 

(34) 

(35) 

where M,, is the mutual inductance  between primary and 
secondary. Using Eq. (35) to eliminate Z, from Eq. (34), 
one  obtains 

v, = L,Z, = Lo - - Z,, i 3 
or, solving for M ,  

M ,  = .\/L,(L, - LJ (37) 

The mutual inductance M ,  obtained from Eq. (37) con- 
tains a small contribution AM due  to  the mutual  coupling 
between  the shorting  pieces. There  does not appear  to be 
an  easy way to  measure AM. Fortunately, formulas exist 
which permit the calculation of the  contribution  to  the 
mutual inductance  due  to  the  shorting pieces.  Since the 
geometric  mean distance between two parallel circular 
cylinders is equal  to  the distance between  their  centers, 
the shorting pieces  can be replaced  by current filaments 
along their  centers.  Then, formulas  from the collection by 
Grover [12] can be  used to  calculate  the contribution to 
mutual inductance. 

For  two parallel filaments of equal length x and  center- 
to-center  distance y ,  placed so that  the  end points of one 
filament have  coordinates (0,O) and (x, 0) and those of the 
other  have (0 ,  y )  and (x, y ) ,  Grover gives the formula 

(38) 

For two filaments, one of length x and  the  other of x/3, 
with center-to-center spacing y ,  placed so that  the  coordi- 
nates of the  end points of the first are (0, 0) and (x, 0) and 
those of the  end points of the  second  are (0,  y )  and 
(x/3, y ) ,  Grover gives 

m'(x,  Y )  = 5 [m(x, Y )  + m(x/3, Y )  - m ( W 3 ,  Y)I, (39) 
1 

where m(x, y )  is given by Eq. (38). The contribution AM 
to  the mutual inductance M, due  to  the shorting pieces is 
then 

AM = m(H4,  S , )  + 2m'(H4, SI) = 5.51 nH. (40) 

The  part oi the mutual inductance attributable  strictly to 
the striplines, the ground  plane, and  the end tabs is then 

M = M, - A M ,  (41) 

where M ,  is given  by Eq. (37) and AM by Eq. (40). 

The  measured  and calculated values of M are listed in 
Table 4 and plotted on a semilog scale in Fig. 8. The mea- 
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Figure 7 Measured and calculated resistance. 

Table 3 Measured  and calculated values of resistance R.  

Frequency  Resistance 

Measured 
(0) 

Calculated  Difference 
(0) (76) 

(kHz) 

5 3.97 X 4.02 X 
IO 

30  7.86 X 7.09 X 9.80 
40  8.40 X 7.99 X 4.88 
50 9.98 X 8.77 X 12.12 
80 1.198 x IO-' 1.058 x IO-' I 1.69 

160 1.693 X IO-' 1.428 X IO-' 15.65 
320 2.154 x IO-' 1.962 x lo-' 8.91 
400  2.560 X lo-' 2.182 X lo-' 14.76 
500 3.040 x lo-' 2.430 x IO-' 20.06 

- 1.26 
4.94 X 4.75 X 3.85 

20 6.47 X 6.01 X  IO-^ 7.11 

sured  values of M are  extracted from the measured values 
of Lo and L1 by  means of Eqs. (37), (40), and (41). The 
calculated  values  were  obtained  by  calculating the mutual 
inductance  per unit  length for  the  sections of striplines 
over the ground plane  and for  those  over  the  end  tabs, 
multiplying the  results by the  appropriate lengths and 
adding them together  to  obtain  the final results in Table 4 
and Fig. 8. Since mutual inductance is a  much less sensi- 
tive  function of current distribution than self-inductance 
or resistance,  convergence  was  obtained with the striplines 
divided into 40 segments each (eight along the width and 
five along the  thickness),  and  the ground  plane  and the 
end  tabs divided  into 90 segments (30 along the width and 
three along the thickness). With the  exception of the val- 
ue at 10 kHz,  the measured and  calculated values agree to 
within 2%. 659 
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Figure 8 Measured  and calculated  mutual inductance. 

Table 4 Measured and  calculated values of mutual inductance 
M. 

Frequency Mutual inductance 
(kHz) 

Measured  Calculated Difference 
(nH)  (nH) 

5 
10 
20 
30 
40 
50 
80 

160 
320 
400 
500 

184.4 
193.4 
189.4 
190.1 
190.0 
188.6 
186.7 
188.5 
188.1 
189.5 
187.4 

186.89 
186.89 
188.44 
189.03 
189.27 
189.39 
189.52 
189.53 
189.44 
189.41 
189.37 

- 1.35 
3.37 
0.51 
0.56 
0.38 

-0.42 
-1.51 
-0.54 
-0.69 

0.05 
- 1.05 

Conclusions 
A simple network model has  been proposed  for  calcu- 
lating the  frequency-dependent  inductances  and resis- 
tances  per unit  length for multiconductor  transmission 
lines.  When restricted  to  conductors having rectangular 
cross  sections, numerical computation is feasible on pres- 
ent-day computer  systems. 

A comparison  has been  made between calculated re- 
sults  and  measurements made on a large-scale model of 
one and two striplines over a ground plane.  A reasonable 
rate of convergence was observed with respect  to  the 
number of segments into  which conductors were  sub- 
divided, and  very  accurate  results  were  obtained  for  both 
self- and mutual inductance. A slower  convergence and 
poorer  results  were obtained for  resistance, especially at 
the higher frequencies.  The  computations,  though 

lengthy,  are of a reasonable magnitude. The calculations 
using 300 segments,  for  example,  required 500 000 bytes 
of memory and slightly less than 1.5 minutes per  fre- 
quency  on  an IBM System 370/168. 

The  extremely large  number of segments  required to 
obtain  accurate  resistance values at high frequencies is 
troublesome,  but is not an insurmountable dficulty. Ac- 
curacy  can  be improved by using the formulas of Pucel, 
Masse,  and Hartwig, e .g . ,  Eq. (30), to calculate  resis- 
tance  whenever  these formulas yield a resistance  higher 
than the numerically computed  value. 
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