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Potential Distribution and Multi-Terminal DC Resistance
Computations for LS| Technology

Computer time and storage requirements are the two main considerations in the design of a packaging analysis software
tool for the problem of calculating the electric potential distribution in arbitrary geometrical shapes. The FEM (Finite
Element Method) is the accepted approach for solving such problems. A new formulation for the linear triangular ele-
ment is presented which is used to derive a very simple and computationally inexpensive linear rectangular element
equation interrelating only the geometrical centers of the elements. The result is a much sparser assembly matrix with a
maximum of five non-zero entries per equation compared with the usual nine of the FEM formulation. In addition, a
method to obtain the minimum bandwidth of the matrix is given for the efficient and static use of external storage,
permitting the solution of any size problem. The methods are applicable to multi-plane, multi-terminal configurations for
the production of equivalent-resistance networks and for the calculation of the potential distribution throughout the

configurations.

Introduction

Today, accurate electrical evaluation of any proposed cir-
cuit packaging scheme, at any level of packaging, is es-
sential to the success of a given LSI (Large Scale In-
tegration) technology. This is necessitated by the rather
tight tolerance for the allowable voltage loss from the
power supply point to the circuits on the chip. In addi-
tion, the complexity of geometries of the current-con-
ducting planes, the existence of numerous contact points
or terminals representing different boundary conditions,
and nonuniformity in the material properties make an
analytic solution all but impossible. The simplifying as-
sumptions that have to be made quite often result in a
model which bears little resemblance to reality. Aside
from the integral equation method, the principal numeri-
cal techniques for solving complex boundary problems
are the finite difference and the finite element methods
[1-4]. A new computational technique, based on a numeri-
cal approach using the principles of current conservation
and continuity, has been developed for calculating the po-
tential distribution for arbitrary geometry and producing
an equivalent resistance network as a model of the geome-

try. Given voltage and/or current conditions, the network

can be solved, or it can be merged with other electrical
data for use with a general circuit analysis program.

In the finite difference method, a grid of points, usually
rectangular, is superimposed on the region to be analyzed
and the given differential equation is approximated by a
corresponding difference equation. This equation inter-
relates the values of the function at adjacent mesh-points.
Application of the difference equation to each mesh-point
produces a set of algebraic equations to be solved for the
unknown values of the function at each point. The
method is well suited for orthogonal geometries and re-
gions of uniform electrical properties, but certain diffi-
culties arise when the shapes involved have nonor-
thogonal sides and the region is made up of irregular ge-
ometries with different square resistances and different
boundary conditions, such as constant voltage or current
sources or sinks.

In the finite element method, the region under consid-
eration is first divided into a finite number of known geo-
metrical shapes, called elements, and a form is assumed
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for the solution function, usually polynomial, within and
on the boundary of the elements.

This approximating function, sometimes called an in-
terpolating function, is defined in terms of specific points,
called nodes, usually at the boundaries of the element.
The degree of the polynomial approximation is related to
the number of these points. Numerical element equations
are then derived by minimizing the associated functional
of a variational statement or, when a functional does not
exist [4], through the use of a weighted residual or energy
balance approach. Finally, the element equations are as-
sembled and a system of equations is obtained represent-
ing the given region.

The finite element method is a powerful technique
since, unlike the finite difference method, it can easily
handle complicated geometries with variable material
properties and mixed boundary conditions. Caution must
be exercised, however, when elements of different shapes
are used to discretize the continuum. Their interpolating
functions must be compatible at the boundaries of dif-
ferent elements. It can also be argued that when the
method is applied according to its standard procedure
(forming the element equations with no regard to their rel-
ative position), it will be more expensive to form the sys-
tem equations, compared to the finite difference method
where the difference equation is written directly for every
nodal point.

The method presented in this paper closely resembles
the finite element method. It differs, however, in the deri-
vation of the element equations, in which the continuity
equation, the current conservation principle, and steady
state conditions are used. Triangular and rectangular ele-
ments are used to discretize the region and linear approxi-
mations are assumed for the interpolating functions. Due
to the x-y orientation of the rectangular elements, a very
simple numerical expression is derived which interrelates
only the functional values at their geometrical centers.
The effect is a much sparser matrix of the equations for
the rectangular regions, with a maximum of five non-zero
entries instead of nine for the FEM [2-4]. The two main
considerations for efficiently solving the system equations
are the minimization of the fill-in during factorization [5-
8] and a provision to use external storage so that any size
problem can be solved. The modified banded approach in
decomposing the matrix combined with a novel optimal
numbering scheme presented in the paper meets these re-
quirements effectively. Regardless of the approach used
in formulating the element equations, the method pre-
sented here, like the finite element method, follows a pre-
cise step-by-step procedure. The organization of this pa-
per generally follows this procedure in describing the dif-
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Figure 1 Discretization of the solution region into triangular
and rectangular elements. Triangular elements are generated
only at oblique sides of the given geometries.

ferent parts of the computer program or analysis package
which has been implemented using this method.

Discretization of the continuum

The mathematical formulation of the problem is directly
related to the choice of elements and nodal points used to
discretize the solution region. The number of nodal points
per element is determined by the degree of the inter-
polating polynomial chosen to approximate the solution
function within and on the boundary of the elements. In
this work triangular and rectangular elements are used to
discretize the region. A linéar approximation is assumed
for the solution function within the triangular elements,
with its vertices being the nodal points. For the rec-
tangnlar elements, due to the geometrical symmetry (Fig.
1) of the elements and the way the problem is formulated,
a simple numerical equation has been derived which in-
terrelates only the geometrical centers at adjacent rec-
tangular elements. This is another place where the pres-
ent method deviates from the classical finite element ap-
proach.

An automatic element generator has been developed
which divides any irregular geometry with any number of
superimposed shapes representing areas of different ma-
terial properties, different boundary conditions, or vacant
spaces, into triangular and rectangular elements matching
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Figure 2 The element equation for the triangular center ele-
mentis I, = K"é. It interrelates the nodal values at all six
vertices.

as closely as possible the boundaries of the given geome-
tries. As seen in Fig. 1, triangular elements are generated
only at irregular boundaries of the given geometries, thus
keeping their number to a minimum. A randomly oriented
triangular element is computationally more expensive
than an x-y-positioned rectangular element. Every ele-
ment is bounded on each side by only one element and no
element overlaps two different shapes. A minimum
amount of information is requested from the user. The
shapes, what they represent, and the number of elements
desired are the only input data to this module. The gener-
ator creates all the geometrical and electrical properties
of the elements as well as linkage information of the nodal
points required by the subsequent element formulation.

Derivation of the finite element equations

e Triangular elements

A linear approximation is assumed for the potential inside
and at the boundaries of the element. The vertices of the
element have been chosen as the nodal points. Thus, if

dlx, y) =k, + kx + k,y, ¢}

then from Fig. 2

o, =k + kx +ky,

b, =k + kx, + ky,,

&, =k, + kyx, + ky,. )
Solving Egs. (2) in the standard finite element formula-

tion (4] for k, k,, and k,, substituting into Eq. (1) and
rearranging terms, we obtain

dlx, y) = Lx, )b, + Ly(x, y)b, + L(x, y)d,, (3)

where
(a, + bx + cy)
L , — 1 1 1 ,
(x5 y) BTN
(a, + bx + cy)
Lyx,y) = 2—22A__2— ,
a, +bx+c
Ly(x,y) = @, 23 A ) , @
Lox, v,
2A = |1 x, y,| = twice the area of triangle 12 3,
Ioxg
and
A, = XV = XY
by =y, = ¥
€, = X, — Xy, (5)

while the other coefficients are obtained by cyclical per-
mutation of the subscripts. Notice that

op  IL, oL, oL,
—=—l¢ + —2¢ + 29,

ax dx 2 dx 2 ox 2

i oL oL, oL,
_¢=__1¢1+_2¢2+_3¢3, ©6)
ay dy dy dy

or, using Eq. (4),
a_d)_ - (b1¢1 + bzd’z + bad)a)

ax 2A ’
¥ _ (e, + e, + ch) -
ay 2A '

The two relations (7) will be used later in the derivation of
the triangular element equation, which will be different
from the derivation of the standard finite element ap-
proach.

Next, an equation will be derived that expresses the
total current crossing a randomly oriented line within the
solution region.

Consider side AB in Fig. 3 separating two triangular
elements with material properties p, and p, (square resis-
tances) and interpolating functions ¢,(x, y) and ¢,(x, y).
Due to continuity of current across the boundary of the
two different material regions, the interface condition
must hold:

1 9 1 o

LA Y ®
p, on p, onm

or, since p, and p, are constant inside each element,

1 (Bg 1 (%3

—~ 30 = - ~l 22 4, ©)
P, Ja On p, !y on
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where n is the normal vector to the line AB and d! is along
the interface AB. Equation (9) relates two different ex-
pressions for the total current crossing the line AB, which
may be written as

1

AB

= -1

BA®

(10)

Thus, if I, is the total current crossing side AB from ele-
ment 1 to element 2, then

1 (®a
ha=la= o | 9 (1)
P1 A an
and
1 (%9
I,=—I,=—— J 9, g, (12)
pz B on
Next the integral
B
a
J Ll
A oD

will be evaluated.

The directional derivative of ¢, in the direction of the
normal vector n is given by

If |AB| is the length AB,

ax _ b, e

an |AB|

and

8y _ =X

an |AB|

Substituting into Eq. (13),

0b, b, bp —yy) 9, (x4 — xp) (14)

an ax  |AB| dy  |AB|
Now, using Eq. (7) and equating node 1 of Fig. 2 to

node C of Fig. 3,

b, _ (bede + byd, + bydy)
ax 24,
1
= E [(yA - yg)d’c + (yB - yc)d)A + (yC - yA)d)B]
and
¢, _ (cche + cpbs T+ )
dy 24,

= ‘22_1 [(rg = x )b + (xg = xp)dp, + (X, — xc)byl.

Substituting into Eq. (11) with Eq. (13),
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Figure 3 Calculation of total current crossing side AB between
two adjacent triangular elements.

= 1 y (yA - yn) B B
112 - 2p1A1 JA [ 'AB' [(yA yB)ch + (yB yC)d)A

A_xB)

+ (yc - yA)d)B] - (x |AB| [(xB - xA)(bC

+ (xe — xplp, + (x, — xC)¢B]] dl.

Integrating and rearranging items,
20,8, = (v, — ypll(ys — ypbe + (Vg + ¥)b,

+ (yc - )’A)¢B] - (.XA - xB)[(xB - xA)¢C

+ (xe = Xb, + (x, — X)), (15)
Similarly, considering element 2 and Eq. (12),
208,01, = (4 = e[ = Y)bp + (V4 = ¥p)bs

+ (yp = yp)bal — (x, — xplllx, — xp)dy

+ (xp — X )b, + (x5 — xp)d, ] (16)

Adding Eqgs. (15) and (16) and eliminating common terms,
2p, A, + AN, = (¥, — yell(yy, — ¥p)de — &p)
+ (yD - yc)(d)A - d)B)]

— (= 2y — 1)y — bo)
+ (e = x)(by — S,
or
I, = m IAB[ (6, — ¢,)
= [y, = ¥e)(¥e — ¥p)
+ (x, — xp)xe — xp) (@, — byt a7

Equation (17) gives the total current crossing the
boundary of two triangular elements in terms of their
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Figure 4 Two adjacent rectangular elements. Equation (22)
gives the total current crossing their common side.

square resistances, areas, x-y coordinates, and functional
values (voltages) of all their vertices.

For any closed curve C within a solution domain, the
following line integral is constant:

¢
— dC = constant. (18)
c on

The constant represents the total current generated
within the closed curve. Applied to a triangular element
(Fig. 2) and using Eq. (17), the integral can now be calcu-
lated as

dd 3
—dC = Z I, = constant, (19)
¢ on i=1

where 3 represents the sides of the triangle.

Thus the final triangular element equation can be writ-
ten as

I

element

= K"¢ = constant, 20)

where K is a vector of precalculated constants and ¢ a
vector of voltage values at the vertices. In this case the
length of each vector is six.

& Rectangular elements

The general equation expressing the total current crossing
a random line AB, Eq. (17), will be used here to derive the
rectangular element equation. Consider two rectangular
elements 1 and 2 with geometrical centers at C and D as
shown in Fig. 4. It is easy to see that the total current
crossing their common side AB is

REETET TR "
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=
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Figure 5 Calculation of net current [Eq. (23)] for a rectangular
element bounded by rectangular elements.

or, after substituting for the areas and simplifying,

Iy =~ (6~ b 22)
= Gt ey P

As in the triangular element, the net current around the
closed curve of a rectangular element must be constant
[Eq. (18)]. Thus, applying Eq. (22) to the four sides of the
element in Fig. 5 and summing up,

2w

— 1

1 - ~1
element 1 (Plll + P212)

b0 g
(bl +ply) 77
2,
oy )
+ —i——( — ¢.) = constant, (23)
(plwl + p5w5) d)l d>5 - o ’

(@, — &)

or, in general,

1 = K"$ = constant, 24)

element

where the lengths of the vectors are now five, provided
the element is bounded on all four sides by rectangular
elements. If a rectangular element is adjacent on any of its
sides to a triangular element, then the current crossing
that side will be calculated using Eq. (17), while Eq. (22)
will be used for the current crossing the other sides (adja-
cent to rectangular elements). The final element equation
in this case will connect seven nodal values, that is, the
lengths of K and ¢ will be seven.

Writing the nodal equations

To form the nodal equation for a rectangular nodal point
at the center point of the rectangle, the rectangular ele-
ment equation is used. For a triangular nodal point lo-
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cated at a vertex of the triangle, the nodal equation is
formed by considering all the triangular elements that
have the nodal point as a common vertex.

An important task of the ‘‘automatic element gener-
ator’’ is to create enough triangular elements so that a set
of n linearly independent nodal equations can be formed,
where n is the number of nodal points.

Solving the system equations

The schemes for solving the resultant linear equations can
be generally classified as direct or iterative. The two main
considerations in choosing a method are the storage re-
quirements and the computer time. The most commonly
used iterative scheme is the Gauss-Seidel or successive
overrelaxation (SOR) method in which the solution vec-
tor is obtained after a number of iterations employing the
general relation

(D) = [®)y-, + [Ad)y_,

where K is the iteration number and o a relaxation factor
used to speed up convergence. In the case of finite dif-
ference or finite element methods, w depends on the par-
ticular geometry involved. The storage requirement is di-
rectly proportional to the number of nodal points and the
method uses much less storage than the direct approach.
Unfortunately, the same is not true with the calculation
time required to obtain a solution. Unlike the direct
method, the computer time depends on the geometry un-
der consideration and on the boundary conditions defin-
ing the particular problem. Integral constant-current
boundary conditions slow down convergence to the point
where the computer time required is hard to predict. In
contrast, the direct approach, which is more expensive in
storage requirements, is much more efficient in terms of
computer time. It is related to the number of nodal points
and the bandwidth of the matrix and independent of the
boundary conditions. One of the main reasons the direct
method was chosen is that once one solution is obtained
for a given geometry, multiple solutions for other bound-
ary conditions may be obtained with very little additional
computer time. The problem can be written as

(25)

Ax = b, (26)
where

A =[A,] = n X n matrix of coefficients,

x = nodal solution vector, and

b = nodal boundary condition vector.

Matrix A is sparse, symmetric, and positive definite, and
thus the LU decomposition can be written as

A = UDU. Q27
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The following triangular systems, representing the for-
ward reduction of b and back substitution,

UDy =b, (28)

Ux =y, (29)

are next solved for the solution vector x.

The finite element equations are usually very sparse,
typically less than 0.1 percent non-zero, while the sys-
tems to be solved are, in most applications, extremely
large, where 10 000 or more nodes are not unusual. Refer-
ences [6-8] discuss in general large sparse systems of
equations. To minimize fill-in (generating of non-zero
terms) during the decomposition of A in Eq. (27), the or-
dering of the equations into an almost banded form seems
to be the most logical and efficient approach.

Some of its advantages are the following: 1) the ability
to easily predict fill-in and, therefore, use a static storage
scheme, 2) the minimum overhead storage required for
decomposition, and 3) the lack of any decision making
during factorization (no pivoting or checking for zeros).
The most important advantage, however, is that the
method is well adapted to using an external storage de-
vice, which is imperative for large systems. Thus, mini-
mum main memory is required.

The separate parts of the sparse matrix analysis are
given next.

e Optimal node numbering

The objective of this part is to renumber the nodal points
so that the resulting assembly matrix A is banded and has
a minimum bandwidth. A novel node numbering scheme
which accomplishes this optimally is described in the fol-
lowing steps.

Construct an undirected graph of the nodal points, con-
necting any two nodal points with an edge only when the
nodal points in question appear in the same nodal equa-
tion. Form the incident matrix ¢ with ¢, = 0. Form a dis-
tance matrix d and enter only the one-edge connections,
that is, initially du = Cy Calculate ¢, ¢, - - -, * by per-
forming the following three steps repeatedly until the dis-
tance matrix is filled up:

i
=\ (ci,' N ey (n = matrix size).
m=1

Ifdij=0andc’;.;é0 setdﬁ=k.

Setcf, =0 foralld, =k— 1. (30)

The minimum distances (distance not including loops) of
all pairs of nodal points have now been obtained. Starting
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Minimum distance matrix

1 23456 78
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Figure 6 Resulting distance matrix for a small sample problem.
Points 3 and 4, which are the farthest apart (distance 5), are the
best starting points for renumbering. Initial numberingis4 1572
6 8 3. Optimal numbering is 1234567 8.
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Figure 7 Example showing reduction of bandwidth from seven
to four after renumbering: (a) Matrix A before renumbering. (b)
Matrix A after renumbering.

with any one of the most distant points (preferably one
with fewer degrees of freedom) we proceed by renumber-
ing the points in succession following their distance pat-
tern. That is, the next point to be numbered will always
be the one closest to the previously numbered point. Fig-
ure 6 gives the distance matrix for a small sample problem
with the optimal renumbering of the points while Fig. 7
shows the improvement in the bandwidth of matrix A for
the same problem. The reader can recognize that the
method locates the best starting point to renumber the
nodes. This point is not, as is sometimes stated [9], a
point of minimum degree of freedom.

Another less expensive heuristic procedure which in
most cases will produce the minimum bandwidth is as fol-
lows. Form the graph as above, and, starting at a random
node, number the nodes following the connectivity of the
graph and only proceed to a new node after all the one-
edge connections to the previously numbered node have
been numbered. When all the nodes are numbered, repeat
the process, starting this time with the last numbered
node. The first and last numbered nodes this time are of-
ten the nodes with the maximum distance (see Fig. 8) and
therefore represent the best starting points. This method
will not produce the minimum bandwidth for some ran-
dom starting points in some symmetric graphs.

o Calculation of variable semi-bandwidth of A — U and
its total storage requirement

Let 2w + 1 be the bandwidth of A. Since A is symmetric,
we need deal only with the semi-band w + 1 (including the
diagonal). All non-zero terms of A, as well as the gener-
ated non-zero terms of the upper triangular factor U, will
be included within a banded matrix of maximum size
n(w + 1). During decomposition (Eq. 27), the above
banded matrix A is transformed into the factor U so that
the same storage space is used. After decomposition, A
is not needed. A modification of the standard banded ap-
proach was made here which resulted in a considerable
reduction of both computation time for factorization and
storage requirement for U.

Instead of a constant semi-bandwidth w + 1 (distance
of most remote non-zero entry of A from the diagonal), a
variable width (w,, i = 1 to n) is calculated during decom-
position, considering the location of the non-zero terms in
A and the location of the most remote generated non-ze-
ros in U. These locations are known before decomposi-
tion starts, so that a static storage scheme can be used.
Figure 9 shows the original non-zeros in A (®) and the
generated non-zeros in U (x). The dotted line is the pro-
file of the final factor U. The total storage required for U
is precalculated as the summation of the lengths of the
equations

n

> W (31
i=1

® Partitioning of banded matrix A — U into records

In this part of the program, a decision to use external stor-
age or not is made depending on the size of U. If enough
main region size is provided for U (dimension of U =
D_, w,), this part is bypassed. Otherwise the banded ma-
trix is partitioned into a number of records and placed in
an external storage device. The record size and therefore
the total number of records depends on the size of the U
array provided by the user. This size (the dimension of U)
must be at least as large as #.
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Figure 8 Example illustrating the heuristic method for pro-
ducing minimum bandwidth. Points B and C are the best starting
points for renumbering: (a) First iteration. Starting point A is a
random point. Point B is the last numbered point and will be the
starting point for iteration two. (b) Second iteration. Starting
point for the numbering scheme is point B.

It is fortunate, as can be seen from the Appendix, that
not all of A is required in main storage during the decom-
position phase. In Fig. 10, only the section ABC is required
in main in order to process the first record AB (shaded
area). When the first record is processed, records 2 and 3
are shifted upwards in main and record 4 is brought in.
Record 1 is placed back on the disk. Next record 2 is de-
composed. This process continues until all records are
decomposed and placed on the disk. The solution of Egs.
(27), (28), and (29) appears in the Appendix.

A method has been described which will produce the
potential distribution for any given irregular plane geome-
try and boundary conditions (voltages and/or currents).
The next section will describe how this part is used to
obtain the equivalent resistance network for any power
plane with any number of terminals.

Calculation of equivalent resistance network

Before stating the objective of this part of the package, let
me define as ports of a given plane geometry those loca-
tions in the plane through which current is entering or
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Figure 9 Decomposition of banded matrix A showing the gen-
eration of non-zeros (fill-in) in U: ®, original non-zeros in A; X,
fill-in.

n nodes

¥

nem—

7

Figure 10 Symmetric banded matrix A divided into records.
Bandwidth = 2b + 1. Shaded area AB represents one record.
Three records (down to C) are required in main storage in order
to process the first record.
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Figure 11 Diagrammatic example of a contacting plane with
five ports.

Figure 12 Setting boundary conditions. The total current C,
leaving port k is calculated by evaluating the line integral around
the port once the field solution has been obtained.

leaving the plane. The reader should not confuse the ports
with the elements. A port is in itself a plane geometry and
may consist of one or many adjacent elements. It repre-
sents an area of contact with the plane. Figure 11 gives an
example of a plane with five ports. For a complete and
accurate characterization of the given current contacting
plane (equivalent resistance network), the resistances of

all branches connecting all pairs of ports are required.
That is, for P ports, the complete resistance network will
consist of P(P — 1)/2 resistances. It is true that, depend-
ing on the geometry under consideration, some of these
resistances will be very large, indicating that there is no
current flowing in that branch, which can therefore be ig-
nored. Thus the objective of this part is to calculate the
equivalent resistance network. To accomplish this, P — 1
independent potential solutions are required. Since the
resistances of the equivalent network are independent of
the kind of boundary conditions imposed, the program
sets the boundary conditions (voltages at ports) in such a
way that, when a potential solution is obtained, a number
of resistances can be calculated directly.

Let c, be the total current entering the plane through
port i and [, the branch current connecting port i to port j.
Then, for a complete resistance network of P ports,

P

¢, = z Iij.
=1
i

(32)

By choosing proper boundary conditions, a solution
can be obtained where, for any port &, all branch currents
L (j=1,P,j+# k) are zero except one, I, (Fig. 12).

Consider, for instance,

V,=1

Voltage at port [, f

Voltages at all other ports, V, = 0 i=1,Pi#l

Then the solution obtained will satisfy
=1, i=1Pi#l
and therefore

_ AV

<

(33

Li

1
= — i=1,Pi#l
¢

The total current ¢, through the port i is calculated by
evaluating the line integral

f %dc,
c an

where ¢ is the boundary of the port. The finite element
equations derived in the second section are used.

Thus, the calculation of all resistances for P ports is
accomplished by executing repeatedly the following se-
quence:

a. Forportl,setV, =1,V toV,=0.
b. Obtain potential solution and calculate ¢, i = 1 to P.
c. Calculate using Eq. (33) R,i=1Pi# l

Repeat with [ from 1 to (P — 1).
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An important advantage of the direct method is its effi-
ciency in producing multiple solutions for the same geom-
etry and different boundary conditions. Since the sparse
matrix A depends only on the geometries involved, its
factorization [Eq. (27)], which represents most of the
work required to obtain a solution, is done only once.
That is, U remains unchanged and any new solution is
obtained by merely updating the vector b and executing
Egs. (28) and (29).

The last section deals with the application of this part in
solving a multi-plane configuration.

DC analysis of a multi-plane configuration

A number of electrically insulated planes, connected to
one another through vias of known resistances, can repre-
sent many present-day packaging designs in LSI tech-
nology. To obtain the potential distribution and accu-
rately evaluate any of the given plane geometries, the
boundary conditions, that is, voltages or currents of all
its contact points (ports), must be known. These condi-
tions are in general unknown. Consider for instance the
multi-plane structure illustrated in Fig. 13. The only
known conditions are the incoming voltage at point 1 and
the outgoing currents at points 18, 19, 20, and 21. No de-
tailed analysis of plane 2 or any other plane can be per-
formed without knowing how much current is carried by
each of the connecting rods. In the case of plane 2, for
example, the conditions at all its contact points, 8 through
13, must be known.

A step-by-step procedure is presented here which re-
solves the problem and permits the accurate evaluation of
any of the given plane geometries.

Step 1. Obtain the equivalent resistance networks (see
previous section) for all given plane geometries.
The reader is reminded that no boundary condi-
tions are required for these calculations. The
only information needed is the geometries in-
volved and their square resistances.

Step 2. Merge the above resistance networks with the via
resistances and obtain an equivalent resistance
network representing the multi-plane configura-
tion (Fig. 14).

Step 3. Using dc resistance network equations, solve the
multi-plane resistance network obtained above
for the given boundary conditions [10]. In the
case of the example of Figs. 13 and 14, these
boundary conditions are V, I, 1., I,  and I, .

The reader must notice that the currents are not

currents flowing on the branches of the network

but the net currents of the contact points. Thus
the conditions at the remaining points are I, =
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Figure 13 Multi-plane configurations illustrating a general
packaging design.

Figure 14 Equivalent resistance network for multi-plane con-
figuration of Fig. 13.

0. Application of the network equations results in
a sparse symmetric system and the technique of
the section on solving the system of equations is
used to obtain its solution. This time the un-
knowns are either the voltages or the net cur-
rents at the contacts.

Step 4. The boundary value problem for any of the planes
involved is now well defined since the bound-
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ary conditions (voltages at contacts) are all
known. Its solution will produce the field distri-
bution for the particular plane.

The complete software package can include some sub-
sequent calculations like current densities and maximum
voltage drops per plane, amount of current per via, etc.

Summary

The trend to ever higher levels of integration and the
need to utilize all available space during any level of pack-
aging usually results in very complex geometrical shapes.
Geometries of power buses or redistribution planes with
hundreds of vertices are not uncommon. Speed of calcu-
lations and storage requirements remain the two main
considerations in developing any packaging analysis tool,
and the method presented here tries to meet both require-
ments without sacrificing accuracy of calculation. In for-
mulating the finite element solution, triangular elements,
being more expensive in computation time, are generated
only where the geometries under consideration necessi-
tate them. By considering the x-y orientation of the rec-
tangular elements, it is possible to simplify their equa-
tions and derive nodal equations relating only the geomet-
rical centers of the neighboring rectangular elements. The
choice of the direct method in solving the system of equa-
tions was shown to be very appropriate, especially when
multiple solutions are required. The bandedness of the
sparse matrix is assured through the use of the optimal
numbering scheme and is solved with a minimum ex-
penditure of bookkeeping and decision-making time.
Most importantly, the solution technique is independent
of the main storage available. Finally, the special nature
of the designs involved in packaging was recognized; an
approach was introduced which reduces a three-dimen-
sional problem to a problem requiring a number of two-
dimensional solutions.
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Appendix: Sparse matrix solution

Solutions of large sparse systems are discussed in, e.g.,
Refs. [5, 11, 12]. Presented in this Appendix is the de-
tailed particular sparse matrix solution for the modified
banded approach developed in this paper.

® Matrix decomposition

The Gauss-Dolittle scheme is used to perform the LDU
decomposition of A [Eq. (27)]. This is accomplished algo-
rithmically as follows. Let n be the number of equations
and w,, i = 1 to n, be the variable semi-bandwidths (includ-
ing the diagonal). Assuming the band matrix to be ar-
ranged as a matrix A, i=1tonandj=1tow, then
perform

A, . =A_,  — e A (A1)
kg T kg l A kit+i?
ka1

A, .

Ak,i+1 - —Xk‘l_ﬂ ’ (A2)
k1

for
k=1ton—1,

i=1ltow, — 1,
j=1tow, — i

As mentioned above, the location of the farthest non-
zero entry of the band matrix (either original or created
during decomposition) determines the length (w) of the
ith equation within the band. This length is precalculated,
and

w,=w i=1ton,

1 max

where w__ is the maximum element of the vector w. The
storage saved due to this modification is

(A3)

Considerable calculation time is also saved due to the
creation of a profile semi-bandwidth instead of the maxi-
mum w__ . At the end of this step, A has been trans-
formed to the upper triangular factor U (same storage
space for A and U).

o Forward reduction [Eq. (28)]
Once the triangular factor U has been obtained, the for-
ward reduction of b is accomplished by performing

biyi = by — Up iy X by, (Ad)
b

b, = —*, (A5)
U,

for

k=1ton — 1,

i=ltow, -1,

and

b = b, for k = (A6)

T ork = n.
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® Back substitution [Eq. (29)] 6. F. G. Gustavson, W. Liniger, and R. Willoughby, ‘‘Sym-
; s Fan G bolic Generation of an Optimal Crout Algorithm for Sparse
The final step in obtaining the solution is Systems of Linear Equations,” J. ACM 17, 87-109 (1970).

b.=b —U,.  Xb,_ 7. Hsueh Y. Hsieh, ‘‘Pivoting-Order Computation Method in

k k fi+1 k+i? Large Random Sparse Systems,’’ IEEE Trans. Circuits Sys-
tems CAS-21, 225 (1974).

8. Hsueh Y. Hsieh, ‘‘Fill-in Comparisons Between Gauss-Jor-

k=n-1tol, dan and Gaussian Eliminations,”” /EEE Trans. Circuits Sys-
tems CAS-21, 230 (1974).

9. E. Cuthill and J. McKee, ‘‘Reducing the Bandwidth of
Sparse Symmetric Matrices,”” ACM Proceedings of 24th
National Conference, New York, 1969.

The given right-hand-side vector b has been trans- 10. H. E. Brown, Solution of Large Networks by Matrix Meth-

formed and now represents the solution vector x (same ods, John Wiley & Sons, Inc., New York, 1975.
P ( 11. A. Jennings, Matrix Computations for Engineers and Scien-

for

i=1tow, — I

storage space used for b and x). tists, John Wiley & Sons, Ltd., London, 1977.
12. J. R. Bunch and D. J. Rose, Eds., Sparse Matrix Computa-
References tions, Academic Press, Inc., New York, 1976.

1. G. D. Smith, Numerical Solution of Partial Differential
Equations, Oxford University Press, London, 1965.
2. P. Tong and J. N. Rossettos, Finite-Element Method, MIT
Press, Cambridge, MA, 1967.
3. 0. C. Zienkiewicz, The Finite Element Method in Structural Received April 5, 1979; revised July 2, 1979
and Continuum Mechanics, McGraw-Hill Publishing Co.,
Ltd., London, 1967.
4. K. H. Huebner, The Finite Element Method for Engineers,
John Wiley & Sons, Inc., New York, 1975.
5. ‘Izl.tF. T;(“']‘Eey a?.d J. VJ ‘gail'(era’ll“D(l)riic; zgh{}:g;s 3{;1’;};26 The author is located at the IBM Data Systems Division
etworl uations im: rder - . ,
torization,”qProc. IEEyE (gpecialylssue on Compfter-Aided laboratory, East Fishkill (Hopewell Junction), New York
Design) 58, 1801-1809 (1967). 12533.

651

IBM J. RES. DEVELOP. @ VOL. 23 ¢ NO. 6 « NOVEMBER 1979 C. M. SAKKAS




