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Potential  Distribution  and  Multi-Terminal  DC  Resistance 
Computations for LSI Technology 

Computer  time and storage  requirements are the  two  main considerations in the design of a  packaging analysis software 
tool for  the  problem of calculating the electric potential distribution in arbitrary geometrical shapes. The  FEM (Finite 
Element  Method) is the  accepted approach for solving such  problems. A new  formulation  for  the linear  triangular ele- 
ment is presented which is used  to derive a very simple and computationally  inexpensive linear rectangular element 
equation interrelating only the geometrical  centers of the  elements.  The result is a  much sparser  assembly matrix with a 
maximum  offive non-zero  entries per  equation compared with the usual nine of the FEM formulation. In addition,  a 
method  to  obtain  the  minimum  bandwidth of the  matrix is given for the eficient and static use of external storage, 
permitting the solution  of any size problem. The methods are  applicable to  multi-plane, multi-terminal  conjigurations for 
the  production of  equivalent-resistance  networks and for the calculation of the  potential distribution throughout  the 
configurations. 

Introduction 
Today,  accurate electrical  evaluation of any proposed  cir- 
cuit  packaging scheme,  at any  level of packaging, is es- 
sential to  the  success of a  given LSI (Large  Scale In- 
tegration)  technology.  This is necessitated by the  rather 
tight tolerance  for  the allowable voltage  loss  from the 
power supply point to  the  circuits  on  the  chip.  In addi- 
tion,  the complexity of geometries of the  current-con- 
ducting planes,  the  existence of numerous  contact  points 
or terminals  representing  different boundary  conditions, 
and  nonuniformity in the material properties make an 
analytic  solution all but  impossible. The simplifying as- 
sumptions that  have  to be made quite  often  result in a 
model which bears little resemblance to reality.  Aside 
from the integral equation  method,  the principal  numeri- 
cal techniques  for solving complex  boundary problems 
are  the finite difference and  the finite element methods 
[ 1-41. A new computational  technique,  based on a numeri- 
cal approach using the principles of current conservation 
and continuity, has  been developed for calculating the po- 
tential  distribution for  arbitrary geometry and producing 
an equivalent resistance  network as a model of the geome- 
try. Given  voltage  and/or current  conditions,  the  network 

can be solved,  or it can be merged with other electrical 
data  for  use with  a  general  circuit  analysis  program. 

In the finite difference method, a grid of points, usually 
rectangular, is superimposed on the region to be  analyzed 
and the given differential equation is approximated  by  a 
corresponding difference equation.  This equation  inter- 
relates  the values of the function at adjacent mesh-points. 
Application of the difference equation  to  each mesh-point 
produces a set of algebraic equations  to be  solved for  the 
unknown values of the function at  each point. The 
method is well suited for orthogonal  geometries and re- 
gions of uniform  electrical properties, but certain diffi- 
culties arise  when  the  shapes involved  have  nonor- 
thogonal sides  and  the region is made up of irregular ge- 
ometries  with different square  resistances and different 
boundary conditions,  such  as  constant voltage or  current 
sources  or  sinks. 

In  the finite element method, the region under  consid- 
eration is first  divided  into  a finite number of known  geo- 
metrical shapes, called elements,  and a  form is assumed 
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for  the  solution  function, usually polynomial, within and 
on the boundary of the elements. 

This approximating function, sometimes called an in- 
terpolating function, is defined in terms of specific points, 
called nodes, usually at the boundaries of the element. 
The  degree of the polynomial approximation is related  to 
the number of these points.  Numerical  element equations 
are then derived by minimizing the associated  functional 
of a variational statement or, when  a  functional does not 
exist [4], through  the  use of a weighted residual or energy 
balance approach.  Finally,  the element equations are as- 
sembled and a system of equations  is obtained represent- 
ing the given  region. 

The finite element method is a powerful technique 
since, unlike the finite difference method, it can easily 
handle complicated geometries  with  variable  material 
properties  and mixed boundary conditions.  Caution must 
be  exercised,  however, when elements of different shapes 
are used to  discretize  the  continuum. Their  interpolating 
functions  must be compatible at  the boundaries of  dif- 
ferent  elements.  It  can also be  argued that  when  the 
method is applied  according to its standard  procedure 
(forming the  element  equations with no regard to  their rel- 
ative position), it will be  more  expensive to  form  the sys- 
tem  equations,  compared  to  the finite difference  method 
where  the difference  equation is written directly for  every 
nodal point. 

The  method  presented in this paper closely  resembles 
the finite element  method. It  differs, however,jn  the deri- 
vation of the  element  equations, in which the continuity 
equation,  the  current  conservation principle, and  steady 
state  conditions  are used.  Triangular and rectangular  ele- 
ments  are used to discretize the region and linear  approxi- 
mations are  assumed  for the interpolating functions. Due 
to  the x-y orientation of the rectangular  elements, a very 
simple numerical expression is derived which interrelates 
only the  functional values at  their geometrical centers. 
The effect is a much  sparser matrix of the  equations  for 
the rectangular  regions, with a  maximum of  five non-zero 
entries  instead  of nine for the FEM [2-41. The  two main 
considerations  for efficiently solving the  system  equations 
are  the minimization of the fill-in during factorization [5- 
81 and a  provision to use external  storage so that any  size 
problem can be solved.  The modified banded approach in 
decomposing the matrix  combined  with a novel  optimal 
numbering scheme presented in the  paper meets these  re- 
quirements effectively.  Regardless of the  approach used 
in formulating the element equations,  the method pre- 
sented  here, like the finite element method, follows  a  pre- 
cise step-by-step  procedure.  The organization of this pa- 
per generally  follows  this procedure in describing the dif- 

Figure 1 Discretization of the  solution  region  into  triangular 
and  rectangular elements. Triangular elements are  generated 
only at  oblique sides of the  given geometries. 

ferent  parts of the  computer program or analysis  package 
which has  been implemented using this  method. 

Discretization of the continuum 
The mathematical  formulation of the problem is directly 
related to  the  choice of elements  and nodal  points  used to 
discretize the solution region. The  number of nodal  points 
per element is determined  by the  degree of the inter- 
polating polynomial chosen  to  approximate  the solution 
function  within and  on the boundary of the  elements.  In 
this  work  triangular  and  rectangular elements  are used to 
discretize the region.  A  linear  approximation is assumed 
for  the  solution function within the triangular elements, 
with its vertices  being the nodal points. For the rec- 
tangnlar elements,  due  to  the geometrical  symmetry (Fig. 
1) of the  elements  and  the way the problem is formulated, 
a simple numerical  equation has  been derived  which in- 
terrelates only  the geometrical centers  at adjacent  rec- 
tangular elements. This is another place where  the pres- 
ent method deviates from the classical finite element  ap- 
proach. 

An automatic element generator  has  been  developed 
which divides  any irregular geometry with any  number of 
superimposed  shapes representing areas of different ma- 
terial properties, different boundary  conditions, or vacant 
spaces,  into triangular and rectangular elements matching 641 
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Figure 2 The element equation for the  triangular center ele- 
ment is Ielement = KT+. It interrelates the nodal values at  all six 
vertices. 

as closely as possible the  boundaries of the given geome- 
tries. As seen in Fig. 1, triangular elements  are  generated 
only at irregular  boundaries of the given  geometries, thus 
keeping their  number to a minimum. A randomly oriented 
triangular element is computationally  more expensive 
than  an x-y-positioned  rectangular element.  Every ele- 
ment is bounded  on  each side by only one element and  no 
element overlaps two different shapes. A minimum 
amount of information is requested from the  user.  The 
shapes,  what  they  represent,  and  the  number of elements 
desired are  the only  input data  to this  module. The  gener- 
ator  creates all the geometrical and  electrical  properties 
of the  elements  as well as linkage information of the nodal 
points required by the  subsequent  element formulation. 

Derivation of the  finite  element  equations 

Triangular elements 
A linear approximation is assumed for  the potential  inside 
and at  the  boundaries of the  element.  The vertices of the 
element have  been  chosen  as  the nodal  points. Thus, if 

Solving Eqs. (2) in the standard finite element  formula- 
tion [4] for k,, k,, and k,, substituting into  Eq. (1) and 
rearranging terms, we obtain 
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11 x1 Y , I  
2A = 1 x ,  y ,  = twice the  area of triangle 1 2 3, 

and 

a, = X Z Y 3  - X3Y2' 

b, = Y, - Y3' 

c1 = x3 - X2' ( 5 )  

while the  other coefficients are  obtained by cyclical  per- 
mutation of the  subscripts.  Notice  that 

The  two  relations (7) will be used later in the derivation of 
the triangular element  equation, which will be different 
from the  derivation of the  standard finite element ap- 
proach. 

Next,  an  equation will be derived  that  expresses  the 
total current  crossing a  randomly oriented line within the 
solution  region. 

Consider  side AB in Fig. 3 separating  two triangular 
elements with  material properties p1 and pz (square resis- 
tances)  and  interpolating  functions + , ( x ,  y )  and +,(x, y ) .  
Due to continuity of current  across  the  boundary of the 
two different material  regions, the  interface condition 
must hold: 

or, since p1 and p 2  are  constant inside each  element, 
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where n is the  normal  vector  to  the line AB and dl is along 
the interface AB. Equation (9) relates  two different  ex- 
pressions  for  the  total  current crossing the line AB, which 
may be  written as 

ZAB = -IBA. ( 10) 

Thus, if I , ,  is the  total  current crossing side AB from ele- 
ment 1 to element 2,  then 

zI2 = I,, = - % dl 
1 

p1 A 

and 

Next  the integral 

IAB % dl 

will be  evaluated. 

The directional derivative of in the  direction of the 
normal vector n is given by 

u +  =" 84, a41 ax 841 aY 

If lABl is the length AB, 

+". n l  (13) 
an ax an ay an 

and 

Substituting into  Eq. (13), 

Substituting into  Eq. (11) with Eq. (13), 
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Figure 3 Calculation of total  current crossing side AB between 
two adjacent  triangular elements. 

Equation (17) gives the  total  current  crossing  the 
boundary of two triangular elements in terms of their 643 
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* 1 
Figure 4 Two adjacent rectangular elements. Equation (22) 
gives the total current crossing their common side. 

square  resistances,  areas, x-y coordinates,  and functional 
values (voltages) of all their  vertices. 

For any  closed curve C within a solution domain,  the 
following line integral is  constant: 

I,. = constant 

The  constant  represents  the total current  generated 
within the closed curve. Applied to a triangular  element 
(Fig. 2) and using Eq. (17), the integral can now  be  calcu- 
lated  as 

where 3 represents  the  sides of the triangle. 

Thus  the final triangular  element equation  can be writ- 
ten  as 

Zelement = KT+ = constant, (20) 

where K is a vector of precalculated constants and + a 
vector of voltage values  at  the  vertices.  In  this  case  the 
length of each  vector  is  six. 

Rectangular  elements 
The general equation  expressing  the  total  current crossing 
a random line AB,  Eq. (17), will be  used  here to derive the 
rectangular  element equation.  Consider  two rectangular 
elements 1 and 2  with  geometrical centers  at C and D as 
shown in Fig. 4. It  is  easy  to  see  that  the  total  current 
crossing  their common  side AB is 

Y 

+ .I 

Figure 5 Calculation of net current [Eq. (23)] for  a rectangular 
element bounded by rectangular elements. 

or, after substituting for  the  areas  and simplifying, 

As in the triangular element,  the  net  current  around  the 
closed curve of a rectangular element must  be  constant 
[Eq. (18)]. Thus, applying Eq. (22) to  the  four  sides of the 
element in Fig. 5 and summing up, 

+ 
(PlW, + P5WJ 

(+1 - 45) = constant, (23) 

or, in general, 

lelement = K ~ +  = constant, (24) 

where  the lengths of the  vectors  are now  five,  provided 
the element is bounded  on all four  sides by rectangular 
elements. If a rectangular element is adjacent on any of its 
sides to a triangular element, then the  current crossing 
that  side will be calculated using Eq. (17), while Eq. (22) 
will be used for  the  current crossing the  other  sides (adja- 
cent  to rectangular elements).  The final element equation 
in this case will connect  seven nodal values,  that  is,  the 
lengths of K and + will be  seven. 

Writing  the  nodal  equations 
To  form the  nodal equation  for a rectangular nodal  point 
at  the  center point of the rectangle, the  rectangular ele- 
ment  equation is used. For a triangular nodal point lo- 
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cated  at a vertex of the triangle, the nodal equation is 
formed by considering all the triangular elements that 
have  the nodal point  as a common vertex. 

An important task of the  “automatic  element gener- 
ator”  is  to  create enough  triangular elements so that a set 
of n linearly independent nodal equations  can  be  formed, 
where n is the number of nodal points. 

Solving the system  equations 
The  schemes  for solving the  resultant linear equations  can 
be  generally classified as direct or  iterative.  The two main 
considerations in choosing a method  are  the storage re- 
quirements  and  the  computer time. The most  commonly 
used iterative  scheme is the Gauss-Seidel or  successive 
overrelaxation (SOR) method in which the solution  vec- 
tor is obtained  after a number of iterations employing the 
general  relation 

[+I, = [+IKe1 + w[A+I,-,,? (25) 

where K is the  iteration number and w a  relaxation factor 
used to  speed  up convergence. In the  case of finite dif- 
ference  or finite element  methods, w depends  on  the par- 
ticular geometry involved. The  storage requirement is di- 
rectly proportional  to  the number of nodal  points  and the 
method uses  much  less storage than  the  direct  approach. 
Unfortunately,  the  same is not  true with the calculation 
time required to obtain a solution. Unlike the  direct 
method,  the  computer time depends  on  the geometry  un- 
der  consideration  and  on the boundary conditions defin- 
ing the  particular problem. Integral  constant-current 
boundary  conditions slow down  convergence  to  the point 
where the  computer time  required is hard to predict. In 
contrast,  the  direct  approach, which is more expensive in 
storage requirements, is much more efficient in terms of 
computer  time. It is related to  the  number of nodal  points 
and the  bandwidth of the matrix and independent of the 
boundary  conditions. One of the main reasons  the  direct 
method was  chosen is that  once  one solution is obtained 
for a  given geometry, multiple solutions  for  other  bound- 
ary  conditions may  be  obtained  with  very little additional 
computer  time.  The problem can  be  written  as 

Ax = b, (26) 

where 

A = [Aij] = n X n matrix of coefficients, 

x = nodal solution vector,  and 

b = nodal boundary condition vector. 

Matrix A is sparse,  symmetric,  and positive  definite,  and 
thus  the LU decomposition can  be written as 

A = UTDU. (27) 
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The following triangular systems,  representing  the for- 
ward reduction of b and back  substitution, 

UTDy = b, (28) 

ux = y, (29) 

are next solved  for  the solution vector x. 

The finite element  equations  are usually very sparse, 
typically less  than 0.1 percent  non-zero, while the  sys- 
tems  to  be  solved  are, in most applications,  extremely 
large,  where 10 000 or more nodes  are  not unusual.  Refer- 
ences [6-81 discuss in general  large sparse  systems of 
equations.  To minimize fill-in (generating of non-zero 
terms)  during the decomposition of A in Eq. (27), the  or- 
dering of the  equations into an  almost  banded form seems 
to  be  the most logical and efficient approach. 

Some of its  advantages  are  the following: 1) the ability 
to easily predict fill-in and,  therefore, use a static  storage 
scheme, 2) the minimum overhead  storage  required  for 
decomposition,  and 3) the lack of any decision making 
during factorization  (no pivoting or checking for  zeros). 
The most important  advantage,  however, is that  the 
method is well adapted  to using an  external storage de- 
vice, which is imperative for large systems.  Thus, mini- 
mum main memory is required. 

The  separate  parts of the  sparse matrix  analysis are 
given next. 

0 Optimal  node numbering 
The  objective of this part is to  renumber  the nodal points 
so that  the resulting  assembly  matrix A is banded and  has 
a minimum bandwidth. A novel node numbering scheme 
which accomplishes this optimally is described in the fol- 
lowing steps. 

Construct  an undirected  graph of the nodal points,  con- 
necting any  two nodal  points  with an edge only when the 
nodal points in question  appear in the  same nodal equa- 
tion. Form  the incident  matrix c with cii = 0. Form a dis- 
tance matrix d and  enter only the one-edge connections, 
that  is, initially dij = cij. Calculate c2, c3, . . ., c’ by per- 
forming the following three  steps  repeatedly until the dis- 
tance matrix is filled up: 

c\ = V (cfil A cmj) ( n  = matrix size). 

If dij = 0 and ctj # 0 set dij = k .  

Set c i  = 0 for all dij = k - 1. (30) 

The minimum distances (distance not including loops) of 
all pairs of nodal  points  have now been  obtained.  Starting 

n 

m=1 
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Minimum distance matrix 
1 2 3 4 5 6 7 8  

1 

2 
3 
4 
5 
6 
7 
8 

6 

Figure 6 Resulting distance matrix for a small sample problem. 
Points 3 and 4, which are the farthest apart (distance 5 ) ,  are the 
best starting points for renumbering. Initial numbering is 4 1 5 7 2 
6 8 3. Optimal numbering is 1 2 3 4 5 6 7 8. 

6 

1 2 3 4 5 6 7 8  
1 
2 
3 
4 

5 
6 
I 
8 

. - . . . . 

1 
2 
3 
4 

5 
6 
I 
8 

(b)  

Figure 7 Example showing reduction of bandwidth from seven 
to four after renumbering: (a) Matrix A before renumbering. (b) 
Matrix A after renumbering. 

with any  one of the most distant  points (preferably one 
with fewer  degrees of freedom) we proceed by renumber- 
ing the  points in  succession following their  distance  pat- 
tern.  That  is,  the  next point to  be numbered will always 
be  the  one  closest  to  the previously  numbered  point. Fig- 
ure 6 gives the  distance matrix for a small sample problem 
with the  optimal renumbering of the  points while Fig. 7 
shows  the  improvement in the  bandwidth of matrix A for 
the  same  problem.  The  reader  can recognize that  the 
method locates  the  best starting  point to  renumber  the 
nodes.  This  point is not,  as is sometimes  stated [9], a 
point of minimum degree of freedom. 

Another  less  expensive heuristic procedure which in 
most cases will produce  the minimum bandwidth is as fol- 
lows. Form  the  graph  as  above,  and, starting at a random 
node,  number  the  nodes following the connectivity of the 
graph and  only  proceed  to a new node  after all the  one- 
edge connections  to  the previously  numbered  node have 
been numbered. When all the  nodes  are  numbered,  repeat 
the  process, starting  this  time  with the  last  numbered 
node. The first and  last numbered nodes this  time are of- 
ten  the  nodes with the maximum distance (see Fig. 8) and 
therefore  represent  the  best  starting points.  This method 
will not produce  the minimum bandwidth  for some  ran- 
dom  starting points in some symmetric graphs. 

Calculation of variable semi-bandwidth of A + U and 
its  total  storage requirement 
Let 2w + 1 be  the bandwidth of A. Since A is symmetric, 
we need deal only  with the semi-band w + 1 (including the 
diagonal). All non-zero terms of A,  as well as  the  gener- 
ated non-zero  terms of the  upper triangular factor U, will 
be  included within a banded matrix of maximum  size 
n(w + 1). During decomposition (Eq. 27), the  above 
banded  matrix A is  transformed  into  the  factor U so that 
the  same storage space  is used. After  decomposition, A 
is not needed. A modification of the  standard banded ap- 
proach was made  here which resulted in a considerable 
reduction of both  computation  time for  factorization and 
storage requirement for U. 

Instead of a constant semi-bandwidth w + 1 (distance 
of most  remote non-zero entry of A from  the diagonal), a 
variable  width (wi,  i = 1 to n) is calculated  during decom- 
position,  considering the location of  the non-zero terms in 
A and the location of the most remote  generated non-ze- 
ros in U. These  locations  are  known before  decomposi- 
tion starts, so that a static  storage  scheme can  be used. 
Figure 9 shows  the original non-zeros in A (63) and  the 
generated  non-zeros in U (X). The  dotted line is the  pro- 
file of the final factor U. The  total  storage required for U 
is precalculated  as  the summation of the lengths of the 
equations 

i wi. (31)  
i=1 

Partitioning of banded matrix A + U into records 
In this part of the program, a decision to use external  stor- 
age or not is made depending on  the size of U. If enough 
main region size is provided for U (dimension of U 2 cy=, w J ,  this  part is bypassed.  Otherwise  the banded ma- 
trix is partitioned into a number of records  and placed in 
an  external  storage device. The  record size  and therefore 
the  total  number of records  depends  on  the size of the U 
array  provided by the  user. This  size (the dimension of U) 
must be  at  least  as large as n .  
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(b)  

Figure 8 Example illustrating the heuristic method for pro- 
ducing minimum bandwidth. Points B and C are the best starting 
points for renumbering: (a) First iteration. Starting point A is a 
random point. Point B is the last numbered point and  will  be the 
starting point for iteration two. (b) Second iteration. Starting 
point for the numbering scheme is point B. 

It is fortunate,  as  can be seen  from  the  Appendix, that 
not all of A is required in main storage  during the decom- 
position phase. In Fig. 10, only the section ABC is required 
in main in order to process  the first record AB (shaded 
area).  When the first record is processed, records 2 and 3 
are shifted  upwards in main and  record 4 is brought  in. 
Record 1 is placed  back  on  the  disk. Next record 2 is de- 
composed.  This  process  continues until all records  are 
decomposed and placed on the disk. The solution of Eqs. 
(27), (28), and (29) appears in the Appendix. 

A  method has been  described  which will produce the 
potential  distribution for  any given irregular plane geome- 
try  and boundary conditions  (voltages  and/or currents). 
The next  section will describe how this part is used to 
obtain  the  equivalent  resistance  network  for  any  power 
plane with any number of terminals. 

Calculation of equivalent  resistance  network 
Before stating the objective of this  part of the package,  let 
me define as  ports of a given plane geometry those loca- 
tions in the plane through which current is entering or 
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Figure 9 Decomposition of banded matrix A showing the gen- 
eration of non-zeros (fill-in)  in u: 8, original non-zeros in A; X,  
fi11-in. 

t I 

Figure 10 Symmetric banded matrix A divided into records. 
Bandwidth = 2b + 1. Shaded area AB represents one record. 
Three records (down to C) are required in  main storage in order 
to process  the first record. 647 
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Figure 11 Diagrammatic example of a contacting plane with 
five ports. 

v, = 1 

vk= 0 
‘k = ‘1, k 

R l , k  = I/Ck 

Figure 12 Setting boundary conditions. The  total current C, 
leaving port k is calculated by evaluating the line integral around 
the port once the field solution has been obtained. 

leaving the plane. The  reader should  not confuse  the  ports 
with the  elements. A port is in itself  a  plane  geometry and 
may consist of one  or many adjacent  elements.  It  repre- 
sents  an  area  of  contact with the plane.  Figure 11 gives an 
example of a  plane  with five ports.  For a  complete and 
accurate  characterization of the given current  contacting 
plane  (equivalent resistance  network),  the  resistances of 

all branches  connecting all pairs of ports  arc  required. 
That is,  for P ports,  the  complete  resistance  network will 
consist of P(P - 1)/2  resistances.  It is true  that,  depend- 
ing on  the  geometry  under  consideration, some of these 
resistances will be  very  large,  indicating that  there is no 
current flowing in that  branch,  which  can therefore be ig- 
nored.  Thus  the objective of this part  is to calculate the 
equivalent resistance network. To accomplish this, P - 1 
independent  potential  solutions are required. Since  the 
resistances  of  the equivalent network  are independent of 
the kind of boundary conditions imposed,  the program 
sets  the  boundary conditions  (voltages at ports) in such a 
way that,  when a  potential  solution is obtained, a number 
of resistances  can  be calculated directly. 

Let ci be the  total  current  entering  the plane through 
port i and Zii the  branch  current  connecting  port i to  port j .  
Then,  for a complete  resistance  network of P ports, 

P 

j=l 
j# i  

By choosing  proper boundary conditions, a solution 
can  be obtained  where,  for any port k ,  all branch currents 
ZJJ = 1, P ,  j # k)  are  zero  except  one, Z,,k (Fig. 12). 

Consider,  for  instance, 

Voltage at  port I ,  V, = 1. 

Voltages at all other  ports, Vi = 0 i = 1 ,  P; i # 1. 

Then  the solution  obtained will satisfy 

ci = i = 1 ,  P ;  i # 1,  

and  therefore 

AV 1 
R,3i = I,( - - - i =  1 , P ; i Z l .  (33) 

‘i ‘i 

The  total  current ci through the  port i is calculated  by 
evaluating the line integral 

where c is the  boundary of the  port.  The finite element 
equations  derived in the  second  section  are used. 

Thus,  the calculation of all resistances for P ports is 
accomplished  by executing repeatedly the following se- 
quence: 

a. For  port 1,  set V, = 1, VI to V,, = 0. 
b. Obtain potential solution and  calculate ci,  i = 1 to P. 
c. Calculate using Eq. (33) Rl,i, i = 1, P ;  i f 1. 

Repeat with 1 from 1 to (P - 1). 
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An important  advantage of the  direct method is its effi- 
ciency in producing multiple solutions  for  the  same geom- 
etry  and different  boundary conditions.  Since  the  sparse 
matrix A depends only on  the  geometries involved, its 
factorization  [Eq. (27)], which represents most of the 
work  required  to  obtain a solution, is done only once. 
That  is, U remains unchanged and  any new solution is 
obtained  by  merely  updating the  vector b and  executing 
Eqs. (28) and (29). 

The  last  section  deals with the application of this part in 
solving a  multi-plane  configuration. 

DC analysis of a multi-plane configuration 
A number of electrically  insulated planes,  connected  to 
one  another  through vias of known resistances,  can  repre- 
sent many present-day packaging designs in LSI tech- 
nology. To  obtain  the potential  distribution and  accu- 
rately evaluate  any of the  given  plane  geometries, the 
boundary conditions,  that  is, voltages or  currents of all 
its  contact  points  (ports), must  be known.  These  condi- 
tions are in general unknown. Consider  for instance the 
multi-plane structure illustrated in Fig. 13. The only 
known conditions  are  the incoming voltage at point  1  and 
the outgoing currents  at points 18, 19, 20, and 21. No de- 
tailed analysis of plane  2 or  any  other plane can be per- 
formed without knowing how much  current is carried by 
each of the  connecting  rods.  In  the  case of plane 2,  for 
example,  the  conditions  at all its  contact  points, 8  through 
13, must be  known. 

A step-by-step  procedure is presented here  which  re- 
solves  the  problem  and permits the  accurate evaluation of 
any of the given  plane geometries. 

Step 1. Obtain  the equivalent resistance  networks  (see 
previous section) for all given  plane  geometries. 
The  reader is reminded that  no boundary  condi- 
tions  are required for  these calculations. The 
only  information  needed is the geometries in- 
volved and  their  square  resistances. 

Step 2. Merge the  above  resistance  networks with the via 
resistances  and obtain an equivalent resistance 
network representing the multi-plane configura- 
tion  (Fig. 14). 

Step 3. Using dc  resistance  network  equations,  solve  the 
multi-plane  resistance network obtained above 
for  the given  boundary conditions [lo]. In  the 
case of the example of Figs. 13 and 14, these 
boundary conditions are VI, I,,,  I,,,  I,, and Z,,. 
The  reader must  notice that  the  currents  are not 
currents flowing on the  branches of the  network 
but  the  net  currents of the  contact points. Thus 
the  conditions  at  the remaining points  are Inet = 

1 'out 

' vi" 

Figure 13 Multi-plane configurations illustrating a general 
packaging design. 

Figure 14 Equivalent resistance network for multi-plane con- 
figuration of Fig. 13. 

0. Application of the  network  equations  results in 
a sparse symmetric system  and  the technique of 
the  section  on solving the  system of equations is 
used to  obtain its solution. This time the un- 
knowns  are  either  the voltages or  the  net  cur- 
rents  at  the  contacts. 

Step 4. The boundary value problem for any of the planes 
involved is now well defined since  the  bound- 
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ary  conditions (voltages at  contacts)  are all 
known.  Its solution will produce  the field distri- 
bution  for  the particular  plane. 

The  complete software  package can include  some sub- 
sequent  calculations like current  densities  and maximum 
voltage drops  per  plane,  amount of current  per via, etc. 

Summary 
The  trend  to  ever higher levels of integration  and the 
need to utilize all available space during any level of pack- 
aging usually results in very  complex  geometrical shapes. 
Geometries of power  buses  or redistribution  planes  with 
hundreds of vertices  are not  uncommon.  Speed of calcu- 
lations  and storage requirements  remain the two main 
considerations in developing any packaging  analysis tool, 
and  the  method  presented here tries  to meet both require- 
ments without sacrificing accuracy of calculation. In for- 
mulating the finite element solution, triangular elements, 
being more expensive in computation time, are  generated 
only where  the geometries under consideration  necessi- 
tate  them. By considering the x-y orientation of the rec- 
tangular elements, it is possible to simplify their  equa- 
tions  and derive nodal equations relating  only the geomet- 
rical centers of the neighboring rectangular  elements.  The 
choice of the  direct method in solving the  system of equa- 
tions  was shown  to be  very appropriate, especially when 
multiple solutions  are  required.  The  bandedness of the 
sparse matrix is assured through the use of the  optimal 
numbering scheme and is solved  with  a minimum ex- 
penditure of bookkeeping and decision-making  time. 
Most importantly,  the solution technique is independent 
of the main storage available.  Finally, the special nature 
of the designs  involved in packaging was recognized; an 
approach  was introduced which reduces a  three-dimen- 
sional problem  to a problem  requiring  a  number of two- 
dimensional solutions. 
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Appendix: Sparse matrix solution 
Solutions of large sparse  systems  are discussed  in, e .g . ,  
Refs. [5, 11, 121. Presented in this  Appendix is the de- 
tailed particular  sparse matrix  solution for  the modified 
banded approach developed in this  paper. 

Matrix decomposition 
The Gauss-Dolittle scheme is used  to perform the LDU 
decomposition of A [Eq. (27)]. This  is accomplished algo- 
rithmically as follows. Let n be the  number of equations 
and wi, i = 1 to n,  be the variable semi-bandwidths (includ- 
ing the diagonal). Assuming the  band matrix to be ar- 
ranged as a  matrix Aij, i = 1 to n and j = 1 to wi, then 
perform 

for 

k = l t o n - l ,  

i =   l t o w k -  1, 

j = 1 to Wk - i. 

As mentioned above,  the location of the  farthest non- 
zero  entry of the band matrix (either original or  created 
during decomposition)  determines  the length (w,) of the 
ith equation within the band. This  length is precalculated, 
and 

wi 5 wmax i = I to  n, 

where wmax is the maximum element of the  vector w. The 
storage saved  due  to this modification is 

n 
wmax x n - wi. 

i=l 

Considerable calculation time is also  saved due  to  the 
creation of a profile semi-bandwidth  instead of the maxi- 
mum wmax. At the  end of this step, A has been trans- 
formed to  the  upper triangular factor U (same storage 
space  for A and U). 

Forward  reduction [Eq. (28)] 
Once  the triangular factor U has  been  obtained,  the  for- 
ward reduction of b is accomplished  by performing 

for 

k =  1 t o n  - 1, 

i =   l t o w i -  1, 

and 
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Back  substitution [Eq.  (29)] 
The final step in obtaining the solution is 

bk = bk - ‘k,i+I x bk+i ’ 
for 

k = n -  l t o l ,  

i =  l t o w i -  1. 

The given right-hand-side vector b has  been trans- 
formed and now represents  the solution vector x (same 
storage  space  used  for b and x). 
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