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Survey of Computer-Aided Electrical Analysis of
Integrated Circuit Interconnections

In the last decade an important shift has taken place in the design of hardware with the advent of smaller and denser
integrated circuits and packages. Analysis techniques are required to ensure the proper electrical functioning of this
hardware. In this paper we give a coherent survey of the modeling and computer-aided design techniques applicable to
solving these problems. Methods are considered for the computation of resistances, capacitances, and inductances.

Also, an extensive list of references is given.

1. Introduction

In the last decade an important shift has taken place in the
design of hardware with the advent of smaller and denser
integrated circuits and packages. Previously, the hard-
ware components consisted of both physically and elec-
trically large discrete components. Stray elements and
coupling among the components were small in most
cases and the interconnections between the components
were electrically insignificant. The corresponding electri-
cal network models were highly decoupled and the net-
work analysis matrices sparse. This led to relatively
simple analysis models and techniques for the electrical
performance of these systems.

In contrast, today’s high level of integration can lead to
very large and complex systems with extremely small
physical dimensions. An electrical analysis which ex-
cludes coupling among the closely spaced components is
invalid. Further, the interconnections which once led to
insignificant stray elements are now the main elements in
the equivalent circuits. Thus, the circuit models for in-
tegrated circuit systems are extremely complex, with
highly coupled components. An electrical analysis of
these models without computer-aided design (CAD) tech-
niques is not possible, especially for high performance
systems.

The type of hardware designs which lend themselves to
miniaturization are microwave, digital- and analog-type

systems [ 1-4]. Usually, the overall dimensions of the rele-
vant parts of a subsystem for which a signal or coupling
analysis is of interest are small, less than a few centime-
ters. Often, the highest frequency component contained
in the signals which are propagating in the system corre-
sponds to a wavelength which exceeds the physical di-
mensions of the subsystem. These small physical and
electrical dimensions in many cases make an analysis
with lumped circuit models valid.

The type of analysis required for a particular system
depends on its performance and purpose. The electrical
analysis may become a very simple one for low speed or
low frequency circuits since the reactance of the capaci-
tances is high and the inductances are almost short cir-
cuits. Then a simple analysis may suffice which involves a
few key capacitances, resistances, or inductances. In
contrast, complex models are required to represent high
speed or high performance systems. The signal transi-
tions in very low speed digital systems may be in the mi-
cro- or even millisecond range. At the other end of the
spectrum, we may be concerned with the analysis of a
Josephson [5] or MESFET [6) technology where the sig-
nal transitions are in the picosecond range.

A fundamental quantity which characterizes a particu-
lar interconnection technology is what we call the general
impedance level. 1t is simply the lossless characteristic
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impedance of the ‘‘average’’ connection in the system,
L 1/2
Z, = (E) .

Typical values of Z, range from 5 to 200 ohms. In
lower-performance FET logic hardware the devices are
typically of a higher impedance than Z, and thus the ca-
pacitance C is the dominant circuit element. Bipolar tran-
sistor logic hardware may exhibit impedances on the or-
der of Z, so that both C and the inductance L are impor-
tant. Josephson junctions exhibit a very low internal

impedance and the inductance L becomes a dominant
stray element.

The computer-aided electrical analysis approach pro-
posed here is based on electromagnetic field theory and
circuit theory. The unknowns are expressed in terms of
voltages and currents and this allows the use of well-
known circuit theory concepts and models. The inter-
connection analysis of a system consists of several steps.
First, the appropriate models of the circuit elements must
be determined and the capacitances, inductances, and re-
sistances must be computed. Then an analysis is per-
formed to obtain the signals of interest, namely the volt-
ages and currents, from which we evaluate the electrical
operation of the hardware being modeled.

An illustration is given in Fig. 1 which includes all ele-
ments of high performance integrated circuit hardware.
The integrated circuit chips are placed on a chip carrier
which is sometimes called a space transformer, since it
transforms the closely spaced integrated circuit chip con-
nections to larger connection points. In the example
shown, the connections among the chip carriers are es-
tablished in the multi-plane board. A logic signal may
start with an LSI circuit located on one chip in Fig. 1 and
may be received by a circuit located in the other chip.
Thus, the signal may be delayed by both the integrated
circuits and the package. The major contribution to the
average delay is due to the circuits for lower-performance
systems, while the package delay dominates for the aver-
age delay for high performance hardware. Typical electri-
cal design criteria which must be met by a hardware de-
sign can be summarized as follows for the example of a
digital system:

a. All signals in the system must meet the timing require-
ments.

b. The signal wave shapes must be within given toler-
ances since, for example, a negative transition in a
positive signal may lead to additional switching delay.

¢. Unwanted signal coupling between wires must be less
than an upper bound so that the coupled signals do not
cause improper switching of the logic circuits.
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Figure 1 Example hardware.

d. Voltage transients on voltage distribution wires (and
ground) induced by switching circuits must be limited
to small fractions of the supply dc voltages.

e. External electromagnetic disturbances should not
cause false switching of the digital circuits.

Thus, the purpose of computer-aided electrical analysis is
to ensure that the hardware at hand meets these electrical
design criteria.

The analysis of digital system interconnections encom-
passes a wide spectrum of frequencies. This is quite in
contrast to microwave systems, which usually operate at
a few discrete frequencies. As a consequence of this, a
mixture of static, quasi-static and dynamic models is
employed. Quasi-static models such as lumped equivalent
circuits play an important role in the representation of the
complex physical geometries. Further, an analysis with
an incomplete model may lead to valuable information
without solving the complete dynamic problem. An ex-
ample of this is the analysis of a low impedance voltage
supply system with an inductance-resistance model as is
discussed in Section 4. In contrast to this, a complex ca-
pacitance-resistance model may suffice to represent most
parts of a low current, high impedance FET package.

In this paper we discuss different aspects of the electri-
cal analysis. In Section 2, resistance models and analysis
techniques are discnssed, while Section 3 is devoted to
capacitance analysis. Inductance is considered in Section
4, while electrical models and analysis methods are given
in Section 5.
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Figure 2 Nodal grids: (a) rectangular, (b) triangular.

2. Resistance computations

The purpose of the resistance computation for the inter-
connections and the ground and voltage supply planes is
to determine whether the dc voltage drops along the con-
ductors are within tolerable limits. In an LSI system, the
dc supply current paths may require series resistances in
the milliohm range for the voltage drops to be tolerably
small. Especially as the spatial dimensions are further re-
duced for VLSI, an increase in resistance results and usu-
ally the current per unit area increases. Thus VLSI com-
pounds the resistance problem. The effect of a decrease
in size can easily be illustrated by the resistance of a
simple rectangular conductor with the resistance R =
pl/wt, where p is the resistivity. If all spatial dimensions /,
w, and ¢ are reduced by a factor «, the new resistance is
R' = R/a. However, if the vertical thickness ¢ is con-
stant, the scaled resistance remains the same, or R’ = R.
In this case, the major VLSI resistance problem is due
to the increase in current density.

The geometries in the resistance problem can be very
complicated, consisting of planes and wires having com-
plex shapes as illustrated in [7]. However, the macro-
model which results as a solution of the resistance prob-
lem for the n terminal currents I and potentials ¢ is sim-

ply
I=Gdo, n

where I, ¢ € &" and G € R™" is the indefinite short cir-
cuit conductance matrix [8]. A macromodel is basically a
simplified terminal model which allows the analysis of
even larger systems [9]. The ith element of the current
vector I is found by integration of 7 - J = 0, or

= J 7 - nds, @
S

where J is the current density and S is a closed surface

including a source of current I,. We use ¢ to indicate the

indefinite matrix potentials. If a ground node is defined,

Eq. (1) can be expressed in terms of voltages, with V,, =
¢, — ¢,, where j is the ground node, and

I=GYV, 3)

where I, ¢ € " and G € VX"

The best computational technique for finding G de-
pends on many factors, such as required accuracy, the
conductor shape, and the size of the problem at hand. The
conductor geometry represents a very large boundary
value problem. The main approaches used for the solu-
tion of this problem are based on differential equation [10]
or variational finite element [11] formulations. Earlier, fi-
nite differences were expressed in terms of electrical
models [10] so that physical models could be used as a
means of finding solutions. Today, computer solutions
are far superior due to the increased speed and storage
capacity of large scale computers.

Chips and packages are usually designed in a planar
fashion and the conductor thickness ¢ is generally small.
Then a quasi-two-dimensional solution with a uniform
current along the thickness suffices for most resistance
computations. Figure 2 illustrates two types of nodal
grids for the conductor surfaces where the nodal poten-
tials are the unknowns. The grid in Fig. 2(a) is used for
finite differences and for some of the finite element solu-
tions, while the triangular cells in Fig. 2(b) are particular-
ly suited for irregular boundary interfaces. The main dif-
ference for the various grids is the order of the potential
approximation, which is of the form

dx, y) =k, + kx + ky + kxy. )

An additional term is included in Eq. (4) for each added
node. As an illustration we will match the potential at two
points A and B by the cell C, shown in Fig. 3 and ¢(x, y) =
k, + k,x. Then the variation inside C, is

X X —x,

b, y) = B ¢+

Xg = X, Xg = X,

bg- 5

The current through cell C, is measured by the surface
a — B with a length |a8| and the thickness ¢, with J =
ocE = — o(d¢/0x). Thus Eq. (2) becomes

1 (% o¢ leg| 09
I = —— —dy= —— —, 6
¢ R, J:, ax R, ox ©)

sq
where the resistance per square is R, = 1/o¢. Finally,
obtaining d¢/dx from Eq. (5),

L lag]

‘ qu(xB - xA)

(d)A - d)B) s (7)

where the conductance of the cell C, is G,; = |ag|/
[R,, (xg — x,)]. The total surface for the current computa-
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tion of Eq. (2) for node A is bounded by a-8-y-8 in Fig. 3
and the external current may be injected at node A. The
modified nodal stamp [12] which enters the appropriate
contributions in the circuit matrix is

b, by RHS
Al G, -Gy, 0
B |-G,, G, 0

@®

From this it is easy to collect all the appropriate contribu-
tions for each node. Specifically for node A and all the
neighboring nodes the matrix stamp is

LR P b ¢y ¢, RHS
A Gyt G Gy ~Gue G G 1; (9)
+G,, + G

Elsewhere in this issue [7] the triangular cell case is
discussed, where the potential expansion is ¢(x, y) = k, +
k,x + k,y and the current surfaces are the sides of the
triangle. The total nodal stamp corresponding to Eq. (9)
will have six entries for this case. Further, if we form a
finite element with the four nodes A, B, C, D in Figs. 2(a)
and 3, the potential function is given by Eq. (4), with all
four terms present.

The above discussion illustrates how the finite element
equations can be formulated as a circuit problem so that a
modified nodal matrix [12] or tableau [13] is formed and a
circuit analysis can be performed. Thus the method can
easily be employed in conjunction with other circuit ele-
ments, as will be the case in Sections 4 and 5. Further
steps in the usual network analysis are equation ordering
and the efficient solution of the sparse equations. Some of
these aspects are discussed in [7] as well.

The circuit matrices formed by stamping in contribu-
tions of the type of Eq. (9) are extremely sparse and the
solution of systems with several thousand unknowns is
feasible. Since most practical problems have only rela-
tively few external nodes in the macromodel, the dimen-
sions of Eq. (3) may be very small, with n < 100. Thus,
macromodels of the type of Eq. (3) can be formed sepa-
rately for different parts of the structure, and they can be
interconnected by the joining of appropriate nodes.
Hence, very large problems are solvable by this ap-
proach.

Another application of the resistance model will be the
resistances and cell structure in partial element equiva-
lent circuits in Sections 4 and 5. However, the finite ele-
ment solution represents a different approach from the
partial element techniques given below for capacitance
and inductance. The main difference between these prob-
lems and the resistance problem is the restricted solution
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Figure 3 Rectangular cell and current surface.

domain for the resistance which consists of the con-
ducting bodies only. In contrast, coupling exists outside
the conductors for both capacitances and inductances.

3. Capacitance computations

Capacitance computations are of central importance for
the electrical representation of interconnections. For ex-
ample, as discussed in Section 1, most connections on
FET chips are capacitive since the device impedances are
generally much larger than Z. The characterization of in-
tegrated circuits (ICs) in terms of capacitance matrices is
discussed in [14] and the importance of fringing for the
ever-decreasing horizontal geometries is quantified in
[15, 16] for ICs and for microwave circuits in, for ex-
ample, [17, 18].

In most applications, there are problems which can be
approximated by two-dimensional computations. Ex-
amples are transmission lines with a length much larger
than the cross-sectional dimensions and spacings. In fact,
the first computation with an integral equation matrix
method of practical interest was a two-dimensional strip-
line problem [19]. Today, integral equation methods are
in wide use for capacitance computations [17, 18, 20-37]
and advances have been made on different aspects of the
techniques.

In this paper we give a general integral equation formu-
lation applicable to both two- and three-dimensional ge-
ometries which unifies some of the recent developments
and includes both finite and infinite dielectric regions. The
charge density in the capacitance problem represents sur-
face charge which is denoted by g(7) for both %” and #* so
that both cases are included by the same formulation.
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Figure 4 Conductors and dielectric interfaces.

Here, all charges are represented in free space with per-
mittivity e, by the total charge concept [38]. The general
problem can include finite curved and infinite boundaries
as well as arbitrary conductor boundaries, as is illustrated
in Fig. 4. If we consider K conductors and / finite inter-
faces, the potential at 7 is

GG, ¥)q" (7 )ds',

() = j (10)

Sx+S1

where S, and §, are the conductor surfaces and the inter-
faces, respectively. Also, g is the total charge density
with ¢* = ¢® + ¢*, where ¢® is the bound charge and q is
the free charge.

All infinite interfaces are taken into account by appro-
priate two- or three-dimensional Green’s functions. For a
single dielectric material G is simply G (7, 7') = —(271-50)_l
In |F — 7| in ®* and G(7, 7') — (4me |[F — 7') " in R°. The
extension of the Green’s function to include infinite di-
electric or conductor interfaces can be represented as

G=> oG, .

Usually image theory is employed to find both the image
strength o, and the spatial location of the images G,

The form of the images is given by G, and details of the
image solution are given in [23-25] and [17, 34]. We found
that the inclusion of up to three infinite dielectric regions
is feasible with Green’s functions, while four or more re-
gions result in a much slower solution.

Next, all finite interfaces are divided into N cells as
shown in Fig. 3, and thus we can rewrite Eq. (10) as

N

o) = 3 J G(F, F)q'(¥)ds'.
84

J=1

an

In the finite element method of Section 2 we approxi-
mated the potential by Eq. (4). In contrast to this, we here
approximate the charge density in Eq. (11) by a similar
approximation on the cell S,

M

qyxy) =

m=1

a; .b.(x, y)

=a; tax toay toa;xy

a2

2 2
ta Xt oa ey,

where the x, y are representative of the surface variables
and usually only a few terms [Eq. (12)] are present. The
definition of b is evident from Eq. (12). The higher-order
terms especially lead to complicated integrals over the
cell ;. Inserting Eq. (12) into Eq. (11) yields
N M
si)=> 3 a, j G, #)b, (F')ds, (13)
j=1 m=1 Sy
where a,,, is representative of the unknown charge den-
sity. We first concentrate on problems without finite di-
electric interfaces and we derive an integral equation of
the first kind for this case which results in the solution of a
matrix. Equation (13) is multiplied on both sides by b,

where n € {1, 2, - - -, M}, and we choose 7 to be located

oncell S, with i € {1, 2, - - -, N}. Integrating over cell S,

yields
N M

Vin = 2 2 by, (14)
=1 m=1

where

Wi = | 0028, (15)
8y

and

P'S{ = J J G(F, F')b, ()b, (F')dsds'. (16)

N, m s‘ S

]
Again the only unknowns in Eqs. (14)-(16) are the q,,,
since ¢ is known on the K conductor surfaces. If we let
i=1,2,--,Nandn =1,2, -, M and we replace the
double index pairs i, n and j, m with single indices k and
w, we get the matrix system

Yy =Pa,

where (k) and P (k, w) are the appropriate replacements
for d;i'm and PS«...,;.".’ respectively. Once a, or equivalently
a,,, is known by solving Eq. (17), we can find the total
charge on all conductors. Since using the total charge
concept [38] ¢° = equ, we can find the free charge as

amn

M
F - -
Q) = J q(Pds = ¢, a].’mJ b, (P)ds, (18)
S; m=1 Sy
forj =1, - - -, N. Summing up appropriate cell charges

QP;. on the conductors we find the capacitances of interest.
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An efficient solution for both two- and three-dimension-
al geometries based on the above formulation is neces-
sary for a multitude of interconnection problems. In many
practical cases the problem analyzed is limited by the ca-
pabilities of the analysis tool. For some problems symme-
try can be exploited to reduce the size of the P, matrix in
Eq. (17), as is discussed in [39]. In fact, Maxwell [26] used
symmetry to obtain a manageable solution for the capaci-
tance of a square plate in free space. The formulation giv-
en by Eqgs. (14)-(18) corresponds to the Galerkin method
if the same approximation function is used in » and m,
and further, this approach is equivalent to a variational
solution [40-42].

We chose the two conductor problems in Fig. 5 to illus-
trate how the solution accuracy and complexity are im-
pacted by the approximations of the charge and potential.
In this problem, both conductors are located on a dielec-
tric sheet of €, = 10 with a thickness of ¢ = 0.635 mm. We
surmise the exact answer to be 450 fF, which may be
somewhat in error. However, the percentage error, which
is more accurate, gives an understanding of the solution
errors involved. In the subarea method [33] in Fig. 5,
which corresponds to point matching or b, = 8(F) in
Eq. (17), the charge density [Eq. (12)] is constant, or
q;(x,y) = a,,. The matching points 7 are at the center of
the cells. For about 100 equations, solution errors on the
order of 10 to 20 percent result for C,,, which shows the
largest sensitivity in this problem [37]. A major improve-
ment is obtained for b, = 1 in Eq. (15), as can be seen
from the constant charge curve [33], while still maintain-
ing qu(x, ¥} = a, . Far fewer equations are required by the
approximation equation (12), where only a, = 0 [36], as
shown in Fig. 5. Another important aspect especially for
the zero thickness conductors in this problem is the in-
crease of the charge density near the conductor edge.
This can be accommodated by choosing smaller cells
along the conductor edges. Figure 5 shows the improve-
ment which is obtained by choosing smaller cells along
the edge of the conductors. In [35] a singular term is add-
ed to the charge expansion of the form a, + a,(x — x,)”"*,
where x indicates the position of the sharp corners. The
solution obtained by this approach is also quite accurate
for a moderate matrix size. However, this type of charge
approximation does not improve the solution for what we
call the near conductor problem [37], which occurs if
overlapping conductors are placed in close proximity.
Large variations of the charges on the surfaces result, and
careful placement of the cells and higher-order charge ex-
pansions are helpful. It is important to note that the
charge expansion can vary for different cell locations.

Next, we include the finite dielectric interfaces shown
in Fig. 4 by an integral equation of the second kind in
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Figure 5 Coupling capacitance vs. number of equations: Curve
A—subarea [33]; Curve B—constant charge [34]; Curve C—edge
cell [34]; Curve D—reference [35]; Curve E—reference [36]. All
dimensions in the insert capacitance configuration are in mm.

terms of the total charge density q'(7) = g (7) + ¢°(7),
where ¢° is the bound charge and ¢" is zero for the dielec-
tric interfaces. Equations of this type have been derived
and tested for point matching (collocation) for electric
fields [28] and magnetic fields [43]. Further, another non-
physical integral equation is quite common [44]. We start
by computing the local electric field due to a charge den-
sity ¢"(7) at point 7 in Fig. 4,
qT
E -E, =2 (19)

€

The local electric field is symmetric, or £, = —E_,, and

thus the field contribution E, just outside the interface on
S, between the two dielectrics is

E = 2. (20)

The total electric field in the n, direction due to all
charges in the system is similar to Eq. (13):

E ( (r) Z z aj’mj a_.G_(_’l)_

8y a

b, (F)ds', @21
J#l

where 7 is assumed to be close to S,. Similarly, the total
field outside S, on the ¢, side is

[ WCET) ), #yds 22)
s, on

EF) = —E(F) + Z Z 4
e

a

in the n_ direction. The boundary condition for the free
charge is from 7 - D = ¢", which for the dielectric inter-
face yields

eE., — ¢FE

nb

and Eqgs. (21)-(23) yield

=0, (23)
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T

q
0=(ea+eb)2—€0

tla )X X a,

aG(F, F'
G(F r)bm

3 on,

(F)ds'. (24)

.
-

.

Using Eq. (12) for qT in the first term on the right-hand
side and with the definition R,, = (¢, — €, )(e, + eb)fl, Eq.
(24) is rewritten by using Eq. (12) for ¢":

a, b, (F)
n=1 ’
LA AG(F, ' o
+ 2€0Rab Z 2 aj,mj _(—)_bm(’_’ )ds', (25)
=1 m=1 s, om,
i
where i € {1, 2, - - -, N}. The final form of the integral

equation is obtained if we multiply Eq. (25) by b, and in-
tegrate over cell S;:

M

=2 a, J b, (P)b,(F)ds
n=1 ! S;
il z aG -’ P ' !
+ 2R, S S amj j SGET) by, (7 )dsds',
=1 m=1 8, JS; ana
i
(26)
for k € {1, 2, - - -, M}. We again write this as a matrix
equation by defining for i # j
oG, ) ,
fo= 250Rabj J S b b, (Fdsds’, @)
.k dvm s, S, ana
and the first term
£ = J b (F)b, (Pds, 28)

where the second integral leads to ‘‘diagonal-type’’ ele-
ments. The matrix equation for this case is written as

0=Fa, (29)

Thus, the total system of equations which includes both
conductor and dielectric interfaces is given by Egs. (17)
and (29) if all cells are included simultaneously:

HIHEH

The a_ coefficients are the unknowns for the dielectric in-
terfaces and the a coefficients are involved in the compu-
tation of the charges for the capacitances [Eq. (18)]. The
formulation equation (30) includes all the interfaces
shown in Fig. 4, and it represents a solution for a large
class of capacitance problems which will occur in pack-
ages like the one shown in Fig. 1.

(30)

It is evident from the above discussion that capacitance
computations can lead to sizable matrices [Eq. (17) or

(30)]. The computational complexity of the solution can
be estimated if we make simplifying assumptions about
the problem. We assume that the problem consists of
K + I conductors and finite interfaces, respectively, and
that both are square with » cells per side. Thus the num-
ber of unknowns is "”M(K + I) with M expansion terms
per cell according to Eq. (12). The time to compute the
matrix coefficients [Eqgs. (16) or (27), (28)] is of o[n*M*
(K 4 I)*]. If we choose charge expansions leading to sym-
metric matrices, the solution of the systems of equations is
of O[n*M*(K + I)*] for Choleski’s method [45]. Thus, for
small problems, the matrix element computation domi-
nates due to its complexity, while the solution of the sys-
tem of equations dominates for large problems. Further,
the solution time is greatly affected by n, which is the
number of cell divisions per conductor side.

The capacitance computation method presented here
yields another result which is useful for further under-
standing the interconnection problem for LSI and VLSI.
If we scale all dimensions in our capacitance formulation
[Eq. 30] by a factor «, the resultant capacitances will be
C' = aC, which is inverse to the scaled resistance consid-
ered in Section 2.

4. Inductance computations

Historically, inductance analysis was important in three
areas. Lumped coils were used in electronics applications
and microstrip lines in microwave circuits, whereas
power bus inductances were of interest in power engi-
neering applications. Today’s integrated circuit geome-
tries are more closely related to the physically large
power bus structures rather than the lumped coils used in
electronic circuits. For this reason the early work in
power system inductance computations is quite useful for
modern problems. For example, Grover [46] includes a
large number of references as well as formulas for hand-
type calculations.

The computation for two-dimensional geometries such
as long power busses or stripline-type geometries is con-
sidered in [47] and [48], respectively. These formulas
have applications in computer interconnections. Often,
two-dimensional approximations lead to valuable insight
into three-dimensional cases. Recently, several authors
have concerned themselves with three-dimensional in-
ductance computations for integrated circuit type geome-
tries. Specifically in [49], three-dimensional integrated
circuit inductances are computed via a building block ap-
proach. The building blocks, which are rectangular con-
ductors, are called partial conductors and the problem at
hand is subdivided into these conductors. In this ap-
proach, the so-called partial self- and partial mutual in-
ductances are computed from
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¢, rC .
J j ' J g dada,, (1)
Ay by

where the conductors k and m coincide for the partial self-
inductance. The conductor cross-sections are g, and a,,,
while the length coordinates b,, b, and c,, c,, represent
the endpoints as shown in Fig. 6. The inductances in Eq.
(31) are called partial inductances to distinguish them
from the inductances of the loops and other arrange-
ments.

By 1 J
Prm ;oo
dr a,a, J,, . |rbk ol

The effect of scaling down the inductance geometry by
a factor « can easily be observed from Eq. (31) by in-
troducing scaled variables. The result is that if the con-
ductor in Fig. 6 is reduced by « in all dimensions, its new
partial inductance is L;km =al, , which is of the same

b
form as the capacitances in Section 3.

For a system of partial conductors we come up with the
partial inductance matrix L, where in the s domain

V(s) = sL I(s). (32)

Inductances of the overall physical arrangement are com-
puted using network analysis where V, I are the branch
voltage and current, respectively. If we specify a set of
nodes in the partial inductance network, we compute the
inductance from

Vis)=s z Lp”I].(s), (33)
J=1

where I, = Ofor k #j, for L, € R™"_ Thus all currents are
set to zero, except for the source applied at the partial
conductor j while the voltage is measured at the terminals
of inductance L,

Inductances for shapes other than the partial conductor
in Fig. 6 have been considered in [50-52]. The current in
both the two- and three-dimensional partial conductor
cross-sections is assumed to be uniform. This yields low
frequency inductances, since it is well known that at very
high frequencies the current density is nonuniform. How-
ever, the effect of the nonuniform current density on the
inductance value is small if the distance between the con-
ductors is much larger than the cross-sections, and the
accuracy of the uniform current computation is often suf-
ficient for the entire frequency range.

An integral equation-circuit solution can be set up for
the solution of the skin effect or current redistribution
problem in the cross-section of two-dimensional con-
ductors [48, 53, 54]. The integral equation for the current
density for each of a set of two-dimensional conductors is
of the basic form
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Figure 7 Equivalent circuit for inductance per unit length.

19 + 12 { In|f - FlJ(F)da' = V(P), 349
o 27 .

where o is the conductivity and J the current density in
the conductor cross-section a. This can be transformed
into an equivalent circuit in the form of Fig. 7 by dis-
cretization. The solution of the frequency-dependent in-
ductance and resistance can be found from a set of equa-
tions which correspond to the circuit in Fig. 7, or

RI+sLI=V. (35)

If we rewrite Eq. (35) in state variable form in the time
domain,

4w _ L 'Ri(p + L} 36
4 - Ly Ri() + Lv(), (36)

we can see that an alternate solution method to the ho-
mogeneous equation can be stated as an eigenvalue prob-
lem,

—1
LRI = AL, 37)
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Figure 8 Voltage source model for transmission line.

where \ is the eigenvalue. The relative efficiency of the
solutions of the matrix solution compared to the eigen-
value solution depends on the numerical techniques and
the particular L  matrix. Details concerning the matrix so-
lution together with measured results for a two-dimen-
sional skin effect problem are considered in more detail in
this issue [48].

The three-dimensional skin effect problems can be
treated in a similar way by a three-dimensional integral
equation. Again, we will not give details here since this
issue includes a derivation [55], together with example
applications. Other examples of similar problems are giv-
en in [56-58]. We call the equivalent circuits which result
from the integral equation partial element equivalent cir-
cuits (PEEC), as opposed to the finite element solution of
Section 2. The solution in the time domain for the L/R
problems can be given in the form

- AT R+ Lp_d V([) 0

@ =} (38)
0 A i(5), L().

where the I (¢) are the forcing current sources and A is the
incidence matrix.

The case where R = 0 is very useful if the solution for
small ¢ is of interest [59]. This leads to a greatly simplified
problem, and hence larger problems can be solved. In the
future L, matrices larger than 1000 X 1000 will not be un-
common, as is evident from [55].

5. Electrical models and analysis

Electrical circuit models are key to the analysis approach
pursued here, and several advantages result from this ap-
proach. The interfaces among submodels like the digital
circuits or gates and the package models are in terms of
voltages and currents, which are measurable quantities.
The possible coupling among the submodels is specified
in terms of mutual capacitances and inductances. Ap-
proximations in terms of these variables are well known
to the design engineers, and a good understanding is ob-
tained of the purpose and functioning of the hardware.

From an analytical point of view, concepts are com-
bined from mathematics, electromagnetic theory and cir-
cuit theory. Besides the geometrical details of the inter-
connections, we must know what drivers and receivers
are connected to them, with appropriate electrical circuit
models or macromodels [9, 60, 61]. The interconnection
geometry can be viewed as a large boundary value prob-
lem, while the resistance, capacitance, and inductance
problems considered in the last three sections each repre-
sent only one aspect of the general problem. However,
complete methods or models include all three types of
elements.

Some of the early work in computer interconnection
modeling [62-73] concentrated on the transmission line
nature of the source to sink connections among the logic
circuits or gates. These models allow the prediction of
possible reflections with the waveshape distortion and
coupling among the lines. The analysis of larger inter-
connection nets prompted the development of ap-
proaches suitable for computer-aided analysis [74-78].
The key transmission line model in this approach is the
voltage source model shown in Fig. 8, which is based on
the method of characteristics from the theory of partial
differential equations. The reflected voltage in Fig. 8 is

ult — 1) = () — Z,), (39)
while the transmitted voltage is
u(t — 1) = u(t) — Zj@, (40)

where 7 is the delay and Z the characteristic impedance
VARS (L/C)". The lossless nature of this model restricts
its applications, and the inclusion of losses is the subject
of many papers [79-85]. For example, a resistance R in
series to the section of transmission line shown in Fig. 8 is
accommodated by defining new impedances Z; =Z, +
R/2 and Z = Z, — R/2. The new impedances in Fig. 8
are/Z 0+ as indicated, and the voltage source equations are

ut — ) = u,(t) — Z,i,(1) (41)
and
u(t —7) = u,t) — Z,i,(0). 42)

This model applies only to short resistive lines; exten-
sions for long lines are given in [80] and also in [79] for
multiple resistive transmission lines. Other authors have
made attempts to include the skin effect [81-84] in their
models. For example, in [83, 84] an approach which we
call the ‘‘synthesis technique’ is employed. Basically,
the impedance of a section of transmission line is ob-
tained from a complex subdivided model given by Eq.
(35). From this, simple frequency domain equivalent cir-
cuits are synthesized which exhibit the same frequency

IBM J. RES. DEVELOP. @ VOL. 23 ® NO. 6 ®« NOVEMBER 1979




behavior. These simple synthesis models are employed in
distributed-lumped lossy transmission line models.

Another important transmission line problem which re-
quires special attention is the propagation of signals on
high performance on-chip interconnections. As is shown
in Fig. 9(a), the silicon substrate represents a lossy
ground return plane for the signals on the wire. [t was first
shown in [85] that for e, < ¢ ; and ¢, << t; the structure
supports slow waves. Subsequent publications [84, 86-
89] provide further insight and models for the slow wave
problems. A simple physical model for the phenomenon
is given in Fig. 9(b). For a range of frequencies within the
pulse spectrum the capacitance of the equivalent trans-
mission line is given in Fig. 9(b) by the oxide capacitance,
which is large since 7__is small. Further, the inductance is
large since the current penetration or skin effect in the
silicon leads to a remote return path and a much larger
delay d = (LC)'? results, which is very undesirable.
Delays of 0.3 ns/cm are not uncommon.

In a general model we can have all combinations of
dominant circuit elements for R, L, and C depending on
the particular hardware configuration to be analyzed. The
case where R and C dominate is of importance for lower-
speed FET transistor circuits, and in [89] transmission
lines of this type are considered, while a two-dimensional
RC model is given in [90]. In a large class of problems the
complete three-dimensional nature, including L, R, and
C, must be taken into account. In [91] and [92] an integral-
equation-based equivalent circuit solution is given, lead-
ing to partial element equivalent circuits (PEEC). Three-
dimensional time domain or frequency domain solutions
are obtained if the PEECs are used in conjunction with a
general purpose network analysis program [93].

The PEECs are derived by summing all sources of elec-
tric field inside a conductor,

_ JF, 0 0A(F, ¢

B =100 % + Vo, 1), 3)
where EO represents an applied field. Both the vector and
scalar potentials A and ¢ respectively are expressed in

terms of integrals,

- LT} 1 -
Agn=3Y & J I, )y’ (44)
k=1 A Vi |F — 7|
and
-t K 1 ] - ’ ’
SF. 0= 3 ——j g 1), (4s)
= Ame Jy [P F

where K conductors are involved in the system. A deriva-
tion in [92] shows that Eq. (44) leads to partial induc-
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Figure 9 Wire on silicon and circuit model: (a) Cross-section of
wire on Si and (b) equivalent circuit model.
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Figure 10 Cell structure for PEEC.

tances of the form of Eq. (31). The derivation for the ca-
pacitance from Eq. (45) leads to a concept called partial
capacitance. Partial capacitance should not be confused
with the German *‘‘Teilkapazitaet,”’ which is used for the
usual multiconductor capacitances [ 14] for complete con-
ductors. Partial capacitances are required to represent
surfaces which become nonequipotentials under time do-
mains or high frequency excitation. Specifically, Fig. 10
shows a cell configuration similar to Fig. 3 where we com-
pute resistances (R;) and partial inductances (L, ) for
cells such as the one between nodes 3 and 5. Further, the
surface cells (solid line for node 5 and dash-dot line for
node 3) are capacitance cells which are electrically dis-
connected by an infinitesimal gap. Thus, the partial ca-
pacitance between them (Cpas) is finite and it can easily be
computed by the techniques given in Section 3. A PEEC
for the cells in Fig. 10 is shown in Fig. 11, where all non-
perpendicular inductances L, are coupled and the partial
capacitances are specified in terms of a short circuit ca-
pacitance matrix [14].
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Figure 11 PEEC for node 5.

The circuit analysis of PEECs is performed using a gen-
eral purpose program [93] for moderately sized problems.
However, it is obvious that the number of elements can
grow rapidly with the problem size. For example, the
number of partial capacitances is O(N”) for N nodes. Ad-
vantages can be gained by tailoring an analyzer to the in-
terconnection networks [94]. A circuit matrix for the
PEEC of Fig. 10 can be written with / being the time step,

vl V? Vii vvl V) Il 1 IL‘Z IL:{ IIA
8 s, C§ Cs CS
| 1 N S13 w S13 1
h h h h h
¢, ¢ C, C. C,
2 L) 2 2 25 0
h h h h h
¢, ¢ C_ C. C
3 a1 a2 Sz S34 2 |
h h h h h
¢, ¢ C. C. C,
4 41 Saz 43 Sa4 45 1
h h h h h
¢, €, ¢, ¢, €
5 51 52 _ Ss 55 - -1 -1 —1
h I h h h
BRI| -1 1 R + e
! 4 h
L
BR2 _ +1 R, + D22 Pay
1 2 h I
BR3 -1 +1 ; R, + —l—
: 1
BR4 -1 +1 R
h N h
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Figure 12 Unified modeling and analysis approach.

using a Modified Nodal-Tableap type formulation [12,
13]. The network is linear and the structure of the circuit
matrix is well defined [94]. Sparsity can be introduced in
the matrix by ignoring small coupling elements since only
relatively large voltages are of interest for the coupled
noise signal analysis.

In general, different models and analysis approaches
are combined [95] to find out whether a system meets the
design goals given in Section 1. Several circuit matrices
must be interfaced by using techniques [96] developed re-
cently for mixed multilevel macromodeling. These ap-
proaches are designed to allow the analysis of large elec-
trical networks. For example, we can use macromodels to
simplify problems in terms of resistances [Eq. (3)] or in-
ductances [Eq. (38)]. Substantial savings can be obtained
using this approach in a general situation. The analysis
approach for the interconnections of a complex hardware
system in terms of the techniques presented above is
shown in Fig. 12. Subgeometries or details are represent-
ed by what we call micromodels. Examples of inductance
micromodels are given in [55]. Analysis and synthesis
techniques are employed to abstract the global behavior
from the synthesis model. These models are employed in
conjunction with other models for the overall analysis, as
is shown in Fig. 12. The overall analysis is performed in
terms of macromodels as much as possible to reduce
computation time and to allow the analysis of very large
subportions of a hardware system.
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Finally, it is noted that the main topic of this paper is
analysis rather than design. Today’s analysis techniques
are presently evolving and are still incomplete. Since de-
sign relies on efficient analysis, we expect that design
techniques will be emerging in the future. Two examples
of design methods which involve interconnections in a
digital system are given in [97, 98].

6. Conclusions

The electrical analysis of hardware interconnections is a
new, evolving field. In this survey a coherent framework
for the solution of these problems is established which
draws on many different disciplines such as numerical
analysis, solution methods for boundary value problems,
and electromagnetic and circuit theory. Some of the tech-
niques used, like the inductance analysis of complex ge-
ometries, are well understood today. Problems with hun-
dreds of subconductors can be analyzed. The macromod-
eling of these large problems is an area which is presently
evolving. Other areas, such as capacitance computations,
are limited today to relatively small problems involving
less than one hundred subconductors. Thus, hardware
such as that illustrated in Fig. 1 must be analyzed in terms
of subproblems by the approach outlined in Fig. 12.
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