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Survey of Computer-Aided  Electrical  Analysis of 
Integrated Circuit  Interconnections 

In  the  last  decade  an  important  shift  has  taken  place  in  the  design  of  hardware with the  advent of smaller  and  denser 
integrated  circuits  and  packages.  Analysis  techniques  are required to ensure  the  proper  electrical  functioning of this 
hardware. In this  paper we give  a  coherent  survey of the  modeling  and  computer-aided  design  techniques  applicable  to 
solving  these  problems.  Methods  are  considered  for  the  computation of resistances,  capacitances,  and  inductances. 
Also,  an  extensive  list of references  is  given. 

1. Introduction 
In  the last decade  an important  shift has taken  place in the 
design of hardware with the  advent of smaller and  denser 
integrated circuits and  packages. Previously,  the hard- 
ware components consisted of both physically and elec- 
trically large discrete  components.  Stray  elements  and 
coupling among  the  components were small in most 
cases  and  the  interconnections  between  the  components 
were  electrically insignificant. The  corresponding electri- 
cal network  models  were highly decoupled  and the  net- 
work analysis matrices sparse.  This led to relatively 
simple analysis models and  techniques for the  electrical 
performance of these  systems. 

In  contrast, today’s high level of integration can lead to 
very large and complex systems with  extremely  small 
physical  dimensions. An electrical  analysis which ex- 
cludes  coupling  among the closely spaced  components is 
invalid. Further,  the  interconnections which once led to 
insignificant stray  elements  are now the main elements in 
the  equivalent circuits. Thus,  the circuit models for in- 
tegrated  circuit systems  are  extremely  complex, with 
highly coupled components. An electrical  analysis of 
these  models without computer-aided design (CAD) tech- 
niques is not possible,  especially for high performance 
systems. 

The  type of hardware designs  which  lend themselves  to 
miniaturization are microwave, digital- and analog-type 
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systems [ 1-41. Usually, the  overall dimensions of the rele- 
vant parts of a subsystem  for which a signal or coupling 
analysis is of interest  are small, less than a few  centime- 
ters.  Often, the highest frequency  component  contained 
in the signals which are propagating in the  system corre- 
sponds  to a wavelength which exceeds the  physical di- 
mensions of the  subsystem.  These small physical and 
electrical  dimensions in many cases make an  analysis 
with lumped  circuit models valid. 

The  type of analysis  required for a particular system 
depends  on  its performance and  purpose.  The  electrical 
analysis may become a very  simple one  for low speed OJ 

low frequency circuits  since the  reactance of the  capaci- 
tances is high and  the  inductances  are almost short cir- 
cuits.  Then a simple analysis may suffice which involves a 
few key capacitances,  resistances, or inductances. In 
contrast, complex  models are  required  to  represent high 
speed or high performance systems.  The signal transi- 
tions in very low speed digital systems may be in the mi- 
cro- or even millisecond range. At the  other  end of the 
spectrum, we may be concerned with the analysis of a 
Josephson [5] or MESFET [6] technology  where  the sig- 
nal transitions  are in the  picosecond range. 

A fundamental quantity which characterizes a particu- 
lar interconnection  technology is what we call the general 
impedance  level. It  is simply the  lossless  characteristic 
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impedance of the  “average”  connection in the  system, 

Typical  values of Z,  range from 5 to 200 ohms.  In 
lower-performance FET logic hardware  the devices are 
typically of a  higher  impedance than Z,, and thus  the ca- 
pacitance C is the dominant circuit  element. Bipolar tran- 
sistor logic hardware may exhibit impedances  on  the or- 
der of Z,, so that both C and the  inductance L are impor- 
tant.  Josephson  junctions exhibit a very low internal 
impedance and the inductance L becomes a dominant 
stray element. 

The computer-aided  electrical  analysis approach  pro- 
posed here is based on  electromagnetic field theory  and 
circuit theory.  The unknowns are  expressed in terms of 
voltages and  currents and this allows the use of well- 
known  circuit theory  concepts  and models. The inter- 
connection analysis of a system  consists of several  steps. 
First,  the  appropriate models of the circuit elements must 
be determined  and  the  capacitances,  inductances,  and  re- 
sistances must be  computed.  Then  an analysis is per- 
formed to obtain the signals of interest, namely the volt- 
ages and  currents, from which we  evaluate  the electrical 
operation of the  hardware being modeled. 

An illustration is given in Fig. 1 which includes all ele- 
ments of high performance integrated circuit hardware. 
The integrated  circuit  chips are placed on a chip carrier 
which is sometimes called a space  transformer,  since it 
transforms  the closely spaced  integrated  circuit  chip  con- 
nections to larger  connection points. In the  example 
shown,  the  connections  among  the chip carriers  are  es- 
tablished in the multi-plane board. A logic signal may 
start with an LSI circuit  located on  one chip in Fig. 1 and 
may be  received by a circuit located in the  other  chip. 
Thus,  the signal may be  delayed by both the integrated 
circuits and  the package. The major  contribution to  the 
average delay is due  to  the  circuits  for lower-performance 
systems, while the package  delay dominates  for  the  aver- 
age delay for high performance hardware. Typical  electri- 
cal  design criteria which must be met by a hardware de- 
sign can be  summarized as follows for  the example of a 
digital system: 

All signals in the system must meet the timing require- 
ments. 
The signal wave  shapes  must be within given toler- 
ances  since,  for  example, a  negative  transition in a 
positive signal may lead to  additional switching delay. 
Unwanted signal coupling between wires  must be  less 
than an  upper bound so that  the coupled signals do not 
cause improper switching of the logic circuits. 

In this paper we discuss different aspects of the electri- 
cal analysis. In Section 2 ,  resistance models and  analysis 
techniques are  discussed, while Section 3 is devoted  to 
capacitance  analysis.  Inductance is considered in Section 
4, while electrical models and  analysis methods are given 
in Section 5. 
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Figure 1 Example hardware. 
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Voltage transients  on voltage  distribution  wires  (and 
ground)  induced by switching  circuits  must  be limited 
to small fractions of the supply dc voltages. 
External electromagnetic disturbances should  not 
cause false switching of the digital circuits. 

Thus,  the  purpose of computer-aided electrical analysis is 
to  ensure  that  the  hardware  at hand  meets these  electrical 
design criteria. 

The  analysis of digital system  interconnections  encom- 
passes a wide spectrum of frequencies.  This is quite in 
contrast  to microwave systems, which usually operate  at 
a  few discrete  frequencies.  As a consequence of this, a 
mixture of static, quasi-static and  dynamic models is 
employed.  Quasi-static  models such  as lumped  equivalent 
circuits play an important  role in the  representation of the 
complex  physical  geometries. Further,  an analysis  with 
an incomplete model may lead to valuable  information 
without  solving the complete dynamic problem. An ex- 
ample of this is the analysis of a low  impedance  voltage 
supply system with an  inductance-resistance model as is 
discussed in Section 4. In contrast  to this, a complex  ca- 
pacitance-resistance model may suffice to  represent most 
parts of a low current, high impedance  FET package. 
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Eq. (1) can  be  expressed in terms of voltages, with Vij  = 

+i - +j, where j is  the ground node,  and 

I = GV, (3) 

628 

(a)  (b)  

Figure 2 Nodal grids: (a) rectangular, (b) triangular. 

2. Resistance  computations 
The  purpose of the  resistance  computation  for  the  inter- 
connections  and  the ground and voltage  supply planes is 
to  determine  whether  the  dc voltage drops along the  con- 
ductors  are within tolerable  limits. In  an  LSI  system,  the 
dc supply current  paths may require series resistances in 
the milliohm range for  the voltage drops  to be  tolerably 
small. Especially as  the  spatial dimensions are further  re- 
duced  for  VLSI,  an increase in resistance  results  and usu- 
ally the  current  per unit area  increases.  Thus  VLSI  com- 
pounds the  resistance problem. The effect of a decrease 
in size can easily  be  illustrated by the  resistance of a 
simple rectangular  conductor with the  resistance R = 

p l /w t ,  where p is the resistivity. If all spatial  dimensions I ,  
w, and t are reduced by a factor a ,  the new resistance is 
R' = R/a .  However, if the vertical thickness t is con- 
stant,  the scaled resistance  remains  the  same,  or R' = R .  
In this case,  the major VLSI  resistance problem is  due 
to  the  increase in current  density. 

The  geometries in the  resistance problem  can be  very 
complicated, consisting of planes and wires having com- 
plex shapes  as illustrated in [7]. However,  the  macro- 
model which results  as a solution of the  resistance  prob- 
lem for  the n terminal currents I and potentials + is sim- 
PlY 

I = G+, (1)  

where I, + E 3" and G E gnxn is  the indefinite short cir- 
cuit conductance matrix [8]. A macromodel is basically  a 
simplified terminal model which  allows the  analysis of 
even larger systems [9]. The ith  element of the  current 
vector I is found by integration of v . J = 0, or 

Zi = Is J . nds, (2) 

where J is  the  current density and S is a closed surface 
including a source of current Zj. We use + to indicate the 
indefinite matrix  potentials. If a ground  node is defined, 

The  best computational technique  for finding G de- 
pends  on many factors,  such as required  accuracy,  the 
conductor  shape,  and  the size of the problem at hand. The 
conductor geometry represents a very large boundary 
value problem.  The main approaches used for  the solu- 
tion of this  problem are  based  on differential equation [ 101 
or variational finite element [ l  11 formulations. Earlier, fi- 
nite differences  were expressed in terms of electrical 
models [lo] so that physical models could be used as a 
means of finding solutions. Today,  computer  solutions 
are  far  superior  due  to  the  increased  speed  and  storage 
capacity of large scale  computers. 

Chips and packages are usually  designed in a planar 
fashion and  the  conductor  thickness t is generally  small. 
Then a quasi-two-dimensional  solution with a uniform 
current along the  thickness suffices for most resistance 
computations. Figure 2 illustrates two  types of nodal 
grids for  the  conductor  surfaces  where  the nodal poten- 
tials are  the unknowns. The grid in Fig. 2(a) is used for 
finite differences and  for some of the finite element  solu- 
tions, while the triangular  cells in Fig. 2(b) are particular- 
ly suited for irregular boundary  interfaces.  The main dif- 
ference  for  the various  grids is the  order of the  potential 
approximation, which is of the  form 

+(x, Y )  = k ,  + k g  + k,y  + k,xy. (4) 

An additional term is included in Eq. (4) for  each  added 
node. As an illustration we will match  the potential at  two 
points A and B by the cell Ci shown in Fig. 3 and + ( x ,  y )  = 

k ,  + k,x. Then  the variation  inside Ci is 

The  current through cell Ci is measured by the  surface 
a - p with a length lap1 and  the  thickness t ,  with J = 

aE = - a(d+/dx). Thus Eq. (2) becomes 

1 I , = - -  - laD :: laPl a4 d y  = -- - 
4 ,  4 ,  ax ' 

(6) 

where  the  resistance  per  square  is Rs, = 1 / d .  Finally, 
obtaining a+/ax from Eq. ( 3 ,  

where the  conductance of the cell Ci is G,, = IapI/ 
[R,, (xB - x,)]. The  total  surface  for  the  current  computa- 
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tion of Eq. (2) for  node A is bounded by a-PY-8 in Fig. 3 
and  the  external  current may be injected at node A.  The 
modified nodal stamp [12] which enters  the  appropriate 
contributions in the circuit matrix  is 

Y 

From this it  is  easy  to collect all the  appropriate  contribu- 
tions  for  each  node. Specifically for node  A and all the 
neighboring  nodes the matrix stamp  is 

D. 

.C 

F Cell Ci 

.E 

Figure 3 Rectangular cell and  current surface. 
Elsewhere in this  issue [7] the triangular cell case is 

discussed,  where  the potential expansion is +(x, y )  = k ,  + 
k,x + k,y and  the  current  surfaces  are  the sides of the 
triangle. The  total nodal stamp  corresponding  to  Eq. (9) 
will have six entries  for this case.  Further, if we form a 
finite element with the  four  nodes  A, B ,  C, D in Figs. 2(a) 
and 3, the potential  function is given by Eq. (4), with all 
four  terms  present. 

domain for  the  resistance which consists of the con- 
ducting  bodies  only. In  contrast, coupling exists  outside 
the  conductors  for both capacitances  and  inductances. 

The  above discussion illustrates how the finite element 
equations  can be  formulated as a circuit  problem so that a 
modified nodal  matrix [ 121 or  tableau [ 131 is formed and a 
circuit analysis can be  performed.  Thus  the  method  can 
easily be  employed in conjunction with other circuit  ele- 
ments,  as will be  the  case in Sections 4 and 5 .  Further 
steps in the usual network analysis  are equation  ordering 
and  the efficient solution of the  sparse  equations.  Some of 
these  aspects  are discussed in [7] as well. 

3. Capacitance  computations 
Capacitance  computations  are of central  importance  for 
the  electrical  representation of interconnections.  For  ex- 
ample,  as  discussed in Section 1 ,  most connections  on 
FET  chips  are capacitive since  the  device  impedances  are 
generally  much  larger  than Z,. The  characterization of in- 
tegrated circuits (ICs) in terms of capacitance  matrices  is 
discussed in [14] and  the  importance of fringing for  the 
ever-decreasing  horizontal geometries is quantified in 
[15, 161 for  ICs  and  for microwave  circuits in,  for  ex- 
ample, [17, 181. 

The  circuit matrices formed by  stamping in contribu- 
tions of the  type of Eq. (9) are  extremely  sparse  and  the 
solution of systems with several  thousand  unknowns is 
feasible. Since most  practical problems  have only  rela- 
tively few  external nodes in the macromodel, the dimen- 
sions of Eq. (3) may be  very  small,  with n < 100. Thus, 
macromodels of the  type of Eq. (3) can be  formed sepa- 
rately for different parts of the  structure, and  they can  be 
interconnected by the joining of appropriate  nodes. 
Hence,  very large  problems are solvable by this  ap- 
proach. 

In most  applications, there  are  problems which can  be 
approximated by  two-dimensional computations.  Ex- 
amples  are transmission  lines  with a length  much larger 
than the cross-sectional dimensions  and spacings. In  fact, 
the first computation with an integral  equation matrix 
method of practical interest  was a two-dimensional strip- 
line problem [19]. Today, integral equation  methods  are 
in wide use  for  capacitance  computations [17, 18, 20-371 
and  advances  have been made  on different aspects of the 
techniques. 

Another application of the resistance model will be the 
resistances  and cell structure in partial  element equiva- 
lent circuits in Sections 4 and 5. However,  the finite ele- 
ment  solution represents a different approach  from  the 
partial element  techniques given  below for  capacitance 
and inductance.  The main difference between  these  prob- 
lems  and  the  resistance problem is  the restricted  solution 

In this paper we give a general integral equation formu- 
lation  applicable to both  two- and three-dimensional ge- 
ometries which unifies some of the  recent  developments 
and includes both finite and infinite dielectric  regions. The 
charge density in the  capacitance  problem  represents  sur- 
face  charge which is denoted by q(f) for  both 92’ and 9 2 3  so 
that  both  cases are included by  the  same formulation. 629 
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Figure 4 Conductors and dielectric interfaces. 

Here, all charges  are  represented in free  space with per- 
mittivity eo by the total charge  concept [38]. The  general 
problem can include finite curved  and infinite boundaries 
as well as  arbitrary  conductor  boundaries,  as is illustrated 
in Fig. 4. If  we consider K conductors  and Z finite inter- 
faces,  the  potential  at F is 

+(?) = J G(F, F’)qT(F’)ds’, (10) 

where S, and S, are  the  conductor  surfaces  and  the  inter- 
faces,  respectively.  Also, qT is the  total  charge  density 
with qT = qB + qF, where qB is the  bound  charge  and qF is 
the  free  charge. 

S K + ~ I  

All infinite interfaces are  taken  into  account by appro- 
priate  two- or three-dimensional Green’s functions. For a 
single dielectric  material G is simply Go@, i “ )  = -(2re0)-’ 
In li - i‘l in Wz and Go@, F ’ )  - (4re0(i - ?‘I)-’ in 3’. The 
extension of the Green’s function  to include infinite di- 
electric or conductor interfaces can be represented as 

G = 1 a,GOn. 

Usually  image theory is employed  to find both the image 
strength a, and  the spatial  location of the images Go”. 

n 

The  form of the images is given by Go and details of the 
image solution are given in [23-251 and [17,34]. We found 
that  the inclusion of up to  three infinite dielectric  regions 
is feasible  with Green’s  functions, while four or more re- 
gions  result  in a much slower solution. 

Next, all finite interfaces are divided into N cells as 
shown in Fig. 3, and  thus we can  rewrite  Eq. (10) as 

(1 1) 

In  the finite element  method of Section 2 we approxi- 
mated the potential by Eq. (4). In  contrast to this, we here 
approximate  the charge  density  in Eq. (11) by a similar 
approximation on  the cell Si, 

M 

q ; ( X ,  Y )  = c ai,mbm(X, Y )  
m = l  

- 
- + aj,px + aj,3Y + aj,4xY 

+ ai,$ + aj,6Y2, (12) 

where  the x ,  y are  representative of the surface  variables 
and usually  only a few terms  [Eq. (12)] are  present.  The 
definition of b, is evident from Eq. (12). The higher-order 
terms especially  lead to  complicated integrals over  the 
cell Sj. Inserting  Eq. (12) into Eq. (11) yields 

N M  

= 2 aj,m Is, GF, i‘)b,(i‘)ds’,  (13) 

where ajSm is representative of the unknown  charge den- 
sity. We first concentrate  on  problems without finite di- 
electric  interfaces and we derive  an integral equation of 
the first kind for this case which results in the solution of a 
matrix. Equation (13) is multiplied on both sides by b, 
where n E (1, 2, . . ., M } ,  and  we  choose ? to  be  located 
on cell Si with i E 11, 2, . . ., N}. Integrating over cell S, 
yields 

i=1 m = l  

N M  

$’in = C C ai,mPil,n,,,m~ (14) 
i=1  m = l  

where 

$‘i,, = I,, +(i.)bn(Ws (15) 

and 

P’ %IlJ.rn = Is, ls1 G(F, F’)b,(f)b,(F’)dsds’. (16) 

Again the only  unknowns in Eqs. (14)-(16) are  the 
since + is known on  the K conductor  surfaces. If we let 
i = I ,  2, . . ., Nand  n = 1, 2, . . ., M and  we replace the 
double  index pairs i, n and j ,  m with single indices k and 
w, we get  the matrix  system 

JI = Pp,, (17) 

where JI(k) and Ps(k, w )  are  the  appropriate  replacements 
for $I,, and Ps,,n,,,,, respectively. Once ap or equivalently 
ai,m is known by solving Eq. (17), we can find the  total 
charge on all conductors.  Since using the  total  charge 
concept [38] qF = e,qT, we can find the  free charge as 

Qr = 1 q;(i)ds = E ,  1 Is, bm(i)ds, (18) 

for j = 1, . . ., N .  Summing up  appropriate cell charges 
Q: on  the  conductors  we find the  capacitances of interest. 

M 

SI m=1 
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An efficient solution for  both  two-  and three-dimension- 
al geometries  based  on  the  above formulation is neces- 
sary  for a multitude of interconnection problems. In many 
practical cases  the problem analyzed is limited by the ca- 
pabilities of the analysis  tool. For  some problems  symme- 
try can  be exploited to  reduce  the  size of the Ps matrix in 
Eq. (17), as is discussed in [39]. In  fact, Maxwell [26] used 
symmetry  to obtain a manageable  solution for  the  capaci- 
tance of a square plate in free  space.  The formulation giv- 
en by Eqs. (14)-(18) corresponds  to  the Galerkin method 
if the  same approximation  function is used in n and m ,  
and  further, this approach is equivalent  to a variational 
solution [40-421. 

We chose  the  two  conductor  problems in Fig. 5 to illus- 
trate how the solution accuracy  and complexity are im- 
pacted by the approximations of the charge  and  potential. 
In this problem, both conductors  are  located  on a  dielec- 
tric sheet of E ,  = 10 with a thickness o f t  = 0.635 mm. We 
surmise the  exact  answer  to  be 450 f F ,  which may be 
somewhat in error.  However,  the  percentage  error, which 
is more accurate, gives an  understanding of the solution 
errors involved. In  the  subarea method [33] in Fig. 5 ,  
which corresponds  to point  matching or b, = 8(?) in 
Eq. (17), the  charge density [Eq. (12)] is  constant, or 
q;(x, y )  = aj,l. The matching points ? are  at  the  center of 
the cells. For about 100 equations, solution errors  on  the 
order of 10 to 20 percent result for C,,,  which shows  the 
largest  sensitivity in this  problem [37]. A  major  improve- 
ment is obtained  for bn = 1 in Eq. (15), as  can  be  seen 
from  the  constant charge curve [33], while still maintain- 
ing qT(x, y )  = uj,,. Far fewer equations are required by the 
approximation equation (12), where only a4 = 0 [36], as 
shown in Fig. 5. Another  important  aspect especially for 
the  zero  thickness  conductors in this problem is the in- 
crease of the charge  density near  the  conductor  edge. 
This can  be  accommodated by  choosing  smaller  cells 
along the  conductor edges. Figure 5 shows  the improve- 
ment  which is obtained by choosing smaller  cells  along 
the  edge of the  conductors.  In [35] a singular term  is  add- 
ed  to  the  charge expansion of the  form a ,  + a,(x - x ~ ) - ~ " ,  
where x. indicates the position of the  sharp  corners.  The 
solution obtained by this approach  is  also  quite  accurate 
for a moderate matrix  size. However, this type of charge 
approximation does not improve  the solution for  what we 
call the  near  conductor problem [37], which occurs if 
overlapping conductors  are  placed in close  proximity. 
Large variations of the charges on  the  surfaces  result,  and 
careful  placement of the cells and higher-order charge ex- 
pansions are helpful. It is important  to  note  that  the 
charge expansion  can vary for different cell locations. 

Next, we include the finite dielectric interfaces shown 
in Fig. 4 by an integral equation of the second kind in 

I 1 5  

INumber of equations 

Figure 5 Coupling capacitance vs. number of equations: Curve 
A-subarea [33]; Curve B-constant charge [34]; Curve C-edge 
cell [34]; Curve D-reference [35]; Curve E-reference [36]. All 
dimensions in the insert capacitance configuration  are in mm. 

terms of the  total charge  density q T ( Y )  = qF(Y) + qB(Y), 
where qB is the bound  charge and qF is zero  for  the dielec- 
tric interfaces.  Equations of this  type  have been derived 
and  tested  for point  matching  (collocation) for  electric 
fields [28] and magnetic fields [43]. Further,  another non- 
physical  integral  equation is quite common [44]. We start 
by computing the local electric field due  to a charge  den- 
sity qT(i) at point i. in Fig. 4,  

qT E - E  = -  
na nb 

EO 

The local electric field is symmetric, or E,, = -Enb, and 
thus  the field contribution E,  just  outside  the interface on 
Si  between  the  two dielectrics is 

The total electric field in the na direction due  to all 
charges in the system is similar to  Eq. (13): 

where i- is assumed  to  be  close  to S i .  Similarly, the  total 
field outside Si  on the eb side  is 

j#i 

in the na direction. The  boundary condition for  the  free 
charge is from v . D = qF, which for  the dielectric inter- 
face yields 

€,Ena - ebEnb = 0 ,  (23) 

and  Eqs. (21)-(23) yield 631 
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qT 0 = (Ea + Eb) - 
260 

Using Eq. (12) for qT in the first term  on  the right-hand 
side  and with the definition Rah = (ea - E~)(E, + e b ) - l ,  Eq. 
(24) is rewritten by using Eq. (12) for qT: 

M 

0 = c 
n=1 

N M  aG(Y, Y') 
+ 2EORah 2 2 ' j , m  Is bm(F')ds', (25) 

j = 1  m=1 I ana 
j # i  

where i E {1,  2, . . ., N } .  The final form of the integral 
equation is obtained if we multiply Eq. (25) by b, and in- 
tegrate over cell S i :  

0 = c ai,n Is, bk(~)bn(~)ds  
M 

n = 1  

(26) 

for k E {1,  2, . . ., M } .  We again write this as a matrix 
equation  by defining for i # j 

and the first term 

&,," = IS% b J 4 b n ( W s ,  (28) 

where  the  second integral leads  to "diagonal-type'' ele- 
ments.  The matrix  equation for this case is written as 

0 = Fsas. (29) 

Thus,  the  total  system of equations which includes both 
conductor  and dielectric interfaces is given by Eqs. (17) 
and (29) if all cells are included  simultaneously: 

The a, coefficients are  the  unknowns  for  the dielectric in- 
terfaces and  the a, coefficients are involved in the  compu- 
tation of the  charges  for  the  capacitances  [Eq. (18)]. The 
formulation  equation (30) includes all the  interfaces 
shown in Fig. 4,  and it represents a solution for a  large 
class of capacitance problems which will occur in pack- 
ages like the  one shown in Fig. 1 .  

It is evident  from  the  above  discussion  that  capacitance 
632 computations  can lead to sizable  matrices [Eq. (17) or 

(30)]. The computational  complexity of the solution can 
be estimated if we make simplifying assumptions  about 
the problem. We assume  that  the problem consists of 
K + Z conductors  and finite interfaces, respectively, and 
that both are  square with n cells per  side.  Thus  the num- 
ber of unknowns is n2M(K + I )  with M expansion terms 
per cell according  to  Eq. (12). The time to  compute  the 
matrix  coefficients [Eqs. (16) or (27), (28)] is of O[n4M2 
(K + Z)']. If we choose charge expansions leading to sym- 
metric matrices, the solution of the  systems of equations is 
of O[nsM3(K + Z)3] for Choleski's  method [45]. Thus,  for 
small problems,  the matrix element computation domi- 
nates  due  to  its complexity,  while the solution of the  sys- 
tem of equations dominates for large  problems. Further, 
the solution  time is greatly  affected  by n ,  which i s  the 
number of cell divisions per  conductor  side. 

The  capacitance computation  method presented  here 
yields another result which is useful for  further  under- 
standing the interconnection problem  for  LSI and VLSI. 
If we scale all dimensions in our capacitance formulation 
[Eq. 301 by a factor a ,  the  resultant  capacitances will be 
C' = aC, which is inverse to  the  scaled  resistance  consid- 
ered in Section 2. 

4. Inductance  computations 
Historically, inductance  analysis  was important in three 
areas.  Lumped coils  were  used in electronics applications 
and  microstrip  lines in microwave circuits,  whereas 
power  bus inductances  were of interest in power engi- 
neering applications.  Today's integrated  circuit  geome- 
tries  are  more closely  related to  the physically large 
power  bus  structures  rather  than  the lumped  coils  used in 
electronic  circuits. For this reason  the early work in 
power  system  inductance  computations is quite  useful for 
modern  problems. For  example,  Grover [46] includes a 
large number of references as well as formulas for  hand- 
type  calculations. 

The computation for two-dimensional  geometries such 
as long power  busses or stripline-type  geometries is con- 
sidered in [47] and [48], respectively.  These  formulas 
have applications in computer  interconnections.  Often, 
two-dimensional approximations lead to valuable insight 
into  three-dimensional cases.  Recently,  several  authors 
have concerned themselves with three-dimensional in- 
ductance  computations  for  integrated circuit type geome- 
tries. Specifically in [49], three-dimensional  integrated 
circuit inductances  are  computed via a building block ap- 
proach.  The building blocks, which are rectangular  con- 
ductors,  are called partial conductors  and  the problem at 
hand is subdivided  into these  conductors.  In this ap- 
proach,  the so-called  partial self- and partial  mutual in- 
ductances  are  computed from 
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where  the  conductors k  and rn coincide  for  the partial self- 
inductance.  The  conductor  cross-sections  are a, and a,, 
while the  length  coordinates b,,  bm, and c,, c, represent 
the  endpoints  as  shown in Fig. 6. The  inducbnces in Eq. 
(31) are called  partial  inductances to distinguish  them 
from the  inductances of the loops  and  other  arrange- 
ments. 

The effect of scaling  down the  inductance geometry by 
a factor a can easily  be observed  from  Eq. (31) by in- 
troducing  scaled  variables. The result is that if the  con- 
ductor in Fig. 6 is reduced by a in all dimensions, its new 
partial inductance is L 6 ,  = aLPkm, which is of the  same 
form as  the  capacitances in Section 3. 

For a system of partial conductors we come  up with the 
partial inductance matrix Lp, where in the s domain 

V(s) = sLpI(s). (32) 

Inductances of the overall  physical arrangement  are  com- 
puted using network analysis where V, I are  the  branch 
voltage and  current, respectively. If we specify a set of 
nodes in the partial  inductance network, we compute  the 
inductance from 

n 

VJs) = s 2 Lpt!j(s)' (33) 
I= 1 

where Z, = 0 fork # j ,  for L, E % n x n .  Thus all currents  are 
set  to  zero,  except  for  the  source applied at  the partial 
conductor j while the voltage is measured  at  the terminals 
of inductance Lp,,. 

Inductances  for  shapes  other  than  the partial conductor 
in Fig. 6 have  been considered in [SO-521. The  current in 
both  the two- and three-dimensional  partial conductor 
cross-sections is assumed  to be  uniform. This yields low 
frequency inductances, since it is well known that  at very 
high frequencies  the  current density is nonuniform. How- 
ever,  the effect of the nonuniform current density on  the 
inductance value is small if the distance  between  the  con- 
ductors is much larger  than the  cross-sections,  and  the 
accuracy of the uniform current  computation is often suf- 
ficient for  the  entire frequency range. 

An integral  equation-circuit  solution can  be  set  up  for 
the solution of the skin effect or current redistribution 
problem in the cross-section of two-dimensional con- 
ductors [48,  53, 541. The integral equation  for  the  current 
density for  each of a set of two-dimensional conductors is 
of the  basic  form 

a i  

Figure 6 Two partial conductors. 

I' 
P i  I ' 1  

d4.L - - 
L 

p22 '2 R 2  - 
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L 
p,,,, I,, R,, 
m =  

+ V 

Figure 7 Equivalent circuit for inductance per unit length. 

- 

(34) 

where u is the conductivity  and J the  current density in 
the  conductor  cross-section a. This  can be  transformed 
into an  equivalent circuit in the  form of Fig. 7 by dis- 
cretization.  The solution of the  frequency-dependent in- 
ductance  and  resistance  can be  found  from  a set of equa- 
tions  which correspond  to  the circuit in Fig. 7, or 

RI + sLpI = v. (35) 

If we  rewrite  Eq. (35) in state variable  form in the  time 
domain, 

di( t) 
dt 
" - -Lp'Ri(t) + Lp'v(t), (36) 

we can see  that  an  alternate solution  method to  the ho- 
mogeneous equation  can be stated  as  an eigenvalue prob- 
lem, 

LD'RI = AI, (37) 

IBM J.  RES. DEVELOP. 0 VOL. 23 NO. 6 0 NOVEMBER 1979 



& 
Figure 8 Voltage source  model for  transmission  line. 

where A is the eigenvalue. The  relative efficiency of the 
solutions of the matrix  solution compared  to  the eigen- 
value  solution depends  on  the numerical  techniques and 
the  particular L, matrix.  Details concerning  the matrix so- 
lution together with  measured results  for a two-dimen- 
sional  skin  effect  problem are  considered in more  detail in 
this  issue [48]. 

The three-dimensional  skin  effect  problems can  be 
treated in a similar way by a  three-dimensional  integral 
equation. Again, we will not  give details  here  since  this 
issue  includes a derivation [ H I ,  together with example 
applications. Other examples of similar  problems are giv- 
en in [56-581. We call the equivalent circuits which result 
from  the integral equation  partial element  equivalent  cir- 
cuits (PEEC),  as  opposed  to  the finite element  solution of 
Section 2. The solution in the time  domain for  the L/R 
problems can  be given in the  form 

where  the  Is(t)  are  the forcing current  sources  and A is the 
incidence matrix. 

The  case  where R = 0 is very  useful if the solution for 
small t is of interest [59]. This leads  to a greatly simplified 
problem, and  hence larger  problems can be  solved. In  the 
future L, matrices larger than 1000 x 1000 will not  be  un- 
common,  as is evident  from [55]. 

5. Electricar  models  and  analysis 
Electrical circuit models are key to  the analysis approach 
pursued here,  and  several  advantages result from this ap- 
proach.  The  interfaces among submodels like the digital 
circuits or gates  and  the package  models are in terms of 
voltages and  currents, which are measurable quantities. 
The possible  coupling  among the submodels is specified 
in terms of mutual capacitances  and  inductances. Ap- 
proximations in terms of these variables are well known 
to  the design engineers, and a good understanding is ob- 

634 tained of the  purpose  and functioning of the  hardware. 

From  an analytical  point of view, concepts  are  com- 
bined from  mathematics, electromagnetic theory  and  cir- 
cuit theory.  Besides  the geometrical  details of the inter- 
connections,  we must know what  drivers and receivers 
are  connected  to  them, with appropriate electrical  circuit 
models or macromodels [9,  60, 611. The interconnection 
geometry can be  viewed as a  large boundary value  prob- 
lem,  while the  resistance,  capacitance, and inductance 
problems considered in the  last  three  sections  each  repre- 
sent only one  aspect of the  general problem. However, 
complete  methods or models include all three  types of 
elements. 

Some of the  early work in computer interconnection 
modeling [62-731 concentrated  on  the transmission line 
nature of the  source  to sink connections among the logic 
circuits or gates.  These models  allow the prediction of 
possible reflections with the  waveshape distortion and 
coupling among  the lines. The  analysis of larger  inter- 
connection  nets prompted the  development of ap- 
proaches suitable for computer-aided  analysis [74-781. 
The key transmission line model in this approach is the 
voltage source model  shown in Fig. 8, which is  based  on 
the method of characteristics  from  the  theory of partial 
differential equations.  The reflected voltage in Fig. 8 is 

ur(t - T) = u,(t) - Zoi,(t), (39) 

while the  transmitted voltage is 

u,(t - T) = u,(t) - Zoil(t), (40) 

where T is  the delay  and Zo,the  characteristic  impedance 
Z, = (L/C)”’. The lossless nature of this model restricts 
its applications,  and  the inclusion of losses is the  subject 
of many papers [79-851. For  example, a resistance R in 
series to  the  section of transmission  line shown in Fig. 8 is 
accommodated by defining new  impedances Zi = Z, + 
R / 2  and Zi  = Z, - R / 2 .  The new  impedances in Fig. 8 
are/Zb as  indicated,  and  the voltage source  equations  are 

u,(t - T) = u,(t) - Z,i,(t) (41) 

and 

u,(t - T) = u,(t) - Z;i,(t). (42) 

This  model  applies  only to  short resistive lines;  exten- 
sions  for long  lines are given in [80] and  also in [79] for 
multiple resistive transmission  lines. Other  authors  have 
made attempts to include the  skin effect [81-841 in their 
models. For  example, in [83, 841 an  approach which we 
call the  “synthesis  technique” is employed.  Basically, 
the  impedance of a section of transmission line is  ob- 
tained from a complex  subdivided  model given by Eq. 
(35). F’rom this, simple frequency domain  equivalent  cir- 
cuits are  synthesized which exhibit  the  same  frequency 
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Wire behavior. These simple synthesis  models  are employed in 
distributed-lumped  lossy  transmission line models. 

Another important  transmission line problem  which re- 
quires special  attention is the propagation of signals on 
high performance on-chip interconnections. As is shown 
in Fig. 9(a), the silicon substrate  represents a lossy 
ground return plane for  the signals on  the wire. It  was first 
shown in [85] that  for E,, < eSi and to, << tsi the  structure 
supports slow waves.  Subsequent publications [84, 86- 
891 provide  further insight and models for  the slow wave 
problems.  A simple physical  model for  the  phenomenon 
is given in Fig. 9(b). For a range of frequencies within the 
pulse spectrum  the  capacitance of the equivalent trans- 
mission line is given in Fig. 9(b) by the oxide capacitance, 
which is large since to, is small. Further,  the  inductance is 
large since  the  current  penetration or skin effect in the 
silicon leads  to a remote  return  path  and a much larger 
delay d = (LC)"' results, which is very  undesirable. 
Delays of 0.3 ns/cm are not uncommon. 

In a general model we can have all combinations of 
dominant  circuit elements  for R ,  L ,  and C depending on 
the  particular  hardware configuration to be analyzed.  The 
case  where R and C dominate is of importance  for lower- 
speed  FET  transistor  circuits,  and in  [89] transmission 
lines of this type  are  considered, while a two-dimensional 
RC model is given in [90].  In a large class of problems  the 
complete three-dimensional nature, including L ,  R ,  and 
C ,  must be  taken into account.  In [91] and [92] an integral- 
equation-based  equivalent  circuit  solution is given,  lead- 
ing to  partial element  equivalent circuits  (PEEC).  Three- 
dimensional  time  domain or  frequency domain solutions 
are obtained if the  PEECs  are  used in conjunction  with a 
general purpose network  analysis  program [93]. 

The  PEECs  are derived by summing all sources of elec- 
tric field inside a conductor, 

(43) 

where E o  represents  an applied field. Both the  vector  and 
scalar potentials A and + respectively  are  expressed in 
terms of integrals, 

and 

(44) 

where K conductors  are involved in the  system. A deriva- 
tion in [92] shows  that  Eq. (44) leads  to partial  induc- 

Figure 9 Wire on silicon  and circuit model: (a) Cross-section of 
wire on Si  and (b) equivalent circuit model. 

Y 

C 
r 

Figure 10 Cell structure for PEEC. 

tances of the form of Eq. (31). The derivation  for the ca- 
pacitance  from Eq. (45) leads  to a concept called partial 
capacitance. Partial capacitance should  not  be confused 
with the  German "Teilkapazitaet," which is used for  the 
usual  multiconductor capacitances [ 141 for  complete  con- 
ductors. Partial capacitances  are required to  represent 
surfaces which  become nonequipotentials  under time  do- 
mains or high frequency excitation. Specifically, Fig. 10 
shows a cell configuration similar to Fig.  3 where we com- 
pute  resistances (R,) and partial inductances (Lp,,) for 
cells such  as  the  one  between  nodes 3  and 5. Further,  the 
surface cells (solid line for  node 5 and  dash-dot line for 
node 3) are  capacitance cells  which are electrically  dis- 
connected by an infinitesimal gap.  Thus,  the partial  ca- 
pacitance between them (Cp,,) is finite and it can easily  be 
computed by the techniques  given in Section 3. A PEEC 
for  the cells in Fig. 10 is shown in Fig. 11, where all non- 
perpendicular inductances Lp,, are coupled and  the partial 
capacitances  are specified i n  terms of a short circuit ca- 
pacitance matrix [ 141. 
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Conventional 

- - 
Figure 11 PEEC for node 5.  

The circuit  analysis of PEECs is performed using a gen- 
eral  purpose program [93] for moderately sized problems. 
However, it is obvious that  the  number of elements  can 
grow  rapidly with the problem  size. For  example,  the 
number of partial  capacitances  is O(N2)  for N nodes. Ad- 
vantages can be gained by  tailoring an  analyzer  to  the in- 
terconnection  networks [94]. A  circuit  matrix for the 
PEEC of Fig. 10 can be written  with h being the time step, 
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Figure 12 Unified  modeling  and analysis approach. 

using a Modified Nodal-Tableap type formulation [12, 
131. The  network  is linear  and the  structure of the circuit 
matrix is well defined [94]. Sparsity  can be introduced in 
the matrix  by ignoring small coupling elements  since only 
relatively  large  voltages are of interest for the coupled 
noise  signal  analysis. 

In  general, different  models and analysis approaches 
are  combined [95] to find out  whether a system meets  the 
design goals  given in Section 1 .  Several circuit matrices 
must be interfaced by using techniques [96] developed  re- 
cently for mixed multilevel macromodeling. These  ap- 
proaches  are designed to allow the  analysis of large  elec- 
trical networks.  For  example,  we  can  use macromodels to 
simplify problems in terms of resistances  [Eq. (3)] or in- 
ductances  [Eq. (38)]. Substantial savings can be obtained 
using this approach in a general  situation.  The  analysis 
approach for the  interconnections of a complex hardware 
system in terms of the  techniques  presented  above is 
shown in Fig. 12. Subgeometries or details are  represent- 
ed by what we call micromodels. Examples of inductance 
micromodels are given in [%I. Analysis  and synthesis 
techniques are employed to  abstract  the global behavior 
from the  synthesis model. These models are  employed in 
conjunction with other models for the overall analysis,  as 
is shown in Fig. 12. The  overall  analysis is performed in 
terms of macromodels as much as possible to  reduce 
computation time and  to allow the  analysis of very  large 
subportions of a hardware  system. 
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Finally, it is noted that  the main topic of this paper  is 
analysis rather than  design. Today’s analysis techniques 
are  presently evolving and  are still incomplete. Since  de- 
sign relies on efficient analysis, we expect  that design 
techniques will be emerging in the  future.  Two  examples 
of design methods which involve interconnections in a 
digital system  are given in [97, 981. 

6. Conclusions 
The electrical  analysis of hardware  interconnections  is a 
new, evolving field. In this survey a coherent  framework 
for the solution of these  problems  is established  which 
draws  on many different disciplines such  as numerical 
analysis, solution methods for boundary value problems, 
and electromagnetic  and  circuit theory.  Some of the  tech- 
niques used, like the  inductance  analysis of complex  ge- 
ometries,  are well understood  today. Problems with hun- 
dreds of subconductors can be  analyzed.  The macromod- 
eling of these large problems is an  area which is  presently 
evolving. Other  areas,  such  as  capacitance  computations, 
are limited today to relatively  small  problems  involving 
less  than  one  hundred  subconductors.  Thus,  hardware 
such  as  that illustrated in Fig. 1 must  be  analyzed in terms 
of subproblems by the  approach outlined in Fig. 12. 
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