A Numerical and Experimental Study of the Bistable-
Unstable Transition in Pressurized Flexible Disk Files

The bistable operating region of flexible disk files is limited at decreasing air flow rates by a transition at which undesir-
able gaps appear in the otherwise uniformly spaced disks of the pack. These spontaneous gaps, as opposed to the
externally controlled gaps of the bistable range, are a consequence of local air flow fields at the outer edge of the disks.
Experiments with external shrouds of various clearance showed axial periodicity in the occurrence of the gaps and
provided physical insight which led to quantitative numerical solution of the nonlinear fluid equations. Two scales of the
flow, i.e., the flow between individual disks and a peripheral unstable Couette flow, are found to couple in such a manner

as to delineate the transition.

Introduction

A flexible disk pack arrangement is illustrated in Fig. 1(a)
together with associated parameter definitions. The disks
are separated at the spindle by permeable mesh spacers
and the pack has rigid base plates mounted on each end
[1]. The entire assembly rotates about its axis with angu-
lar velocity Q and air is pumped through the pack at a
flow rate Q per disk. Figure 1(b) depicts three regimes of
different pack behavior first observed by McGinnis, Or-
lando, and Weidenhammer [1]. In the high-Q, or stable,
regime the pack closes itself after it is opened by exter-
nal means. In the mid-Q, or bistable, regime the closed
pack configuration is stable, but an opening in the pack
caused by external means is also stable. In the low-Q,
or unstable, regime the closed pack configuration is
not stable and the pack breaks up into subpacks with re-
duced disk spacing and open gaps. The critical flow rate
Q" that defines the transition from the bistable to the un-
stable regime, and the gap-subpack structure, depend on
several physical parameters of the pack. Experimental
designs for possible use in magnetic recording have em-
ployed external means to produce gaps while operating in
the bistable range to permit accessing of individual disks
with a recording head. From a design viewpoint, the bi-
stable regime is best defined by its lower boundary, i.e.,
the bistable-unstable transition line 0% vs. Q. The object

of this study is to identify the underlying physical mecha-
nism that causes the transition and to quantitatively de-
scribe the transition in terms of pack design parameters.

On the basis of experimental investigations, we con-
jecture that the formation of gaps at the transition is due
to an invasion of toroidal vortices into the spacing be-
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Figure 1 (a) Disk pack parameters; r, = inside radius; r, = out-
side radius; d = disk thickness; s = hub spacing; {} = rotation
speed; Q" = critical flow rate/disk; v = u/p = kinematic viscos-
ity of air; R = s°Q/v; &* = Q*/2mwrs°Q. (b) Stable, bistable, and
unstable regimes of Q-Q plane.
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Figure 2 Sketch of disk pack exit region of computation.

tween disks at the disk edges. Uniform disk spacing is
restored by blowing out or otherwise annihilating these
vortices. It is apparent that a theoretical description of
such a recirculating flow cannot be made on the basis of
boundary layer equations, but requires instead the elliptic
system of Navier-Stokes equations. The numerical solu-
tion of this problem has been previously obtained by the
authors [2]. Due to the large swirl Reynolds number,
rQ/v = 2.5 x 10° (for disks of radius r, rotating with an-
gular velocity  in air with viscosity v), we restricted our
analysis in [2] to a small exit region which is relatively far
from the rotation center (Fig. 2). Using an approximation
scheme, we derived equations with an effective Reynolds
number which was smaller than the one above by a factor
of ~10" to 10°. Computations were carried out in [2] for
several values of flow rate and Reynolds number. These
results depend, of course, on the boundary conditions as-
sumed for the small exit region. Considerable experimen-
tal and computational effort was therefore aimed at deter-
mining the correct downstream conditions at operational
rotation rates.

In the second section of this paper, we give a brief out-
line of the computation scheme employed in [2]. Then, in
the third section, we describe briefly the experiments that
were conducted in order to understand the flow field out-
side the disk pack. This information was necessary to
supply the appropriate downstream boundary conditions.
We concluded from these experiments that, when the
shroud is present, the flow between the disk pack and
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shroud has toroidal ring cells, as first observed experi-
mentally and described theoretically for flow between co-
axial rotating cylinders by Taylor [3]. These Taylor cells
occur as a result of an instability in circular Couette flow.
If the outer cylinder is fixed, circular flow is stable pro-
vided that the inner cylinder rotates slowly enough and/or
the spacing between the cylinders is small enough. Our
experiments led us to conclude that the downstream
boundary condition is determined in the case of a
shrouded pack by the Taylor cells. The exact downstream
flow for the shrouded pack can be determined quan-
titatively by numerical computation. As the shroud clear-
ance is increased, results appropriate to the unshrouded
pack are obtained.

In the fourth section, we use the numerical scheme of
(2], with appropriate modification, to calculate the flow
between a rotating disk pack and a fixed shroud, and
thereby we determine the downstream conditions for flow
in the pack. For this purpose we modeled the disk pack as
a rotating cylinder and obtained solutions for various
shroud clearances. The solutions obtained in this manner
exhibit the expected Taylor cells. These flow fields are
periodic in the axial direction, with a wavelength essen-
tially the same as the thickness of the subpacks. For small
clearance shrouds, we are near neutral stability for circu-
lar Couette flow and the Taylor cells are steady. This re-
sult was determined numerically and is found to be in
agreement with an extensive experimental study of Coles
[4]. When the spacing is increased, corresponding to in-
creased Taylor number, Coles shows that the Taylor cells
do not remain axisymmetric but become periodic in the
azimuthal direction, and the azimuthal harmonic waves
propagate in this direction with a speed considerably less
than that of the cylinder. At even wider spacing the flow
becomes turbulent. For these reasons, increasing diffi-
culty was encountered in computing flows for shrouds
with wider clearance. This means that we may not be able
to calculate directly the downstream boundary conditions
for the case of no shroud. Since the pack behavior is qual-
itatively the same for the shrouded and unshrouded
packs, and since the Taylor cells appear to supply the cor-
rect boundary conditions for the shrouded case, we ex-
pect that some axially periodic but time-varying structure
is present in the flow close to the disk edges even in the
absence of a shroud.

After this, in the fifth section, we use these calculated
downstream conditions to obtain, as in Ref. [2], numeri-
cal solutions corresponding to the exit region flow (Fig. 2)
between the disks. Then, in the sixth section, before con-
clusions are presented in the final section, we compare
numerically predicted behavior with the experimentally
determined bistability.
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Numerical solution for exit region flow—free down-
stream condition

Consider the disk pack configuration shown in Fig. 2. For
the purposes of the flow calculation we assume that the
disks are rigid and evenly spaced and that they rotate with
angular velocity ). We confine our attention to the small
exit region far from the center of rotation and assume ax-
ial periodicity. We start with the axisymmetric Navier-
Stokes equations for a viscous incompressible fluid. If «,
v, and w represent the cylindrical polar components of
fluid velocity relative to the rotating disk, we assume, in
the small exit region of Fig. 2,

u

ﬁ=ul+8u2+'--,

v

— =v, + v, + -,

58 -

w

5=w1+8w2+-'-, (D)

where s is the spacing between adjacent disks and

8 =s/r,<< L ()]
Changing to local coordinates by

r=r,+x=(s+ 8x)/8, 3)
we obtained in [2] the equations

v, ), +(wo), = R_l(vln + vlzz) — 2u,,

w, + Uw,), + W), = Ril(wln +to )- 2,

u, +w, =0,
I 12

W, =W, T 4)
Here, subscripted letters denote partial differentiation
with respect to dimensionless time #(r = £'Q2) and coordi-
nates x, z(x = x'/s, z = z' /s, primes being used for phys-
ical quantities) and the effective Reynolds number R is
defined by

R = 5'Q/v. (5)
We introduce the stream function i through
Uy =Y, w = =Y, (6)

so that the third equation of (4) is identically satisfied and
the last equation of (4) becomes

(1)1 = _(djrz + d’zz)' (7)

By use of (6), we can eliminate u,, w, in the first and sec-
ond equations of (4) and thereby obtain with (7) three
equations in v,, @, and ¥.

In order to solve the above equations in the small exit
region in Fig. 2, we employ finite difference methods.
This requires boundary conditions on the lines 1-4, 6 and
7. We must also choose the values a, » which determine
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the radial extent of the region in question. The value of R
corresponding to typical pack parameters of Fig. 1(a) is
R = 0.133, and on the basis of previous studies we expect
the values at x = —a/s to agree with the boundary layer
solution, i.e.,

u, = —6e(z* — 1/4),

v, = —eR(Z* ~ 5/4)2° — 1/4), at ©,
w, =0, = —e(4z® - 3z — 1}/2, o, =12z

(®
where
e = Q/Zwroszﬂ. ®

For the closely spaced pack rotating in an unbounded
fluid, we expect the values at x = b/s to correspond (un-
der certain conditions) to the steady circular flow field,
which appears in our variables as

u sl +d/s)", v =2x, w =0
! ' ! at@®. o

Y, =uz, o =0

Rather than force-match our solution to the values given
by (8), (10) at lines 6, 4, we used instead the ‘‘slow
change’’ free conditions

Y= = UIII:()at @,@ an

xT

and allowed the entrance and exit profiles to develop. We
could then compare the results with the expected profiles
(8), (10) and thereby obtain some indication that the radial
extent of our exit region was chosen sufficiently large. On
lines 1, 2 in Fig. 2, we used ‘‘no-slip’” conditions and on
lines 3, 7 we used symmetry, with ¢y = Oatline 3 and ¢ =
£/2 at line 7, to match the source strength. Readers inter-
ested in the details of the calculation procedure are re-
ferred to [2].

The value of the dimensionless flow rate parameter ¢,
corresponding to typical operating conditions, is £ = 0.7.
Figure 3 shows the results of the numerical computations
for R =0.133and ¢ = 0.7 (with a = s, b = 75/3) using four
graphs. In the upper right graph, the exit region stream
lines (dashed) and vorticity lines (solid) are given. The
interval values are indicated in Table 1, and the algebraic
sign is positive for dashed lines when the dashes have
equal length (negative for unequal length). The sign is
positive for solid lines when they are smooth (negative
when ticked). In the lower right graph are shown lines of
constant azimuthal velocity (dashed) and, again, vorticity
(solid). In the upper left graph, radial velocity profiles at
the inlet x = —1 (solid) and at the disk edge x = 0 (dashed)
are shown; and in the lower left graph, azimuthal velocity
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Table 1 Parameter values for exit region flow calculations.
Figure R =0.133 ® 1V} v, Remarks
€ v, Min Max Int Min Max Int Min Max Int
3 07 -2.0 -13.2 0.0 1/4 0.0 0.350 1/128 -4.62 0.0 1/8
4 0.0 ~2.0 —0.0188  0.00223 1/2048 —-0.0 0.00009 2-107° —4.66 0.0 1/8
5 0.00096 -2.0 -0.0373  0.00120 171024 0.0 0.00048 1/65536 -4.63 0.0 1/8
6 07 —2000.0 -313 1.36 1 0.0 0.350 1/128  —4667.0 0.0 128
17 0.7 -1000.0 -22.1 0.380 1/2 0.0 0.350 1/128  —2333.0 0.0 64
18 0.7 —1500.0 -26.4 0.792 1/2 0.0 0.350 1/128  —3500.0 0.0 64 ~ No shroud test
19 0.5 —-1700.0 -24.8 1.22 1/2 0.0 0.250 1/128 —3967.0 0.0 128
20 0.45 —1000.0 —-17.4 0.555 1/2 0.0 0.225 1/256  —2333.0 0.0 64 ~150and 500 mil
21 0.35 —1625.0 -21.5 1.35 1/2 0.0 0.175 1/256  —3792.0 0.0 64 )
22 0.2 —1000.0 -13.0 0.837 1/4 0.0 0.100 1/512 —2329.0 0.0 64 ~50-mil shroud
23 0.2 —200.0 -5.59 0.050 1/8 0.0 0.100 1/512 466.7 0.0 8
24 0.07 —100.0 -2.24 0.040 1/16 0.0 0.035 1/1024 233.3 0.0 4
25 0.047 -20.0 —-1.06 0.00013 1/32 0.0 0.0234  1/2048 —46.7 0.0 1
26 0.07 —400.0 -5.02 0.344 1/8 0.0 0.0361 1/1024  —938.0 0.0 16 ~15-mil shroud
27 0.15 —1300.0 —-14.9 1.24 1/2 0.0 0.0948 1/512  —3033.0 0.0 64
28 0.007 —2000.0 -19.3 2.33 1/2 -0.00005 0.103 1/512 —4671.0 0.0 128 ~3-mil shroud
29% 0.35% —1625.00 —1218.0 207.0 32 —0.00105 12.8 1/4 -3792.0 00 64 High R

440 *R = 1.33.
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profiles are shown with the same convention. We observe
that the profiles at x = —1 agree with those predicted by
(8). Also, the exit values indicated at x = 2.33 agree with
those predicted by (10); recall that these values were not
forced but resulted from the boundary conditions (11).
Next, we observe from the streamline plot that no re-
circulating *‘Coriolis’’ vortex occurs near the disk edge.
Note that only boundary layer vorticity due to through-
flow is in evidence. The radial velocity profile at the disk
edge x = 0 is essentially the same as the entrance profile
at x = —1. Thus, we conclude that the Poiseuille-type
source flow is much stronger than any tendency for recir-
culation for ¢ = 0.7 and R = 0.133.

In order to get an idea of the strength of a disk edge
vortex, we calculated the flow for ¢ = 0, i.e., for no cen-
tral air supply. The solution, illustrated in Fig. 4, clearly
indicates the disk edge vortex in the streamline plot as
well as an obvious extremum in positive (+) vorticity.
The radial profile shows no flow at x = —1 but shows the
centrally reversed flow at x = 0 associated with the Co-
riolis vortex. The values of stream function indicated in
Table 1 for Fig. 4 can be compared with those for Fig. 3 to
get an idea of the relative strength of the source flow to
the recirculating flow. One can see that the former is
roughly a factor of 10® stronger than the latter. Note, in
the lower left graphs of both Figs. 3 and 4, that the rela-
tive azimuthal velocity v, is almost zero at x = —1.

Next we determined how strong the source could be
and still have the disk edge radial profile affected signifi-
cantly by the vortex recirculation. Using the same bound-
ary conditions as before, we computed the exit flow for
R = 0.133 and ¢ = 0.00096. The results are shown in Fig.
5, where we see that no actual recirculation occurs, but
that the incipient effect of the Coriolis vorticity is in-
dicated by the centrally inflected radial profile at x = 0.
This slow region is associated with the relatively widely
spaced streamlines near x = 0.5, z = 0.

In our next numerical calculation we looked for exit
boundary conditions other than those given by (11),
which could make the disk edge vortex strong enough to
overcome the source flow for the experimentally deter-
mined values, i.e., for R = 0.133, ¢ = 0.7. Figure 6 shows
the results when all boundary conditions are the same as
before, except at x = 2.33, where we replaced v, = 0in
(11) with v, = —2000x. Physically, this boundary condi-
tion corresponds to a stationary coaxial cylinder with a
small radial clearance. On the other hand, it also repre-
sents any other external flow that could produce a strong
azimuthal velocity gradient. The result is a strong shear
layer at the disk edges, which retards the azimuthal flow
between the disks at the edge and thereby strengthens the

IBM J. RES. DEVELOP. & VOL. 23 @ NO. 4 & JULY 1979

3500

3000[—

(8]

2 500

T
LA

N

2000

15001

T

1000

-

o

500

Critical flow rate per disk spacing (mms/s-disk)

1 1 ! 1 1 1 1 1 |

1 1 1
1000 1 500 2 000

Rotational speed (rpm)

Figure 7 Critical flow Q* (per disk) as a function of rotational
speed ). O, s/d = 0.278; @, s/d = 0.556.

associated vortex. Figure 6 shows these flow features and
indicates clearly that the disk edge radial profile is cen-
trally inflected even for the source strength of ¢ = 0.7.

We concluded from these numerical results that the
downstream boundary condition is a crucial ingredient in
our attempt to describe quantitatively the disk pack insta-
bility.

Experimental study of bistability transition and
external flow for shrouded and unshrouded disk
packs

We have seen in the previous section that the flow in the
exit region between disks depends very much on the
downstream boundary conditions. In order to gain a bet-
ter understanding of the flow just outside the disk pack,
we conducted several experiments in which we studied
the bistability transition for different disk spacing to disk
thickness ratios, s/d, for packs with stationary coaxial
shrouds of various radial clearances.

To demonstrate that the bistability transition is due to
the air flow and not due to a structural instability, we
measured the critical flow rate Q* for two different packs,
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ance at {} = 1500 rpm.

one with s/d = 0.278, the other with s/d = 0.556, both
having the same spacers. The results are shown in Fig. 7,
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where Q% is plotted as a function of rotation speed (). We
see that the critical flow rate is essentially the same for
the two packs, and thus conclude that the controlling fac-
tors are the flow characteristics and not the structural fea-
tures of the pack.

Next we studied the bistability with different coaxial,
stationary, perforated shrouds. We used shrouds with
radial clearances of 500, 150, 50, 15, and 3 mil (12.7, 3.81,
1.27, 0.381, and 0.0762 mm). The critical flow rate Q*
was measured for each as a function of Q. The results are
shown in Fig. 8, where we see that the critical flow rate
decreases substantially as the radial clearance decreases.
Figure 9 shows a cross plot of O* versus shroud spacing
at 1500 rpm. The results indicate that less airflow through
the disks is required to stabilize the disks as the clearance
between the pack and shroud is reduced. Since the
shrouds were perforated, ambient pressure was main-
tained in the annular region between the disk pack and
shroud. Thus, the cause for the reduced critical airflow
requirement must be related to the effect of the shrouds
on the flow field in the annular region. We also observed
that no instability was present, even at zero flow rate, for
co-rotating shrouds.

The next experiments were an attempt to observe and
measure the flow velocities just outside the disk pack.
Quantitative measurements are extremely difficult since
the variations are superimposed on a much larger azi-
muthal vélocity field. We obtained some qualitative as-
pects of the flow by use of visual smoke tests and hot wire
measurements. The smoke from burned kerosine was in-
troduced into the central air supply and forced through
the disk pack. We observed that the velocity field was
generally very unsteady, showing bursting of vortices at
relatively small distances from the pack. A similar con-
clusion was also drawn from the hot wire anemometer
data. A typical anemometer trace is shown in Fig. 10(a),
for which the probe station was 40 mil (1 mm) from the
disk edges and centered on a stable, unshrouded pack.
The time variations of the modified carrier signal clearly
show the unsteady flow field at this location. As the probe
is moved away from the disk pack, we observe a decrease
in the magnitude of the fluctuations [Figs. 10(a)-(d)];
however, the time-dependent character of the flow is es-
sentially unchanged. When the 500 mil (12.7 mm) clear-
ance stationary shroud was attached, a dramatic decrease
in the fluctuation magnitude was observed [Figs. 11(a)-
(d)]. Figure 12 shows the results for the unshrouded pack
in the unstable, opened condition. Here we see a pulsat-
ing, apparently turbulent flow characterized by vortex
shedding. The magnitude of these fluctuations is much
less dependent on the radial position than was observed
for the closed pack condition.

IBM J. RES. DEVELOP. e VOL. 23 @ NO. 4 e JULY 1979




I 200 ms —

1500 RPM 20m8 1500 RPM 20mS

(YR
‘45#‘ B

4" ” “' ‘v, W
!0

(b)

sv 1500 #PM 1500 RPM 20mS

|
‘- I \‘ 6! ‘
v 'l‘h"gpwj‘ W
200my  XJY2 45 A ?DOMV X3Y0 45 &

(d)

Figure 10 Hot wire probe data for unshrouded disk pack at dif-
ferent radial positions. Distance of hot wire probe tip from pack
circumference: (a) 40 mils (1 mm); (b) 150 mils (3.81 mm); (c)
600 mils (15.24 mm); and (d) 1440 mils (36.58 mm).

With these experiments we have established that the
presence of a shroud stabilizes the flow field just outside
the disk pack and, at the same time, reduces the critical
air flow rate. We can conclude that knowledge of this
outer flow field is necessary for providing us with realistic
downstream boundary conditions for our numerical com-
putations of flow in the exit region.

Numerical solution of flow between rotating disk pack
and stationary shroud

In Ref. [5] we used Eqgs. (4)-(7) to obtain the flow field in
the annular region formed between the disk edges and a
fixed shroud. The radial extent b of this region was as-
sumed to be small compared to the disk radius r,. For our
calculations, we modeled the disk pack as a cylinder of
radius r, [which may have outflow given by u(r)) = U].
Figure 13 shows a sketch of the rotating cylinder and
fixed coaxial shroud. (It should be noted that the shroud
clearance b in this section and in Fig. 13 is unrelated to
the exit region dimension b in Fig. 2.) Figure 13 also
shows the region of computation in the r, z plane in which
the axial extent is usually taken as 2b. The equations
given in the second section apply to this problem with
slight modification. In all the nondimensionalizations we
replace s in (1)-(5) with b. The dimensionless coordinates
of the computation region are also shown in Fig. 13.

As a preliminary to these numerical calculations, we
first consider the exact axisymmetric steady solution for
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Figure 11 Hot wire traces for different radial positions for disk
pack enclosed by 500 mil (12.7 mm) clearance shroud. Distance
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(0.762 mm); (b) 140 mils (3.55 mm); (¢) 280 mils (7.10 mm); and
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Figure 12 Hot wire trace for unshrouded pack in unstable
(opened) mode: probe at 1.44 in. (36.6 mm) from disk edges.
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laminar Couette flow between porous cylinders with a
central supply. Setting u = u(r), v = v(r), w = 0, u(r,) =
U, vlr,) = r,Q, and v(r, + b) = 0, we obtain the following
flow field relative to inertial coordinates (see [2], Section
2):

u= l/ro/r, r—:ﬁ = Ar™ + B! 12)
where
_ ro_(N+l) B _ r (1 + 8)N+2
A+8"* -1 A+o¥r-1"
N = Ur,/v, = bfr, (13)

D. B. BOGY ET AL.

In the perturbation form of the second section, relative to
rotating disk coordinates, these results appear as

1+ -1
S Y NI i R

If N8 = 0(1), no further simplification can be made in (14);
but if N6 = 0(8), then (14) can be approximated by

v, = =7 + 2. (15

This form gives v, independent of U and implies that the
blowing has no eﬁ“e;:t on v, unless N = 0.

Figure 14 shows v, vs. x for 8 = 0.025 and for N equals
10 and 100, as computed from (14) and compared with
(15). It may be observed from the last section that N = 75
for the pack break-up flow rate when the shroud is such
that 8 = 0.025. Note that the gradient of v, is reduced near
the inner cylinder, and some stabilizing may be expected
with blowing if the external flow remains this simple. It
will subsequently be shown, however, that the external
flow change is more drastic with the onset of instability of
this shear layer.

Taylor {3] showed that the laminar circular flow given
by (12)-(13) is unstable (for U = 0) when certain critical
conditions are satisfied. Rosenhead [6], p. 500, gives the
critical Taylor number as

T, = (-4AQb* V"), = 1,707.8, (16)
where
Q,=9/2, A=-0/[(1+38"-1] 17

for the case of a fixed outer cylinder and 8 << 1. This
gives

T =rb*Q*/v* = R*/5, R = bQ/v, (18)
0

for our configuration. Thus we expect that when the
shroud clearance b exceeds a critical value b, Taylor
cells will occur at our operating conditions. For all other
parameters fixed, (18) gives T proportional to b°.

We used an experimental study of Couette instability
by Coles [4] to get some indication of what we should
expect for our somewhat related configuration. For b <
b, the solution (12)-(13) is stable, while for b > b__ vari-
ous alternatives are expected to occur. There is a small
range of b for which the Taylor cells may be ‘‘singly peri-
odic,” i.e., independent of the azimuthal coordinate. For
larger values of b the solution may be *‘doubly periodic,”
indicating that the solution is not axisymmetric. As b in-
creases further, the flow is ‘‘transitional”” and then ‘‘tur-
bulent.’’ It should here be emphasized that Coles [4] kept
b fixed and varied () to observe the different regimes. We
are interested in corresponding regimes when € is fixed
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and b varies. Also, Cole’s results are for small r, and
hence serve us here only as a qualitative guide.

In Ref. [5] we solved (4)-(7) numerically for the Rey-
nolds number R given by (18), rather than (5), for the re-
gion identified in Fig. 13. The boundary conditions used
were (15) with U = 0, namely

u =0, v]=0, w, =0 at x = 0;
u, =0, vl=—(6—1+2), w, =0 atx = 1;
periodicity at z = 0, 2. (19)

Various initial conditions were employed. These numeri-
cal calculations were made primarily for use as down-
stream boundary conditions in the exit region computa-
tions of the second section. The results showed a strong z
dependence of the flow field near the inner cylinder. In
addition, the solutions were quite unstable for the cases
of b = 150 and 500 mil (3.81 and 12.7 mm). The gradient
v, near x = 0 is the quantity needed for determining our
boundary condition, and the maximum and minimum val-
ues (over z) of this quantity appear to be fairly stable, as
indicated in Fig. 15 even when the general flow field is
rapidly changing. We note that the absolute value is at
first very large as a result of the strong gradient of the
impulsive start initial condition. The gradient rapidly de-
creases as the strong shear layer diffuses outward. It then
begins to increase as the cellular structure starts to form,
and remains nearly constant until another cellular struc-
ture becomes dominant. On the basis of these results, we
see that the steady values of max |”1I' are about 900 for

b = 150 mil (3.81 mm) and about 1000 for 4 = 500 mil
(12.7 mm). The corresponding minimum gradient values
were found to be about 100 for all shroud clearances (Fig.
16). The main conclusion to be drawn from the computa-
tions heretofore summarized in Figs. 15 and 16, based on
calculations in [ 5], is that the maximum and minimum val-
ues of |v I along the inner cylinder are almost indepen-
dent of the shroud clearance once this clearance exceeds
a certain value (about 50 mil in Fig. 16). Thus the values
calculated for the widely spaced shroud are applicable to
the unshrouded disk pack. We use these values for the
exit boundary conditions in the next section.

Numerical solution for exit region flow —axially vary-
ing shear layer downstream condition

In the second section, we showed that a steep azimuthal
velocity gradient at the downstream boundary of the exit
region could lead to disk edge vortices strong enough to
overcome the outward flow and to cause recirculation be-
tween the disks near their edges. In the previous section,
we showed that the flow outside the rotating disk pack is
characterized by values of v, near x = 0 (i.e., near the
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Figure 16 Dependence of max and min v, | at x = 1/200 on
dimensionless shroud clearance §.

disk edge), which are of the appropriate magnitude to
cause the recirculation. Furthermore, this gradient has a
somewhat periodic variation in the axial direction between
its maximum and minimum values. For the operating con-
ditions of interest, we obtained the max and min values of
lv, I at x = 1/200, as shown in Fig. 16. Rather than use
these values exclusively as downstream boundary condi-
tions, we performed numerical calculations of the type in
the second section for various values of exit velocity v,
and source strength ¢, all for R = s°Q /v = 0.133, the value
associated with the disk spacing. The basic premise un-
derlying these computations was that the azimuthal ve-
locity gradients at x = 1/200, computed in the last section
for a rotating cylinder, determine the downstream bound-
ary value of v, for the closely spaced disk pack. Referring
to Fig. 2 and Eq. (11), we replace the boundary condition

v, = 0 at line 4 of the exit region with

v, = (v, )(b/s) at @, (20)

1

where b here refers to the dimension shown in Fig. 2, and,
as in the second section, we chose b/s = 7/3 in all the
computations. The initial v, field was chosen as v, = 0 for
x < 0and ”1(”1,)" for x > 0. The results of the exit region
flow computations using these boundary conditions are
shown in Figs. 17-28. In studying these figures, we can
get an idea of the effect of ¢ and v, _on the exit region flow
field. Figures 17 and 18 show the results for ¢ = 0.7 and
v, = = —1000 and — 1500, respectively. As observed pre-
v1ously in Fig. 3, the flow for v, = —2 shows no disk edge
vortex and, furthermore, the rad1a1 profiles at x = —1 (in-
let) and x = 0 (disk edge) are parabolic and very similar.
On the other hand, the results for v, = —1000 (Fig. 17),

— 1500 (Fig. 18), and —2000 (Fig. 6) show an influence of
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Figure 19 Same as Fig. 17 except ¢ = 0.5, v, = —=1700, ¢t =

0.0625.
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Figure 21 Same as Fig. 17 except ¢ = 0.35, v, = —1625,1 =
0.0625.

the disk edge vortex on the flow. There is a slight central
inflection of the disk edge (x = 0) radial profile for v,
~-1000 (Fig. 17); it is somewhat more inflected for v, =
— 1500 (Fig. 18), and still more inflected for v, = —2000
(Fig. 6).
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Figure 20 Same as Fig. 17 except ¢ = 0.45, v, = —1000, ¢t =
0.0625.
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Figure 22 Same as Fig. 17 except ¢ = 0.2, v, = —1000, ¢ =
0.0625.

Figure 19 shows the flow field for the weaker source
= 0.5 with v, = —1700. The disk edge vortex effect is
stronger than for the & = 0.7 results just discussed. The
radial disk edge profile (x = 0) is more inflected at the
center. Figure 20 gives results for ¢ = 0.45, v ,, = —1000.
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Figure 25 Same as Fig. 17 except ¢ = 0.047, v, = -20,t =
0.046.
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Figure 26 Same as Fig. 17 except ¢ = 0.07, v, = —400, t =
0.0625.
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Figure 27 Same as Fig. 17 except ¢ = 0.15, v, = —1300, ¢
0.0625.

These results are similar to those in Fig. 18 for ¢ = 0.7
v,, = —1500. Figure 21 has parameters ¢ = 0.35, v,
—1625. The central inflection is more pronounced than in
Fig. 20. Similar results are obtained in Fig. 22 for e = 0.2,

v, = —1000.

1

IBM J. RES. DEVELOP. e VOL. 23 ® NO. 4 ¢ JULY 1979

=500 0 —1 —0.5 0 0.5 1 1.5 2

Distance (non-dimensional units)

Figure 28 Same as Fig. 17 except & = 0.007, v, = —2000, 1 =
0.0625.

When e = 0.2, v,, = —200 (Fig. 23),e = 0.7,v, = — 100
(Fig. 24), and £ = 0.047, v, = —20 (Fig. 25), the results
are similar to those in Fig. 17. When ¢ = 0.07 and v, =
—400 (Fig. 26), the central inflection at x = 0 is quite pro-
nounced, but when ¢ = 0.15 and v, = —1300 (Fig. 27),
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Figure 30 Lines of constant ratio n = «,(0, 0)/u,(0,
&v, plane for R = 0.133, 5/d = 1.5.

—1) in the

the disk edge radial profile shows the onset of central
backflow. In Fig. 28, ¢ = 0.007, v, = —2000 and we see
strong central backflow as in Fig. 4 for ¢ = 0.

Figure 29 with R = 1.33 is included to show the effect of
increasing R by a factor of 10 from the results in Fig. 21.
The results in Fig. 21 were also computed with Fig. 29 as
the initial condition to confirm that the same solution
would be obtained from different initial conditions. The
Fig. 29 result as well as those in [2] indicates that stronger
backflow is associated with larger values of R (which in-
creases with spacing s), suggesting, of course, that once
an opening is initiated it promotes a further tendency to
open.

Comparison of numerical solution with experimental
observations

The numerical results described in the previous section
indicate that similar flow fields in the exit region can be
associated with the solutions for different sets of values of
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¢ and v, . We can take as a measure of the effect of the
disk edge vortex on the exit region flow the ratio n de-
fined by

n = 1u,(0, 0)/u 0, —1). @

Figure 30 was prepared from Figs. 3, 6, 17-29. The ratio n
heretofore described was computed from each of these
figures and recorded at the proper point on the & vs. v,
graph in Fig. 30. Interpolation between these points al-
lows us to determine straight lines of constant ratio n. All
the lines must go through the origin and all the data calcu-
lated fit into the straight ray interpolation, as shown. (The
reason why these lines should be straight is not apparent.)
We observe that this particular graph represents the re-
sults only for R = 0.133 and with a disk gap to thickness
ratio s/d = 1.5. We see that n < 1 (about 0.925) every-
where along the vertical axis, and that » is zero along the
ray that goes through £ = 0.15, v, =~ 1300 (Fig. 27). All
lines of negative ratio represent some central backflow in
the disk edge profile. The ratio n = —oc is along the hori-
zontal axis; » = —31 occurs on the ray that passes
through ¢ = 0.007, v, = —2000 (Fig. 28). When the ratio
is about 0.8 (Fig. 17), the disk edge profile appears weakly
inflected by the edge vortices. When the ratio is less than
0.5 (Fig. 21), the disk edge profile appears strongly in-
flected.

The two solid circles with bars in Fig. 30 show the ap-
proximate measured critical flow rate (=0.35), for fixed
shrouds (Fig. 9), plotted against the maximum steady v,
as computed in the last section and plotted in Fig. 16 for
b = 150 and 500. The solid square in Fig. 30 shows the
same flow rate plotted against the corresponding (and
common) minimum steady v, - The qualitative appear-
ance of flow fields and profiles expected with these values
of ¢, v, can be deduced by looking at the figures corre-
spondinrg to the &, v, pairs which produced, through nu-
merical computation, the ratio n closest to the ratio ray
that passes through the points of interest. Thus, Fig. 6
(n = 0.629) and Fig. 20 (y = 0.70) correspond to the maxi-
mum gradient for » = 150 and 500 mil (3.81 and 12.7 mm),
while the minimum gradient would look somewhat like
Fig. 25 (n = 0.873). The max gradient fields have the ratio
n = 0.65 and the min gradient fields have n = 0.90 for & =
0.35.

Conclusions

Experimental investigations have shown that the disk
pack transition from the bistable to unstable regime which
occurs when the air flow rate is decreased to Q" is due to
the flow characteristics at the disk edges.

Numerical calculations for the flow in the outer region
of the pack have confirmed that backflow into the disks
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can be controlled by the outflow rate. The required rate
depends strongly on the external flow conditions.

Calculation of the external flow for various shroud
spacings reveals that the outer flow field exhibits strong
axial variations. These variations are of sufficient magni-
tude to account for the pack breakup in accordance with
the exit region recirculation hypothesis. For wide shroud
spacing the azimuthal velocity tends to form an unstable
boundary layer at the disk edges that locally shoots out
azimuthal vorticity. At these locations the boundary layer
temporarily loses its strength and thereby causes strong
axial variations.

The axial variation in the boundary layer gives a corre-
sponding axial variation in the downstream boundary
condition for the pack flow. Since the outflow rate re-
mains the same for all disks, this causes an axial periodic-
ity in the disk edge flow recirculation. The recirculation is
strongest where the external shear layer is strongest
(highest magnitude of ”;,)- The pressure between the
disks is also highest where the external boundary layer is
strongest. Disk spacing tends to increase in the high pres-
sure regions and decrease in the low pressure ones, and
the recirculation becomes stronger at the wider spaced
disks and weaker at the closer ones. Thus, the pack
break-up mechanism is self-strengthening, and the result
is a collapse into the subpack-gap configuration.
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The numerical results are in excellent quantitative
agreement with the experimental observations. They pre-
dict not only the correct order of magnitude for the criti-
cal flow rate but also the axial periodicity of the instabil-
ity. Predictions for a wide range of physical parameters
are possible using the discussed two-stage model.
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