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A Numerical  and  Experimental  Study of the  Bistable- 
Unstable  Transition  in  Pressurized  Flexible  Disk  Files 

The  bistable operating  region offlexible  diskfiles  is  limited  at decreasing airflow  rates by a  transition  at which  undesir- 
able  gaps  appear  in  the  otherwise  uniformly  spaced  disks of the  pack.  These  spontaneous  gaps,  as  opposed  to  the 
externally  controlled gaps  ($the  bistable  range,  are a consequence of local airflow  fields  at  the  outer  edge of the  disks. 
Experiments with external shrouds of various clearance  showed axial periodicity in the  occurrence of the  gaps  and 
provided  physical  insight  which led to  quantitative  numerical  solution of the  nonlinearfluid  equations.  Two  scales of the 
$ow,  i.e.,  theflow  between  individual  disks  and  a  peripheral  unstable  Couetteflow, are found  to  couple  in  such  a  manner 
as  to  delineate  the  transition. 

Introduction 
A flexible disk  pack  arrangement is illustrated in Fig. l(a) 
together with associated  parameter definitions. The  disks 
are  separated  at  the spindle by permeable mesh spacers 
and  the  pack  has rigid base  plates mounted on  each  end 
[ 11. The  entire assembly rotates  about  its  axis with angu- 
lar velocity R and air is pumped through the pack at a 
flow rate Q per disk. Figure l(b)  depicts  three regimes of 
different pack  behavior first observed by  McGinnis, Or- 
lando,  and Weidenhammer [l]. In  the high-Q, or stable, 
regime the pack closes itself after it is opened  by exter- 
nal  means. In  the mid-Q, or bistable, regime the  closed 
pack  configuration is  stable,  but  an opening in the pack 
caused by external  means is also  stable.  In  the low-Q, 
or unstable, regime the closed pack configuration is 
not stable  and  the pack breaks  up  into  subpacks with  re- 
duced  disk  spacing and  open  gaps.  The critical flow rate 
Q* that  defines the transition from  the bistable to  the un- 
stable regime, and  the gap-subpack structure,  depend  on 
several physical parameters of the  pack.  Experimental 
designs for possible use in magnetic  recording have em- 
ployed external means to  produce  gaps while operating in 
the  bistable range to permit accessing of individual disks 
with a recording head.  From a  design  viewpoint, the bi- 
stable regime is best defined by its lower boundary, i.e., 
the bistable-unstable  transition line Q* vs. R. The  object 

of this study  is  to identify the underlying  physical  mecha- 
nism that  causes  the transition and  to quantitatively  de- 
scribe  the transition in terms of pack design parameters. 

On the  basis of experimental investigations, we  con- 
jecture  that  the formation of gaps  at  the transition is due 
to  an invasion of toroidal vortices  into  the spacing be- 

Air 

Figure 1 (a) Disk  pack parameters; ri = inside radius; ro = out- 
side radius; d = disk thickness; s = hub spacing; 0 = rotation 
speed; Q* = critical flow rate/disk; v = p / p  = kinematic viscos- 
ity of air; R = s 2 0 / v ;  E* = Q*/27rr0s20. (b) Stable, bistable, and 
unstable regimes of Q-0 plane. 
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Figure 2 Sketch of disk pack exit region of computation. 

tween  disks at  the disk edges. Uniform  disk  spacing is 
restored by blowing out or otherwise annihilating these 
vortices.  It is  apparent  that a theoretical description of 
such a  recirculating flow cannot  be  made on the basis of 
boundary layer  equations, but requires instead the elliptic 
system of Navier-Stokes  equations.  The numerical solu- 
tion of this  problem  has been previously  obtained by the 
authors [ 2 ] .  Due to the large  swirl  Reynolds number, 
r$/v = 2.5 X I O 5  (for  disks of radius r,, rotating with an- 
gular velocity R in air with viscosity v), we restricted our 
analysis in [2] to a small exit region which is relatively far 
from the rotation center (Fig. 2). Using an approximation 
scheme, we derived equations with an effective Reynolds 
number which was  smaller  than the  one  above by a factor 
of - I O 4  to lo6. Computations were  carried  out in [2] for 
several  values of flow rate  and  Reynolds  number.  These 
results depend, of course,  on  the boundary  conditions as- 
sumed for  the small exit  region. Considerable experimen- 
tal and computational effort was  therefore aimed at  deter- 
mining the  correct  downstream  conditions  at  operational 
rotation rates. 

In  the  second section of this  paper,  we give a brief out- 
line of the computation scheme employed in [2]. Then, in 
the third section, we describe briefly the  experiments  that 
were conducted in order  to  understand  the flow field out- 
side  the disk pack. This  information was  necessary to 
supply the  appropriate  downstream boundary conditions. 
We concluded from these  experiments  that, when the 
shroud is present,  the flow between  the disk  pack and 

shroud has toroidal ring cells,  as first observed  experi- 
mentally and described  theoretically for flow between  co- 
axial rotating cylinders by Taylor [3]. These  Taylor cells 
occur  as a  result of an instability in circular  Couette flow. 
If the  outer cylinder is fixed, circular flow is  stable  pro- 
vided that  the  inner cylinder rotates slowly enough andlor 
the spacing  between the cylinders is small enough. Our 
experiments led us to  conclude  that  the  downstream 
boundary condition is determined in the  case of a 
shrouded pack by the  Taylor  cells.  The  exact  downstream 
flow for  the shrouded  pack can be  determined quan- 
titatively by numerical computation. As the shroud clear- 
ance  is  increased,  results  appropriate  to  the  unshrouded 
pack are  obtained. 

In the  fourth  section,  we use the numerical scheme of 
[ 2 ] ,  with appropriate modification, to calculate the flow 
between  a  rotating disk pack and a fixed shroud,  and 
thereby we  determine  the  downstream conditions for flow 
in the  pack.  For  this  purpose  we modeled the disk  pack as 
a  rotating  cylinder and  obtained solutions for  various 
shroud  clearances.  The solutions  obtained in this manner 
exhibit the  expected  Taylor  cells.  These flow fields are 
periodic in the axial direction, with a wavelength essen- 
tially the  same  as  the thickness of the  subpacks. For small 
clearance  shrouds, we are  near  neutral stability for circu- 
lar Couette flow and the  Taylor cells are  steady.  This re- 
sult was  determined numerically and is found to be in 
agreement with an  extensive  experimental study of Coles 
[4]. When the spacing is increased,  corresponding  to in- 
creased  Taylor  number, Coles shows  that  the  Taylor cells 
do not remain  axisymmetric  but become periodic in the 
azimuthal direction, and the azimuthal  harmonic waves 
propagate in this  direction  with a speed considerably less 
than  that of the cylinder.  At even wider  spacing the flow 
becomes turbulent. For these  reasons, increasing diffi- 
culty was  encountered in computing flows for  shrouds 
with wider clearance. This means  that  we may not  be  able 
to calculate  directly the  downstream boundary conditions 
for  the  case of no shroud.  Since  the pack  behavior is qual- 
itatively the  same  for  the  shrouded and unshrouded 
packs,  and  since  the  Taylor cells appear  to supply the  cor- 
rect boundary conditions for  the  shrouded  case, we ex- 
pect  that  some axially periodic but time-varying structure 
is present in the flow close to  the disk  edges even in the 
absence of a shroud. 

After this, in the fifth section,  we  use  these  calculated 
downstream conditions to  obtain,  as in Ref. [2], numeri- 
cal solutions corresponding to  the  exit region flow (Fig. 2 )  
between  the  disks.  Then, in the sixth section,  before  con- 
clusions are  presented in the final section,  we  compare 
numerically  predicted behavior with the experimentally 
determined bistability. 
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Numerical  solution  for  exit  region  flow-free  down- 
stream  condition 
Consider  the disk  pack  configuration  shown in Fig. 2 .  For 
the  purposes of the flow calculation we assume  that  the 
disks are rigid and evenly spaced and that they rotate with 
angular  velocity a. We confine our  attention  to  the small 
exit region far from the  center of rotation  and  assume  ax- 
ial periodicity. We start with the axisymmetric  Navier- 
Stokes  equations  for a viscous  incompressible fluid. If M ,  
u ,  and w represent  the cylindrical  polar components of 
fluid velocity  relative to the rotating  disk, we assume, in 
the small exit region of Fig. 2 ,  I 

I 

, where s is  the spacing  between adjacent  disks  and 

6 = s / r o  << 1. 

Changing to local coordinates by 

r = ro + x = (s + 6x) /6 ,  

we obtained in [ 2 ]  the  equations 

E ] ,  + + ( M J I U J I  = R - I ( U l z 3  + U I z J  - 2u1, 

W l t  + (upJJz + ( w p J ,  = R-l(Olz, + Ulz) - 2vlz3  

M1, + w,, = 0, w = 1.1' - ul,. 
1 1, (4) 

Here,  subscripted  letters  denote partial  differentiation 
with respect  to dimensionless  time t ( t  = t'n) and coordi- 
nates x ,  z(x = x ' / s ,  z = z' /s ,  primes being used for phys- 
ical quantities)  and  the effective  Reynolds  number R is 
defined by 

R = sZSl/v. ( 5 )  

We introduce  the  stream  function I/J through 

u1 = q2, w1 = (6) 

so that  the third  equation of (4) is identically satisfied and 
the  last  equation of (4) becomes 

0 1  = - (I/Jzs + $J. (7) 

By use of (6), we can eliminate u l ,  w 1  in the first and sec- 
ond  equations of (4) and  thereby obtain with (7) three 
equations in v l ,  w1 and $. 

In order  to  solve  the  above  equations in the small exit 
region in Fig. 2 ,  we employ finite difference methods. 
This requires boundary  conditions on  the lines 1-4, 6 and 
7. We must also  choose  the  values u ,  b which determine 
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the radial extent of the region in question.  The value of R 
corresponding  to typical pack parameters of Fig. l(a)  is 
R = 0.133, and on the basis of previous  studies we expect 
the values at x = - a / s  to  agree with the boundary layer 
solution, ; . e . ,  

u1 = -642' - 1/4), 

u1 1 -ER(z* - 5 / 4 ) ( ~ *  -- 1/4), at 8, 
Mil = 0, $ = "F(4z3 - 32 - 1)/2, w1 = 1 2 E Z  

where 

For  the closely spaced pack  rotating in an unbounded 
fluid, we expect  the values  at x = b/s  to  correspond (un- 
der  certain conditions) to  the  steady circular flow field, 
which appears in our variables as 

t/J1 = ulz,  w1 = 0 J 
Rather than  force-match our solution to  the values  given 
by (8), ( IO)  at lines 6 ,  4, we used  instead the "slow 
change" free conditions 

and allowed the  entrance  and  exit profiles to  develop. We 
could then compare the results with the  expected profiles 
(8), (IO) and thereby  obtain some indication that  the radial 
extent of our  exit region was chosen sufficiently large. On 
lines I ,  2 in Fig. 2 ,  we used  "no-slip''  conditions and  on 
lines 3 , 7  we used symmetry, with I/J = 0 at line 3 and + = 

~ / 2  at  line 7, to match the  source  strength. Readers inter- 
ested in the details of the calculation procedure  are  re- 
ferred to [ 2 ] .  

The value of the dimensionless flow rate  parameter E ,  

corresponding  to typical operating  conditions, is E = 0.7. 
Figure 3 shows  the  results of the numerical computations 
for R = 0.133 and R = 0.7 (with a = s, h = 7s/3) using four 
graphs. In the  upper right graph,  the exit region stream 
lines (dashed) and vorticity lines  (solid) are given. The 
interval values  are indicated in Table I ,  and the algebraic 
sign  is positive for  dashed lines when the  dashes  have 
equal  length  (negative for  unequal length). The sign is 
positive for solid lines  when  they are  smooth (negative 
when ticked).  In  the lower right graph  are shown  lines of 
constant azimuthal velocity (dashed)  and, again,  vorticity 
(solid). In the  upper left graph, radial velocity profiles at 
the inlet x = - 1 (solid) and  at  the disk edge x = 0 (dashed) 
are  shown;  and in the  lower left graph, azimuthal  velocity 439 
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Figure 3 Exit region flow for R = 0.133, E = 0.7 at t = 0.085 
with free  downstream condition; v = -2.0. 
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Figure 5 Same as Fig. 3 except E = 0.00096. 
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Figure 4 Same  as Fig. 3 except E = 0. 

Radial velocitv nrofiles 
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v Tangential velocity  profiles 
E 
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Figure 6 Same  as Fig. 3 except v ,  = -2000x at x = 2.33. 

Table 1 Parameter  values for exit region flow calculations. 

Figure R = 0.133 0 9 01 Remarks 

E 
V1, 

Min Max Int Min  Max Znt Min  Max In? 

3 0.7 
~~~~~~~~ 

-2.0 -13.2 0.0 1/4 0.0 0.350 1/128 -4.62 0.0 118 

5 0.00096 -2.0 -0.0373 0.00120 1/1024 0.0 0.00048 1/65536 -4.63 0.0 1/8 
6 0.7 -2000.0 -31.3 1.36 1 0.0 0.350  1/128 -4667.0 0.0 128 

4 0.0 -2.0 -0.0188 0.00223 1/2048 -0.0 0.00009 2 . -4.66 0.0 1/8 

17 0.7 -1000.0 -22.1 0.380 1/2 0.0 0.350 1/128 -2333.0 0.0 64 
18 0.7 - 1500.0 -26.4 0.792 1/2 0.0 0.350 1/128 -3500.0 0.0 64 -Noshroud  test 
19 0.5 - 1700.0 -24.8 1.22 1/2 0.0 0.250 ]/I28 -3967.0 0.0 128 
20 0.45 -1000.0 -17.4 0.555 1/2 0.0 0.225 1/256 -2333.0 0.0 64 -150and500 mil 

21 0.35 
22 0.2 
23 0.2 
24 0.07 

25 0.047 
26 0.07 
27 0.15 
28 0.007 

-1625.0 -21.5 1.35 1/2 0.0 0.175 1/256 
- 1000.0 - 13.0 0.837 1/4 0.0 0.100 1/512 
-200.0 -5.59 0.050 1/8 0.0 0.100 1/512 
-100.0 -2.24 0.040 1/16 0.0 0.035 1/1024 

-20.0 -1.06 0.00013 1/32 0.0 0.0234 1/2048 
-400.0 -5.02 0.344 1/8 0.0 0.0361 1/1024 
- 1300.0 - 14.9 1.24 1/2 0.0 0.0948 1/512 
-2000.0 - 19.3 2.33 1/2 -0.00005 0.103 1/512 

-3792.0 
-2329.0 

466.7 
233.3 

-46.7 
-938.0 

-3033.0 
-4671.0 

0.0 64 
0.0 64 -50-mil shroud 
0.0 8 
0.0 4 

0.0 1 

0.0 64 
0.0 16 -15-mil shroud 

0.0 128 -3-mil shroud 

29* 0.35* -1625.P  -1218.0 207.0 32 -0.00105 12.8 1/4 -3792.0 0.0 64 High R 

' R  = 1.33 
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profiles are shown with the  same  convention. We observe 
that  the profiles at x = - 1 agree with those predicted by 
(8). Also,  the exit  values  indicated at x = 2.33 agree with 
those  predicted by (10); recall that  these values were not 
forced but resulted from the  boundary conditions (1 1) .  
Next, we observe from the  streamline plot that  no  re- 
circulating  “Coriolis” vortex  occurs  near  the disk edge. 
Note  that only boundary layer vorticity due  to through- 
flow is in evidence.  The radial  velocity profile at  the disk 
edge x = 0 is essentially the  same  as  the  entrance profile 
at x = - 1. Thus,  we  conclude  that  the Poiseuille-type 
source flow is much stronger than  any tendency for recir- 
culation for E = 0.7 and R = 0.133. 

In  order  to  get  an idea of the  strength of a disk  edge 
vortex,  we calculated the flow for E = 0, i.e., for  no  cen- 
tral air  supply.  The solution,  illustrated in Fig. 4, clearly 
indicates the disk  edge vortex in the streamline  plot as 
well as  an  obvious  extremum in positive (+) vorticity. 
The radial profile shows no flow at x = - 1 but shows  the 
centrally reversed flow at x = 0 associated with the Co- 
riolis vortex.  The values of stream function  indicated in 
Table 1 for Fig. 4 can  be compared with those  for Fig. 3 to 
get an  idea of the relative strength of the  source flow to 
the recirculating flow. One can  see that the  former is 
roughly a factor of lo3 stronger  than  the  latter.  Note, in 
the  lower left graphs of both Figs. 3 and 4, that  the rela- 
tive azimuthal velocity v ,  is almost  zero  at x = - 1. 

Next we determined how strong  the  source could be 
and still have  the disk  edge  radial profile affected signifi- 
cantly by the  vortex recirculation.  Using the  same  bound- 
ary conditions  as  before, we computed  the exit flow for 
R = 0.133 and E = 0.00096. The  results  are shown in Fig. 
5 ,  where we see  that  no  actual recirculation occurs, but 
that the incipient effect of the Coriolis  vorticity is in- 
dicated by the centrally inflected radial profile at x = 0. 
This  slow region is associated with the relatively widely 
spaced  streamlines  near x = 0.5, z = 0. 

In our next numerical  calculation we looked for exit 
boundary  conditions other  than  those given by ( l l ) ,  
which could  make  the disk edge  vortex  strong enough to 
overcome  the  source flow for  the experimentally deter- 
mined values, i . e . ,  for R = 0.133, E = 0.7. Figure 6 shows 
the  results when all boundary  conditions are  the  same  as 
before, except  at x = 2.33, where  we replaced ul,, = 0 in 
( 1 1 )  with u, = -2000~. Physically,  this  boundary  condi- 
tion corresponds  to a stationary coaxial  cylinder  with a 
small radial clearance. On the  other  hand, it also  repre- 
sents any other  external flow that could produce a strong 
azimuthal velocity gradient. The result is a strong shear 
layer  at  the disk edges, which retards  the azimuthal flow 
between  the  disks  at  the edge and thereby  strengthens  the 
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Figure 7 Critical flow Q* (per disk) as a function of rotational 
speed R.  0, s / d  = 0.278; 0 ,  s /d  = 0.556. 

associated  vortex. Figure 6 shows  these flow features  and 
indicates  clearly  that the disk edge radial profile is  cen- 
trally inflected even for  the  source  strength of E = 0.7. 

We concluded  from these numerical  results that  the 
downstream boundary  condition is a  crucial  ingredient in 
our attempt  to describe  quantitatively the disk  pack insta- 
bility. 

Experimental  study of bistability transition  and 
external flow for  shrouded  and  unshrouded  disk 
packs 
We have  seen in the previous section  that  the flow in the 
exit region between disks depends very much on  the 
downstream boundary conditions. In order  to gain a bet- 
ter  understanding of the flow just  outside  the disk pack, 
we conducted  several  experiments in which we studied 
the bistability transition  for different disk spacing to disk 
thickness ratios, s /d ,  for  packs with  stationary  coaxial 
shrouds of various  radial clearances. 

To  demonstrate  that  the bistability  transition is  due  to 
the  air flow and not due  to a structural instability, we 
measured the critical flow rate Q* for  two different packs, 44 1 
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Figure 8 Critical flow Q* (per disk) for  various  shroud  clear- 
ances  as a function of rotational  speed a. Radial  shroud clear- 
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Figure 9 Results of  Fig. 8 cross-plotted  as a function of clear- 
ance  at R = 1500 rpm. 

one with s / d  = 0.278, the  other with s /d  = 0.556, both 
having the  same  spacers.  The  results  are shown in Fig. 7, 

D. B. BOGY ET AL 

where Q* is plotted as a function of rotation speed 0. We 
see that  the critical flow rate  is essentially the  same  for 
the  two  packs, and thus  conclude  that  the controlling fac- 
tors are  the flow characteristics  and not the  structural  fea- 
tures of the  pack. 

Next  we studied the bistability  with different coaxial, 
stationary, perforated shrouds. We used shrouds with 
radial clearances of 500, 150, 50, 15, and 3 mil (12.7,3.81, 
1.27, 0.381, and 0.0762 mm). The critical flow rate Q* 
was  measured  for  each  as a function of 0. The  results  are 
shown in Fig. 8, where  we  see  that  the critical flow rate 
decreases substantially as  the radial clearance  decreases. 
Figure 9 shows a cross plot of Q* versus shroud spacing 
at 1500 rpm.  The results  indicate that less airflow through 
the  disks is required to stabilize the disks as  the  clearance 
between  the pack and  shroud is reduced.  Since  the 
shrouds  were  perforated,  ambient  pressure  was main- 
tained in the  annular region between  the disk pack  and 
shroud.  Thus,  the  cause  for  the  reduced critical airflow 
requirement  must  be  related to  the effect of the  shrouds 
on  the flow field  in the  annular region. We also observed 
that  no instability  was present,  even  at  zero flow rate,  for 
co-rotating shrouds. 

The next experiments  were  an  attempt  to  observe  and 
measure  the flow velocities just  outside  the disk pack. 
Quantitative  measurements  are  extremely difficult since 
the variations are superimposed on a much larger  azi- 
muthal  velocity field. We obtained  some qualitative as- 
pects of the flow  by use of visual smoke  tests and hot  wire 
measurements.  The  smoke from burned kerosine was in- 
troduced  into  the central air  supply  and forced  through 
the disk pack. We observed  that  the velocity field was 
generally  very unsteady, showing  bursting of vortices  at 
relatively small distances from the  pack. A similar con- 
clusion  was also  drawn from the hot wire anemometer 
data. A typical anemometer  trace is shown in Fig. 10(a), 
for which the probe  station was 40 mil (1 mm) from  the 
disk edges  and  centered  on a stable, unshrouded pack. 
The time  variations of the modified carrier signal clearly 
show  the unsteady flow  field at  this  location. As the  probe 
is moved away from the disk pack,  we  observe a decrease 
in the magnitude of the fluctuations  [Figs. lO(a)-(d)]; 
however,  the time-dependent character of the flow is  es- 
sentially  unchanged. When the 500 mil (12.7 mm) clear- 
ance  stationary  shroud  was  attached, a dramatic  decrease 
in the  fluctuation  magnitude was  observed [Figs. ll(a)- 
(d)].  Figure 12 shows the  results  for  the  unshrouded pack 
in the  unstable,  opened  condition.  Here we see a pulsat- 
ing, apparently  turbulent flow characterized by vortex 
shedding. The magnitude of these fluctuations is much 
less dependent on the radial  position  than  was observed 
for  the  closed pack condition. 
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Figure 10 Hot wire probe  data  for  unshrouded disk  pack at dif- 
ferent radial  positions.  Distance of hot wire probe tip from  pack 
circumference: (a) 40 mils (1 mm); (b) 150 mils (3.81 rnm); (c) 
600 mils (15.24 mm); and (d) 1440 mils (36.58 mm). 

With these  experiments we have established that  the 
presence of a shroud  stabilizes the flow field just  outside 
the  disk pack  and,  at  the  same  time,  reduces  the critical 
air flow rate. We can conclude  that knowledge of this 
outer flow field is necessary for providing us with realistic 
downstream boundary  conditions for  our numerical com- 
putations of  flow  in the exit  region. 

Numerical  solution of  flow between  rotating  disk  pack 
and  stationary  shroud 
In Ref. [ 5 ]  we used Eqs. (4)-(7) to obtain the flow  field  in 
the  annular region formed between  the disk  edges and a 
fixed shroud.  The radial extent b of this region was as- 
sumed to be small compared to the disk  radius r,,. For our 
calculations, we modeled the  disk  pack as a cylinder of 
radius ro [which may have outflow  given by u(rJ = U ] .  
Figure 13 shows a sketch of the rotating  cylinder and 
fixed coaxial  shroud. (It should  be  noted  that the  shroud 
clearance b in this  section  and in Fig. 13 is unrelated to 
the exit region dimension h in Fig. 2.) Figure 13 also 
shows the region of computation in the r ,  z plane in which 
the  axial extent is usually taken  as 2b. The  equations 
given in the second  section apply  to this  problem with 
slight modification. In all the nondimensionalizations we 
replace s in (1)-(5) with b. The dimensionless coordinates 
of the  computation region are  also shown in Fig. 13. 

As a preliminary to  these numerical  calculations, we 
first consider  the  exact  axisymmetric  steady solution for 
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Figure 11 Hot wire traces  for different radial positions for  disk 
pack enclosed by 500 mil (12.7 mm) clearance  shroud.  Distance 
of hot  wire probe tip  from  pack  circumference: (a) 30 mils 
(0.762 mm); (b) 140 mils (3.55 mm); (c) 280 mils (7.10 mm); and 
(d) 500 mils (12.7 mm). 

1-3 rev-1 
Figure 12 Hot wire trace  for  unshrouded  pack in unstable 
(opened) mode:  probe  at 1.44 in. (36.6 mm) from disk edges. 
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Figure 13 Sketch of coaxial cylinders  and computation  region. 443 
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Figure 14 Azimuthal velocity u1 in circular Couette flow with a 
central source. 
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Figure 15 Max In1,( at x = l/2W as a function o f t  obtained  from 
impulsively started computations for R = 156 and for R = 1730. 

laminar Couette flow between  porous cylinders  with  a 
central  supply. Setting u = u(r), v = u(r), w = 0,  u(ro) = 

U ,  viro) = roan, and v(ro + b) = 0 ,  we  obtain  the following 
flow  field relative to inertial coordinates (see [2], Section 
2):  

-(N+l) 

A = -  ro r,(l + s)~+’ ’ B =  ( 1  + 6)N+2 - 1 (1  + - 1 
’ 
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In the  perturbation form of the  second  section, relative to 
rotating  disk coordinates,  these  results  appear  as 

If N6 = 0( 1 j ,  no  further simplification can be  made in (14); 
but if N6 = 0(6j, then (14) can be  approximated by 

u,  = u, u ,  = -(SP + 2jx. (15) 

This form gives v1 independent of U and implies that  the 
blowing has no effect on v, unless N = O(6”). 

Figure 14 shows v, vs. x for 6 = 0.025 and  for N equals 
10 and 100, as  computed  from (14) and  compared with 
(15). It may be observed from the last  section that N 2- 75 
for  the pack  break-up flow rate when the  shroud is such 
that 6 = 0.025. Note  that  the  gradient of u1 is reduced near 
the  inner  cylinder,  and some  stabilizing may be expected 
with blowing if the  external flow remains this  simple.  It 
will subsequently be shown,  however,  that  the  external 
flow change is more drastic with the  onset of instability of 
this shear  layer. 

Taylor [3] showed that  the laminar  circular flow given 
by (12)-(13) is unstable (for U = 0) when certain critical 
conditions are satisfied. Rosenhead [6], p. 500, gives the 
critical Taylor number as 

Tcr = (-4ARob4/~2)Cr = 1,707.8,  (16) 

where 

a,, = R/2, A = -R/[(l + 6)’ - I ]  (17) 

for  the  case of a fixed outer  cylinder  and 6 << 1. This 
gives 

T = r,b3R2/v2 = R2/6, R = b2R/v, (18) 

for  our configuration. Thus we expect  that  when  the 
shroud clearance b exceeds a critical value bo, Taylor 
cells will occur  at  our operating conditions. For all other 
parameters fixed, (18) gives T proportional  to b3. 

We used  an experimental study of Couette instability 
by Coles [4] to  get some  indication of what we should 
expect  for our somewhat related configuration. For b < 
bcr the  solution (12)-(13) is stable, while for b > bcr vari- 
ous alternatives  are  expected  to  occur.  There is a small 
range of b for which the  Taylor cells may be “singly peri- 
odic,” i . e . ,  independent of the  azimuthal  coordinate.  For 
larger  values of h the solution  may  be  “doubly periodic,” 
indicating that  the solution is not axisymmetric.  As b in- 
creases  further,  the flow is “transitional”  and then “tur- 
bulent.” It should here  be  emphasized  that Coles [4] kept 
b fixed and varied R to  observe  the different regimes. We 
are  interested in corresponding  regimes  when R is fixed 
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and b varies. Also, Cole’s results  are  for small ro and 
hence serve us here only as a qualitative  guide. 

In Ref. [ 5 ]  we solved (4)-(7) numerically for  the Rey- 
nolds number R given by (18), rather than ( 9 ,  for  the  re- 
gion identified in Fig. 13. The  boundary conditions  used 
were (15) with U = 0, namely 

u1 = 0 ,  V I  = 0 ,  w, = 0 at x = 0; 

u1 = 0 ,  v1 = - ( P  + 2), w1 = 0 a t x  = 1 ;  

periodicity at z = 0 , 2 .  (19) 

Various  initial  conditions  were employed.  These numeri- 
cal  calculations  were  made  primarily for  use  as  down- 
stream boundary  conditions in the exit region computa- 
tions of the second section.  The  results showed a strong z 
dependence of the flow  field near  the inner  cylinder. In 
addition,  the solutions  were quite  unstable  for  the  cases 
of h = 150 and 500 mil (3.81 and 12.7 mm). The  gradient 
v,, near x = 0 is the quantity needed  for determining our 
boundary condition,  and  the maximum  and minimum val- 
ues (over z )  of this  quantity appear  to be fairly stable,  as 
indicated in Fig. 15 even when the general flow field is 
rapidly changing. We note that  the  absolute value is at 
first very  large as a result of the  strong gradient of the 
impulsive start initial condition. The gradient rapidly de- 
creases  as  the  strong  shear  layer diffuses outward. It then 
begins to  increase  as  the cellular structure  starts to form, 
and remains nearly constant until another cellular struc- 
ture  becomes dominant. On the basis of these  results, we 
see  that  the  steady values of m;x lvl,l are  about 900 for 

b = 150 mil (3.81 mm) and about 1000 for b = 500 mil 
(12.7 mm). The corresponding minimum gradient  values 
were found to be about 100 for all shroud  clearances (Fig. 
16). The main conclusion to be drawn from the  computa- 
tions heretofore summarized in Figs. 15 and 16, based on 
calculations in [ 5 ] ,  is that  the maximum and minimum val- 
ues of lul,l along the  inner cylinder are  almost indepen- 
dent of the  shroud  clearance  once this clearance  exceeds 
a  certain  value (about 50 mil  in Fig. 16). Thus  the values 
calculated for  the widely spaced  shroud  are applicable to 
the  unshrouded disk pack. We use  these values for  the 
exit boundary conditions in the  next  section. 

Numerical  solution  for  exit  region  flow-axially  vary- 
ing  shear  layer  downstream  condition 
In the  second  section, we showed  that a steep  azimuthal 
velocity gradient at  the  downstream boundary of the exit 
region could  lead to disk edge vortices strong  enough to 
overcome  the outward flow and to  cause recirculation  be- 
tween the disks near  their  edges. In the previous section, 
we showed  that  the flow outside  the rotating  disk pack is 
characterized by values of u,, near x = 0 ( i .e . ,  near  the 

Figure 16 Dependence of max  and  min lulzl at x = 1/200 on 
dimensionless shroud clearance 6.  

disk  edge),  which are of the  appropriate magnitude to 
cause  the recirculation. Furthermore,  this gradient has a 
somewhat periodic variation in the axial direction  between 
its maximum and minimum values. For the  operating con- 
ditions of interest, we obtained the max and min values of 
Ivl,l at x = 1/200, as shown in Fig. 16. Rather than use 
these values  exclusively as  downstream boundary  condi- 
tions, we performed  numerical  calculations of the  type in 
the  second section for various  values of exit velocity v1 
and source strength E ,  all for R = s*R/v = 0.133, the value 
associated with the disk spacing. The basic  premise  un- 
derlying these computations was  that  the azimuthal ve- 
locity gradients at x = 1/200, computed in the last  section 
for a rotating cylinder,  determine  the  downstream  bound- 
ary  value of v1 for  the closely spaced disk pack. Referring 
to Fig. 2 and  Eq. ( 1  1 ) ,  we replace  the boundary  condition 
v = 0 at line 4 of the exit  region with 

u1 = ( v , ~ h / s )  at 0, (20) 

where b here refers to  the dimension  shown in Fig. 2, and, 
as in the  second  section, we chose b / s  = 7/3 in all the 
computations.  The initial v1 field was  chosen  as v1 = 0 for 
x < 0 and v,(v,Jx for x > 0. The  results of the exit  region 
flow computations using these boundary  conditions are 
shown in Figs. 17-28. In studying  these figures, we  can 
get an  idea of the effect of E and v,, on  the exit region flow 
field. Figures 17 and 18 show  the  results  for E = 0.7 and 
vl, = - 1000 and - 1500, respectively. As observed  pre- 
viously in Fig. 3, the flow for v,, = -2 shows  no disk edge 
vortex and,  furthermore,  the radial profiles at x = - 1 (in- 
let)  and x = 0 (disk edge) are  parabolic  and very  similar. 
On the  other  hand,  the  results  for u,, = - 1000 (Fig. 17), 
- 1500 (Fig. 18), and -2000 (Fig. 6) show  an influence of 445 
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Distance (non-dimensional units) 

Figure 17 Exit region flow for R = 0.133, E = 0.7, u = - 1000, 
t = 0.09. 1, 

Radial velocltv profiles 

0 0.8 "1 -0.5 0 0.5 1 1.5 2 

3 Tangential velocitv nrofiles 

Dlstance (non-dimensional units) 

0.0625. 
Figure 19 Same  as Fig. 17 except E = 0.5, 2) = -1700, 1 = 

1s 

Radial velocity  profiles 

VJ 

2 0 0.8 -I -0.5 0 0.5 1 1.5 2 
.- 
? Tangential vclocitv  urofiles 

I Distance (non-dimensional units) 

Figure 21 Same as Fig. 17 except E = 0.35, ul, = -1625, t = 
0.0625. 

the disk edge vortex on  the flow. There is a slight central 
inflection of the disk edge (x = 0) radial profile for ul, = 

- 1000 (Fig. 17); it is somewhat  more inflected for vl, = 

- I500 (Fig. 18), and still more inflected for vl, = -2000 
446 (Fig. 6). 
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Figure 18 Same  as Fig. 17 except u , ~  = - 1500, t = 0.0625 
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Figure 20 Same as Fig. 17 except E = 0.45, ul, = -1000, t = 
0.0625. 

-200 0 - I  -0.5  0 0.5 I 1.5 2 

Distance (non-dimensional unlts) 

Figure 22 Same  as Fig. 17 except E = 0.2, ulr = -1000, t = 
0.0625. 

Figure 19 shows  the flow field for  the  weaker  source 
E = 0.5 with vl, = -1700. The disk  edge vortex effect is 
stronger  than  for  the E = 0.7 results  just  discussed.  The 
radial disk  edge profile (x = 0) is more inflected at  the 
center. Figure 20 gives results  for E = 0.45, vlz = - 1000. 
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Radial velocity  profiles 
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a Taneential velocitv profiles 
g 0 0.16  -1.00-0.5 0 0.5 1 1.5 2 .. 

Taneential velocitv profiles 

IDistance (non-dlmensional units) 

Figure 23 Same as Fig. 17 except E = 0.2, ul ,  = -200, t = 
0.0625. 

Radial velocity  profiles 

Figure 25 Same as Fig. 17 except E = 0.047, u,, = -20, t = 
0.046. 

Figure 27 Same as Fig. 17 except E = 0.15, ulr  = -1300, t = 
0.0625. 

These results are similar to  those in Fig. 18 for E = 0.7, 
ulz = -1500. Figure 21 has parameters E = 0.35, ul ,  = 

- 1625. The central inflection is  more  pronounced  than in 
Fig. 20. Similar results are obtained in Fig. 22 for E = 0.2, 
ul, = -1000. 

I Distance ( non-dimensional units) 

Figure 24 Same as Fig. 17 except E = 0.07, uI, = - 100, t = 
0.0625. 

Radial velocity  profiles 
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a Tangential velocity  profiles 
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Distance (non-dimensional units) 

Figure 26 Same as Fig. 17 except E = 0.07, ul ,  = -400, t = 

0.0625. 

Radial velocitv orofiles 

E 
Tangential velocity  profiles 

-500 0 -1 -0.5 0 0.5 1 1.5 2 

Dlstance (non-dimensional units) 

Figure 28 Same as Fig. 17 except E = 0.007, u,, = -2000, t = 
0.0625. 

When& = 0.2, ul, = -200(Fig. 2 3 ) , ~  = 0 . 7 , ~ ~ ~  = -100 
(Fig. 24), and E = 0.047, uIr = -20 (Fig. 25), the results 
are similar to  those in Fig. 17. When E = 0.07  and ul ,  = 

-400 (Fig. 26), the  central inflection at x = 0 is  quite  pro- 
nounced, but when E = 0.15 and ul, = - 1300 (Fig. 27), 447 
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Figure 29 Same as Fig. 21 except R = 1.33, t = 0.25. 

Figure 30 Lines of constant  ratio 1) = u,(O, O)/u,(O, - 1) in the 
E-v,, plane for R = 0.133, s / d  = 1.5. 

the disk edge radial profile shows  the  onset of central 
backflow. In Fig. 28, E = 0.007, vl, = -2000 and we  see 
strong  central backflow as in Fig. 4 for E = 0. 

Figure 29 with R = 1.33 is included to  show  the effect of 
increasing R by a factor of 10 from  the results in Fig. 21. 
The  results in Fig. 21 were also  computed with Fig. 29 as 
the initial condition to confirm that  the  same solution 
would be  obtained  from  different initial conditions. The 
Fig. 29 result as well as  those in [2] indicates that  stronger 
backflow is associated with larger values of R (which in- 
creases with  spacing s), suggesting, of course,  that  once 
an opening is initiated it promotes a further tendency to 
open. 

Comparison of numerical solution with experimental 
observations 
The numerical results  described in the previous  section 
indicate that similar flow fields in the  exit region can  be 

448 associated with the solutions for different sets of values of 
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E and v,,. We can  take  as a measure of the effect of the 
disk  edge vortex  on  the exit  region flow the ratio q de- 
fined by 

Figure 30 was  prepared from  Figs. 3 ,6 ,  17-29. The  ratio q 
heretofore described was  computed from each of these 
figures and recorded  at  the  proper  point on the E vs. vl, 
graph in Fig. 30. Interpolation between  these  points al- 
lows us to determine  straight lines of constant  ratio q. All 
the lines must go through the origin and all the  data  calcu- 
lated fit into  the straight  ray interpolation,  as  shown.  (The 
reason why these  lines should be straight is not apparent.) 
We observe  that this  particular graph  represents  the re- 
sults only for R = 0.133 and  with a disk  gap to  thickness 
ratio s / d  = 1.5. We see  that q < 1 (about 0.925) every- 
where along the vertical axis,  and  that q is  zero along the 
ray that  goes through E = 0.15, v,, = - 1300 (Fig. 27). All 
lines of negative  ratio represent  some  central backflow in 
the disk edge profile. The ratio q = --cc is along the hori- 
zontal axis; = -31 occurs  on  the ray that  passes 
through E = 0.007, ul ,  = -2000 (Fig. 28). When the  ratio 
is about 0.8 (Fig. 17), the disk edge profile appears weakly 
inflected by the edge vortices. When the ratio is  less  than 
0.5 (Fig. 21), the disk  edge profile appears strongly  in- 
flected. 

The  two solid circles with bars in Fig. 30 show  the  ap- 
proximate  measured  critical flow rate (-0.35), for fixed 
shrouds  (Fig. 9), plotted  against the maximum steady vl, 
as  computed in the last section  and plotted in Fig. 16 for 
b = 150 and 500. The solid square in Fig. 30 shows  the 
same flow rate plotted  against the corresponding  (and 
common) minimum steady u,,. The qualitative appear- 
ance of flow fields and profiles expected with these  values 
of E ,  v,, can be deduced by looking at  the figures corre- 
sponding to  the E ,  vl, pairs  which produced, through  nu- 
merical computation, the  ratio q closest  to  the  ratio  ray 
that passes through the points of interest.  Thus, Fig. 6 
(q = 0.629) and Fig. 20 (q = 0.70) correspond  to  the maxi- 
mum gradient for h = 150 and 500 mil (3.81 and 12.7 mm), 
while the minimum gradient  would  look  somewhat  like 
Fig. 25 (q = 0.873). The max gradient fields have  the  ratio 
7 = 0.65 and  the min gradient fields have q = 0.90 for E = 

0.35. 

Conclusions 
Experimental investigations have  shown  that  the disk 
pack  transition from the  bistable to  unstable regime which 
occurs when  the  air flow rate is decreased  to Q* is due  to 
the flow characteristics  at  the disk edges. 

Numerical calculations for  the flow in the  outer region 
of the  pack  have confirmed that backflow into  the  disks 
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can be  controlled by the outflow rate.  The required rate 
depends strongly on  the  external flow conditions. 

Calculation of the  external flow for various shroud 
spacings reveals  that  the  outer flow field exhibits strong 
axial variations.  These variations are of sufficient magni- 
tude  to  account  for  the pack breakup in accordance with 
the  exit region recirculation hypothesis.  For wide shroud 
spacing the azimuthal velocity tends  to form an  unstable 
boundary layer  at  the disk edges  that locally shoots  out 
azimuthal  vorticity. At these  locations  the boundary layer 
temporarily loses its  strength and  thereby  causes  strong 
axial variations. 

The axial  variation in the  boundary  layer gives a corre- 
sponding axial variation in the  downstream boundary 
condition for  the pack flow. Since  the outflow rate re- 
mains the  same  for all disks, this causes  an axial periodic- 
ity  in the disk  edge flow recirculation. The recirculation is 
strongest  where the  external  shear  layer is strongest 
(highest magnitude of ol,). The  pressure between the 
disks is  also highest where the  external boundary layer is 
strongest. Disk spacing tends  to  increase in the high pres- 
sure regions and  decrease in the low pressure  ones,  and 
the  recirculation  becomes stronger  at  the wider  spaced 
disks  and weaker at the  closer  ones.  Thus,  the pack 
break-up  mechanism is self-strengthening,  and the result 
is a collapse into the subpack-gap  configuration. 

The numerical  results are in excellent quantitative 
agreement with the  experimental  observations.  They  pre- 
dict  not  only the  correct  order of magnitude for  the criti- 
cal flow rate but  also  the  axial  periodicity of the instabil- 
ity. Predictions for a wide range of physical parameters 
are  possible using the  discussed two-stage  model. 
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