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An Application of Beam Dynamics to a Damper Design

Flexural wave propagation may be used as a means of absorbing impact energy to prevent excessive rebound or to
shorten the cycle time of high-speed printing devices. For optimal damping action, however, the dynamic analysis of
beams used in the mechanism is necessary, this paper presents such an analysis. It also presents an application of a
damper ring design that is used to prevent so-called ‘‘shadow printing’’ by suppressing the rebound of the type elements

in a disk printer.

Introduction

In many high-speed printing devices, the settle-out time
of fast-moving components often plays an important role
in limiting the repetition rate. Also, uncontrolled rebound
of key components can result in mechanical inter-
ferences. This is particularly true in many impact printers
used in computer systems. These printers invariably con-
tain fast-moving type elements and hammers that must be
settled out after each stroke before the next cycle can be
initiated. Not only does a slow settle-out mean a slow
cycle rate, but if these high-energy elements rebound ex-
cessively, they can cause double imprints or so-called
‘‘shadow printing.”’

The most common method of absorbing impact energy
is to use some type of damping material. This approach is
acceptable only if such material can be incorporated into
the structure without affecting the operational perform-
ance. Another mechanism of energy absorption, while
not commonly designed into a damper but which in-
directly affects settle-out, is elastic or shock waves that
propagate through the structure. If the structure is prop-
erly designed, a wave propagation can be successfully
used as a means of energy dissipation. Compared to
elastomers and polymers, however, elastic dampers usu-
ally require more careful analysis because wave propaga-
tion phenomena are more complex and sensitive to pa-
rameter variations.

One such damper design that uses flexural wave propa-
gation is incorporated into the IBM 3610 disk printer [1].
Figure 1 shows the print-disk assembly, which contains
the type and interposer disks pressed together. The type
disk carries an array of type elements mounted on indi-
vidual fingers that are very flexible in an out-of-plane di-
rection. The interposer disk has thicker and stiffer fingers
on which the individual type rests with some preload. The
entire disk assembly rotates at very high speed (the pe-
ripheral speed is about 8 m/s). The hammer, poised for
the right type character to come by, strikes the interposer
at the right moment, transferring the momentum to the
type mass and propelling it toward the paper to make an
imprint. The interposer prevents the hammer from pene-
trating between adjacent type elements that are moving
rapidly in the direction perpendicular to the hammer mo-
tion. Upon receiving the momentum from the interposer,
the type spends only a fraction of its kinetic energy in
printing and returns to the interposer at a relatively high
speed. It forcibly impacts the interposer and bounces out
again toward the paper. An excessive rebound causes a
second imprint on the paper, resulting in ‘‘shadow print-
ing.”’

A damper ring located below the hammer is designed to
absorb the impact energy of the returning type and to pre-
vent excessive rebound. It is part of the print disk assem-
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bly and rotates with the interposer and type disks. Note
that each interposer finger is firmly in contact with the
damper ring; but on impact by the hammer, it is free to
move forward to push the type. The striking of the inter-
poser by the returning type mass causes bending of the
damper ring, which initiates a flexural wave to propagate
and dissipate the impact energy. Attempts to dampen the
impact energy with polymers have been unsuccessful,
mainly because of the stringent requirements on momen-
tum transmissibility, dimensional stability, and limited
motion of the interposers.

Qualitatively, it can be seen that too flexible a damper
ring would be as ineffective in damping as would be too
massive a damper ring. In these extreme cases, the spring
effects of the interposer would become too dominant.
Thus, although using the damper ring is intuitively cor-
rect, its effectiveness is obtained only through extensive

efforts in analysis and experiments. TV fngerposer
£ o
This paper presents the analysis related to the damper ]—'11“5
design by means of flexural propagation. To simplify the | uHammer
model and generalize it for wider application, the damper i L.

ring is taken to be straight and infinitely long; and analy- =
ses are made for a mass impacting the beam. Also ignored %
in the analyses are the small effects due to the disk rota-
tion and the elastic foundation of the circular plate which
supports the ring. These simplifications are justified be- i
cause the peripheral speed of eight meters per second in-
duces a low hoop stress of about 4 x 10° Pa (60 psi) and
the supporting plate is sufficiently thin and has ample cut-
outs to allow the ring to behave like a support-free beam.

Damper ring

Three cases are presented: é b

7\m

1. A mass directly impacting the beam. This simplest
model gives insight into the damping mechanism of the T
infinite beam. ‘\:\\\\\\\\‘\\\‘\\\'Is:.\n‘\:\\\‘\:‘ W h

2. A mass impacting the beam through a linear spring. Sr——
This spring simulates any structural flexibility existing
between the mass and the beam, including the contact
stress effect. ﬁ

3. A mass impacting a spring that is in parallel with the
beam damper. This is a slight variation of the first
model and simulates the case where the impacting
mass is relatively large compared with the beam, and
the additional spring element is needed to approximate (b)
the supporting structure.

—

g

Analysis

® Dynamic response of the infinite beam
We first seek a beam response to an arbitrary load con- Figure 1 Disk printer. (a) Overall view of disk printer mecha-
centrated at x = 0. Noting the symmetry about the origin, nism. (b) Cross section side view of printer disk. 387
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the beam equation and boundary and initial conditions are

Elw,, ..+ pAw, =0 x,t>0, (H

wix, 0) = w(x, 0) =0, (2)

w (0, 17) = 0, 3)
- F(1)

» 1) = s 4

W0, 1) SEl 4)

w=w, =w_=w_ =0 at x = oo, 5)

where EI is the beam modulus, w is the displacement of
the beam, pA is the sectional density, x and ¢ are the
space and time coordinates, respectively, F(¢) is the con-
centrated load, and the subscripts designate partial deriv-
atives. We perform the Fourier cosine transform on the
above equations, resulting in

) 5 4. F(o)
wla, ) + Baw, 1) = 2P—A , (6)
where
wia, 1) = J w(x, f) cos axdx, (7
0
. _ EI g
B = A (®)
Thus,
1 ' F
Wwia, ) = e L —2—3 sin Ba’(t — )dr, 9
or
4
wia, 1) = J % cos Ba’(t — 7)dr. (10)
0

Now, for the solution, we take the inverse cosine trans-
form of Eq. (10),

%

2
wix, f) = — [ w(a, f) oS axdo
T Jo

1
mPA

J F(T)[w cos ax cos Ba’(t — r)dads,
0 0
(11)

and by carrying out the last integration [2],

wix, 1) =
Jt F) [cos X + si X dr, (12)
in ————|dr,
Vs U asu = T apu =)

where

1
y=—

\V 8wBpA

At x = 0,
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w0, 1) = W = 'yJ O (13)

0 \/t -7
The dot indicates a time derivative when the function is
only time dependent. Thus, Eq. (13) gives the beam re-
sponse in terms of the velocity at the point where the
force is applied. For example, if F(z) = F, = constant,

wo=2yF\/I . (14)

In contrast to a linear dashpot that results in a constant
velocity for a constant force, an infinite beam has velocity
proportional to \/f under a constant force. In another ex-
ample, if F = F,/\/1,

w = wByF, = constant. (15)

This agrees with Boussnesque’s result [3], indicating that
constant velocity can be maintained by a force inversely
proportional to \/7 .

® Impact analyses

Case 1

For the first model, we take the simplest case, where the
mass m impacts directly on the beam with the initial ve-
locity v, and the mass stays with the beam. Then, in terms
of the mass velocity v,

mp = —F(1), (16)
t F 1 N
v= yj .L)— dr = —-m'yj -—l-)‘(j)—— dr. a7
"NVir-r ‘NVi-n
The Laplace transform of Eq. (17) gives
v
Vis) = . i , (18)
Vs ( 5o+
s Vs my\/;
and, therefore,
_ f
v(t) = vye 'y erfc (_\/—_—_—), 193
my\/ T

where erfc is the complementary error function.

Again, compared to a linear dashpot for which the ve-
locity of the impacting mass decays exponentially, the ve-
locity of the mass impacting an infinite beam decays more
slowly for large ¢. As a matter of fact, Eq. (19) shows v
decreasing as a function of 1/\/7 for large ¢.

Case 2

Next, we consider a case where the mass impacts the
beam through a spring. This is analogous to the Maxwell
model shown in Fig. 2. As the impacting mass com-
presses the spring, the extent of the rebound of the mass
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depends on the inertia and rigidity of the beam. Our inter-
est lies in the range where rebound occurs. The equations
of motion are

my = ~F(t) = ~k(y = w) = —kz, (20)
t F Lz

w:ng(ﬂ(h:—kyj—l— dr, 1)
0 \/ t—T 0 \/ t—

where y and w denote the displacements of the mass and

the beam, respectively, and z is their relative dis-

placement. Set

n = wt, (22)
o = LE , (23)
m
and
1 mik
Y = vV = — 24
FTmrve [El(pAfJ @9

V 8z

Then, Egs. (20) and (21) become
w'n) = —(" + 2), (25)

w' =dfn—5(i— de. (26)
' Vm— ¢

The primes denote the derivatives with respect to the
independent variable. Taking, again, the Laplace trans-
forms of Egs. (25) and (26), and solving for Z,

Z(s)= ! _sS+1-aVas
v , 27
Yo sS+avas + 1 S+ 11— 7a’s @)
where VO = y(0)/w. The inverse transform of the above
equation involves finding the roots of the denominator,
which are in the form of p + ig, —p =+ ir. Using partial
fractions for the final solution results in

z [ B
ﬂ = e’"’(A1 cos gn + —L sin qn)
v, q

_ D |
+e ”"(Cl cos rn + —* sin rn)
r
_dj __1_._ {epm—f)[Az cos g(n — &)
0 \/E
B
+ —2 sin g(n - 5)]
q
+ e‘”m_'f’[C2 cos r(n — &)
D
+ 22 gin v — 5)“ de. (28)
r

The constants A,, A,, B, - - -, D, are obtained through
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Spring, &
w l
: Beam damper, ¥

Figure 2 Model for Case 2 (Maxwell model).

partial fractions which yield simultaneous equations. The
equations in a matrix form are

1 0 1 0 A

D 1 -p 1 B

(" = p’) 2p G - p* —2p c
—-p(P*+ 7 P+ pt+g) AP+ || D

=N.

ForA,,B,,C,and D, Nis (010 1); for A,, B,, C,and D,,
N takes the form (0 0 1 0).

The velocity is computed from Eq. (20),

V) =1 - J 2(&)de. 29)
0

The integrations in Eqgs. (28) and (29) may be performed
numerically. The square root singularity in Eq. (28) can
be eliminated by a variable substitution, ¢ = \/¢ or dp =

de/NE.

The rebound velocity is the velocity y’ when the rela-
tive displacement z becomes zero (at n = 7n,). Then the
coefficient of restitution, the ratio of rebound velocity to
the initial velocity, is

e
R = J z(H)de — 1, (30)
0

where z(n,) = 0. Note that in this analysis there is only
one parameter, &, which is defined by Eq. (24). Thus, the
rebound characteristics of this model are represented by a
single curve, as shown in Fig. 3, which indicates there is
no rebound for & greater than about 0.52.

Case 3

Case 2 represents the situation where a small mass im-
pacts a relatively massive beam. There, the supporting
structure of the beam can be ignored. However, as the
beam is made lighter compared to the impacting mass, the
rebounding characteristics are dictated more by the elas-
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Figure 3 Coefficient of restitution (R) vs a for Case 2.
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Figure 4 Model for Case 3 (Kelvin-Voigt model). Type (a):
Spring and beam tied together. Type (b): Spring can push beam
downward but cannot pull it up.

ticity of other supports. We represent such elasticity by a
spring that acts in parallel to the beam as shown in Fig. 4
and is known as the Kelvin-Voigt type. Two different
types may be studied for this model: one in which the
spring and the beam are tied together, Fig. 4(a), and an-
other in which the spring can push the beam downward
but cannot pull it up, Fig. 4(b).

When the mass impacts the spring, it pushes the beam
until the maximum deflection is reached. At this point, for
the second type of the model, the spring can separate
from the beam, transforming the spring energy into kinet-
ic energy of the mass. On the other hand, for the type in
which the spring and the beam are tied together, the
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spring pulls the mass and the beam until the maximum
upward velocity is reached, at which point the separation
occurs. For this model the equations of motion for both
Figs. 4(a) and 4(b) are

my = —ky — F(1), G

t
Fi
= ‘yJ L, 32)
0 \/ t—T
If we combine the two equations, substitute » = wf and

take the Laplace transform, we get

Y(s) 1

Ve S+ — £ o+
V&
1
sS4+ 1 - s\/—s
_ \/77aI 33)
(s" + 1)2 - —3 $
T
and
V_(s) _ 1 s 34)
Vo ¢4 Ve o+
Vra

This method of solution is similar to that in Case 2, with
the solution again depending on only one parameter, .
The restitution as a function of & is plotted in Fig. 5 for
both types.

® Application to beam damper design

The curves in Figs. 3 and 5, which summarize the preced-
ing analysis, can provide very useful information for a
damper design. All the physical parameters of the beam,
the mass, and the spring are conveniently lumped into
one parameter «, as defined by Eq. (24). Thus, many dif-
ferent combinations of parameters can result in a desir-
able value of &. One has only to decide which curve in
Figs. 3 or 5 best models one’s damper system. Then, with
the value of @ known, one can obtain the expected
rebound characteristics of the damper.

In the case of the disk printer described earlier, early
poor settle-out and shadow printing were attributed to too
light a damper ring made of nylon. The interposer flexibil-
ity was the dominant factor for the rebound simulating
Case 3 [Fig. 4(b)], with a high value of a (about 2.5). To
decrease the value of &, a material with high density was
sought to increase the value pA, the most influential fac-
tor in altering the value of &, as seen in Eq. (24). A tung-
sten-filled nylon was selected and the maximum area A
that the space allowed was filled. The final modification
was successful in eliminating the shadow printing; the
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value of & was sufficiently lowered to about 0.4, which 1.0
fell in the range of Case 2. (a)

Summary 0.8}
Dynamic response of an infinite beam is used to analyze
the flexural wave propagation as a means of dissipating

(b)

. . . 0.61~
impact energy. A simple form of the bs«ic response to
arbitrary loading is derived, and the damping character-
istics of the beam are analyzed through impacts between 04

a mass and the beam, with springs arranged as in the
Maxwell and Kelvin-Voigt models. The results are sum-
marized in simple curves with a single lumped parameter 02
that combines the physical parameters of the mass, the
beam, and the spring. These curves provide useful infor-
mation for the design of beam dampers. 0 ) 2 3 4 5 6

===J___
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