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An Application of Beam  Dynamics  to  a  Damper  Design 

Flexural wave  propagation  may be used  as  a  means of absorbing  impact  energy  to  prevent  excessive  rebound  or  to 
shorten  the  cycle  time of high-speed  printing  devices.  For  optimal  damping  action,  however,  the  dynamic  analysis of 
beams  used  in  the  mechanism  is  necessary;  this  paper  presents  such  an  analysis.  It  also  presents  an  application of a 
damper ring design  that is used  to  prevent so-called “shadow printing” by suppressing  the  rebound of the  type  elements 
in  a  disk  printer. 

Introduction 
In many high-speed printing devices,  the  settle-out time 
of fast-moving components  often plays an important role 
in limiting the repetition rate. Also, uncontrolled rebound 
of key components  can result in mechanical  inter- 
ferences.  This is particularly true in many  impact printers 
used in computer  systems.  These  printers invariably con- 
tain  fast-moving type  elements  and  hammers  that must  be 
settled  out  after  each  stroke before the  next  cycle  can be 
initiated. Not only does a slow settle-out  mean a slow 
cycle  rate,  but if these high-energy elements  rebound  ex- 
cessively,  they  can  cause  double imprints or so-called 
“shadow printing.” 

The most common method of absorbing  impact  energy 
is to use some  type of damping  material.  This approach is 
acceptable only if such material can be incorporated  into 
the  structure  without affecting the  operational perform- 
ance.  Another mechanism of energy  absorption, while 
not  commonly  designed  into  a damper but  which in- 
directly  affects settle-out, is elastic  or  shock  waves  that 
propagate through the structure. If the  structure is prop- 
erly  designed, a wave  propagation can be successfully 
used as a means of energy  dissipation. Compared  to 
elastomers  and  polymers,  however,  elastic  dampers usu- 
ally require more  careful analysis  because wave  propaga- 
tion phenomena  are more complex  and sensitive to pa- 
rameter  variations. 

One  such  damper design that  uses flexural wave propa- 
gation is incorporated  into  the IBM 3610 disk printer [l]. 
Figure 1 shows  the print-disk assembly, which contains 
the  type and interposer disks pressed  together.  The  type 
disk carries  an  array of type elements mounted on indi- 
vidual fingers that  are very flexible in an out-of-plane  di- 
rection.  The  interposer disk has  thicker and  stiffer fingers 
on which the individual type  rests with  some preload.  The 
entire disk assembly  rotates  at very high speed (the pe- 
ripheral speed is about 8 d s ) .  The  hammer, poised for 
the right type  character  to  come  by,  strikes  the  interposer 
at the right moment, transferring the momentum to  the 
type mass and propelling it toward  the  paper  to make an 
imprint. The  interposer  prevents  the hammer from pene- 
trating between  adjacent type elements  that  are moving 
rapidly in the direction perpendicular  to  the  hammer mo- 
tion.  Upon receiving the momentum from  the  interposer, 
the  type  spends only a fraction of its kinetic energy in 
printing and returns  to  the  interposer  at a  relatively high 
speed.  It forcibly impacts  the  interposer  and  bounces  out 
again toward  the  paper. An excessive  rebound  causes a 
second imprint on  the  paper, resulting in “shadow print- 
ing.” 

A damper ring located below the  hammer is designed to 
absorb  the impact  energy of the returning  type  and to pre- 
vent  excessive  rebound. It is part of the print disk  assem- 
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bly and  rotates with the  interposer  and  type  disks.  Note 
that  each  interposer finger is firmly in contact with the 
damper ring; but  on  impact by the  hammer,  it  is  free to 
move forward  to  push  the  type.  The striking of the inter- 
poser by the returning type mass causes bending of the 
damper ring,  which  initiates  a  flexural wave  to propagate 
and  dissipate  the impact  energy. Attempts  to  dampen  the 
impact energy with  polymers have been  unsuccessful, 
mainly because of the stringent requirements  on momen- 
tum  transmissibility,  dimensional  stability, and limited 
motion of the  interposers. 

Qualitatively, it can be seen  that  too flexible a damper 
ring would be  as ineffective in damping as would be too 
massive a damper ring. In these  extreme  cases,  the spring 
effects of the  interposer would become  too  dominant. 
Thus, although using the  damper ring is intuitively cor- 
rect,  its effectiveness is obtained  only  through extensive 
efforts in analysis and experiments. 

This  paper  presents  the  analysis  related  to  the  damper 
design by means of flexural propagation. To simplify the 
model and generalize it for wider  application, the  damper 
ring is taken  to be  straight  and infinitely long;  and  analy- 
ses  are  made  for a mass  impacting the  beam. Also ignored 
in the  analyses  are  the small effects  due to the disk rota- 
tion and the  elastic foundation of the  circular plate  which 
supports  the ring. These simplifications are justified  be- 
cause  the peripheral  speed of eight meters  per  second in- 
duces a low hoop  stress of about 4 X IO5 Pa (60 psi) and 
the  supporting plate is sufficiently thin and  has  ample  cut- 
outs  to allow the ring to behave like a support-free  beam. 

Three  cases  are  presented: 

1. A  mass  directly  impacting the  beam. This  simplest 
model gives insight  into  the  damping  mechanism of the 
infinite beam. 

2. A mass impacting the  beam  through a linear spring. 
This spring simulates  any structural flexibility existing 
between  the mass and  the  beam, including the  contact 
stress effect. 

3. A mass impacting a spring that is  in parallel with the 
beam damper.  This is a slight  variation of the first 
model and simulates the  case  where  the impacting 
mass is relatively  large compared with the  beam,  and 
the additional  spring  element is needed  to  approximate 
the  supporting  structure. 

Analysis 

Dynamic  response of the infinite  beam 
We first seek a beam response  to  an  arbitrary load con- 
centrated at x = 0. Noting  the  symmetry  about  the origin, 

Damper ring 

Figure 1 Disk printer. (a) Overall view of disk printer mecha- 
nism. (b) Cross section  side  view of printer disk. 387 

H. C. LEE AND J .  W. RAIDER IBM J.  RES. DEVELOP. 1 IVL. 23 NO. 4 JULY 1979 



the beam equation  and  boundary and initial conditions are 

EIwxXIs + PAW,, = 0 x, t > 0 ,  

w(x ,  0 )  = w,(x, 0 )  = 0 ,  

wJ0,  t )  = 0 ,  

w,(O, t )  = w = y (13) 

The  dot indicates a time derivative  when  the  function is 
only time dependent.  Thus, Eq. (13) gives the beam re- 
sponse in terms of the velocity at  the point where  the 
force is applied. For  example, if F(t) = Fo = constant, 

w = 2yF0.\/r . (14) 
w = wX = wlr - wIXx = 0 at x = 00, 

where EI is the beam  modulus, w is  the displacement of 
the  beam, p A  is the sectional  density, X and t are  the 
space and  time coordinates,  respectively, F(t) is the con- 
centrated  load,  and  the  subscripts designate  partial deriv- 
atives. We perform  the  Fourier  cosine transform on  the 
above  equations, resulting in 

- ( 5 )  

where 

EI 

PA 
p '=  -, 

Thus, 

+(a, t) = 7 i, sin Pa'(t - r)d7, 
1 '  

Pff 
or 

Now,  for  the  solution, we take  the inverse cosine  trans- 
form of Eq. (lo), 

and by carrying  out  the  last integration [2], 

w,(x, t )  = 

where 

388 At x = 0, 

In  contrast  to a  linear dashpot  that  results in a constant 
velocity for a constant  force,  an infinite beam has velocity 
proportional  to  fiunder a constant  force. In another  ex- 
ample, if F = F ~ / v ' Z  

W = rr/3yFo = constant. (15) 

This agrees with Boussnesque's result [3], indicating that 
constant velocity can  be maintained by a force inversely 
proportional  to v T .  

Impact analyses 

Case 1 
For  the first model, we take the simplest case,  where  the 
mass m impacts directly on  the  beam with the initial ve- 
locity voand  the  mass  stays with the beam. Then, in terms 
of the mass  velocity u, 

mi, = -F( t ) ,  (16) 

F(7) 

477 
= Y j o  dr = -my Jnl d; dr. (17) 

The  Laplace  transform of Eq. (17) gives 

V(s)  = 210 

and,  therefore, 

where  erfc is the  complementary  error function. 

Again, compared  to a linear dashpot  for which the ve- 
locity of the impacting  mass decays  exponentially,  the ve- 
locity of the  mass impacting an infinite beam decays more 
slowly for large t. As a matter of fact,  Eq. (19) shows u 
decreasing as a function of l/-\/ffor large t .  

Case 2 
Next, we consider a case  where  the mass impacts  the 
beam  through a spring.  This is analogous to  the Maxwell 
model shown in Fig. 2 .  As the impacting  mass  com- 
presses  the  spring,  the  extent of the  rebound of the mass 
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depends  on  the inertia and rigidity of the beam. Our inter- 
est lies in the range where  rebound  occurs.  The  equations 
of motion are 

my = - F ( f )  = - k ( y  - w) = - k z ,  (20) 

Jo d7-r 
where y and w denote  the  displacements of the mass and 
the  beam,  respectively, and z is their relative  dis- 
placement.  Set 

Y 
Spring, k 

7- 4 
w' Beam  damper, Y "f 

Figure 2 Model for Case 2 (Maxwell model). 

and 

1 rn3k 114 
= ~ ~ 

6 IflipA13 1 
Then,  Eqs. (20) and (21) become 

w"(r)) = - (z)) + z ) ,  (25 )  

The primes denote  the  derivatives with respect  to  the 
independent variable.  Taking, again,  the  Laplace  trans- 
forms of Eqs. (25)  and (26), and  solving for Z ,  

a s )  1 
" - - - s 2 +  1 -&G 

v o  s 2 + f f G  + 1  s' + 1 - Tra's , (27) 

where Po = y(O)/w. The inverse  transform of the above 
equation involves finding the  roots of the  denominator, 
which are in the  form of p ? iq, -p  f ir. Using partial 
fractions  for  the final solution results in 

B + sin q(q - 6) 
4 J 

The  constants A , ,  A,,  B , ,  . . ., D, are  obtained through 
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partial  fractions which yield simultaneous equations.  The 
equations in a matrix  form are 

1 0 1 0 
P 1 -P 1 

(r' - P') 2p (4' - p') -2p 
-p(p' + r') (p' + 2 )  p(r' + q2) 2( p' + $1 

= N .  

For A, ,  B, ,  C,  and D l ,  N is (0 1 0 1 ) ;  for A, ,  B, ,  C, and D,, 
N takes the form (0 0 1 0) .  

The velocity is computed  from Eq. (20), 

Y ' ( d  = 1 - C;( l !d ' .  

The integrations in Eqs. (28) and (29) may be performed 
numerically. The  square  root singularity in Eq. (28) can 
be eliminated by a variable substitution, cp = *or dcp = 

d U d F  

The rebound  velocity is the velocity y' when  the rela- 
tive displacement z becomes  zero (at r)  = 7,). Then the 
coefficient of restitution,  the ratio of rebound velocity to 
the initial velocity, is 

where z(r),) = 0. Note  that in this analysis  there is only 
one  parameter, &, which is defined by Eq. (24). Thus,  the 
rebound  characteristics of this model are  represented by a 
single curve,  as  shown in Fig. 3 ,  which indicates  there is 
no rebound for ff greater than about 0.52. 

Case 3 
Case 2 represents  the situation  where a small  mass im- 
pacts a relatively massive  beam. There,  the supporting 
structure of the beam  can be ignored. However,  as  the 
beam is made  lighter compared  to  the impacting mass,  the 
rebounding characteristics  are dictated more by the elas- 389 

H. C .  LEE AND J. W .  RAIDER 



1  .0 

0.8 

0.6 

0.4 

0.2 

5" 
0.1 0.2 0.3 0.4 0.5 

Y 

Figure 3 Coefficient of restitution ( R )  vs  CU for Case 2. 

0 L o  

Figure 4 Model for Case 3 (Kelvin-Voigt model). Type (a): 
Spring and beam tied together.  Type  (b): Spring can  push beam 
downward but cannot pull it up. 

ticity of other  supports. We represent  such elasticity by a 
spring that  acts in parallel to  the beam as  shown in Fig. 4 
and is known as  the Kelvin-Voigt type.  Two different 
types may be studied  for this model: one in which the 
spring and  the beam are tied together, Fig.  4(a), and an- 
other in which the  spring can  push the  beam downward 
but  cannot pull it up, Fig. 4(b). 

When the mass impacts  the  spring, it pushes  the beam 
until the maximum deflection is reached. At  this point,  for 
the second  type of the model, the spring can  separate 
from  the  beam, transforming the spring  energy into kinet- 
ic energy of the mass. On the  other  hand,  for  the  type in 

390 which the spring and  the beam are tied together,  the 

spring pulls the mass and  the beam until the maximum 
upward velocity is  reached,  at which point the  separation 
occurs.  For this  model the  equations of motion for both 
Figs. 4(a) and 4(b) are 

my = -ky - F(t),  (3 1) 

If we combine the  two  equations,  substitute 7 = ot and 
take  the  Laplace  transform,  we  get 

Y(s )  1 

(s2 + 1)2 - - ' 3  
- 2  s 

rra! 

and 

S 

(33) 

(34) 

This method of solution is similar to  that in Case  2, with 
the solution again depending on only one  parameter, (Y. 
The restitution as a function of CW is plotted in Fig. 5 for 
both  types. 

Application to  beam  damper  design 
The  curves in Figs.  3 and 5, which summarize  the preced- 
ing analysis, can  provide very  useful  information  for a 
damper design. All the physical parameters of the  beam, 
the  mass, and the spring are conveniently lumped into 
one  parameter Cy, as defined by Eq. (24). Thus, many dif- 
ferent combinations of parameters  can  result in a desir- 
able value of Cy. One has only to decide  which curve in 
Figs.  3 or 5 best  models one's  damper  system.  Then, with 
the value of (Y known,  one can obtain  the  expected 
rebound  characteristics of the  damper. 

In  the  case of the disk printer  described  earlier, early 
poor settle-out and  shadow printing  were attributed  to  too 
light a damper ring made of nylon. The  interposer flexibil- 
ity was  the dominant factor  for  the  rebound simulating 
Case 3 [Fig. 4(b)], with a high value of Cy (about 2.5). To 
decrease  the value of Cy, a material  with high density  was 
sought to  increase  the  value pA,  the  most influential fac- 
tor in altering the  value of Cy, as  seen in Eq. (24). A tung- 
sten-filled nylon was  selected  and  the maximum area A 
that  the space  allowed was filled. The final modification 
was  successful in eliminating the  shadow printing;  the 
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~ value of C-r was sufficiently lowered to  about 0.4, which 1 .0 
fell in the range of Case 2 .  

Summary 
Dynamic  response of an infinite beam is used to analyze 
the flexural wave  propagation as a means of dissipating 
impact energy. A simple form of the b-.L;c response  to 
arbitrary loading is derived,  and  the damping character- 
istics of the beam are  analyzed through impacts between 
a mass  and the  beam, with springs arranged  as in the 
Maxwell and  Kelvin-Voigt  models. The  results  are sum- 
marized in simple curves with a single lumped  parameter 
that combines the physical parameters of the  mass, the 
beam, and the  spring.  These  curves  provide useful infor- o: 
mation for the design of beam dampers. 
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