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Probabilistic PERT 

A solution is offered  to  the  problem of determining  a  probability  distribution for  the  length of the  longest  path  from  source 
(start)  to sink finish)  in  an  arbitrary  PERT  network  (directed  acyclic  graph),  as well as  determining  associatedprobabili- 
ties  that  the  various  paths  are  critical  (“bottleneck  probabilities”).  It is assumed  that  the  durations  of  delays  encountered 
at  a  node  are  random  vuriables  having  known  but arbitrary probability  distributions with jinite  expected  values.  The 
solution  offered  is, in a  certain  sense,  a  worst-case  hound  over all possible  joint  distributions  of  delays  for  given  marginal 
distributions for  delays.  This  research  was  motivated  by  the  engineering  problem  of  the  timing  analysis of computer 
hardwure  logic block graphs  where  randomness  in circuit delay  is  associated  with  manufucturing  variations.  The  proha- 
bility distribution of the critical pathlength  turns  out  to  he  a solution of an  unconstrained minirnizntion problem, which can 
be recast  as  a  convex  programming  problem with linear  constraints.  The  probability  that  a  given  path  is critical turns  out 
to  be  the  Lagrange multiplier associated with the  constraint  determined  by  the  path.  The  discrete  version of the  problem 
can  be  solved  numerically  by  means  of  various  parametric linear programming  formulations, in purticular  by  one which is 
efjciently  solved  by  Fulkerson’s  networkjlow  algorithm  for  project  cost  curves. 

Introduction 
This paper brings together recent results in probability 
with older techniques in mathematical  optimization in or- 
der  to offer a  practical  solution to  the probabilistic PERT 
(Program Evaluation and Review  Technique)  problem. 
The probabilistic  results are  due  to Meilijson and  Nadas 
[ I ]  and  the required  mathematical  optimization is based 
on suggestions by Johnson  and Wolfe [ 2 ] .  This research 
was  motivated by the following model for  the timing anal- 
ysis of computer  hardware logic block graphs: Each block 
plays the role of a  delay node,  as can each  “wire” of suf- 
ficient length to contribute significant delay. The quantity 
of interest here is not  delay: rather, it is the  excess delay 
(lack or  surplus) of signal arrival  time  at storage  elements 
gated by a  clock (i.e., a  late  signal). The clock signal is 
also  propagated through a network of blocks;  con- 
sequently, the  appropriate PERT model is constructed by 
replacing each delay with its  negative for every  delay  ran- 
dom  variable  associated with propagating  a  clock  signal. 
An early signal model is constructed in an analogous  way: 
in this case  one is concerned  with shortest  paths. 

The  paper is organized as follows. The general  probabi- 
listic and graph-theoretic  features of the  problem are dis- 

cussed in the next section.  The following section  in- 
troduces, still in general terms,  the proposed  probabilistic 
solution together with Fulkerson’s  “Project  cost  curve” 
problem (Fulkerson [ 3 ] )  whose solution,  unexpectedly, 
also  solves  the optimization  problem for the discrete 
probabilistic PERT.  The next two  sections  describe  the 
probabilistic  solution. The concluding  section describes 
the discrete optimization problem,  shows  that  Fulker- 
son’s algorithm is applicable, and  reports some modest 
numerical experience. 

The  problem 
PERT  or CPM (Critical Path Method) networks are di- 
rected  acyclic  graphs having a single source node (start) 
and a single sink node (finish). In this paper  the nodes are 
regarded as  the places where  tasks  or  jobs  are  accom- 
plished at  the cost of some delay.  The directed arcs  de- 
scribe the  precedence relations among  the  tasks (nodes): 
it is assumed that a  task begins at  the precise time when 
all preceding tasks have  been completed.  The completion 
time at a node is then simply the longest  pathlength (i.e., 
sum of delays  on  the  path) of all paths leading to  and in- 
cluding the node. In particular, the critical pathlength is 
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Figure 1 A PERT problem.  The  critical  pathlength is 13; it is 
attained  on  the  two  paths  shown.  Numbers in boxes (nodes)  de- 
note  delay. 

the completion  time at the  sink node. Figure I illustrates 
this  model. The literature on  PERT and CPM is enormous 
and no  attempt is made here  to summarize  it. 

Suppose  that  the nodes are numbered in any order  as 
1, 2, 3 ,  ’ ‘ ., n ,  and  that the  delay  incurred  at  node i is a 
random  variable X i  (random  variables will be denoted by 
capital letters) whose  distribution  function Ft(x) is known; 
i.e., for all x 

Fi(x) = Pr ( X ,  5 x) i = 1, . . . , n  

is  a family of n given probability  distribution functions. 
The Fi are  the marginal distributions of the delays X ,  at 
node i; these functions together with a specification of the 
PERT graph are  the  data of the model. Models of this 
nature may arise in various ways.  These include  the case 
where  randomness of delay is due  to  an  “explainable” 
random  mechanism such  as  random physical phenomena, 
random events in manufacture,  etc., and the  case  where 
randomness is introduced as  a tool for describing uncer- 
tainty about actual  nonrandom delays. Figure 2 illustrates 
this  model. 

Thejth path of the k paths  that run from source  to sink 
is denoted by P j ,  the list of those node  numbers that be- 
long to  the  jth  path. Evidently the random  completion 
time Tj of the  jth path is 

T j =  cXi j =  1 , 2 ; . . , k .  

The random  completion  time M at  the sink node is then 
the completion time of the network; i .e.,  the critical path- 
length is 

p ,  
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In addition to finding the distribution of M ,  or finding for 
every t 

Pr ( M  > t ) ,  

it  is of interest  to find out which paths (and nodes)  are 
critical in some sense;  for  example, by using 

Aj(t) = Pr ( M  = Tj  > t )  

for some interesting t ,  such  as  a  “statistical worse case” 
value, tu, for which Pr ( M  > fa) = a. (For design purposes 
one is interested in the identity of the worst path, pro- 
vided it is too long.) 

It is evident  that the  probability  distribution of M can- 
not be determined without  knowledge of the joint distri- 
bution of the delays (Xl, . . ., X,). The marginal distribu- 
tions F,, . . ., F ,  do not carry enough information to  do 
that. It is  also clear that  the distribution of M is an  ex- 
tremely complicated  functional of the joint  distribution 
except in the  case of very  special  simple  graphs. The only 
simple nondeterministic example (involving a general 
graph)  known to  the  author is the  “perfect  tracking” 
model, X i  = pi + uiZ for given constants pi, ui (ui > 0) 
with i = 1 ,  . . ., n and a  random variable Z with known 
distribution  function F. In this case, letting m j ,  sj denote 
the  path sums of pi, ui for .j = 1 ,  2, . . ., k ,  that is, 

mj = 1 pi, sj = 1 ui, 
one finds immediately  that for all t ,  

p ,  p ,  

Pr ( M  > t )  = 1 - F [ z ( t ) ] ,  

where 

z ( t )  = min -. 
t - mj 

j s 

Aside  from such simple models,  the  exact distribution 
of M appears intractable no  matter what sort of depen- 
dence  structure is assumed. It is interesting to  observe 
that even if the delays {Xj} were assumed to be mutually 
independent  random  variables  (an  untenable assumption 
in many important  problems),  the  joint distribution of the 
path sums {Ti},  u jortiori of M ,  will still be intractable. 
This is due  to the dependence  introduced by the multiple 
assignment of nodes to  paths.  For  the  same  reason,  the 
problem of finding bottleneck  probabilities, ; .e . ,  paths 
that  are likely to be critical, also  appears intractable. 

The  assumption of mutually independent  random 
delays has been  considered by several  authors. Sielken 
and Hartley  and colleagues ([4] and its  references) make 
the implicit additional assumption  that  the graph  can  be 
usefully represented as  a  certain  “supergraph” of sub- 
graphs.  It is assumed that 1) each subgraph is of suffi- 
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ciently simple structure  (parallel,  series, Wheatstone 
bridge) so that  the critical path  through the subgraph will 
have a simply computed  probability  distribution, and 2) 
the  supergraph  has the very  simple structure of having all 
its  nodes (subgraphs of original graph) in parallel and se- 
ries combinations.  This approach is valid for  graphs satis- 
fying both 1 and 2. Another technique  to exploit the  sup- 
posed simplicity of the mutual independence  assumption 
was suggested by Robillard and  Trahan [5]. This tech- 
nique consists of first computing (by convolution) each of 
the k marginal distributions of the  path completion  times 
T , ,  . . . , Tk and then using these  to obtain a bound on 
Pr ( M  > t) .  The technique works best on graphs having 
disjoint parallel paths but can  be unduly pessimistic in 
general (see  the discussion in Meilijson and Nadas [I]). 
Also based  on independence assumptions, in earlier  work 
Fulkerson [6] has  obtained some lower  bounds on the  ex- 
pected length of critical paths. 

The proposed solution 
In the  present  work,  no  assumptions  are made  about the 
joint distribution of the delays X,, . . ., X ,  beyond the 
constraint that the X l  have the  correct marginal distribu- 
tions Fi. Similarly, no assumptions  are made  regarding 
the graph  beyond  the statement  that it represents a PERT 
problem. (Actually,  the mathematical  result  presented be- 
low does not even require that  the problem  be  realizable 
as a  directed graph; a  path is merely  a set of nodes.) 

The point of view adopted  herein is that I )  the  joint 
distribution is not known  and 2) even if 1 is assumed  away 
(by r . g . ,  mutual independence),  the problem remains in- 
tractable  on  account of a  complicated  graph. The solution 
appropriate  to this point of view begins by considering all 
possible joint distributions for  the  delays  consistent with 
the given marginal distributions F , ,  F,, . . ., F,. Joint dis- 
tributions which make M as large as possible (in a certain 
sense, discussed in the next section)  are then singled out 
to obtain  a sharp (i.e., realizable) upper bound for distri- 
bution of M .  

In the  special case of a simple, purely parallel graph 
(disjoint paths  each having a single delay node  plus 
dummy source and sink), these  results have  also  been ob- 
tained by Lai and Robbins [7, 81. 

Fulkerson [3] solved the following “project  cost curve” 
problem  associated with deterministic  PERT  networks. 
The problem is to  trade off time  against  budget. Consider 
a  project which consists of jobs  (tasks, activities). The 
precedence relations  among jobs  are induced by restric- 
tions inherent in the  project, r . g . ,  precedence of succes- 
sive stages in manufacturing or  transportation.  Suppose 
that the  cost of delay for any  given job varies  inversely 

Start I +  Stop 

\ I I 

Figure 2 A probabilistic PERT problem. The flow shown,  as- 
sumed left-to-right, is the same as in Fig. 1. Here, any  path  may 
be critical. Shapes in boxes refer to probability distributions of 
delay. 

and linearly with the delay and  that  the delay may be cho- 
sen to be any value  between two given extremes, a “nor- 
mal” and a “crash” task  completion time for  that job. 
What is the least  project cost  (the sum of all job  costs) 
satisfying the constraint that  the project  completion  time t 
(the critical path length) is specified in advance?  For  vary- 
ing t this minimum project cost  traces out the project cost 
curve.  Fulkerson’s algorithm [3] computes  the  entire 
project cost  curve in an efficient way using the  celebrated 
network flow approach (see, e g . ,  [9]). Although this 
problem bears little resemblance to  the probabilistic 
PERT  problem, the  numerical  solution of the discrete 
version of probabilistic PERT  can be  formulated in such a 
way that Fulkerson’s algorithm is applicable. The  reason 
for this is that both the “project  cost  curve” of determi- 
nistic PERT and  the “expected optimal residual com- 
pletion time” of discrete probabilistic PERT  are  decreas- 
ing, convex, piecewise linear functions of time. This 
relationship was first recognized by E.  L. Johnson [2] 
and we shall  describe it in the section on  computation. 

Comparison of random variables 
The distribution of the  random  critical  pathlength will 
vary with the possible  joint distributions of the  delays (X,, 
X,, . . ., X,) even though the X i  have  the given marginal 
distribution  functions Fi.  For  example, if M ,  denotes  the 
M corresponding  to  one  joint distribution  and M ,  denotes 
the M corresponding to  another  joint distribution, then 
M ,  and M ,  are different random  variables (r.v.’s)  because 
they  have  different  distribution functions (d.f.’s). 

If X ,  Yare  two  r.v.’s, it  is quite possible  that X 5 Y in 
one instance by X > Y in another. One might consider 
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Figure 3 Stochastic inequality, X 5 Y (stochastic). 

Figure 4 Convex inequality, X 5 Y (convex). 

various definitions for saying, “X 5 Yon  the  average,” 
such  as E X 5 E Y (E (.) denotes  the mathematical ex- 
pectation of its  argument) or  such  as Pr (X 5 Y) > (1/2) 
and so forth. Average comparisons,  however, tell us little 
about  the tails of the distribution of X - Y and it is neces- 
sary to  adopt somewhat  more  complicated  methods of 
comparison. A usual tool for this is the stochastic in- 
equality 

X 5 Y (stochastic) 

if and only if 

P r ( X > t ) s P r ( Y > t )  

for all t so that  the two curves  never  cross as in Fig. 3. 

Such a stochastic comparison would solve  the probabi- 
listic PERT problem if we could find a joint distribution 
such  that  the corresponding random critical  path length M 
would be stochastically as large as possible while observ- 
ing the  constraint  that the X i  have  the prescribed  distribu- 
tions Fi.  In  the simple problem where  the graph consists 
of n nodes in parallel, one  has 

M = max X i .  

In this case,  the stochastically worst distribution of M 
is given by 

l s i s n  
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for all t where  the sum is less  than unity; it is unity else- 
where. This  result can be proved by induction on n with 
respect to  the construction of joint distributions by re- 
peatedly  “opposing” the  next Fi+, to the  distribution of 
the  previously constructed maximum of the previous X,, 
X,, . . ., X i  ([I],  p. 7). Although the  joint distribution so 
constructed is not the only one  to yield the  above distri- 
bution for M ,  the stochastically worst distribution of M is 
well defined. 

In  PERT problems of practical interest,  such  as  our 
model for  the timing analysis of a logic block graph,  the 
graphs are often large and complicated.  In  these  problems 
there are  no simple  formulae  available for  the distribution 
of Mi; in fact, it is easy to  see  that in general there is no 
joint  distribution which stochastically maximizes M .  [As 
an  example, if X,, X, both have  the uniform distribution 
(1/3, 1/3, 1 / 3 ) o n { 1 , 2 , 3 } a n d M = X l + X , , t h e n P r ( M ~ 6 )  
= 1/3 is maximal but forces  Pr ( M  2 5 )  = 1/3 also; 
while Pr ( M  2 6) = 0 allows Pr ( M  2 5 )  = 2/3.]  More- 
over, it seems exceedingly difficult to find good bounds 
for  Pr ( M  > t )  even  for a single value t .  The solution pro- 
posed in the  next section is based  on  the notion of convex 
inequality, introduced in Meilijson and  Nadas [ 11, and  de- 
fined as follows. For  r.v.’s  X, Y with ElXI and El Yl finite, 

X 5 Y (convex) 

if and  only if 

j tz  Pr (x > u)du 5 

for all t .  This  amounts to comparing the “residual ex- 
pectations” of the  r.v.’s X and Y: 

E ( X - t ) k E ( Y - t ) +  - - s c < t < = ,  

as is seen from the identity 

E (X ~ t )+  = Itm Pr (x > u)du ,  

where a+ denotes max {a ,  0). (See Fig. 4.) 

It is well known  that X 5 Y (stochastic) if and  only if 
for  every  “test function” g (g  2 O),  

E g ( X )  5 E x(Y), 

provided that g is increasing. It  turns  out  that in an analo- 
gous way 

X 5 Y (convex) 

if and only if E g(X) I E g( Y )  for all increasing  and con- 
vex (g” > 0 if there  are  derivatives)  test functions.  Obvi- 
ously a stochastic inequality implies  a  convex one, but 
the  converse is not true. This characterization indicates 
that in a certain  sense,  the  convex inequality is the  “next 
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I best  thing” to  stochastic in situations  (such  as  PERT) 
where  stochastic comparison is not  possible. 

Perhaps  the simplest measure of dependence  between 
two  r.v.’s is the correlation coefficient. It is not hard  to 
show that if X and Y have  given marginal distributions, 
the  correlation coefficient is maximized by the  same  joint 
distribution which convexly minimizes the difference 
IX - YI, namely the ‘‘lineup’’ distribution. This is defined 
constructively as the  joint  distribution of the pair ( X ,  Y )  
when it is generated by a simultmneous Monte Carlo pro- 
cedure,  as in Fig. 5. In  a similar way, the  correlation  coef- 
ficient is minimized by the same  joint distribution which 
convexly maximizes IX - Yl, namely the  “opposed” dis- 
tribution, Fig. 6. To see this,  note  that it suffices to bound 
E X Y .  For simplicity let X ,  Y 2 0 so that 

x y  = I”= I”= f&, Y)d,YdY, 

where fxy(x, y) is 1 if 0 5 x 5 X and 0 5 y 5 Y and it  is 
zero  otherwise. Then 

EXY = E fxy = lox [om Pr (x  > x ,  Y > y)dxdy, 

and E X Y  (hence the  correlation coefficient) is minimized 
(maximized) by bounding the integrand. This in turn is ac- 
complished by joint distributions constructed by the  “op- 
position” (“lineup”) of the two distributions. For ex- 
ample,  the maximum of Pr ( X  > x, Y > y) is Pr ( X  > x )  + 
Pr ( Y  > y )  or unity. Of course, X ,  Y must  have finite vari- 
ances  to  have  the correlation coefficient defined. This 
characterization of extrema1 correlations indicates that 
this convex method of comparing r.v.’s is well suited to 
the problem of maximizing over possible joint distribu- 
tions of delays in a PERT  network. 

Mathematical  solution 
The  announced solution to the probabilistic PERT pro- 
gram can now be stated as  follows. 

Theorem  Assume all delays X ,  have EIXil finite. Then 

1. There  exists a r.v. M“ such  that 

E ( M *  - t)’ = min r 
,I 

+ 1 E ( X ,  - xJ+ 

i=l 

i . e . ,  the right-hand side is indeed  the integral of some 
distribution’s right tail. 

2 .  If M is  the critical pathlength corresponding  to  an arbi- 
trary joint distribution having the  correct marginal dis- 
tributors, then M is convexly no larger  than M * ,  i.e.,  
M *  is a  convex bound for all possible M .  
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Figure 5 The “lineup”  algorithm. c/ has  the rectangular  distri- 
bution. ( X ,  Y )  has the  lineup distribution. 

I # 

Figure 6 The opposition  algorithm. U has the rectangular dis- 
tribution. ( X ,  Y )  has  the “opposed”  distribution. 

3. This bound is sharp: For  every t there is a joint  distri- 
bution having the  correct marginals such  that E ( M  - 
t)’ = E (M* - t)’. In other words E (M” - t )  is,  for 
varying t ,  the convex envelope of  all possible residual 
expectation functions. 

4. If  it happens that  the  graph consists only of parallel 
and series  structures, then M* = M for some joint dis- 
tribution,  i.e.,  the envelope in one of the  residual ex- 
pectations. 

5. The solution can be recast as the following constrained 
minimization problem: 

,1 

E ( M *  - t)+ = min 1 E ( X i  - xi)’ 
1st) 

subject to 

x .  5 t for all j .  
p, 

6. Let A j  denote the  Lagrange multiplier associated with 
the j th path  constraint in the  above. Then for M de- 
fined in 3 

is the probability that  the j th  path is critical, i.e., the 
,jth  bottleneck probability. 343 
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The idea for this  theorem came from observing that in 
the purely parallel case of M = max X i  one  has  (say 
X i  2 0 for all i )  

E M = Iom Pr ( M  > t)dt = t ,  + 5 E (xi - to)+ 
i = l  

71 

= min t + 2 E ( X i  - t)’, 
n<t  i = l  

where t,, is  the least upper bound of values t for which 

2 Pr (x i  > t )  = I .  
n 

i=l 

The following simple example illustrates the result in 
the parallel-series  situation where  no numerical opti- 
mization is required. Suppose no delays at source  or sink 
nodes and  assume a graph on  four  other nodes { I ,  2, 3, 4} 
such that nodes 1 and 2 each  precede both nodes 3 
and 4. Then there  are four paths ( 1 ,  3), ( I ,  4), (2, 3), (2,  4) 
from source  to sink. Here M can be expressed as max 
{ X , ,  X 2 }  + max {X,, X,}. Suppose all X i  have normal distri- 
butions with variance one, X ,  and X ,  have mean zero 
while X ,  and X ,  have mean one.  Let @ denote  the  stan- 
dard normal  integral.  Then the  convex (and stochastic) 
bound on Pr (max {Xj, X 2 }  > t )  is min { I ,  @(-t) + @ ( I  - 

t)}. Since max {X,, X4} has  the  same  bound, lining these 
up yields the convex bound for M :  Pr (M* > t )  = min { I ,  
@(- t /2 )  + @( 1 - t /2 )} .  Observe  that if one  were to  erro- 
neously first compute convex  bounds on the  separate 
paths  and then find the best stochastic bound for  these 
path bounds,  the resulting bound Pr ( M  > t )  5 min ( I ,  
@(- t /2 )  + @( 1 - t / 2 )  + 2@((1 - t ) / 2 ) }  is larger than the 
best convex bound given by the  theorem.  The  theorem 
was  proved by showing that  the solution is indeed a con- 
vex  bound  and  then constructing a joint  distribution 
which, for a given t ,  attains that bound ([I], p. 6). 

Computational  algorithms 
At first glance the mathematical  result seems impossible 
to  compute  for large n (say n > 50) since the minimization 
required is n-dimensional. However,  the objective func- 
tion, as described in 5. in the previous section,  has certain 
special features which, together with the special nature of 
the constraints, allow a practical  solution. Note first that 
since each variable xi  appears  alone  as the  argument of 
the ith summed  function, the sum is srpuruhle. Next  ob- 
serve  that  the objective  function is also convex because 
each  summand is convex  (integrals of decreasing func- 
tions are automatically convex).  The  constraints  are all 
path-sum (linear) constraints on a PERT  network.  These 
are  the  three special features  to be  exploited. 

There  are several  distinct  linear programming formula- 
tions  available for  the  separable  convex objective  with 

linear constraints. Using convexity, each E (X i  - x)’ can 
be approximated by a piecewise  linear  majorant. This lin- 
earization of the residual expectation is equivalent to  ap- 
proximating the given distribution Fi by another distribu- 
tion that  concentrates all the probability at  the  break- 
points of the majorant.  Since  this is a minimization 
problem, the majorization of the objective  function en- 
sures  that  the approximate  solution is still a correct  con- 
vex bound. Observe  that in a  linear programming formu- 
lation, the Lagrange mulipliers (bottleneck  probabilities) 
are obtained  directly as dual variables in the  problem. 

Let + i ( x )  denote the  piecewise  linear  majorant of 
E (X i  - x)’ and suppose  that  the breakpoints of c$~ are 
equally spaced as xi,, + Ai,  . . ., xio  + mA, over the support 
( x i , , ,  xi” + mai) of + i .  Then with 

one has  for i = I ,  . . ., n 

Our  task is to minimize 

The first linear program considered was based on  the 
well known “delta method” for  convex objective func- 
tions.  Partition  each x i  as x i  = xil  + x i ,  + . . . + .xim with 
the constraints 0 5 xi” 5 Ai so that 

i = l  1=1 v=1 

This defines the linear  program 

max cx subject to Ax 5 b ,  x 2 0 ,  

where 

and where A is a k + mn by mn matrix of zeros and ones, 
k rows for  the path constraints  and mn rows for  the A, 
constraints. If the bounding technique (available in some 
linear programming computer programs) is used, then A 
is k by mn. If this problem is solved in the dual space, 
then the bounding technique cannot be used but one may 
perform column  generation  via  any longest path al- 
gorithm. 

The  second linear  program  considered  was  based on  an 
idea of Hoffman [IO]. Do not  partition  the x i ;  rather, in- 
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troduce new  variables z,, . . ., z,, and find z 2 0, x 2 0 to 
minimize 

subject to 

zi 2 Ai ,x ,  + B i y  all i, v 

and 

1 x i  5 t aII j .  

This works  because z i  2 +i(xi)  if and only if z i  2 LlY(xi)  for 
all v = I ,  . . . , m. The matrix form of the primal problem 
is 

J‘j 

min cx 

subject to 

x ~ 0 ,  A x ~ b  

where 

c = ( I , I ; ~ ~ , 1 , 0 , 0 ; ~ ~ , 0 ) ,  

b = (B,,, B,,, . . ., Brim, - t ,  . . ., - t )  

and  where A is k + mn by 2n. 

Notice  that in this formulation the size of A grows  only 
linearly with tn and that in the dual  formulation the num- 
ber of rows is 2n < < k + rnn for  a graph of the  expected 
complexity, a desirable  shape for A. 

These solutions appear  to  require  a new minimization 
computation for  each desired  timepoint t. Considerable 
reduction in computing is achieved by using aparametric 
linear programming algorithm which  exploits the  fact  that 
the  same problem is repeatedly  re-solved for  a  system- 
atically varying t. 

The most  convenient and,  to  the  author’s knowledge, 
most efficient formulation of this  problem is a linear pro- 
gram which can be computed by (a variant of) Fulker- 
son’s [3] network flow algorithm for project cost  curves. 
To describe  this, following Fulkerson we switch to  the 
conventional  description of PERT  where delays are  asso- 
ciated with the  arcs of a directed graph  and  where a node 

I is interpreted  as  the  event that all jobs on arcs preceding it 
have  been  completed. Let t i j  denote  the delay on  arc (i, j )  
and let t j  denote  the  event time at  thejth  node.  Each  arc is 
associated with three  nonnegative  integers aij 5 bij and c i j  

with the interpretation  that ai j  5 t i j  5 bi j  for all (i, j )  and 
that the cost of doing job (i,j) in time t i j  is k i j  - cij t i j  where 
kij  are given constants. If the  source and sink nodes  are 
labeled 1 and n, we may assume t ,  = 0 so that  the project 
completion  time is tn. The problem is to minimize 

L \‘ 1 k i j  - c i j t i j  
t j  

by choice of I t i j }  subject to t,, 5 t and 

a, .  5 t l j  5 hi i  all i, j ,  

where t is the  desired  project  completion  time.  This is a 
linear program with a lot of redundant variables. The rea- 
son for formulating the problem  this way is that in the 
dual space this  linear  programming  problem is solved 
more efficiently ([3], p. 172) by a network flow algorithm 
than by a parametric  linear  programming  algorithm. The 
network flow algorithm generates  the project  cost curve 
as follows. The algorithm begins with the  largest t of in- 
terest, namely t = t,, for tiJ = hi j ,  all i, j .  It  then computes 
sequentially all the  breakpoints of the  curve  and  these 
turn out  to be the optimal event times tj. The optimal job 
times are then  obtained simply as tij = min {b i j ,  t j  - t i } .  

The algorithm is described  and  illustrated in [3, 111, and 
the more recent book of Lawler [ 121. 

It  remains to re-cast the  discrete probabilistic PERT 
problem, as  promised, in the form of the  above  budget 
versus time tradeoff problem.  This is done  as  follows. 
Consider  the  partition of delay  used in the “delta 
method,” 

,,I 

xi = 2 X i ” ’  
”= 1 

and introduce rn delays in series in place of each original 
delay.  Denoting  the  larger set of {xl,} as {x*,), identify an 
arc delay t i j  of the new graph with each node delay x”, of 
the old graph. Put 

bij  = ai j  + A k ,  

cij = A,,, 

if x*, = x k V .  It is then  clear that,  except  for  a  constant,  the 
cost  objective of the  project cost  curve problem  coincides 
with the  residual  expectation  objective of the discrete 
probabilistic PERT problem. A variation:  Fulkerson’s al- 
gorithm can be modified to handle multiple arcs  (instead 
of multiple nodes); this has not been  tried on the present 
problem. 

Not only is the network flow algorithm an efficient way 
to  compute  E (M“ - t)’ for all t ,  but by a  fortunate  hap- 
penstance, in terms of the optimal  residual expectation, 
the  network flow algorithm proceeds sequentially, from 
computing E (M” - t )  for  a largest t [E ( M *  - t)’ is zero 
at  this  point]  and  then  computing  successively  smaller 
“breakpoints” and corresponding  values of E ( M  - t)’. 
The  exact solution is the piecewise  linear  convex  function 
defined by these points. Thus if one is interested in a sta- 345 
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Figure 7 Distributions of critical  pathlength. 

tistical worst case for  the  critical  pathlength, one need 
only continue  the computation  until  this point is brack- 
eted by the  last two  computed breakpoints, i .e . ,  until the 
first breakpoint t ,  for which Pr ( M *  > tB) 2 0.1, for  ex- 
ample. 

These ideas are illustrated in Fig. 7. The graph used 
was that  shown in Fig. 1 .  The marginal distributions  used 
were all uniform (rectangular) on the interval from 0 to 
the delay shown in Fig. 1. Strictly  speaking,  the  graph of 
Pr (M* > t )  so obtained is a step function with jumps at 
the  breakpoints.  However we can and do  revert  to  the 
given continuous distribution functions at  this  stage of the 
calculation, the only purpose of using a discrete function 
having been to facilitate computation.  For this example, 
each E ( X ,  - x)’ was majorized by a  3-segment polygon, 
the breakpoints in Fig. 7 occurring  at 13, 12, and 9. There 
is no need to continue  any further. 

The random critical pathlengths M,,, and M,,,, whose 
distributions are shown in Fig. 7 ,  refer to  joint distribu- 
tions which refer to complete  mutual independence  and a 
strong  “big together, small together”  sort of dependence 
(high positive  correlation) among  the {Xi} respectively.  It 
can be seen that the  sharp  convex bound is not a stochastic 
bound but that it does dominate in the  far right tail. In this 
example the “statistical  worst case”  corresponds  to a 
probability of a = 0. I ,  and a is arbitrarily chosen. This 
example was repeatedly  solved for various fixed t using 
the first two linear programming formulations  described 
above  and a  package of APL programs by Crowder  and 
Wolfe [13]. For any fixed t tried,  the dual form of Hoff- 
man’s  formulation  gave the  fastest computation.  This ex- 
ample  was also solved by the  network flow algorithm for 
project cost  curves using an  APL program  developed by 
Schmidt [ 141. Schmidt’s  program  was  also  exercised on a 
more  interesting example,  to  wit,  the timing analysis of a 
logic chip. The graph in this case had 484 nodes, 1681 

edges and 4217 paths from source  to sink.  Schmidt’s pro- 
gram, running under CMS on  an IBM 3701168 with an at- 
tached processor, consumed  approximately seven  CPU 
seconds  for each  breakpoint computed. 

Suggestions for future work 

Probability 
In some problems max Pr (M > t )  for a single t may be of 
major interest. This  problem is unsolved. Results giving 
bounds on IPr ( M  > t )  - Pr ( M *  > r)l or on IE M - M*l 
would be useful. 

Optirnizdon 
The  number of breakpoints needed  depends not only on 
the chosen probability level a but  also on the  number 
of breakpoints  used in approximating  the functions 
E ( X ,  - x)’ .  A numerical study of the 16-node example 
showed that  there was little improvement in computing 
E (M“ - t)’ when using more than three breakpoints 
(plus two  endpoints)  per  node.  It is clear,  however,  that a 
systematic way of choosing the degree of approximation 
is needed. 
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