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Probabilistic PERT

A solution is offered to the problem of determining a probability distribution for the length of the longest path from source
(start) to sink (finish) in an arbitrary PERT network (directed acyclic graph), as well as determining associated probabili-
ties that the various paths are critical (**bottleneck probabilities’’). It is assumed that the durations of delays encountered
at a node are random variables having known but arbitrary probability distributions with finite expected values. The
solution offered is, in a certain sense, a worst-case bound over all possible joint distributions of delays for given marginal
distributions for delays. This research was motivated by the engineering problem of the timing analysis of computer
hardware logic block graphs where randomness in circuit delay is associated with manufacturing variations. The proba-
bility distribution of the critical pathlength turns out to be a solution of an unconstrained minimization problem, which can
be recast as a convex programming problem with linear constraints. The probability that a given path is critical turns out
to be the Lagrange multiplier associated with the constraint determined by the path. The discrete version of the problem
can be solved numerically by means of various parametric linear programming formulations, in particular by one which is

efficiently solved by Fulkerson’s network flow algorithm for project cost curves.

Introduction

This paper brings together recent results in probability
with older techniques in mathematical optimization in or-
der to offer a practical solution to the probabilistic PERT
(Program Evaluation and Review Technique) problem.
The probabilistic results are due to Meilijson and Nadas
[1] and the required mathematical optimization is based
on suggestions by Johnson and Wolfe [2]. This research
was motivated by the following model for the timing anal-
ysis of computer hardware logic block graphs: Each block
plays the role of a delay node, as can each “‘wire’’ of suf-
ficient length to contribute significant delay. The quantity
of interest here is not delay; rather, it is the excess delay
(lack or surplus) of signal arrival time at storage elements
gated by a clock (.e., a late signal). The clock signal is
also propagated through a network of blocks; con-
sequently, the appropriate PERT model is constructed by
replacing each delay with its negative for every delay ran-
dom variable associated with propagating a clock signal.
An early signal model is constructed in an analogous way;
in this case one is concerned with shortest paths.

The paper is organized as follows. The general probabi-
listic and graph-theoretic features of the problem are dis-

cussed in the next section. The following section in-
troduces, still in general terms, the proposed probabilistic
solution together with Fulkerson’s ‘‘Project cost curve’
problem (Fulkerson [3]) whose solution, unexpectedly,
also solves the optimization problem for the discrete
probabilistic PERT. The next two sections describe the
probabilistic solution. The concluding section describes
the discrete optimization problem, shows that Fulker-
son’s algorithm is applicable, and reports some modest
numerical experience.

The problem

PERT or CPM (Critical Path Method) networks are di-
rected acyclic graphs having a single source node (start)
and a single sink node (finish). In this paper the nodes are
regarded as the places where tasks or jobs are accom-
plished at the cost of some delay. The directed arcs de-
scribe the precedence relations among the tasks (nodes);
it is assumed that a task begins at the precise time when
all preceding tasks have been completed. The completion
time at a node is then simply the longest pathlength (.e.,
sum of delays on the path) of all paths leading to and in-
cluding the node. In particular, the critical pathlength is
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Figure 1 A PERT problem. The critical pathlength is 13; it is
attained on the two paths shown. Numbers in boxes (nodes) de-
note delay.
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the completion time at the sink node. Figure 1 illustrates
this model. The literature on PERT and CPM is enormous
and no attempt is made here to summarize it.

Suppose that the nodes are numbered in any order as
1, 2,3, -, n,and that the delay incurred at node i is a
random variable X, (random variables will be denoted by
capital letters) whose distribution function F(x) is known;
i.e., for all x

Fx)=Pr(X,<x) i=1- -n

is a family of »r given probability distribution functions.
The F, are the marginal distributions of the delays X, at
node /; these functions together with a specification of the
PERT graph are the data of the model. Models of this
nature may arise in various ways. These include the case
where randomness of delay is due to an ‘‘explainable”
random mechanism such as random physical phenomena,
random events in manufacture, etc., and the case where
randomness is introduced as a tool for describing uncer-
tainty about actual nonrandom delays. Figure 2 illustrates
this model.

The jth path of the & paths that run from source to sink
is denoted by P, the list of those node numbers that be-
long to the jth path. Evidently the random completion
time 7 of the jth path is

szgxi i=12 -k

The random completion time M at the sink node is then
the completion time of the network;i.e., the critical path-
length is

M = max T, = max > X,

]
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In addition to finding the distribution of M, or finding for
every t

Pr(M > 1),

it is of interest to find out which paths (and nodes) are
critical in some sense; for example, by using

ANy =Pr(M=1T,>1

for some interesting ¢, such as a ‘‘statistical worse case’’
value, ¢, for which Pr (M > ¢ ) = «. (For design purposes
one is interested in the identity of the worst path, pro-
vided it is too long.)

It is evident that the probability distribution of M can-
not be determined without knowledge of the joint distri-
bution of the delays (X,, - - -, X,). The marginal distribu-
tions F, - - -, F, do not carry enough information to do
that. It is also clear that the distribution of M is an ex-
tremely complicated functional of the joint distribution
except in the case of very special simple graphs. The only
simple nondeterministic example (involving a general
graph) known to the author is the “‘perfect tracking”
model, X, = u, + o,Z for given constants u,, o, (o, > 0)
with i = 1, - - -, n and a random variable Z with known
distribution function F. In this case, letting m,, s, denote
the path sums of u, o, forj=1,2, - k, thatis,

s, = > o,
P

one finds immediately that for all ¢,

m; = z My
&

Pr(M > =1- Flz(1)],

where

z(f) = min

Aside from such simple models, the exact distribution
of M appears intractable no matter what sort of depen-
dence structure is assumed. It is interesting to observe
that even if the delays {X,} were assumed to be mutually
independent random variables (an untenable assumption
in many important problems), the joint distribution of the
path sums {T}, a fortiori of M, will still be intractable.
This is due to the dependence introduced by the multiple
assignment of nodes to paths. For the same reason, the
problem of finding bottleneck probabilities, i.e., paths
that are likely to be critical, also appears intractable.

The assumption of mutually independent random
delays has been considered by several authors. Sielken
and Hartley and colleagues ([4] and its references) make
the implicit additional assumption that the graph can be
usefully represented as a certain ‘‘supergraph’ of sub-
graphs. It is assumed that 1) each subgraph is of suffi-
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ciently simple structure (parallel, series, Wheatstone
bridge) so that the critical path through the subgraph will
have a simply computed probability distribution, and 2)
the supergraph has the very simple structure of having all
its nodes (subgraphs of original graph) in parallel and se-
ries combinations. This approach is valid for graphs satis-
fying both 1 and 2. Another technique to exploit the sup-
posed simplicity of the mutual independence assumption
was suggested by Robillard and Trahan [5]. This tech-
nique consists of first computing (by convolution) each of
the k marginal distributions of the path completion times
T, - T, and then using these to obtain a bound on
Pr (M > 1). The technique works best on graphs having
disjoint parallel paths but can be unduly pessimistic in
general (see the discussion in Meilijson and Nddas [1]).
Also based on independence assumptions, in earlier work
Fulkerson [6] has obtained some lower bounds on the ex-
pected length of critical paths.

The proposed solution

In the present work, no assumptions are made about the
joint distribution of the delays X, - - -, X, beyond the
constraint that the X, have the correct marginal distribu-
tions F,. Similarly, no assumptions are made regarding
the graph beyond the statement that it represents a PERT
problem. (Actually, the mathematical result presented be-
low does not even require that the problem be realizable
as a directed graph; a path is merely a set of nodes.)

The point of view adopted herein is that 1) the joint
distribution is not known and 2) even if 1 is assumed away
(by e.g., mutual independence), the problem remains in-
tractable on account of a complicated graph. The solution
appropriate to this point of view begins by considering all
possible joint distributions for the delays consistent with
the given marginal distributions F,, F,, - - -, F,. Joint dis-
tributions which make M as large as possible (in a certain
sense, discussed in the next section) are then singled out
to obtain a sharp (i.e., realizable) upper bound for distri-
bution of M.

In the special case of a simple, purely parallel graph
(disjoint paths each having a single delay node plus
dummy source and sink), these results have also been ob-
tained by Lai and Robbins [7, 8].

Fulkerson [3] solved the following ‘‘project cost curve’’
problem associated with deterministic PERT networks.
The problem is to trade off time against budget. Consider
a project which consists of jobs (tasks, activities). The
precedence relations among jobs are induced by restric-
tions inherent in the project, e.g., precedence of succes-
sive stages in manufacturing or transportation. Suppose
that the cost of delay for any given job varies inversely
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Figure 2 A probabilistic PERT problem. The flow shown, as-
sumed left-to-right, is the same as in Fig. 1. Here, any path may
be critical. Shapes in boxes refer to probability distributions of
delay.

and linearly with the delay and that the delay may be cho-
sen to be any value between two given extremes, a ‘‘nor-
mal’’ and a “‘crash’ task completion time for that job.
What is the least project cost (the sum of all job costs)
satisfying the constraint that the project completion time ¢
(the critical path length) is specified in advance? For vary-
ing ¢ this minimum project cost traces out the project cost
curve. Fulkerson’s algorithm [3] computes the entire
project cost curve in an efficient way using the celebrated
network flow approach (see, e.g., [9]). Although this
problem bears little resemblance to the probabilistic
PERT problem, the numerical solution of the discrete
version of probabilistic PERT can be formulated in such a
way that Fulkerson’s algorithm is applicable. The reason
for this is that both the ‘‘project cost curve’’ of determi-
nistic PERT and the ‘‘expected optimal residual com-
pletion time’" of discrete probabilistic PERT are decreas-
ing, convex, piecewise linear functions of time. This
relationship was first recognized by E. L. Johnson [2]
and we shall describe it in the section on computation.

Comparison of random variables

The distribution of the random critical pathlength will
vary with the possible joint distributions of the delays (X,
X,, - - -, X,) even though the X, have the given marginal
distribution functions F,. For example, if M, denotes the
M corresponding to one joint distribution and M, denotes
the M corresponding to another joint distribution, then
M, and M, are different random variables (r.v.’s) because
they have different distribution functions (d.f.’s).

If X, Y are two r.v.’s, it is quite possible that X = Y in
one instance by X > Y in another. One might consider
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Figure 3 Stochastic inequality, X = Y (stochastic).
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Figure 4 Convex inequality, X = Y (convex).

various definitions for saying, ‘‘X = Y on the average,”’
such as E X = E Y (E () denotes the mathematical ex-
pectation of its argument) or such as Pr (X = Y) > (1/2)
and so forth. Average comparisons, however, tell us little
about the tails of the distribution of X — Y and it is neces-
sary to adopt somewhat more complicated methods of
comparison. A usual tool for this is the stochastic in-
equality

X = Y (stochastic)
if and only if
Pr(X>n=Pr(Y>1

for all ¢ so that the two curves never cross as in Fig. 3.

Such a stochastic comparison would solve the probabi-
listic PERT problem if we could find a joint distribution
such that the corresponding random critical path length M
would be stochastically as large as possible while observ-
ing the constraint that the X, have the prescribed distribu-
tions F,. In the simple problem where the graph consists
of n nodes in parallel, one has
M = F(lix X,

In this case, the stochastically worst distribution of M
is given by

Pr(M>1) = iPr(Xi>t): > 1 - F(0)

i=1 i=1
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for all + where the sum is less than unity; it is unity else-
where. This result can be proved by induction on » with
respect to the construction of joint distributions by re-
peatedly ‘‘opposing’’ the next F,  to the distribution of
the previously constructed maximum of the previous X,
X,, - -+, X, (1], p. 7). Although the joint distribution so
constructed is not the only one to yield the above distri-
bution for M, the stochastically worst distribution of M is

well defined.

In PERT problems of practical interest, such as our
model for the timing analysis of a logic block graph, the
graphs are often large and complicated. In these problems
there are no simple formulae available for the distribution
of M;; in fact, it is easy to see that in general there is no
joint distribution which stochastically maximizes M. [As
an example, if X, X, both have the uniform distribution
(1/3,1/3,1/3)on {1,2,3}and M = X, + X,, then Pr (M = 6)
= 1/3 is maximal but forces Pr (M = 5) = 1/3 also;
while Pr (M = 6) = 0 allows Pr (M = 5) = 2/3.] More-
over, it seems exceedingly difficult to find good bounds
for Pr (M > {) even for a single value ¢. The solution pro-
posed in the next section is based on the notion of convex
inequality , introduced in Meilijson and Nddas [1], and de-
fined as follows. Forr.v.’s X, Y with E|X|and E|Y! finite,

X = Y (convex)

if and only if

J,

for all ¢. This amounts to comparing the ‘‘residual ex-
pectations’ of the r.v.’s X and Y:

x

Pr (X > wdu = J Pr (Y > u)du

t

EX-0"=E(Y-n' — < <

as is seen from the identity

%

E(X 1) = J Pr (X > wdu,

t

where o denotes max {a, 0}. (See Fig. 4.)

It is well known that X = Y (stochastic) if and only if
for every “‘test function’ g (g = 0),

E g(X) = E g(7),

provided that g is increasing. It turns out that in an analo-
gous way

X = Y (convex)

if and only if E g(X) < E g(Y) for all increasing and con-
vex (g" > 0 if there are derivatives) test functions. Obvi-
ously a stochastic inequality implies a convex one, but
the converse is not true. This characterization indicates
that in a certain sense, the convex inequality is the ‘‘next
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best thing’’ to stochastic in situations (such as PERT)
where stochastic comparison is not possible.

Perhaps the simplest measure of dependence between
two r.v.’s is the correlation coefficient. It is not hard to
show that if X and Y have given marginal distributions,
the correlation coefficient is maximized by the same joint
distribution which convexly minimizes the difference
IX — YI, namely the ‘‘lineup’’ distribution. This is defined
constructively as the joint distribution of the pair (X, Y)
when it is generated by a simultaneous Monte Carlo pro-
cedure, as in Fig. 5. In a similar way, the correlation coef-
ficient is minimized by the same joint distribution which
convexly maximizes |X — Y, namely the “‘opposed’’ dis-
tribution, Fig. 6. To see this, note that it suffices to bound
E XY. For simplicity let X, Y = 0 so that

XY = J J 1, (x, y)dxdy,
0 0

where I, (x,y)is 1if0 = x = Xand 0 =y =< Yand it is
zero otherwise. Then

x x

E XY = EIXY=J J Pr (X > x, Y > y)dxdy,
1]

¢
and E XY (hence the correlation coefficient) is minimized
(maximized) by bounding the integrand. This in turn is ac-
complished by joint distributions constructed by the ‘‘op-
position”’ (“‘lineup’”) of the two distributions. For ex-
ample, the maximum of Pr (X > x, Y > y)is Pr (X > x) +
Pr (Y > y) or unity. Of course, X, ¥ must have finite vari-
ances to have the correlation coefficient defined. This
characterization of extremal correlations indicates that
this convex method of comparing r.v.’s is well suited to
the problem of maximizing over possible joint distribu-
tions of delays in a PERT network.

Mathematical solution
The announced solution to the probabilistic PERT pro-
gram can now be stated as follows.

Theorem  Assume all delays X, have ELX| finite. Then

1. There exists a r.v. M such that

N
E (M* — )" = min (max Z X, — t)
i

it J P;

+ > EX, - x)"
i=1
i.e., the right-hand side is indeed the integral of some
distribution’s right tail.

2. If M s the critical pathlength corresponding to an arbi-
trary joint distribution having the correct marginal dis-
tributors, then M is convexly no larger than M*, i.e.,
M*¥ is a convex bound for all possible M.
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Figure 5 The “‘lineup’ algorithm. U has the rectangular distri-
bution. (X, Y) has the lineup distribution.
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Figure 6 The opposition algorithm. U has the rectangular dis-
tribution. (X, Y) has the *‘opposed’’ distribution.

3. This bound is sharp: For every ¢ there is a joint distri-
bution having the correct marginals such that E (M —
n* = E (M* — ", In other words E (M* — 1) is, for
varying ¢, the convex envelope of all possible residual
expectation functions.

4. If it happens that the graph consists only of parallel
and series structures, then M* = M for some joint dis-
tribution, i.e., the envelope in one of the residual ex-
pectations.

5. The solution can be recast as the following constrained
minimization problem:

EM" —n"=min Y E(X, - x)"
[E2a—
subject to

Dox, =t

Py

for all j.

6. Let A, denote the Lagrange multiplier associated with
the jth path constraint in the above. Then for M de-
fined in 3

}\j:Pr(M:ZXi>t> j=1,"n
]

is the probability that the jth path is critical, i.e., the
Jth bottieneck probability.
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The idea for this theorem came from observing that in
the purely parallel case of M = max X, one has (say
X, = 0 forall i)

EM

me>mm%+§E@Aw*
0 i=1

n

:mint+ZE(Xi—t)+,

o<t iz

where ¢ is the least upper bound of values ¢ for which

iPr(Xi>z):1.

i=1

The following simple example illustrates the result in
the parallel-series situation where no numerical opti-
mization is required. Suppose no delays at source or sink
nodes and assume a graph on four other nodes {1, 2, 3, 4}
such that nodes 1 and 2 each precede both nodes 3
and 4. Then there are four paths (1, 3), (1,4), (2, 3),(2,4)
from source to sink. Here M can be expressed as max
{X,, X,} + max {X,, X }. Suppose all X, have normal distri-
butions with variance one, X, and X, have mean zero
while X, and X, have mean one. Let @ denote the stan-
dard normal integral. Then the convex (and stochastic)
bound on Pr (max {X,, X,} > 1) is min {1, ®(—1) + &(1 -
)}. Since max {X,, X } has the same bound, lining these
up yields the convex bound for M: Pr (M* > 1) = min {1,
O(—1/2) + ®(1 ~ t/2)}. Observe that if one were to erro-
neously first compute convex bounds on the separate
paths and then find the best stochastic bound for these
path bounds, the resulting bound Pr (M > ) = min {l,
D(—1/2) + ®(1 — t/2) + 2®((1 — 1)/2)} is larger than the
best convex bound given by the theorem. The theorem
was proved by showing that the solution is indeed a con-
vex bound and then constructing a joint distribution
which, for a given 1, attains that bound ([1], p. 6).

Computational algorithms

At first glance the mathematical result seems impossible
to compute for large # (say n > 50) since the minimization
required is n-dimensional. However, the objective func-
tion, as described in 5. in the previous section, has certain
special features which, together with the special nature of
the constraints, allow a practical solution. Note first that
since each variable x, appears alone as the argument of
the ith summed function, the sum is separable. Next ob-
serve that the objective function is also convex because
each summand is convex (integrals of decreasing func-
tions are automatically convex). The constraints are all
path-sum (linear) constraints on a PERT network. These
are the three special features to be exploited.

There are several distinct linear programming formula-
tions available for the separable convex objective with
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linear constraints. Using convexity, each E (X, — x)" can
be approximated by a piecewise linear majorant. This lin-
earization of the residual expectation is equivalent to ap-
proximating the given distribution F, by another distribu-
tion that concentrates all the probability at the break-
points of the majorant. Since this is a minimization
problem, the majorization of the objective function en-
sures that the approximate solution is still a correct con-
vex bound. Observe that in a linear programming formu-
lation, the Lagrange mulipliers (bottleneck probabilities)
are obtained directly as dual variables in the problem.

Let ¢,(x) denote the piecewise linear majorant of
E (X, - x) and suppose that the breakpoints of ¢, are
equally spacedas x,,+ A, - - -, x, + mA, over the support
(X400 X;g + mA) of ¢.. Then with

LiV(X):AiVX+BiV v = 1,"'./’}’1,
one has fori=1,-- -, n
¢,x) = L, (x) X, t (v — DA <x=x, + vA,

Our task is to minimize
b,(x) + d,(x) + -+ P, (x,)

by choice of x = (x,, - -

DX =t
L]

-, x,) subject to

J=12,- k.

The first linear program considered was based on the
well known ‘‘delta method’” for convex objective func-
tions. Partition each x,as x, = x, + x,, + - - - + x, Wwith
the constraints 0 < x,, = A, so that

d b
-~

Z ob,(x) = A, x. + constant.

3

iy
i=1 v=

i
i

This defines the linear program

max cx subject to Ax = b, x =0,

where

c= (A —AL,

b=(t, - AL AL AL A,

and where A is a k + mn by mn matrix of zeros and ones,
k rows for the path constraints and mn rows for the A,
constraints. If the bounding technique (available in some
linear programming computer programs) is used, then A
is k by mn. If this problem is solved in the dual space,
then the bounding technique cannot be used but one may
perform column generation via any longest path al-
gorithm.

The second linear program considered was based on an
idea of Hoffman [10]. Do not partition the x; rather, in-
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troduce new variables z , - -
minimize

-, z, and findz=0,x=0t0

subject to
z, =z A x, + B, all i, v

1t

and
Dox=t allj
P;

This works because z, = ¢ (x,) if and only if z, = L (x) for
ally = 1, - - -, m. The matrix form of the primal problem
is

min ¢x
subject to

x=0, Ax = b

where
c=(11---1,0,0,---0),
b= (BB, - B,.,—t " —1)

and where A is k + mn by 2n.

Notice that in this formulation the size of A grows only
linearly with m and that in the dual formulation the num-
ber of rows is 2n << < k + mn for a graph of the expected
complexity, a desirable shape for A.

These solutions appear to require a new minimization
computation for each desired timepoint ¢. Considerable
reduction in computing is achieved by using a parametric
linear programming algorithm which exploits the fact that
the same problem is repeatedly re-solved for a system-
atically varying ¢.

The most convenient and, to the author’s knowledge,
most efficient formulation of this problem is a linear pro-
gram which can be computed by (a variant of) Fulker-
son’s [3] network flow algorithm for project cost curves.
To describe this, following Fulkerson we switch to the
conventional description of PERT where delays are asso-
ciated with the arcs of a directed graph and where a node
is interpreted as the event that all jobs on arcs preceding it
have been completed. Let ¢, denote the delay on arc (7, j)
and let ¢, denote the event time at the jth node. Each arc is
associated with three nonnegative integers a,; < b, and ¢,
with the interpretation that a,; < t,; = b, for all (i, j) and
that the cost of doing job (i, j) in time ¢,,is k;; — ¢ t,, where
k;, are given constants. If the source and sink nodes are
labeled 1 and 1, we may assume ¢, = 0 so that the project
completion time is ¢,. The problem is to minimize
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P

i

by choice of {z;;} subject to ¢, = r and

a,=1t,=< bij all 4, j,

where ¢ is the desired project completion time. This is a
linear program with a lot of redundant variables. The rea-
son for formulating the problem this way is that in the
dual space this linear programming problem is solved
more efficiently ([3], p. 172) by a network flow algorithm
than by a parametric linear programming algorithm. The
network flow algorithm generates the project cost curve
as follows. The algorithm begins with the largest ¢ of in-
terest, namely ¢ =z for ¢, = b, all i, j. It then computes
sequentially all the breakpoints of the curve and these
turn out to be the optimal event times ¢, The optimal job
times are then obtained simply as ¢, = min {b, {, — t}.
The algorithm is described and illustrated in [3, 11], and
the more recent book of Lawler [12].

It remains to re-cast the discrete probabilistic PERT
problem, as promised, in the form of the above budget
versus time tradeoff problem. This is done as follows.
Consider the partition of delay used in the “‘delta
method,””

m

and introduce m delays in series in place of each original
delay. Denoting the larger set of {x_} as {x*l}, identify an
arc delay ¢, of the new graph with each node delay rj of
the old graph. Put

a;=x.,+@—- DA,

>
Il

a; + Ak’

c.= A

ij kv?

if x*l = x,,. It is then clear that, except for a constant, the
cost objective of the project cost curve problem coincides
with the residual expectation objective of the discrete
probabilistic PERT problem. A variation: Fulkerson’s al-
gorithm can be modified to handle multiple arcs (instead
of multiple nodes); this has not been tried on the present
problem.

Not only is the network flow algorithm an efficient way
to compute E (M™ — 1)* for all ¢, but by a fortunate hap-
penstance, in terms of the optimal residual expectation,
the network flow algorithm proceeds sequentially, from
computing E (M* — 1) for a largest ¢ [E (M™ — )" is zero
at this point] and then computing successively smaller
““breakpoints’” and corresponding values of E (M — 1.
The exact solution is the piecewise linear convex function
defined by these points. Thus if one is interested in a sza-
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Figure 7 Distributions of critical pathlength.

tistical worst case for the critical pathlength, one need
only continue the computation until this point is brack-
eted by the last two computed breakpoints, i.e., until the
first breakpoint ¢, for which Pr (M™ > ) = 0.1, for ex-
ample.

These ideas are illustrated in Fig. 7. The graph used
was that shown in Fig. 1. The marginal distributions used
were all uniform (rectangular) on the interval from 0 to
the delay shown in Fig. 1. Strictly speaking, the graph of
Pr (M* > 1) so obtained is a step function with jumps at
the breakpoints. However we can and do revert to the
given continuous distribution functions at this stage of the
calculation, the only purpose of using a discrete function
having been to facilitate computation. For this example,
each E (X, — x)" was majorized by a 3-segment polygon,
the breakpoints in Fig. 7 occurring at 13, 12, and 9. There
is no need to continue any further.

The random critical pathlengths M, and M., whose
distributions are shown in Fig. 7, refer to joint distribu-
tions which refer to complete mutual independence and a
strong ‘‘big together, small together’ sort of dependence
(high positive correlation) among the {X,} respectively. It
can be seen that the sharp convex bound is not a stochastic
bound but that it does dominate in the far right tail. In this
example the ‘‘statistical worst case” corresponds to a
probability of @« = 0.1, and « is arbitrarily chosen. This
example was repeatedly solved for various fixed r using
the first two linear programming formulations described
above and a package of APL programs by Crowder and
Wolfe [13]. For any fixed ¢ tried, the dual form of Hoff-
man’s formulation gave the fastest computation. This ex-
ample was also solved by the network flow algorithm for
project cost curves using an APL program developed by
Schmidt [14]. Schmidt’s program was also exercised on a
more interesting example, to wit, the timing analysis of a
logic chip. The graph in this case had 484 nodes, 1681
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edges and 4217 paths from source to sink. Schmidt’s pro-
gram, running under CMS on an IBM 370/168 with an at-
tached processor, consumed approximately seven CPU
seconds for each breakpoint computed.

Suggestions for future work

& Probability

In some problems max Pr (M > ¢) for a single ¢ may be of
major interest. This problem is unsolved. Results giving
bounds on Pr (M > 1) — Pr (M™ > Hloron [EM — M*
would be useful.

& Optimization

The number of breakpoints needed depends not only on
the chosen probability level « but also on the number
of breakpoints used in approximating the functions
E (X, - x)". A numerical study of the 16-node example
showed that there was little improvement in computing
E (M* — 1" when using more than three breakpoints
(plus two endpoints) per node. It is clear, however, that a
systematic way of choosing the degree of approximation
is needed.
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