330

M. J. FREISER

M. J. Freiser

On the Zigzag Form of Charged Domain Walls

Unusual domain walls have been found in ferrofluid patterns on thin film materials with low magnetization that is in or
near the plane of the film. These walls carry a net magnetic charge and are characteristically kinked in a regular manner
to form a zigzag. A simple account is given of the energetics of such walls whose form follows from a compromise
between magnetostatic terms and the energy of anisotropy. It is argued that an array of closure domains at straight

edges in these materials should have a boundary of similar character, and these too have been observed.

Introduction

Walls between magnetic domains are usually oriented so
that the component of the magnetization M normal to the
wall is continnous across the wall. Configurations can
arise, however, in which the normal component of M is
not the same on the two sides of a wall, and the wall is
then magnetically charged. There is a cost of magneto-
static energy associated with the charge, and so such a
wall is most likely to occur in materials with low values of
saturation magnetization M, or in very thin specimens.
Jakubovics [1] has calculated the width of a charged do-
main wall for the case in which anisotropy confines M to
the plane of the specimens. The energy is undetermined
since the magnetostatic contribution depends on the loca-
tion of the charge that compensates the charge on the
wall. A somewhat surprising feature of Jakubovics’ result
is that for the parameters of interest in our work the
charged wall is not significantly broader than an un-
charged Néel wall.

Recent ferrofluid studies of magnetization distributions
in sputtered Gd-Co films and in ion-implanted garnet films
have shown a prevalence of sharply defined charged do-
main walls. These sharp walls characteristically have long
uncurved sections but are only piecewise straight and
kink with a consistent kink angle so as to form a zigzag
across the sample. When these walls occur far from any
feature, such as an unimplanted region in the garnet or the
edge of the specimen, the amplitude of the zigzag is also
fairly consistent. Figure 1 shows a ferrofluid picture of
such a wall in an evaporated film of Gd-Co [2a]. Walls of

such character have been observed between head-on do-
mains in Permalloy films [3, 4] by means of the Kerr mag-
neto-optic effect and in magnetic films of Co and Co-Cr
with use of Lorentz transmission microscopy [5], both
techniques being without effect on the state of magnet-
ization of the observed material. In this latter work it was
noted that the entire region involving the kinked wall ex-
hibited a nonuniform magnetization. A theoretical ac-
count [6] of the stability of such walls in thin films of Per-
malloy was based on the assumption that the magnetic
charge associated with the wall was confined to the thin
wall itself without significant spread of the charge into the
triangular areas between adjacent segments of the wall.
The vertex angle at the kinks was obtained from a minimi-
zation of energy made up of magnetostatic terms, ani-
sotropy, and the wall energy per unit length. The zigzag
amplitude of the structure was fixed by relating it to the
coercive force of the material, although, as noted by
Dressler and Judy [5], coercivity is not an intrinsic mate-
rial property.

For the Gd-Co films and ion-implanted garnets the view
is taken in this paper that the kinked, zigzag configuration
is characteristic of the static magnetically charged wall,
and that the shape results from a compromise between
the magnetostatic energy associated with the charge on
the wall and the anisotropy energy associated with devia-
tions of M from an easy axis over a wide region. The geo-
metrical characteristics of the zigzag are the vertex angle
and the zigzag amplitude. The functional dependences of
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these quantities on the intrinsic film properties—magnet-
ization, anisotropy, and film thickness—are obtained in
the following section.

Related to these zigzag walls in free space are the walls
bounding closure domains along straight-edge boundaries
between implanted and unimplanted regions in the garnet
materials. These closure domains are discussed from the
same point of view as presented in the discussion of zig-
zag walls in free space.

Gd-Co films

Evaporated films of Gd-Co are “‘amorphous” [2a, b] but
are nonetheless endowed with an in-plane uniaxial ani-
sotropy. The zigzag wall in Fig. 1 bounds two domains in
a head-to-head arrangement. It should be noted that the
full height of the zigzag is about 500 um, which is some
four orders of magnitude larger than the film thickness or
the width of a Néel wall. This disparity of scale occurs in
other observations of the zigzag walls.

We consider a film with M confined to the plane of the
film by a large anisotropy energy associated with any nor-
mal component of M as well as the magnetostatic energy.
There is an easy axis of magnetization within the plane, as
indicated in Fig. 2. Two oppositely oriented domains
meet head-to-head along a horizontal boundary. If the
film thickness is 2D, the magnetic charge per unit hori-
zontal length is 4DM_. If the wall should kink into a sym-
metrical zigzag with vertex angle 20, the length of the
wall would be increased by a factor (sin )" while the
linear charge density along the wall would be reduced by
a factor sin @. One may imagine a contribution to the en-
ergy per unit length along the wall that is proportional to
the square of the linear charge density (as may be inferred
from Jakubovics’ calculation), and so the kinked wall
with its thinned-out charge would yield such an energy
reduced by a factor sin ® as compared with the unkinked
wall, thereby favoring the zigzag over the straight wall.
There is, however, an inconsistency in such an assumed
configuration. If the charge associated with the head-to-
head abutting domains is assumed concentrated in the
kinked wall, one can estimate the stray field within the
horizontal band containing the wall. Comparing it with
2K/M_ in Gd-Co, for example, one finds that M deviates
significantly from an easy direction throughout the wide
band. That is, each segment of the wall has a rather ex-
tended tail, and there must exist a significant distributed
charge. Thus, as compared with a straight horizontal
wall, the magnetostatic energy is reduced by kinking, and
further reduced by spread of the charge over a larger
area. This spreading is accompanied by an increase in the
anisotropy energy. We shall, in the following section,

Figure 1 A ferrofluid pattern of a zigzag wall in an amorphous
Gd-Co film with 2D = 0.3 um, 47M_ = 0.32 T (3200 Gs), and an
in-plane uniaxial anisotropy constant K = 107 Jjem® (10" ergs/
cm®). The arrows indicate directions of magnetization in the do-
mains.
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Figure 2 The magnetic configuration assumed for Gd-Co, cor-

carry this idea to an extreme and estimate the contribu- responding to Fig. 1. 331
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Table 1 Calculated and observed values of the vertex angle 20 and the bandwidth for charge distribution, 2B, in three Gd-Co films.

Sample dn M 2D K Observed Calculated
) (um) (10~ J/em® or 20 2B 20 2B
10* ergs/cm®) (degrees) (um) (degrees) (em)
a 0.32 0.30 1.0 23 500 10 2800
b 0.50 0.13 3.0 33 300-400 15 455
c 0.48 0.32 1.9 15-20 300-1000 ‘ 6.5 9200

tions to the energy with the assumption that the charge is
uniformly distributed over the entire band. Although this
grossly exaggerates the diffuseness of the charge, it is
found to give reasonable agreement with observations of
the vertex angle and zigzag amplitude because major con-
tributions to the energy are insensitive to details of the
magnetization distribution.

Figure 2 exemplifies the type of configuration consid-
ered. The magnetic configuration is treated as if the
charge were uniformly distributed along the y-axis over a
band of width 2B. With M independent of z, the coordi-
nate normal to the film, the volume charge density in the
band is M /B. With all the charge so distributed, the thin
wall forming the zigzag is an uncharged 180° Néel wall.
Three contributions to the energy must be taken into ac-
count: magnetostatic terms, anisotropy, and the energy of
the residual Néel wall. Exchange does not enter explicitly
because the scale of the structure is so large that the ex-
change contribution is negligible except as it is incorpo-
rated into the Néel wall energy.

We consider the zigzag band as traversing the center of
a sample of width 25, where S is very large (this turns out
to be inconsequential). For a sample thickness 2D, in the
limit of small D, the field due to the band of uniform
charge is

4MSD x+ B
H (x) = —B In B Ixl > B;
¥ -
_4MSD B+ x i < B 1)
“Tp "B, T°F

The magnetostatic energy per unit horizontal length is

D s A
W, = n J dx J dy H ()M (x, ), )
= 0
where A = 4B tan 0 is the period of the zigzag. The angle
between H and M is very nearly 0 or 7, differing from one
of these values by at most ®@. Up to terms of order
M:D*®, one obtains for the magnetostatic energy

_ 2 2 _ E_B'
W, = 8MD?(3 — 21n —|. 3)

N

(For the materials to be considered here, the coefficient of

the ®® term in the magnetostatic energy is only a percent
or so of that in the anisotropy energy for which the entire
contribution is proportional to 0%)

For the assumed configuration the anisotropy energy
per unit length of the band (aside from the anisotropy con-
tribution to the energy of the residual Néel wall) is

DK B (B+a)tan® ’
W, = e J dxj dy sin® ¢
2Btan @ ), —(B+x)tan®
= 4DKB (sin’ ¢), “)

where K is the in-plane uniaxial anisotropy constant and
where the average is taken over the band or, equivalently,
over one of the triangular regions. For a fanlike configura-
tion and small ®, one gets

(sin® ¢) =~ % o’ (5

For a Néel wall whose width is much less than the
thickness of the film, the energy per unit length of wall [7]
is 4wDM (wA)'". With the Gd-Co parameters this is a rea-
sonable estimate since the Néel wall is much smaller than
the film thickness. (Under such circumstances, for some
materials, e.g., Permalloy, the Bloch wall would be ener-
getically preferred to the Néel wall, but we are assuming
that the anisotropy energy associated with M normal to
the film is so large that only the Néel wall can occur.) One
then has, for the energy per unit length along the horizon-
tal,

_ 1 172 l 172
W = — 47TDMQ(7TA) == 4 DM (mA) ", (6)
" sin © ) (¢

where in the last equality we have again assumed small .

From Egs. (3), (4), and (6) we now have for the energy
per unit horizontal length

W=W_+ W, +W,

B AT 2
= 8MD*(3 ~2In"~) + = DKBO
s

1
s dmDM (A", (N
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which, when minimized with respect to B and ©, yields
~ (a A)1/2
8M.D

B (768) MDD’

) KA

s

(8)

The results for three different samples of Gd-Co are
shown in Table 1. In all cases it is assumed that the ex-
change constantis A = 2.5 x 107" J/em (2.5 x 107 ergs/
c¢m). That the numerical agreement is poor is not surpris-
ing, given the approximations of the treatment. A more
cogent test of the functional relationships is obtained
from an examination of the ratios of ® and B for three
samples, which yield

1.0: 1.4:0.74, observed,
0,:0,:6, = [1.0 1.5 : 0.63, calculated;

1.0:0.7: 1.5, observed,
B.: By, : B = [1.0 :0.16 : 3.3, calculated.

The ratios for @ are surprisingly good. The lack of agree-
ment of B suggests that the calculated dependence of B on
M_and on D is too strong.

lon-implanted layers in garnet films

Whereas the Gd-Co films have an easy in-plane axis of
magnetization, the ion-implanted garnet films have trigo-
nal symmetry in the presence of a perpendicular bias field
with three easy directions of magnetization. This is a con-
sequence of the cubic anisotropy of the garnet. The gar-
nets are grown with a [111]-axis perpendicular to the film.
With the polar axis taken as normal to the film and the
azimuthal angle measured with respect to the (1, [, 2) di-
rection in the crystal, the cubic anisotropy is expressed as

[ 3 -

K, (Z sin” 8 + Z cos 6 + sin” 6 cos 0 cos 3d>),
where K is the cubic anisotropy constant. The angle be-
tween M and the plane of the film, the complement of g,
will be denoted by 7. In the presence of an in-plane field,
m depends on the direction of M, but not very sensitively.
We ignore this dependence and treat » as a constant. For
small 7 the effective in-plane anisotropy is

—k cos 3¢, 9)

where the trigonal anisotropy constant is

V2

K= —? NIkl (10)
(K, is negative in the case of interest.) The material used
for Fig. 3 had M_~ 4 x 107 T (40 Gs), a normal uniaxial
anisotropy constant K, of about 1.1 x 107 J/em® (1.1 x
10* ergs/cm®), and a uniaxial anisotropy induced by the
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Figure 3 A ferrofluid pattern obtained in an implanted garnet
having M, = 4 x 107 T (40 Gs), k ~ 7.6 X 107" Jiem® (7.6 x
10 ergs/cm®), and 2D =~ 0.4 pm. The arrows indicate the easy
magnetization directions.

jon-implantation of —2.6 x 107° Jiem® (=2.6 x 10* ergs/
cm®). The analysis of Lin et al. [8] yields n =~ 0.27. If we
take as a rather characteristic value of K for such compo-
sitions K, = —0.6 x 107 J/cm® (—0.6 x 10" ergs/cm”’), we
get k =~ 7.6 X 107> J/em® (7.6 x 10° ergs/cm®).

We now consider two domains, each having its magnet-
ization along a preferred direction, abutting each other as
shown in Fig. 4. For the garnet layer the angle ¢ in Fig. 4
is 30°. The charge per unit length along the interface of the
domains is 4M_D cos 5. As before, we calculate the stray
field as if the charge were uniformly distributed over the
band of width 2B. The maximum deviation of M from a
preferred axis is ®. The anisotropy energy is estimated by
using a fanlike configuration for which

1 2
() = 3 o
One then finds that the magnetostatic energy is as in Eq.
(3) but is multiplied by cos® y. (One factor of cos s arises
from the charge density, the other from the angle between
M and the stray field.) For the anisotropy energy per unit
horizontal length one finds

W, =~ 18DkB ($*) = 6DxO®. (11)
Within the residual Néel wall the magnetization rotates

through an angle (7 — 24,). Middlehoek [7] obtains for the

approximate energy per unit length of such a wall

BDM (mA)'* (5 - lp) (1 — sin ). (12)

2
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Figure 4 The magnetic configuration assumed for the im-
planted layer of the garnet. The easy directions of magnetization
are indicated on the left.

(We assume that the uniaxial anisotropy induced by the
ion implantation is large enough to stabilize the Néel-type
wall as compared with a Bloch wall.)

We now have, for the energy per unit length along the
horizontal,

W =8MD*(3 - 21 28 2 2
= . n cos” ¢y + 6DkBO
Y

J_ w(m s
+ Py 8DM (mA) (2 4) (1 — sin ). (13)

When minimized with respect to ® and B and with ¢ =
7/6, Eq. (13) yields

o~ (3 (55
18\ MDD

648\ ( M:D*
B={"5] =] 14
Eiley a8
For the garnet film it is estimated that M_ = 4 x 10° T
(40 Gs), D = 0.2 um, « = 0.76 x 10" Jem® (7.6 x
10* ergs/cm®), and A = 2.5 x 10" J/em (2.5 X 1077 ergs/
cm). We then obtain

34°, observed,

20 = [22°, calculated;

2B — 20 pm, observed,
|45 um, calculated.

The numerical agreement is poor but no worse than one
might expect from such an approximate treatment and the
uncertainties in the parameters for the implanted layer.
The magnitudes are such that it is not unreasonable to
anticipate that the functional relationships are correct.
One point in particular may be noted that is most readily
susceptible to comparison with experiment: A change in
the bias field can influence no parameter other than «.
Therefore, while there will be a change in the scale of the
zigzag with bias field, the vertex angle will be relatively
unaffected.

Closure domains in garnet at a straight edge

The trigonal symmetry of the garnet suggests that at a
feature such as a straight-edge boundary between an im-
planted and unimplanted region, closure domains in the
implanted region will generally be bounded by walls that
carry a magnetic charge. The following treatment was
motivated by the goal of seeing if the simple consid-
erations employed here could be used to predict the form
of closure domains. The discussion also touches on the
general problem of charged walls at unimplanted features.

We have previously dealt with a symmetrical zigzag
wall, in which successive segments of the wall formed the
sides of isosceles triangles, and the horizontal axis of the
wall made equal angles with the magnetizations of the two
domains. As a step towards the consideration of closure
domains we first treat an asymmetrical wall in an applied
magnetic field as shown in Fig. 5. We shall consider the
field to be much smaller than the critical field for the trigo-
nal anisotropy. A horizontal wall bounding these domains

would carry a charge per unit length
o = —2MD(cos &, — cos ). (15)

Now consider a zigzag wall that extends horizontally as
shown in Fig. 5. The lengths of the wall segments are

2B 2B

(16)

' sing,’ 2

. k]
sin 6,

and the period of the structure is
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A = 2B(cot 8, ~ cot 8,). a7
The vertex angle of the zigzag is denoted by
20=10, -9, (18)

The situation, somewhat more general than the sym-
metric zigzag, can be treated in a similar way by starting
from the fundamental presumption: Each segment of a
zigzag wall has a direction that deviates by only a small
angle from the direction of an uncharged wall that would
bound the same two domains. The charge that is associ-
ated with this deviation is then distributed over a band
containing the wall. Consider the uncharged walls shown
in Fig. 6 bounding domains having the same orientations
as those in Fig. 5. Within each wall M turns through an
angle (@, + ® ). Now, with centers of rotation lying along
a horizontal line in the figure, rotate the successive walls
alternately through the angles e, clockwise and &, coun-
terclockwise, and thereby obtain the zigzag of Fig. 5 with

b - P

@1 S| 5 0 _ £,

0, = % + &, (19)
We consider the rotation as carrying along M within the
wall and so preserving the uncharged character of the
Néel wall, the charge being taken up through deforma-
tions in the adjoining medium. Then the residual wall is
still a (&, + ®,)-wall with its energy per unit length given
by Eq. (13) with [(7/2) — ¢] replaced by (®, + & )/2. To
obtain the energy per unit length along the horizontal one
introduces the geometrical factor (¢, + ¢,)/A. Thus the
Neéel wall energy per unit horizontal length is, to first or-
der in €5 &y

"™ b, + b,
AM D(mA) (®, + P ) |1 — cos T

« 2sin [(®, — ®)/2] + (&, = &,) cos [(D, — ©)/2]

8I-FSZ

(20

To estimate the anisotropy and field energy we note
that @ and & are such as to minimize the energy density
of each of the two domains. For small fields the energy
density in the zigzag band is proportional to the square of
the deviation of M from ®, + @ . If the angular deviation
of M from the domain orientation is denoted as ¢, then
within the band the average energy density associated
with the anisotropy and the applied field is c0<qb2> and
"1<¢’2> in the upper and lower triangular areas, respective-
ly. For small applied fields one finds

HM
¢, = 9Dkl + 9 *cos 0+,
K
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Figure 5 Magnetic configurations assumed for asymmetric wall
and for closure domains at an edge. The easy directions of mag-
netization are indicated on the left. The horizontal dashed line is
the edge for this array of closure domains.

HM, 2
¢, = 9Dkl + % cos 9+T . 21

K

The assumption of a fanlike configuration leads to the es-
timate

[ ,
(¢,) = o (67 + 1) (22)
The magnetostatic energy is, as before,
. (3 2
o’|= + In =], (23)
2 2B
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Figure 6 Array of uncharged domain walls from which the wall
of Fig. § is obtained.

with o given by Eq. (15). We can now write the estimated
total energy in terms of ¢, &,, and B, and determine these
parameters by minimization of the energy.

To deal with the straight edge we simply cut off the
material immediately below the horizontal band along the
dashed line in Fig. 5. This introduces an edge along which
there is a charge with linear density

o, = 2M D cos D,. 24)

The magnetostatic energy of interaction between this
edge charge and the band of charge is easily calculated as
o, times the magnetostatic potential at the edge due to the
band. This yields

~8M?D? cos ®,(cos D, — cos B,) [1 +In (iﬂ 25)

We ignore other interactions associated with the edge
charge although it is clear that a major modification in-
volves the value of @ . Thus, we have as our estimation of
the energy of the configuration in the presence of the
edge,

3
W = 4M _D*(cos ® — cos @ )*( = In 2
s 2 2B

+ 8M:D* cos @ (cos D, — cos D) (l + In L)
2B

+ 4M D(mA)*(@, — D))

1
d + P b - P
x |1 — cos —* L) sin —2 =3
2 2

Ignoring the term that is independent of ¢, ,, and B, we
write this as

(26)

W:PlnL
2B

2sin [(®, — ®,)/2] + (e, — ) cos [(®, - B )/2]

g teg,

+2

+ RB(e® + &), (27
in which we have omitted a constant term, and where

P = 4M2D*cos’ @, — cos’ D ),

Q = 4M D(xA)"* (D, + ) (1 ~ cos w),

and

HM T
R:3DK|:1+ * cos 0+—}.
18K 3

(28)

Minimization with respect to ¢, ¢,, and B leads to equa-
tions that can be easily solved;

I [1 L [P Qcos[@ — ®)/2] ]“Sin LY
B P+ Qcos[(®, — d,)/2]

.- Q ll . [P+ Qcos[@, - @0)/2]]“ D, - @,
P P—Qcos[(® —®)/2)) ST
and
_P* (P +{P*— Q®cos’[(®, — D,)/2]}"" (29)
~ RQ? ( sin®[(®, — @,)/2] )

Evidence that closure domains of the form that we have
envisioned do exist is found in some of the ferrofluid pic-
tures taken by S. Schwarzl [9]. Figure 7(a, b) shows two
such photographs from Schwarzl’s work. The orientation
of the edge is at about 15° with an easy direction of mag-
netization, rather than at right angles to one of the easy
directions (as assumed above). With the angles ® and @,
defined as in Fig. 8, Egs. (28) and (29) still hold, and for
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(a)

(b)

Figure 7 Ferrofluid pattern of closure domains at the straight-edge boundary of implanted layer of garnet having 47 M, = 0.1097 T
(1097 Gs), k = 9 x 107" Jem® (9.0 x 10° ergs/cm®), and 2D =~ 4800 um. The heavy bars (unimplanted regions) are 15 um wide. (a)

2B =~ 10 um; 20 = 46"; (b) 2B ~ 15 um; 20 = 36’

H =0one has ® =7 /12and ® = 77 /12. For Schwarzl’s
sample the available data indicate that 47M = 0.1097 T
(1097 Gs), 2D = 0.48 um, A = 2.5 x 107" Jem (2.5 x
107" ergs/cm), and « = 9 x 107° J/em® (900 ergs/cm®).
With these values Eqs. (21) and (31) yield 6, = 33°, 6, =
53°, 20 = 21°, and 2B = 68 um. For comparison, the
heavy bar in the figure is approximately 15 um wide. For
Fig. 7(a) one gets approximately 2B = 10 um and 20 =
46°; for Fig. 7(b) one obtains from the photograph 2B =
15 um and 20 = 36°. The numerical agreement is not very
good, as one might expect. What is more interesting is the
period of the structure that can be obtained from Eq. (17),
yielding A = 23 um. In the photographs there is some
variation in the periods, but in each photograph, for the
structure that is seen, the average period is 23 um.

It seems clear that the amplitude of the zigzag bound-
ary of the closure domains is quite sensitive to the direc-
tion of the magnetic field, whereas in our treatment the
dependence of the amplitude on H is through HM /18« ~
0.03 for the parameters of Schwarzl’s sample. It may be
that as the field was rotated in Schwarzl’s series of photo-
graphs the configuration of closure domains was becom-
ing unstable relative to a continuously curling configura-
tion, There is evidence for this in Fig. 7(b). There is also
the effect of interactions of the two bars lying close to
each other in the area photographed. Another point is that
at some time during the experiment, for some orientation
of the magnetic field, these closure domains were estab-
lished with some amplitude, vertex angle and period. The
zigzag wall was presumably anchored at the ends of the
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Figure 8 Definition of @, D, for the positive (dark) charged
walls in Fig. 7.
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bar, which unfortunately are not shown in the photo-
graph. The number of closure domains was fixed at that
time since there is no continuous way to change that num-
ber as the field is rotated. Thus, the closure domains seen
in Fig. 7(a, b) need not be equilibrium configurations but
may be constrained to have the same average period as
the presumed equilibrium configurations when the do-
mains were first established.

It is somewhat reassuring that the predicted shape of
the closure domains is correct, and that the predicted am-
plitude, angle, and particularly the period, are reason-
able. This suggests that the functional dependences are
reliable and that the approximate considerations used
here can be useful in related problems.

Summary

The static charged walls in Gd-Co films and in the ion-
implanted layer of garnet materials have been examined
theoretically with allowance made in an exaggerated way
for the spread of magnetic charge into a wider region than
the thin wall seen in the ferrofluids pictures. One finds
that both the vertex angle and the zigzag amplitude, that
is, the scale of the structure, are determined by intrinsic
properties of the films. These considerations lead to a pre-
diction of the form of closure domains bounded by
charged walls arising at straight edges in the ion-im-
planted garnet. The prediction is found to be qualitatively
correct.
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