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On the Zigzag  Form of Charged Domain Walls 

Unusual  domain walls have  been  found in ferrq7uid  patterns  on  thin$lm  materials with low  magnetization  that  is in or 

near  the  plane of the$lm.  These walls  carry a  net  magnetic  charge  and  are  characteristically  kinked  in  a regular manner 
to form a  zigzag. A simple  account  is  given of the  energetics of such walls whose form  follows  from  a  compromise 
between  magnetostatic  terms  and  the  energy  ojanisotropy.  It is argued  that  an  array of closure  domains  at  straight 
edges in these  materials should have  a  boundary of similar  character,  and  these  too  have  been  observed. 

Introduction 
Walls between magnetic domains  are usually oriented so 
that  the  component of the magnetization M normal to  the 
wall is  continuous  across  the wall. Configurations can 
arise,  however, in which the normal  component of M is 
not the  same  on the  two  sides of a  wall,  and the wall is 
then magnetically charged. There is a cost of magneto- 
static energy  associated with the  charge, and so such a 
wall is most likely to  occur in materials with low values of 
saturation magnetization M ,  or in very thin specimens. 
Jakubovics [ I ]  has calculated the width of a  charged do- 
main wall for  the  case in which anisotropy confines M to 
the plane of the  specimens.  The energy is undetermined 
since the magnetostatic contribution  depends on the loca- 
tion of the charge  that compensates  the charge on the 
wall. A somewhat surprising feature of Jakubovics’  result 
is that for  the  parameters of interest in our work the 
charged wall is not significantly broader than an un- 
charged Nee1 wall. 

Recent ferrofluid studies of magnetization distributions 
in sputtered Gd-Co films and in ion-implanted  garnet films 
have shown a prevalence of sharply defined charged do- 
main walls. These  sharp walls characteristically have long 
uncurved  sections but are only piecewise  straight and 
kink with a consistent kink angle so as  to form  a zigzag 
across  the sample. When these walls occur  far from any 
feature,  such  as an unimplanted region in the garnet or the 
edge of the  specimen,  the  amplitude of the zigzag is also 
fairly consistent. Figure 1 shows a ferrofluid picture of 
such a wall in an evaporated film of Gd-Co [2a]. Walls of 

such  character have  been observed between head-on do- 
mains in Permalloy films [3.4] by means of the  Kerr mag- 
neto-optic effect and in magnetic films of Co and  Co-Cr 
with use of Lorentz transmission  microscopy [SI, both 
techniques being without effect on  the  state of magnet- 
ization of the observed  material. In this latter work it was 
noted that  the  entire region involving the kinked wall ex- 
hibited a nonuniform magnetization. A theoretical  ac- 
count [6] of the stability of such walls in thin films of Per- 
malloy was based on the  assumption that the magnetic 
charge associated with the wall was confined to  the thin 
wall itself without significant spread of the charge into  the 
triangular areas between adjacent segments of the wall. 
The  vertex angle  at the kinks was  obtained from a minimi- 
zation of energy  made  up of magnetostatic terms, ani- 
sotropy, and the wall energy per unit  length. The zigzag 
amplitude of the  structure was fixed by relating it to  the 
coercive  force of the material,  although, as noted by 
Dressler and  Judy [SI, coercivity is not an intrinsic  mate- 
rial property. 

For  the Gd-Co films and  ion-implanted garnets  the view 
is taken in this paper that the  kinked, zigzag configuration 
is characteristic of the  static magnetically charged  wall, 
and that  the  shape results  from  a  compromise between 
the magnetostatic energy associated with the charge on 
the wall and  the anisotropy  energy  associated with devia- 
tions of M from an easy  axis over a wide region. The  geo- 
metrical characteristics of the zigzag are  the  vertex angle 
and the zigzag amplitude. The  functional  dependences of 

Copyright 1979 by International Business Machines Corporation. Copying is permitted  without payment of royalty provided that (1) 
each  reproduction is done  without  alteration  and (2) the Journd  reference  and IBM copyright notice are  included  on  the first page. 
The title and  abstract may be used  without further permission in computer-based and  other information-service systems. Permission 
to republish other  excerpts should be obtained  from the  Editor. 330 

M. J .  FREISER IBM J. RES. DEVELOP. e VOL. 23 NO. 3 MAY 1y19 



these quantities on the intrinsic film properties-magnet- 
ization,  anisotropy, and film thickness-are  obtained in 
the following section. 

Related to  these zigzag walls in free  space  are  the walls 
bounding closure domains along straight-edge boundaries 
between  implanted  and  unimplanted regions in the garnet 
materials. These closure  domains are discussed  from the 
same  point of view as  presented in the discussion of zig- 
zag walls in free  space. 

Gd-Co films 
Evaporated films of Gd-Co are  “amorphous” [2a,  b] but 
are  nonetheless endowed with an in-plane uniaxial ani- 
sotropy.  The zigzag wall in Fig. 1 bounds two domains in 
a head-to-head arrangement.  It should  be  noted that  the 
full height of the zigzag is about 500 pm, which is some 
four orders of magnitude  larger than  the film thickness  or 
the width of a Nee1 wall. This  disparity of scale  occurs in 
other  observations of the zigzag walls. 

We consider a film with M confined to  the plane of the 
film by a  large  anisotropy  energy  associated with any  nor- 
mal component of M as well as  the magnetostatic energy. 
There is an  easy axis of magnetization within the  plane,  as 
indicated in Fig. 2. Two oppositely  oriented  domains 
meet head-to-head along a  horizontal  boundary. If the 
film thickness is 2 0 ,  the  magnetic  charge per unit hori- 
zontal length is 4DMs. If the wall should kink into  a  sym- 
metrical zigzag with vertex  angle 2 0 ,  the length of the 
wall would be increased by a factor (sin @)” while the 
linear  charge  density along the wall would be reduced by 
a factor sin 0. One may imagine a  contribution to  the  en- 
ergy per unit length along the wall that is proportional to 
the  square of the linear  charge density (as may be inferred 
from Jakubovics’ calculation), and so the kinked wall 
with its  thinned-out  charge would yield such  an energy 
reduced by a factor sin 0 as compared with the  unkinked 
wall, thereby favoring  the zigzag over the  straight  wall. 
There  is,  however,  an inconsistency in such an  assumed 
configuration. If the charge associated with the head-to- 
head abutting  domains is assumed  concentrated in the 
kinked wall, one can  estimate the  stray field within the 
horizontal band containing the wall. Comparing it with 
2K/Ms in Gd-Co,  for  example,  one finds that M deviates 
significantly from an easy  direction  throughout the wide 
band. That  is,  each segment of the wall has a rather ex- 
tended tail, and  there must exist a significant distributed 
charge.  Thus, as compared with a straight horizontal 
wall, the magnetostatic  energy is reduced by kinking, and 
further  reduced by spread of the  charge  over a larger 
area. This  spreading is accompanied by an increase in the 
anisotropy energy. We shall, in the following section, 
carry  this  idea to an extreme  and  estimate  the  contribu- 

Figure 1 A ferrofluid pattern of a zigzag wall in an amorphous 
Gd-Co film with 2 0  = 0.3 wm, 47rMs = 0.32  T (3200 Gs), and  an 
in-plane  uniaxial  anisotropy constant K = J/cm3 (lo4 ergs/ 
cm3). The  arrows indicate  directions of magnetization in the  do- 
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Figure 2 The magnetic configuration assumed for Gd-Co,  cor- 
responding to Fig. 1. 331 

bl. J.  FRElSER 1BM J .  RES. DEVELOP. VOL. 23 0 NO. 3 MAY 1979 



332 

M. J .  FREISER 

Table 1 Calculated  and  observed  values  of  the  vertex  angle 2 0  and  the  bandwidth for charge distribution, 2B, in three  Gd-Co films. 

Sample 47~ M ,  2 0  K Observed  Calculated 
(TI ( w )  (1 0-3 J/cm3 or 2 0  2B 2 0  2B 

104 ergs/cm3) (degrees) ( w )  (degrees) (Pm) 

a 0.32 0.30 1 .o 23 500 10 2800 
b 0.50 0.13 3.0 33 300-400 15 455 

” .. 

C 0.48 0.32 1.9 15-20  300-1000 6.5 9200 

tions to  the energy with the  assumption  that  the charge is 
uniformly distributed over  the  entire  band. Although this 
grossly  exaggerates the diffuseness of the  charge, it is 
found to give  reasonable agreement with observations of 
the  vertex angle  and zigzag amplitude  because major con- 
tributions to  the energy are insensitive to details of the 
magnetization  distribution. 

Figure 2 exemplifies the  type of configuration consid- 
ered.  The magnetic  configuration is treated  as if the 
charge were uniformly distributed along the y-axis over a 
band of width 2B. With M independent of z ,  the  coordi- 
nate  normal to  the film, the volume  charge  density in the 
band is M J B .  With all the  charge so distributed,  the thin 
wall forming the zigzag is an  uncharged 180” Neel wall. 
Three  contributions  to the  energy  must be taken into ac- 
count: magnetostatic terms,  anisotropy, and the energy of 
the  residual  Neel wall. Exchange  does not enter explicitly 
because  the  scale of the  structure is so large that  the  ex- 
change contribution is negligible except  as it is incorpo- 
rated  into  the Neel wall energy. 

We consider  the zigzag band  as traversing the  center of 
a  sample of width 2S,  where S is very  large  (this turns  out 
to  be  inconsequential).  For a sample thickness 2 0 ,  in the 
limit of small D ,  the field due  to  the band of uniform 
charge is 

4MsD x + B 
Hx(x)  = ~ In __ 

B X - B  
1x1 > B ;  

4MsD B + x 
In ~ 1x1 < B .  -- - 

B B - X  

The magnetostatic  energy per unit  horizontal  length is 

W rn = x I, dx loA dy Hr(x)Ms(x,  Y ) ,  (2)  

where A = 4B tan 0 is the period of the zigzag. The angle 
between H and M is very nearly 0 or T ,  differing from one 
of these values by at  most 0. Up  to  terms of order 
M:D20’, one  obtains  for  the  magnetostatic energy 

D s  

W,,, = 8M;D’ ( 3  - 2 In F). 

the 0‘ term in the magnetostatic  energy is only a percent 
or so of that in the anisotropy  energy for which the  entire 
contribution is proportional to e’.) 

For  the assumed configuration the anisotropy  energy 
per unit length of the band (aside from the anisotropy con- 
tribution to  the energy of the residual Nee1 wall) is 

= 4DKB ( sin‘ $), (4)  

where K is the in-plane uniaxial anisotropy constant and 
where the average is taken over  the band or,  equivalently, 
over  one of the triangular  regions. For a  fanlike  configura- 
tion and small 0, one gets 

For a Nee1  wall whose width is much less than  the 
thickness of the film, the  energy per unit length of wall [7] 
is ~ T D M ~ ( ~ T A ) ” ~ .  With the Gd-Co  parameters this is a  rea- 
sonable estimate since  the Nee1  wall is much smaller  than 
the film thickness.  (Under  such  circumstances,  for  some 
materials, e .g . ,  Permalloy,  the  Bloch wall would be ener- 
getically preferred to  the Nee1 wall,  but we are assuming 
that the anisotropy  energy associated with M normal to 
the film  is so large that only the Neel wall can occur.) One 
then has,  for  the energy  per  unit length along the  horizon- 
tal. 

1 1 
sin 0 0 

w, = ~ 45~0M,(7rA)”~= - ~ T D M , ( T A ) ” ~ ,  (6) 

where in the last equality we have again assumed small 0. 

From  Eqs. ( 3 ) ,  (4 ) ,  and (6) we now have  for  the energy 
per  unit  horizontal length 

w = w, + w, + w, 

= 8M:D’ 3 - 2 In + - UKB0’ ( ; 
+ - 47rDM,(5~A)”~, 

1 
0 

(7) 
(For  the materials to be considered  here,  the coefficient of 
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which, when minimized with respect  to B and 0, yields 

@ = -  
T(TA)l'' 

8 M P  ' 

The  results  for  three different samples of Gd-Co are 
shown in Table 1. In all cases it is assumed that  the  ex- 
change constant is A = 2.5 x J/cm (2.5 X IO' ergs/ 
cm). That  the numerical agreement is poor is not surpris- 
ing, given the approximations of  the  treatment. A more 
cogent test of the functional  relationships is obtained 
from an examination of the ratios of 0 and B for  three 
samples, which yield 

0 ' 0  = 
1 .O : 1.4 : 0.74, observed, 
1.0 : 1.5 : 0.63, calculated; a 1 ) '  c 

Ba : B,, : Bc = 
1.0 : 0.7 : 1.5, observed, 
1.0 : 0.16 : 3.3, calculated. 

The  ratios  for 0 are surprisingly good.  The lack of agree- 
ment of B suggests that the  calculated dependence of B on 
M ,  and on D is too strong. 

Ion-implanted layers in garnet films 
Whereas the Gd-Co films have  an  easy in-plane  axis of 
magnetization, the ion-implanted garnet films have trigo- 
nal symmetry in the presence of a  perpendicular  bias field 
with three easy directions of magnetization.  This is a  con- 
sequence of the cubic  anisotropy of the garnet.  The gar- 
nets  are grown with a [ I I I]-axis perpendicular to  the film. 
With the polar  axis taken as  normal to  the film and the 
azimuthal  angle  measured with respect  to  the ( 1 ,  I ,  2) di- 
rection in the  crystal,  the cubic  anisotropy is expressed  as 

- 
3 4 2  . 

sin4 0 + - cos4 8 + ~  SI^' 0 COS 8 COS 36 
4  3 

where K ,  is the  cubic  anisotropy constant.  The angle  be- 
tween M and  the  plane of the film, the complement of 8, 
will be denoted by 7.  In the presence of an in-plane field, 
7 depends  on  the direction ofM, but not very  sensitively. 
We ignore  this  dependence  and treat 7 as a constant.  For 
small 7 the effective in-plane anisotropy is 

- K  COS 36, (9) 

where the trigonal anisotropy constant is 

( K ,  is negative in the  case of interest.)  The material used 
for  Fig. 3 had M ,  = 4 X T (40 Gs), a normal uniaxial 
anisotropy constant Ku of about I .  1 X Jicm' ( 1 . 1  X 

IO4 ergsicm'), and a uniaxial anisotropy induced by the 
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Figure 3 A ferrofluid pattern  obtained in an implanted garnet 
having M s  = 4 x T (40 G s ) ,  K = 7.6 X W 5  J i m 3  (7.6 X 

10' ergsicm')), and 2 0  = 0.4 pm.  The  arrows indicate the  easy 
magnetization  directions. 

ion-implantation of -2.6 X Jicm' (-2.6 X lo4 ergs/ 
cmj).  The analysis of Lin et ul. [8 ]  yields 7 = 0.27. If we 
take  as  a rather characteristic  value of K ,  for such compo- 
sitions K ,  = -0.6 X J/cm3  (-0.6 X IO4 ergsicm')), we 
get K = 7.6 X J i m 3  (7.6 X I O 2  ergsicm'). 

We now consider  two  domains,  each having its  magnet- 
ization along  a  preferred direction, abutting  each other  as 
shown in Fig. 4. For  the garnet layer  the angle $ in Fig. 4 
is  30". The charge  per unit length along the interface of the 
domains is 4MsD cos $. As before, we calculate the  stray 
field as if the charge  were  uniformly  distributed over  the 
band of width 2B. The maximum deviation of M from  a 
preferred  axis is 0. The anisotropy  energy is estimated by 
using a fanlike configuration for which 

One then finds that  the  magnetostatic energy is as in Eq. 
(3) but is multiplied by cos' $. (One  factor of cos $ arises 
from the  charge  density,  the  other from the angle between 
M and the  stray field.) For  the anisotropy energy per unit 
horizontal length one finds 

Within the residual Nee1  wall the magnetization rotates 
through an angle (T - 2+). Middlehoek [7] obtains  for  the 
approximate  energy per unit length of such  a wall 

M. 



A 

Figure 4 The  magnetic  configuration  assumed fol 
L L 

planted  layer of the  garnet.  The  easy  directions of magnetization 
are  indicated on the  left. 

(We assume  that  the uniaxial anisotropy induced by the 
ion implantation is large enough to stabilize the Neel-type 
wall as  compared with a  Bloch  wall.) 

We now have,  for  the energy per unit length along the 
horizontal, 

cos2$ + ~ D K B ~ ~  

+ - ~ D M , ( ~ T A ) ” ~  - - 
1 
0 

(I 4) ( I  - sin @). (13) 

When minimized with respect to 0 and B and with $ = 

~ / 6 ,  Eq. (13) yields 

For  the  garnet film it is estimated  that M, = 4 X T 
(40 Gs), D = 0.2 pm, K = 0.76 X J/cm3  (7.6 x 
IO2 ergs/cm3), and A = 2.5 X J/cm (2.5 X ergs/ 
cm). We then obtain 

2 0  = 

2B = [ 
The  numerical  agreement is poor but no worse  than one 
might expect from  such an approximate  treatment and the 
uncertainties in the  parameters  for  the implanted layer. 
The magnitudes are  such  that it is not unreasonable to 
anticipate that  the functional  relationships are  correct. 
One point in particular may be noted  that is most readily 
susceptible to comparison  with experiment: A change in 
the bias field can influence no  parameter  other than K .  

Therefore, while there will be a change in the scale of the 
zigzag with bias field, the vertex angle will be  relatively 
unaffected. 

i 34”, observed, 
22”, calculated; 

20 pm,  observed, 
45 pm,  calculated. 

Closure  domains  in  garnet  at a straight  edge 
The trigonal symmetry of the  garnet suggests that at  a 
feature  such  as a  straight-edge boundary between an im- 
planted and unimplanted  region,  closure  domains in the 
implanted region will generally be bounded by walls that 
carry a  magnetic charge.  The following treatment was 
motivated by the goal of seeing if the simple consid- 
erations employed  here could be  used to predict the form 
of closure domains.  The discussion also touches on  the 
general  problem of charged walls at  unimplanted features. 

We have previously  dealt  with  a  symmetrical zigzag 
wall, in which successive  segments of the wall formed the 
sides of isosceles  triangles,  and the horizontal  axis of the 
wall made  equal angles with the magnetizations of the  two 
domains. As a step  towards  the consideration of closure 
domains we first treat an asymmetrical wall  in an applied 
magnetic field as  shown in Fig. 5. We shall consider  the 
field to be much smaller  than the critical field for  the trigo- 
nal anisotropy. A horizontal wall bounding these domains 
would carry a  charge per unit length 

CT = -2M,D(cos 0” - cos 0,). (15) 

Now consider a zigzag wall that  extends horizontally as 
shown in Fig. 5. The lengths of the wall segments are 

2B 2B 
sin 0,  sin O2 

e ,  = ~ , e 2 = - ,  
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and the period of the  structure is 
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A = 2B(c0t 01 - cot 0.J. (17) 

The  vertex angle of the zigzag is denoted by 

2 0  = e2 - ol. (18) 

The  situation, somewhat more general  than  the  sym- 
metric zigzag,  can  be treated in a similar way by starting 
from the fundamental  presumption:  Each  segment of a 
zigzag wall has a direction that deviates by only a small 
angle from  the direction of an uncharged wall that would 
bound the  same  two domains. The charge that is associ- 
ated with this  deviation is then distributed over a  band 
containing the wall. Consider the uncharged walls shown 
in Fig. 6 bounding  domains having the  same  orientations 
as  those in Fig. 5. Within each wall M turns through an 
angle (a,, + Q1). Now, with centers of rotation lying along 
a  horizontal line in the figure, rotate  the successive walls 
alternately  through  the angles clockwise  and coun- 
terclockwise, and  thereby obtain  the zigzag of Fig. 5 with 

We consider  the rotation as carrying along M within the 
wall and so preserving  the  uncharged character of the 
Neel wall, the charge being taken up  through  deforma- 
tions in the adjoining medium. Then  the residual wall is 
still a (@,, + @,)-wall with its energy  per unit length given 
by Eq. (13) with [ ( ~ / 2 )  - $13 replaced by (Do + Q1)/2. To 
obtain the energy per unit length along the horizontal one 
introduces  the geometrical factor (t l  + [,)/A. Thus  the 
Neel wall energy  per unit horizontal length is,  to first or- 
der in E ~ ,  

~ M , D ( T A ) ” ~ ( @ , ,  + @,) 1 - COS i 2 
2 sin [(al - @,,)/2] + ( E ~  - E J  cos [(Q1 - @.,)/2] 

F 1  + E q  
X 

(20) 

To estimate the  anisotropy and field energy we note 
that @,, and are such as to minimize the  energy  density 
of each of the two  domains. For small fields the energy 
density in the zigzag band is proportional  to  the  square of 
the  deviation of M from @,, + If the angular  deviation 
of M from  the domain  orientation is denoted  as 4, then 
within the band the average  energy  density associated 
with the anisotropy  and the applied field  is c,,(4’) and 
~ , ( 4 ~ )  in the  upper and  lower  triangular areas,  respective- 
ly. For small applied fields one finds 

Figure 5 Magnetic  configurations assumed  for  asymmetric wall 
and for closure domains at an edge.  The easy  directions of mag- 
netization are indicated  on the left. The horizontal dashed line is 
the  edge for this array of closure  domains. 

The assumption of a  fanlike  configuration  leads to  the  es- 
timate 

The magnetostatic  energy is,  as  before, 
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Figure 6 Array of uncharged domain walls from which the wall 
of Fig. 5 is obtained. 

with u given by Eq. (15). We can now  write the  estimated 
total  energy in terms of E , ,  c2, and B ,  and  determine  these 
parameters by minimization of the  energy. 

To  deal with the straight edge  we simply cut off the 
material  immediately below the horizontal band along the 
dashed line in Fig. 5. This introduces  an edge along which 
there is a charge with linear  density 

u,, = 2M,D COS a,. (24) 

The magnetostatic  energy of interaction between this 
edge charge  and  the band of charge is easily  calculated as 
ufl times the magnetostatic  potential at  the edge due  to  the 
band. This yields 

-8M:D2 cos @.,(cos a,, - cos @.,) 

We ignore other  interactions  associated with the  edge 
charge  although it is clear  that a  major modification in- 
volves the value of a1. Thus, we have  as  our estimation of 
the  energy of the configuration in the  presence of the 
edge, 

W = 4MsD2(c0S @,, - COS 

+ 8M:D2 cos @.,(cos Qfl - 

+ 4MSD(~A)"'(@,, - @,) 

Ignoring the term that is independent of E', and B ,  we 
write this as 

F 
W = P l n -  

2B 

2 sin [(Q1 - @J/2] + ( E ~  - e.,) cos [(al - @,,)/2] 

E1 + E2 

+ 2  

+ RB(&; + &;), (27) 

in which we have omitted  a constant  term, and  where 

P = ~M:D'(COS'@,, - COS' @.,), 

and 

R = ~ D K  
H M  [ 18K cos (* + 3 1 .  

Minimization with respect  to E , ,  and B  leads to  equa- 
tions that can  be easily solved; 

Evidence that closure  domains of the form that we have 
envisioned do  exist is found in some of the ferrofluid pic- 
tures  taken by S. Schwarzl [9]. Figure  7(a, b) shows  two 
such  photographs  from Schwarzl's  work.  The  orientation 
of the edge is at  about IS" with an  easy direction of mag- 
netization, rather than at right angles to  one of the  easy 
directions (as assumed above). With the angles @,, and Q1 
defined as in Fig. 8 ,  Eqs. (28) and (29) still hold, and  for 
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Figure 7 Ferrofluid  pattern of closure  domains  at  the  straight-edge  boundary of implanted  layer of garnet  having 4rM, = 0,1097 T 
(1097 G s ) ,  K = 9 x IO-'  J/cmi3 (9.0 X IO2 ergdcrn'),  and 2D = 4800 wm. The  heavy  bars  (unimplanted  regions)  are 15 pm wide.  (a) 
2B = 10 pm: 2 0  = 46': (b) 2B = 15 pm: 2 0  = 36". 

H = 0 one  has a,, = ~ / 1 2  and a, = 7 ~ 1 1 2 .  For  Schwarzl's 
sample the available data indicate that 4rMs = 0.1097 T 
(1097 Gs), 2 0  = 0.48 pm, A = 2.5 X Jicm (2.5 x 

ergsicm), and K = 9 X IO-' Jicm3 (900 ergsicm'). 
With these values Eqs. (21) and (31) yield 0, = 33", O2 = 

53", 2 0  = 21", and 2B = 68 pm.  For  comparison,  the 
heavy bar in the figure is approximately 15 pm wide. For 
Fig. 7(a)  one  gets approximately 2B = 10 pm and 2 8  = 

46"; for Fig. 7(b)  one obtains from  the photograph 2B = 

15 pm  and 2 0  = 36". The numerical  agreement is not very 
good, as  one might expect. What is more  interesting is the 
period of the  structure  that  can be obtained  from Eq. (17), 
yielding A = 23 pm. In the  photographs there is some 
variation in the  periods, but in each photograph, for  the 
structure  that is seen,  the  average period is 23 pm. 

It seems clear that  the  amplitude of the zigzag bound- 
ary of the closure  domains is quite sensitive to  the  direc- 
tion of the magnetic field, whereas in our  treatment  the 
dependence of the amplitude on H is through HMs/18K = 

that as  the field was rotated in Schwarzl's series of photo- 
graphs the configuration of closure domains was becom- 
ing unstable relative to a  continuously curling configura- 
tion. There is evidence for this in Fig. 7(b). There is also 
the effect of interactions of the  two bars lying close  to 
each other in the  area  photographed. Another point is that 
at  some time during the  experiment,  for some  orientation 
of the magnetic field, these  closure domains  were estab- 

0.03 for  the parameters of Schwarzl's sample.  It may be --q---- 0 ,  

"" < z 



bar, which  unfortunately are not  shown in the photo- 
graph.  The number of closure domains was fixed at that 
time since there is no  continuous way to change that num- 
ber  as  the field is rotated.  Thus,  the  closure domains seen 
in Fig. 7(a, b)  need  not be equilibrium  configurations but 
may be constrained  to  have  the  same average  period as 
the  presumed equilibrium configurations when the  do- 
mains were first established. 

It is somewhat reassuring that  the predicted shape of 
the  closure domains is correct, and that  the predicted  am- 
plitude, angle, and  particularly the period, are  reason- 
able. This  suggests  that the functional dependences  are 
reliable and  that  the  approximate considerations  used 
here can  be useful in related problems. 

Summary 
The  static charged walls in Gd-Co films and in the ion- 
implanted layer of garnet  materials have been  examined 
theoretically with allowance made in an exaggerated way 
for  the  spread of magnetic charge into a  wider region than 
the thin wall seen in the  ferrofluids  pictures. One  finds 
that both  the vertex angle and  the zigzag amplitude, that 
is,  the  scale of the  structure,  are determined by intrinsic 
properties of the films. These  considerations lead to a pre- 
diction of the form of closure domains  bounded by 
charged walls arising at  straight edges in the ion-im- 
planted garnet.  The prediction is found to be qualitatively 
correct. 
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