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Transform  Techniques  for  Error  Control  Codes 

By  using  the  theory  ofjinite5eld  Fourier  transforms,  the  subject of error control  codes  is  described in N language  familiar 
to thejield of signal processing.  The  many  importunt  uses of spectral  techniques  in error control are  summarized.  Many 
classes of linear  codes  are  given  a  spectral  interpretation  and some new  codes  are  described,  Several  nlternative encoder1 
decoder  schemes  are  described  by  frequency domclin reasoning. In particular,  an  errors-and-erasures  decoderjor  a BCH 
code is exhibited which has  virtuully  no  additional  computations  over  an  errors-only  decoder.  Techniques for decoding 
BCH, R S ,  and  alternant  codes  (Goppa  codes)  a  short  distance  beyond  the  designed  distance  ure  discussed. Also ,  (4 

modijication to the definition of a BCH code is described which reduces  the  decoder  complexity  without  changing  the 
code’s  rute or minimum  distance. 

Introduction 
Fourier  transforms  have found wide application in signal 
processing  and in the study of communication  wave- 
forms;  study of these transforms has been well rewarded. 
A close analogue of the  Fourier transform  can  be defined 
on the  vector  space of n-tuples over  the Galois field GF(q) 
whenever n = qm - 1 or a  submultiple  as was noticed by 
Pollard [I]. Transforms over Galois fields have recently 
been  introduced into the study of error control codes  as a 
vehicle to reduce decoder complexity first by Gore [ 2 ] ,  
and later by Michelson [ 3 ] ,  Lempel and Winograd [4], and 
Chien and  Choy [5 ] .  However,  these transforms  can be 
made  to play  a much more central role in the  subject. 
Known  ideas of coding theory can be described in a fre- 
quency  domain  setting that is much different from the fa- 
miliar time  domain setting, but  closely  related to  treat- 
ments based  on  the so-called  Mattson-Solomon  poly- 
nomial [6]. Cyclic codes can be defined as codes whose 
codewords  have certain specified spectral components 
equal to  zero. Alternant codes  (and  Goppa codes) can be 
given a similar interpretation. Also, the decoding of many 
codes (including BCH,  Reed-Solomon, and  Goppa codes) 
can be  described spectrally. 

This  emerging viewpoint is welcome and important for 
a number of reasons.  Firstly,  any new  vantage  point on an 
established discipline will usually bring new insights. 
Thus, existing codes can  be classified in yet another  way, 

and hence interrelationships can be seen in a new light. 
Secondly,  there  are strong pedagogical advantages  since 
most  engineers are well versed in transform techniques, 
especially those dealing with waveform design or signal 
processing. Thirdly, computational or implementation  ad- 
vantages  often are found in a frequency domain decoder. 
Certainly, it is important to know as many decoder  tech- 
niques as possible so that the simplest  can be chosen  for a 
given application. Finally, new codes, algorithms,  and 
techniques  can  be sought from another point of view. 

This paper will begin with some tutorial sections that 
develop part of the subject of error control codes in a 
transform  setting.  First of all, we want to  set up  the  view- 
point, terminology,  and  analogies with signal processing 
theory so that the new results that  come  later can  be ex- 
plained easily. But  we also hope  to stimulate  interest in 
and to  accelerate the development of a  spectral  point of 
view to coding  and to  popularize  the ideas of [2, 41 and 
[ 5 ] .  It is our belief that the  spectral formulation and termi- 
nology bring the subject much closer  to  the subject of sig- 
nal processing and make error control  coding  more acces- 
sible to  the nonspecialist in coding theory. 

We then turn from the tutorial  tone to give some new 
techniques.  The spectral interpretation is used to  describe 
encoderidecoder implementations for BCH  and  Reed- 
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Solomon codes. A new technique  for correcting erasures 
and errors is described.  This technique requires virtually 
no additional  complexity over  the  decoder  for correcting 
errors only. 

We also describe techniques for decoding codes, in- 
cluding Goppa codes,  beyond  the designed distance; 
techniques for modifying the definition of BCH codes so 
that the  decoder  is simpler; and  techniques for designing 
codes of very long blocklength that, although weak in per- 
formance, can be decoded using arithmetic in small fields. 
These  techniques  are described for  their own merits,  but 
they are  also presented as  evidence supporting  our claim 
that the  spectral point of view is quite  rewarding  and 
worth further development. 

Finally, by the examples discussed and  the  general tone 
of the  paper, we hope to  underscore  our view that it is as 
important to massage codes to fit known  decoding al- 
gorithms as it is to seek new codes with good properties 
but having no known  practical decoders. 

Finite  field  transforms 
The  Fourier transform  plays  a basic role in the study of 
real-valued or complex-valued  signals when the time  vari- 
able is continuous, and the discrete  Fourier transform 
plays a parallel role when the time  variable is discrete. 
Fourier  transforms also  exist for functions of a discrete 
index that  take values in a finite field. Such  transforms are 
very useful in the study of error  control  codes, but  they 
are less well known  than Fourier transforms over  the 
complex field, and so we review  them in this section.  The 
basic  ideas appear earlier in [l]. 

Recall the definition of the  discrete  Fourier transform 
of a vector of complex numbers 

i=O 

where  here j = . The  Fourier kernel is an  Nth  root 
of unity in the field of complex numbers. In the finite 
field, GF(q"'), an element N of order n is an nth  root of 
unity. Drawing on  the analogy between and 01, we 
have the following definition. 

Definition I Let e = { p i  I i = 0, . . ., n - 1) be a vector 
over GF(q), where n divides qTn - 1 for some rn, and let 
a be an element of GF(qi") of order n. The finite field 
Fourier transform of the  vector e is the  vector  over 
GF(q"'), E = {Ej I,j = 0, . . ., n - I}, given by 

n-1 

Ej = 1 ai'ei j = 0, . . ., 11 - I .  
i=n  

300 For simplicity of exposition, we  will usually restrict atten- 

tion to values of n satisfying n = qm - I .  These values of n 
will be  called primitive blocklengths. Then a is a  primitive 
element of GF(q"). It is natural to call the  discrete index i 
"time" and e the time  domain  function or  the signal and 
also call the  discrete index j "frequency"  and E the  fre- 
quency  domain  function or  the  spectrum. Just as real-val- 
ued functions can have complex-valued Fourier  trans- 
forms, so too can  GF(q)-valued  signals have GF(q"')-Val- 
ued Fourier transforms. 

Theorem I Over GF(y), a field of characteristic p ,  a 
vector  and its  spectrum  are related by 

Ei = 1 ai je i ,  
i=n 

,I- 1 

Proof Recall that in any field, 

xfl - I = ( x  - 1)(x"-' + + . . . + x + I ) ,  

and by definition of cy, ar is a  root of the left side for all r .  
Hence ar is a root of the last term  for all r # 0 modulo n. 
But this is equivalent to 

x arj = 0 r # 0 modulo rr, 

while if r = 0, 

fl -- 1 

J=O 

71 - 1 1 ar3 = n modulo p ,  
j = O  

which is not zero if n is not a  multiple of the field charac- 
teristic, p .  Using these  facts, we have 

1 a"'' 1 akjek = 1 e, 2 = (n  modulo p)e, .  

Finally, if the field has  characteristic p ,  then for  some in- 
teger s ,  q - 1 = p s  - I is a  multiple of n ,  an4consequently 
n is not a multiple of p .  Hence n modulo p # 0. This 
proves the  theorem. 

7 1 - 1  71- 1 n - I  n-1 

j = O  k=O k=O j=O 

The  Fourier transform has many strong properties 
which carry  over  to  the finite field case.  Suppose  that 

e i  = f i g ,  i = 0 ,  . . ., n - 1 .  

Then 

We then have  the convolution property 

with the  understanding  that all subscripts  are  interpreted 
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modulo n (or equivalently, that  the  spectra  are defined 
for all k and  are periodic with period n). There is also  a 
Parseval formula.  From  the convolution, 

n- 1 I n-1 

Ej = 1 aiJfigi = - 1 Fj-kCk. 
i=O f l  k=O 

Take j = 0 to get 

1 Jgi = - 2 F7,-,Gk. 
,,-I 1 n-l 

I =iJ n k-0 

When dealing with polynomials, the polynomial e(x) = 

ciI~,x'"' + . . . + c,x + e , ,  is associated with a polynomial 
E(x) = En-I~"" + . . . + E l s  + E, by means of the finite 
field Fourier transform.  This polynomial is called the 
spectrum polynomial or the associated polynomial of 
~' (x) .  It was introduced to  the  study of error control codes 
by Mattson  and Solomon [6], although not in the termi- 
nology of the  Fourier transform. 

The following theorem  relates the roots of these  poly- 
nomials to the  properties of the spectrum. 

Tllrorrm 2 a) The polynomial ( ) ( x )  has a root at a' if 
and  only if the j t h  spectral component E, equals zero.  b) 
The polynomial E(?;) has a  root  at cy-' if and only if the ith 
time component  equals  zero. 

Proof' Part  a is immediate since 

(.(a') = x viaiJ = E,. 
I. . 
i=O 

Part b follows in the same way. 

Thus, in the finite fields, when one  speaks of roots of 
polynomials or of spectral components equal to  zero,  one 
really speaks of the  same thing, but  the terminology and 
the  insights are different, and the two  notions  appeal to 
different audiences. 

Cyclic codes 
A code  over  GF(4) is a  set of time domain signals of 
length n called codewords. If a Fourier transform exists 
for length n ,  then each codeword  has a  spectrum in an 
extension field GF(4"') called the frequency  domain code- 
word. A cyclic code is a code such  that  the  linear  combi- 
nation of two  codewords is a codeword, and the cyclic 
shift of a codeword is a codeword. 

A cyclic code  over  GF(4) is conventionally described in 
terms of a generator polynomial g ( x )  over  GF(q) of degree 
17 - k .  Every codeword is represented by a polynomial of 
degree 17 - I ,  written as C(S) = s(.x)g(x), where s(x) is a 
signal polynomial of degree k - 1. This  is a  convolution in 
the time do,.lain 

L components 
of information 

* w 
n components 

Transform 
GF(U) 

I 1 
Codeword 

Figure 1 Encoding via the transform. 

It- 1 

C i  = 2: gi+kSk. 
k=n 

Therefore, in the  frequency domain,  the encoding opera- 
tion can  be  written  as  a  product Cj = Cisj. For fixed gen- 
erator G,, any  spectrum that satisfies this expression is a 
frequency  domain codeword, provided that all com- 
ponents in the time domain are  GF(q)-valued.  Because 
the signal spectrum S, is arbitrary,  the only significant 
role of Gj is to specify frequencies  where  the  codeword 
spectrum Cj is zero.  Thus, we can define a  cyclic code 
alternatively as follows. Given  a set of spectral com- 
ponents j , ,  . . ., jr l -k  called parity frequencies,  the  set of 
words over GF(y) whose spectrum is zero in components 
.I,. ' . ' , j,,-k is a cyclic code. 

Notice  that although each codeword in a cyclic code is 
a vector  over  GF(4), the spectrum is a vector  over 
GF(4"').  Hence, we may think of a cyclic code  as  the  set 
of inverse  Fourier transforms of  all spectral vectors  that 
are  constrained  to  zero in several prescribed components 
provided that said Fourier  transforms  are  GF(q)-valued. 
It is not possible to  choose  any  spectrum  that is zero in 
the  prescribed components;  some of these may have in- 
verse transforms with components  that  are not in GF(4). 

However, if rn = I ,  that is, if n = q - I ,  then every 
spectrum  consistent with the  constraints yields  a code- 
word.  One may encode by  filling the unconstrained com- 
ponents of the  spectrum with information  symbols  and 
then  taking the inverse  transform as illustrated in Fig. I .  

The most  popular class of cyclic code  is  the  class of 
BCH codes. From the spectral  point of view we have  the 
following definition. 

D&ition 2 A primitive f-error-correcting BCH code of 
blocklength n = 4'" - 1 is the  set of all words over  GF(q) 
whose  spectrum is zero in a specified block of 2t con- 
secutive  components. 301 
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Figure 2 Hamming (7, 4) code in the  frequency domain. 

The adjective “consecutive” is the key one in special- 
izing the definition of a cyclic code  to  that of a BCH code. 
It is  well known that a BCH code  corrects  terrors. In the 
next  section we give the proof couched in spectral termi- 
nology. The remainder of this  section is concerned with 
encoding. 

First suppose  that ti = y - 1 (or possibly a submultiple 
of q - I ) .  The BCH code is then known as  a Reed-Solo- 
mon code.  The encoding is as  follows.  Some set of 22 con- 
secutive  frequencies (e.g., the first 2r) are  chosen  as  the 
symbols constrained  to  zero.  The information symbols 
are loaded into  the remaining I I  - 2t symbols, and the 
inverse Fourier transform is taken  to produce a (non- 
systematic)  codeword. 

For  the more general BCH code,  the encoding is more 
complex.  Again, 2t consecutive locations are chosen to 
be zero.  The remaining symbols must be chosen  to  repre- 
sent the information only in those q’’ possible  ways that 
have GF(q)-valued  transforms; but of course we do not 
wish to do this by trial and error. 

Recall that over the  complex numbers, a function V ( f )  
has a real-valued  transform if V’”( - , f )  = V ( , f ) .  The  analo- 
gous  condition is given by the following well-known theo- 
rem. which may be found in [7]. 

Throrrtn 3 Let C,, .; = 0 ,  . . ., ti - I ,  take elements in 
GF(q”’) where II is a divisor of 4”’ - 1. Then c ; ,  i = 0, . . . , 
17 ~ 1, are all elements of GF(q) if and only if the following 
equations, called conjugacy constraints,  are satisfied. 

Proof By definition 
,I” I 

If ci is an element of GF(q)  for all i, then c‘: = c ~ .  Con- 
sequently, 

, 1 -1  

i = (1 

Conversely,  suppose that for all j ,  Cy = CYj. Then 

Let X = qj .  Since q is relatively prime to n = q”’ - I .  as .; 
ranges over all values between 0 and n - I ,  k also ranges 
over all values between 0 and IZ - 1 .  Hence 
,,-I / I -  I 

i=O i=(l 

and by uniqueness of the Fourier  transforms = c i  for all 
i. Thus, c i  is a root of x“ - x for all i and all such  roots  are 
elements  of  GF(y). 

Using Theorem 3, we can  easily construct  the Ham- 
ming (7, 4) code in the  frequency domain. This is shown 
in Fig. 2. Frequencies C ,  and C,  are chosen as parity  fre- 
quencies so that a single error  can be corrected.  The in- 
formation is contained at frequencies C,, and C,. The re- 
maining frequencies are  constrained by Theorem 3. Theo- 
rem 3 also requires that Ci = C, so that C,, can  only have 
the value 0 or 1. Thus,  the equivalent “bit  content” of C, 
is one  bit. The equivalent bit content of C, is three bits. 
Thus, the four information bits of the Hamming code can 
be used to uniquely specify the  spectrum.  The informa- 
tion bits are inserted  into  the  frequency  domain rather 
than the time  domain. 

In the general case, the  integers modulo n are divided 
into conjugacy classes of the  form 

A )  = {yj. $j> q3;, . . .. j ) .  

If the spectral component Cj is specified,  then every  other 
spectral  component whose  index is in the conjugacy class 
of; must be a power of Cj and  hence cannot be separately 
specified. (It is suggestive to use the term “chord”  for the 
set of frequencies  whose  indices are in the same  con- 
jugacy  class.)  Further, if the conjugacy class  has r mem- 
bers, then we must have 

e:‘ = e,. 
c, = x cy ’Jc ,  ,; = 0, . . ., ti - 1 .  Consequently, we are not  free to  choose any  element of 

i=ll GF(y”’) for C,,, but only those of order q‘ - I .  Since  every 
AS is  well known, for a field  of characteristic p and  any  element of  GF(q”’)  has  order dividing q”’ - 1, it is clear 

302 integer Y, ( n  + b)l’r = ( I ’ ’ ~  + b”‘. Therefore, that the size of every conjugacy class divides m. 
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Thus,  to specify an encoder, we break the first q"' - 1 
integers  into  conjugacy classes, and  select one integer to 
represent each class.  These  representatives specify the 
uniquely assignable  symbols. To form a BCH code,  a 
block of 2t spectral  components  are  chosen  as parity fre- 
quencies and set  to  zero.  The remaining assignable  sym- 
bols are information symbols,  arbitrary  except  for  occa- 
sional constraints on the  order. All other symbols in a 
chord are not free;  they  are obligatory frequencies. 

Table 1 shows the situation for GF(64). If  we choose 
the first column as  free symbols  and  take C,, C,, C,, C,, 
C,, and C,  as parity frequencies, then we have a triple- 
error-correcting  BCH  code. Then C,,, C,, C,, C,,,  C,,, 
C,,, C,,, C,:,, C,,, and C,, are  the information symbols. C, 
and C,, must be symbols of order 2 .  C,, must be an ele- 
ment of order 3. C, must be an element of order 1 .  All 
other symbols are  arbitrary  elements of GF(64).  It  re- 
quires a total of 45 information bits to specify these sym- 
bols. Hence, we have the (63, 45) t = 3 BCH code. 

After these  free symbols are  loaded,  the obligatory 
symbols are padded with appropriate  powers.  The  com- 
plete spectrum is then  transformed into the codeword. 

Decoding in the frequency domain 
The  BCH bound is proved very simply and intuitively in 
the  frequency domain.  This proof is a variation of a time 
domain proof of Chien [8] that we have transferred into 
the frequency  domain. 

Tlleorc~nl 4 (BCH holrncl) If a vector c ' ~ .  i = 0, . . ., n - 

I ,  has  less  than d nonzero components and if the  spec- 
trum is zero on any d - 1 successive  components (C,  = 0, 
j = j, + I ,  . . ., j,, + d - I ) ,  then c ,  = 0 for all i. 

Proof Let i , .  . . ., i,, denote the v nonzero components 
of c, v < d.  Define the  locator polynomial A(x): 

" 
A(x) = I 1 ( I  - x a i k )  

k=1 

= Ayx" + AO~,x"" + . . . + A,x + A,. 

Interpreted as a vector, A is a frequency spectrum which 
is judiciously defined so that its inverse  transform A = { A i }  
equals zero (by Theorem 2) at  every time i, at which C, # 

0. The product A i c i  in the time domain is zero;  therefore, 
the convolution in the frequency domain is zero. 

,,-I 

I AkCj-k = 0. 
k = ,  

But the vector A is nonzero only in a block of length at 
most d and A, = 1 so that 

rl-  I 

C,= - y  A C 
k=1 
L- k j-k' 
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Table 1 Structure of spectrum  over GF(64). 

Free Ohligutory frequencies  Bit 
frequencies c#ntPnt 

This is the equation of a linear  feedback shift register  that 
generates all the Cj from  any block of them of length 
d - I .  But C is zero in a block of length d - I .  Using this 
block as an initial condition,  the linear  feedback shift reg- 
ister generates all the rest;  hence, all terms of C are  zero, 
and c must be the all-zero vector. 

Now consider  the task of decoding a received word for 
a BCH or Reed-Solomon code.  The original decoding 
technique  described by Reed and  Solomon [9] had a 
strong  frequency  domain  flavor, but thereafter  techniques 
evolved primarily in the time domain, although  some  fre- 
quency  domain  variables (the  syndromes)  do  creep in. 
What amounts  to a frequency  domain decoder was first 
proposed by Mandelbaum [ I O ] ,  though in the terminolo- 
gy  of the Chinese  Remainder Theorem. Such a  decoder 
was implemented in a computer program by Paschburg 

Consider  decoding a received word r, = c', + e,, i = 

0, . . .. n - I ,  consisting of a codeword and an error 
word. Figure 3 shows a comparison of a time domain im- 
plementation of a BCH code, a frequency  domain imple- 
mentation, and several hybrid implementations. In the 
frequency  domain  implementation, one first computes R, 
the  transform of the  received word r. The transform con- 
sists of the transform of the  codeword and  the  transform 
of the error: 

R i = C i + E ,  , j = o ; . . , n -  1. 

Since  codeword C, is zero on a block of 2t components 
(say from 1 to 2 t ) ,  we have 2t  known values of E, called 
the syndromes: 

Sj = E, = R,  j = I ,  . . ., 2t.  303 
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Suppose  there  are v 5 t errors. As in the proof of Theo- 
rem 4, define the  error-locator polynomial A(x) :  

Y 

A(x) = n (1 - xa ik ) .  
k= l  

Since in the time  domain hi = 0 whenever ei # 0, we have 
Xiei = 0 and so 

j=0 

(It  does no harm to sum out  to n - 1 even though Aj = 0 
for j > r.) The convolution is a set of n equations in n - t 
unknowns: t coefficients of A(x)  and n - 2t components of 
E. Of the n equations,  there  are t equations  that involve 
only components of A and  known components of E, and 
these  are always  solvable for A .  The remaining com- 
ponents of E can  be  obtained by recursive  extension;  that 
is, sequentially  computed  from A using the  above con- 
volution equation. This computation  can be described  as 
the operation of a  linear feedback shift register  with tap 
weights given by the coefficients of A .  In this way Ej is 
computed  for all j ,  and Cj = Rj  - E,. An inverse Fourier 
transform completes  the  decoding. 

The key step of computing A from the known 2t 
components of E can be done by the  elegant algorithm of 
Berlekamp [ 121 which was described in terms of shift reg- 
isters by Massey [13]. We will discuss some modifications 
of this  algorithm in later  sections, so we restate it here. 

Theorem 5 (Berlekamp-Massey  algorithm) Let Sj,+, , 
. . ., Sj,+zL be  given. Let  the following set of recursive 
equations be  used to  compute A("'(x): 

, , - I  

j = O  

(A,. is a scalar known  as the  discrepancy) 

' A',.'(x) = A'"'(x) - A,.xB"-~'(x), 

B'"(x) = ( 1  - ~ , . ) x B ' ~ - ~ ' ( x )  + 6 r ~ A ~ 1 A ' T - ' J ( ~ ) ,  

y = 1, . . .  , 2t; the initial conditions are A'"'(x) = 1 ,  
B""(x) = I ,  and 6, = I if both Ar # 0 and deg B""l)(x) > 
max  deg ~l(~'(x) and otherwise 6,. = 0. Then A""(x) is the 
smallest  degree polynomial such that A':' = 1 and 

1 AY1)Sj,+,._j = 0 r = 1 + deg A"", . . ., 2t. 

A proof can  be  found in [ 121 or [ 131. If Sj,+l, . . ., SJO+*, are 
the  syndromes of a codeword  for which  at  most t errors 
occurred, then A'*')(x) has  degree  equal  to  the  number of 
errors and 

M- 1 

j = O  

n-1 

The  decoder  can be used  with an  encoder  that is either 
in the time  domain or the  frequency domain. If the  encod- 
er is in the frequency domain,  then  the information  sym- 
bols are used to specify certain  components of the  spec- 
trum whose inverse transform  then gives the time  domain 
codeword. With this scheme,  the  corrected  spectrum is 
the information. The  decoder  does not  have an  inverse 
transform.  The  frequency domain encoder may be  sim- 
pler than  the time  domain encoder if n is composite be- 
cause a fast transform may be  simpler  than a convolution. 

The final circuit of Fig. 3 shows a hybrid  implementa- 
tion. Here  the transform of the  error  pattern is computed 
by recursive extension in the  frequency  domain, but the 
correction is done in the time  domain.  This  circuit is simi- 
lar in appearance  to  the first circuit, but the  development 
has been much different. The  syndrome  generator is the 
same  as  the direct transform.  The Chien search is essen- 
tially the  same  as  the inverse transform. It is a v x n 
transform with a  GF(q"')-valued output vector compared 
to  an n X n transform  with  a GF(q)-valued  output.  The 
fourth circuit  has the  advantage of a simpler appearance 
than the first. 

In view of the many variations  summarized by Fig. 3, 
the  designer has a number of options from  which to 
choose.  It should be obvious  that his choice will depend 
not only on  the  code  parameters  such  as blocklength  and 
minimum distance, but  also on how the implementation is 
divided between  hardware  and  software, and even  on the 
type of circuitry  available to him. 

Notice  that  each of the  circuits of Fig. 3 has  both  a 
Fourier transform  and an  inverse  Fourier  transform, 
though in some cases  these  appear  under  the  names 
"Chien search" or "syndrome  generator," and in some 
cases not all of the  output  components need be computed. 
Thus,  one  needs efficient methods  for computing the 
Fourier  transforms. As is well known,  the  Fourier  trans- 
form can be efficiently computed by a fast  Fourier  trans- 
form algorithm whenever n = q"' - 1 is composite, and 
this is sometimes used to justify  choice of a composite 
blocklength. But even when q"' - 1 is prime the  transform 
often is still practical.  Circuitry to implement the full n x 
n matrix multiplication can be quite simple for  moderate 
n. For  example, when n is prime and a has a square root 
f i ,  one  can also  use the  chirp  transform. This is a conve- 
nient  variation of the  Fourier transform  based on  the cal- 
culation 

i = O  i=O i=O 

The  term  on  the left can be easy  to implement in hard- 
ware. It  consists of a pointwise product of ci with p-' 304 
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(but not conversely). 
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(II multiplications) followed by a convolution with pi (an erasures and errors  are very simply explained, and the 
n-t:p digital filter) followed by a pointwise product with reason why the  decoder  works is clearly visible. Further, 
p-J ( n  multiplications). the sharp insight allows us to  propose a simple adaptation 

of the  Berlekamp-Massey algorithm so that both erasures 
and errors can be decoded with virtually no hardware 
other than that required for the  errors-only decoder. 

Erasure  and error decoding 
BCH codes also are used for protection with channels 
that  make  both erasures and errors. A decoding  algorithm 
for this purpose  was discovered by Forney [ 141. The deri- 
vation is manipulative and difficult to  understand in- 
tuitively since it introduces some new variables in an arbi- 
trary way. By transforming the discussion into the fre- 

Let v be the  vector of erased symbols. Suppose  that 
erasures  are made in locations i,, i,, . . ., i , .  (In other 
components v l  = 0.) The received word is a  codeword 
corrupted by errors and erasures, 

quency  domain, algorithms for decoding  messages with r j  = c j  + c~~ + vi i = 0 ,  . . .. n - I .  305 
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Let w be any  vector  that is zero  at every erased location 
and otherwise  nonzero. In particular, define w as fol- 
lows. Let U, = ail, I = I ,  . . ., p, denote  the  erasure loca- 
tions. Define the  erasure-locator polynomial 

ti-1 P 

R(x) = 1 R,xk = n ( 1  - xu,). 
k=O I = 1  

This is defined so that the inverse transform of the  vector 
fi has components mi equal  to  zero  whenever vi Z 0. 
Therefore, oivi = 0. Then 

wiri = oi(ci + ci + vi) = wici + oic i  

or 

r: = o i c i  + e:, 

where we have defined the modified received  word r: = 

wiri, and the modified error  vector e: = mipi.  The modified 
error  vector e' has  errors in the  same locations as e. The 
problem  now is to  decode r' to find e'. In the  frequency 
domain 

R' = (a * C) + E'. 

But L(1 is nonzero in a  block of length p + 1 and by con- 
struction of a  BCH code, C is zero in a block of length 2t. 
Consequently, fi * C is zero in a block of length 2t - p.  In 
this  block, define the modified syndrome T, by Ti = R:. 
Then Tj = (fi * R)j = Ej'. 

Hence,  just  as in the errors-only case, from these 2t - p 
known  values of E' we can find the  error-locator poly- 
nomial A(x) provided the  number of errors is less  than 
(2t - p) /2 .  Once  the  error-locator polynomial is known, 
we can  combine it with the  erasure-locator polynomial 
and  proceed as in the  errors-only  case.  To  do  this, first 
define the  error-and-erasure-locator polynomial T(x) = 

a ( x ) A ( x ) .  The inverse Fourier  transform of r is zero at 
every  erasure  or  error.  That  is, y i  = 0 if e ,  # 0 or vi # 0. 
Therefore, yl(rl + u i )  = 0 ,  r * (E + V) = 0, and r is 
nonzero in a block of length at most 2t - p + 1.  Hence, 
the 2t known  values of E + V can be  recursively extended 
to n values by using this convolution  equation and  the 
known value of r. Then 

Ci = Ri - (E i  + Vi). 

An inverse Fourier transform completes  the decoding. 

The  step of computing the  error-locator polynomial 
from  the modified syndromes  can use the Berlekamp- 
Massey  algorithm. However, it is possible to  do much 
better by combining several  steps.  To  describe how to  do 
this it is necessary  to refer  back to  the  procedure of the 
Berlekamp-Massey algorithm as summarized by Theo- 
rem 5.  The idea of the Berlekamp-Massey  algorithm is to 

306 compute A(x) by a recursive  procedure, starting  with an 

initial estimate A")(x) = 1 and  an initial choice of another 
polynomial called the  update polynomial B'"'(x) = 1, and 
proceeding  through 2t iterations. 

In the  case of erasures,  the  syndrome is replaced with 
the modified syndrome in the  equation  for Ar, 

Ar = 1 
j=n 

After n iterations  starting  with the initial values A")(x) = 

B'"'(x) = 1, the  error-locator polynomial h ( x )  is obtained. 

11 

But  what  happens if we start instead  with the values 
A'"'(x) = B'"'(x) = R(x)? Then notice that 

A'"(x)R(x) = A"-"(x)R(x) - Arx13'""(x)Cl(x), 

B'"(x)R(x) = ( 1  - S,.)XB'~-"(X)R(X) 

+ S ~ ~ A ; ' A ' ~ - ~ ' ( ~ ) R ( ~ )  , 

and if we define T'"(x) = R"'(x)R(x) and compute Ar by 
t, tl 

= 1 r(;-l).s,l-j = 1 r';:;).sj, 
j=O j = O  

then 

Ar = $ (i A'i-l)R,-j-k Sj = x A'i-l)Tn-k. 

Therefore, if we initialize the Berlekamp-Massey al- 
gorithm with a ( ~ )  instead of with l ,  the modified syn- 
dromes are  computed implicitly and need not explicitly 
appear, while the algorithm generates recursively the  er- 
ror-and-erasure-locator  polynomial T(x) according to  the 
equations 

j = O  k=O i k:" 

r(r)(X) = r''-l)(x) - ArxP1I (x ) ,  

B"'(x) = ( 1  - i3r)xB'r-1'(~) + G,xA~'T''-"(x), 
n 

ar = 1 r;-l)sn-j. 
j = O  

The resulting decoder is shown in Fig. 4. The only change 
from the  decoder  for  errors only is the computation of the 
erasure-locator polynomial, which is trivial compared  to 
other decoding computations. 

Finally,  notice that it does not matter what  symbol ac- 
tually appears in an erased  symbol; it can  be set  to  the 
most likely estimate of the  received  symbol, if the appli- 
cation uses this information to  assess  the probability of 
correct decoding. 

Alternant  codes 
The decoding  techniques we have described  apply  not 
only to  BCH  codes, but  also to  alternant  codes.  Alternant 
codes  comprise a  class of linear codes introduced by 
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Figure 4 Error and erasure  decoding for BCH codes: (a) frequency  domain i 
encoder, hybrid decoder. 

Helgert [ 151 and include the  class of codes introduced by 
Goppa [ 161. Delsarte [ 171 showed that an alternant code is 
a subset of slightly modified Reed-Solomon code.  Choose 
h a fixed n-vector of nonzero components  over  GF(q'"), 
and choose a Reed-Solomon code  over GF(4") with de- 
signed distance 2t + l .  The  alternant  code  consists of all 
GF(q)-valued  vectors c such that hici ,  i = 0, . . ., n - I ,  is 
a codeword in the Reed-Solomon code. Alternant codes 
are highly regarded  because some of them have  true mini- 
mum distance considerably  larger than the  designed  dis- 
tance (asymptotically  close to  the Gilbert bound). 

The definition of the alternant codes is easily translated 
into the frequency domain where it takes on more of a 
signal processing flavor. Let gi  = h:', which is always 
defined since hl # 0, and let G and H denote  the  trans- 
forms of g and h.  Then  since gihi = 1 for all i, (G * H )  
equals one at j = 0 and otherwise equals zero. (H is an 
invertible filter.) The alternant code Yi is the  set of vectors 
whose transforms Cj, , j  = 0, . . ., n - I ,  satisfy two  condi- 
tions. 

'2 H,-kCj = 0 k = I ,  . . ., 2r  

and C: = Cpj, with indices interpreted modulo n in both 
conditions. The first of these conditions is a convolution 

i=O 

mplementation; (b) mixed  domain  encoder-time  domain 

corresponding to  the time domain product of the  more 
usual definition;  the  second  condition ensures that the 
time  domain codewords  are  GF(q)-valued.  Thus,  the 
codeword spectrum is filtered by H prior  to specifying the 
2r  contiguous  parity frequencies. 

A Goppa  code is an alternant code of designed distance 
2r  + 1 with G described by a  polynomial of degree 2t ,  
called the  Goppa polynomial. 

The  alternant  codes can be decoded  just as the  BCH 
codes. All that needs to be added is a step to modify the 
syndromes by the inverse of the  vector h either by multi- 
plying in the time domain or convolving in the  frequency 
domain. No other change is necessary.  Hence,  any fre- 
quency  domain or time domain BCH  decoder can decode 
alternant  codes out to the  designed  distance 2t + 1 .  How- 
ever,  since  the appeal of alternant  codes lies in their much 
larger minimum distance, it is not clear  that an alternant 
code used  with  a BCH decoder  has any  advantage over a 
BCH code used with a BCH decoder. Alternant codes 
will not have practical importance until a constructive 
procedure is found for obtaining the good ones, and a de- 
coding algorithm is found for decoding  beyond the  de- 
signed distance. Some small steps in  this  direction are  dis- 
cussed in the next section. 307 
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Decoding beyond the BCH bound 
If every  codeword in a  code % has  a certain  set of 2t con- 
tiguous spectral  components equal to  zero, then by the 
BCH bound,  the minimum distance of the  code is at  least 
2t + 1 and  most of the common  decoding  algorithms will 
correct up to  terrors.  However,  the minimum distance of 
the code might actually  be  larger  than 2t + I ,  and in any 
case some patterns of more  than t errors may be correc- 
table. 

The variations  that can occur  are illustrated by the fol- 
lowing four examples: 

I .  A binary BCH  code with all of the parity frequencies 
in a block of length 2t but with the actual minimum 
distance larger than 2t + I .  (The Golay code is an  ex- 
ample of such a  code.) 

2. A cyclic code with parity frequencies that are not con- 
tiguous. 

3. A decoder  for some of the  (t + I)-error  patterns in a t- 
error-correcting  Reed-Solomon code. 

4. A  decoder  for an alternant code  such as a  Goppa  code. 

Berlekamp [I21 discusses  decoding of BCH codes 
beyond the BCH bound by forcing appropriate  constraint 
equations in the frequency  domain to be satisfied, but the 
techniques quickly become  unmanageable  as  the  number 
of errors increases beyond t.  Hartmann [I81 gives some 
closely  related  frequency  domain  techniques that again 
involve  searching  through sets of nonlinear equations  for 
solutions. We  will describe here  some time domain de- 
coding techniques that decode  BCH  or alternant codes  a 
small distance beyond  the  designed distance.  These  tech- 
niques are motivated by [12, 181, but for some  appli- 
cations  the complexity appears  to grow  more slowly as 
the number of errors increases beyond  t.  The basic idea is 
to add extra discrepancies as unknown  variables, decode 
in terms of these variables, and  then solve for  the vari- 
ables by some kind of search over low weight error  pat- 
terns and  when  available, by using a priori facts such  as 
that the  codeword is GF(q)-valued. We  will only discuss 
the  decoding of errors; if desired,  the ideas of the  pre- 
vious section may be added to  decode  erasures as well. 

We start  the discussion with a Reed-Solomon code of 
designed distance 2t + I .  Then any polynomial A(x) of 
degree t + u with t + u distinct roots is a legitimate error- 
locator polynomial if 

x AjST-j = 0 r = I + t + u ; . . , 2 t .  

The smallest-degree  such  polynomial (if there is one)  cor- 
responds  to  the maximum-likelihood codeword. If  it is of 
degree at most t ,  this  polynomial is produced by the 

11-1 

j=n  
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Berlekamp-Massey  algorithm. Even if there  are more 
than t errors,  the smallest-degree polynomial may be 
unique, and  the received  word then  can be uniquely de- 
coded. 

Suppose  there  are t + I errors,  then  the  two unknown 
syndromes S,,,,, S,,,, will be  enough, if known, to find 
A(x). Hence, analytically continue  the Berlekamp- 
Massey algorithm through two  more iterations with these 
new syndromes as unknowns.  Then we have 

where 6,,+, E (0, I}, A2,+, E GF(q"'1, and Szf+ ,  = 0 
whenever A,(+, = 0. Except  for S,,,,, and A2f+l ,  
everything on the right is known from  the 2t syndromes. 
Transform the frequency  domain vector  into  the 
time domain by transforming the  two components on the 
right to get 

Aj2"" = [ 1 - S, ,+ ,A, ,+ ,~~~+la~2i ]A~z '1  
- i  

- [ A 2 t + P  + ( I  - ~ Z / + A t + P  
-2i1,1"l, 

where we have used the general  fact that if E:  = EJ-l then 
the inverse transform satisfies = a-ic~i. We must  now 
choose  the  unknowns, if possible, so that the  error pat- 
tern contains at  most t + 1 nonzero  components. If deg 
A 5 t and the number of distinct zeros of X"" equals the 
degree of A"'), then the number of errors equals the  de- 
gree of A"". This case is easily checked. 

'211 

If there is only one solution for with t + 1 zero 
components and a corresponding A'2t+2'(x) of degree t + 
I ,  a unique pattern of t + I errors can  be  found. Let 
A2(+1 = a , = akz whenever  they  are  nonzero.  The 
cases to be  considered are 

k . 1  

A;2/+" = A:2" - ak,a-ihj2t l  

2. A ~ z ~ + 2 1  = A:zr~ ~ ak,a-zl ( Z ~ I  h i  , 
3. AjZr+'l = Ai2" - ak,a-ib;zo - a a  k, - z t h j 2 r l  

4. = - 

Each of these  cases is to be searched  over k ,  = 0, . . ., 
q - 2;  k, = 0 ,  . . . , q - 2 for  a solution with AY"" = 0 for 
exactly t + I values of i. With these values for  the un- 
knowns,  the polynomial A'2'+2'(~~)  must have degree t + I .  
Then A'2'+2'(x) can  be  used to recursively  extend the  syn- 
dromes, starting from the known syndromes, and using 

a a  a AL k* 4, -2; I211 - akla-'hI"', 

Sj = - x A'2'+2' 
, , - I  

k=O 
k s,-j j = 2t + 1, . . ., n. 

An inverse  Fourier transform completes  the decoding. 
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Searching  through the  four  cases  above  appears quite 
tedious to  the  reader, but is very orderly  and  simple in 
structure, and shift register circuits  can be easily designed 
to  search  for  a solution.  One  can  organize the  search in a 
variety of ways. Among the possibilities, one of the less 
obvious is a histogram approach.  For  example, with case 
4, for  each value of k ,  prepare  a histogram of (Ai2" - 

(Y *(Y h '  ) - I  (a?A~").Any component k ,  of the histogram 
that takes the  value t + 1 corresponds  to  a possible t + 1 
error  pattern. 

k -i ( L o  

The  decoder can be further  extended  to  decode t + u 
errors. Although the equations  become lengthy, it seems 
that such an approach may  be practical  out to t + 3  or t + 
4 depending on  the blocklength of the  code. 

Now consider binary codes.  These differ from Reed- 
Solomon codes in that the decoder can be simplified as 
described  below,  and also because many of the t + u error 
patterns found may correspond  to nonbinary error  pat- 
terns and so must  be discarded. When  treating binary cy- 
clic codes, we will make use of the  fact that  the 
Berlekamp-Massey algorithm of Theorem 5 can be sim- 
plified because A,, = 0 for all even r .  Published  proofs of 
this important fact [7, 121 are  quite lengthy. An easy  proof 
is given in the following theorem. 

T h e o r m  6 In GF(2"'), suppose  for any  linear feedback 
shift register A(x),  and any sequence SI, S,, . . . ' S 2 Y - 1  

satisfying S,, = S; ,  that 

sj = - 1 . \ j ~ j - i  ,j = 2u - I ,  . . ., v. 

Define the next member of the  sequence by 

, I -  1 

i = l  

i = l  

then S," = St. 

Proof 

On the  other  hand, 

k = l  i = l  

But by symmetry every term in the sum with i # k ap- 
pears twice, so in GF(2"') those  two  terms add to  zero. 
Hence, only the diagonal terms  contribute, and 

i = l  

which agrees with the  expression  for S', and so proves  the 
theorem. 

Thus,  for  even r ,  A,, is zero and we can  analytically 
combine two iterations to  give,  for  even r ,  

A'"'(x) = A'""(.x) - A,-lxB(r-Z)(~r), 

B'"(x) = ( 1  - f i r - l )~x-2B(T~2)(x)  + fir- ,X2Ar;,  A("*'(X). 

Now suppose that we have  a binary BCH code of de- 
signed distance 2t + l ,  and we wish to  correct all patterns 
of t + I (or fewer) errors  whenever they are uniquely 
decodable.  The only measurement  data available to  the 
decoder  are contained in the 2t syndromes SI, S,, . ' ., 
Stf .  All other frequencies either  can take on arbitrary val- 
ues or  are completely determined from the syndromes by 
the  constraints.  The algorithm can  be  iterated again to 
give 

A'2'+2'(x) = A'2')(x) ~ A,,+,XB'~"(X). 

Transform the frequency  domain vector A;'+" by trans- 
forming the  components on the right to get 
y + 2 '  = + A 2 , + l N - l h ) " "  

and suppose  a pattern of t  or  fewer  errors was not found. 

Prepare  a histogram of arA~"/hi2" over the nonzero 
components of GF(4). If one  component  (or more) of the 
histogram equals t + I ,  this corresponds  to  a  candidate 
error  pattern  for that  value of At+ l .  For  each of these  can- 
didates,  the corresponding polynomial A"'+"(X) can then 
be used to extend  the syndromes in the frequency do- 
main. Those  cases that do not  satisfy the conjugacy con- 
straints can be discarded  at  this  point. An inverse Fourier 
transform for each  candidate  gives an  error  pattern. If it is 
unique, it is the  correct  error  pattern. 

Next consider  a binary code  for which the  parity fre- 
quencies are not contiguous. An example is the (63, 28, 
15) binary  cyclic code with parity  frequencies C, ,  C:$, C,, 
C,, C,, C , , ,  and C Z l .  This code should be preferred to  the 
(63, 24, 15) BCH code because of a superior rate, but the 
BCH code might be chosen because of its well-known de- 
coding algorithms. However, with a little extra  com- 
plexity, we can modify a  frequency domain BCH decoder 
to handle the (63, 28, 15) code. Using the  procedure dis- 
cussed above, all patterns of seven or  fewer  errors  that 
agree with the twelve  contiguous  parity  frequencies are 
found. Then S,, is computed for  each of these  candidates. 
Only one will agree with the  measured  value of S Z l .  

The  same ideas apply to  a BCH code with more than 
t + I errors.  To  extend  the  decoder more  than one  error 
beyond the BCH bound requires  more complex equa- 
tions, but to go a small distance  they  are still quite man- 
ageable. For t + 2 errors, 
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Figure 5 Two-dimensional spectrum  over Galois field GF(8): 
(a)  unconstrained spectrum, (b) constrained  spectrum. 

and 

and search  for values of the  unknowns  that have t + 1 or 
t + 2 components of A12t+4' equal  to  zero. Many of these 
will correspond  to nonbinary error  patterns and so must 
be  rejected later. 

Finally, we come  to  Goppa  codes.  Let G(x) be the 
Goppa polynomial,  and  from the  spectrum of the received 
signal R j ,  let the syndromes  be computed by 

IL- 1 

Sj = 1 Hi+jRi  
i=0 

(or  instead, in the time domain, multiply to find gA1ri = 

h,ri).  Decode beyond the designed distance  just  as  for 
the Reed-Solomon code.  The simplifications to  the 
Berlekamp-Massey algorithm for BCH codes  due  to  con- 
jugacy  constraints  do not apply. In general, one  can ex- 
pect  that many candidate error  patterns with t + I errors 
will initially be found.  For  each of these,  the filtered syn- 
dromes  can be extended; then the  inverse  Fourier  trans- 
form is taken and multiplied by si. No more  than one  pat- 
tern o f t  + 1 errors can  be binary. Alternatively,  working 
in the  frequency domain, the filtered syndromes  can  be 
inverse-filtered using G as  the  tap weights of a finite im- 
pulse response filter. This convolves G with the filtered 
syndromes.  The filter output  must satisfy the conjugacy 
constraints  or be  rejected. Only one candidate error  pat- 
tern will survive this test. An inverse  Fourier  transform 
gives the time  domain error  pattern. 

Codes based on multidimensional transforms 
Multidimensional Fourier  transforms  also can  be  used to 
define error  control  codes. We shall  consider several  ex- 
amples,  but  the most familiar example is the two-dimen- 
sional product  code. This is a  two-dimensional array of 
elements from GF(q)  such  that  every row is a codeword 
in a code El and  every column is a codeword in a code (e2.  

A  cyclic product  code is a product  code in which the  rows 
and columns  are from  cyclic codes El and ( e2 .  To  ensure 
that the cyclic  product code is actually cyclic, one im- 
poses the condition that the number of rows and the num- 
ber of columns  are relatively prime.  But,  for a  general 
multidimensional transform code,  the dimensions  need 
not be  relatively  prime. 

Multidimensional transforms have been used for  the 
study of error control codes in the guise of the  Mattson- 
Solomon  polynomial.  A treatment of cyclic  product codes 
with two-dimensional transforms  can be found in Lin  and 
Weldon [ 191. Papers by Delsarte,  Goethels, and MacWil- 
liams [ZO] and by Kasami,  Lin,  and Peterson [ Z I ]  are  rep- 
resentative of the  use of multidimensional transforms. 
For simplicity, we  will limit discussion to  the two-dimen- 
sional transform. 

Let e,,, be  an n X n ' ,  two-dimensional array, which will 
be called a  two-dimensional  time function, where n and n' 
both divide 4"' - 1 for some m. Let p and y be elements of 
GF(q"') of order n and n' respectively.  The array 

will be called the two-dimensional spectrum and the in- 
dices j and j '  are  the  frequency  variables.  It is obvious 
that 

by inspection of the one-dimensional  inverse transform. 

We can  choose n = n' = q"' - I .  Then p = y = a, a 
primitive element, and 

Consider a  two-dimensional spectrum  over  GF(q).  For 
definiteness we  will illustrate with GF(8) and n = 7 as 
shown in Fig. 5(a). Each  square in the grid contains  an 
octal symbol. We define a code by  selecting  a set of N - 
K of these  components  to be  (two-dimensional)  parity fre- 
quencies, which are  constrained  to be zero  as in Fig. 5(b). 
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The remaining set of K components  are filled with K in- 
formation symbols, and  then the  inverse transform  (two- 
dimensional) is taken.  The time  function is the  codeword 
corresponding to  the information  symbols.  Clearly,  this is 
a linear code,  and any  choice of the parity frequencies 
defines another linear code.  In  general,  these  codes  are 
not cyclic codes. 

If the  code is in a subfield of GF(q) [GF(2) is the only 
subfield of GF(8)], one must restrict  the  set of codewords 
to  those  that  have only components in the subfield. This is 
a  subfield-subcode.  One could also  extend  the idea of an 
alternant  code  to a multidimensional alternant code by 
multiplying by a two-dimensional  template  before ex- 
tracting the subfield-subcode. 

For  an  example,  as shown in Fig. 6(a),  choose all of the 
elements in a set of vertical stripes and  a set of horizontal 
stripes to be panty  frequencies. All the two-dimensional 
time domain  functions with these frequencies equal  to 
zero  are  the  codewords. That is, 

for  each parity  frequency j'. This  can be interpreted in 
another way by defining the  two-dimensional polynomial 

e(x, y )  = 1 1 ~ ~ , , x ~ y ~ '  

so that  the  code satisfies e(a', a'') = 0 for  every j and 
every j '  that  are parity frequencies. Since the parity  fre- 
quencies  were defined on vertical  and  horizontal stripes, 
we have 

11-1 n-1 

j -0  i'=o 

e (a j ,  y )  = 0 ,  

P ( X ,  a") = 0 

for  every j and  every j '  that  are parity frequencies. But 
this says that for fixed i, eii,  is a  cyclic code and for fixed 
i ' ,  eii ,  is a  cyclic code. That is, e,,, is a product  code. Prod- 
uct codes were  studied by Elias [22], who showed  that the 
minimum distance is the  product of the minimum dis- 
tances of the two  codes. It  was  proved by Burton and 
Weldon [23] that if dimensions n and n' are relatively 
prime, then  the product code of two cyclic codes is equiv- 
alent to a cyclic code. 

If we take  the stripes of parity  frequencies to be con- 
tiguous, then we have a code  that is the product of two 
Reed-Solomon codes. Figure 6(b)  illustrates a (49,25) d = 

9 code  over GF(8) defined spectrally.  Each of the 25 infor- 
mation symbols can be loaded  with an octal  information 
character, and the result is transformed  to the  time do- 
main to  obtain  the  codeword. 

6 0  

0 0 

1 2 3 4 5 6 0  

I O  

2 0  

3 0  

4 0  

5 0  

6 0  

0 0  

( C )  (d l  

Figure 6 Spectra of some codes  over Galois field GF(8): (a) 
product of cyclic codes; (b) product of Reed-Solomon codes;  (c) 
dual of a product  code;  (d)  product of (7, 4) BCH codes. 

Table 2 Structure of two-dimensional spectrum  over GF(8). 

Bit 
contrnl 

Bit 
content 

The  same  structure can  be  used to obtain  a code  over 
GF(2) by selecting only those  codewords  that  are  binary. 
To  do this  constructively in the  frequency  domain, only 
an independent set of frequencies may be specified. Theo- 
rem 3 is easily extended to a two-dimensional  version 
which requires  that 

' ? j 1  = '(Zj mod n)(Zj' mod n)' 

from which we can construct  Table 2. Each row of the 
table shows a  constrained set of frequencies. Any mem- 
ber of the row can be chosen  as parity or  as  an  arbitrary 31 1 
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information  symbol. The remaining  symbols in a row are 
not arbitrary.  The frequency C,,o can only be 0 or 1 be- 
cause it is its  own square.  The remaining information 
symbols are  octal. Altogether 49 bits specify the  spec- 
trum, but of course some of these  are  panty and  contain 
no information. 

Figure 6(d)  shows the specialization of Fig. 6(b) to a 
binary code.  There  are only 16 open frequencies which, 
because of the  constraints,  can  encode 16 bits.  This is a 
consequence of the fact that  row 1 and column 1 have 
their  parity  symbols scattered among different rows of 
Table 2 .  The  code is an unimpressive (49, 16, 9) code. 

The  second  case, illustrated in Fig. 6(c), is a  dual to  the 
idea of a product  code. A  rectangle a frequencies high and 
h frequencies wide is chosen for  the  set of parity frequen- 
cies. It is easily seen that the minimum distance satisfies 

d 2 1 + min ( a ,  b ) .  

Hence  the example gives (49,45,3) code  over GF(8). The 
binary subfield subcode is a (49, 39) d 2 3 code. 

In  the  next two sections, we  will make use of two-di- 
mensional codes  to introduce some new codes with spe- 
cial properties. 

Fast BCH codes 
We have  seen  that  for any BCH  code,  the  encoderlde- 
coder involves  two  Fourier transforms, possibly realized 
as a Chien search  or as  a syndrome  computer. If n is com- 
posite,  then a fast algorithm can be  used for  the  Fourier 
transforms so as to reduce  considerably the  computa- 
tional load.  However, the fast  Fourier transform requires 
some adjustment  terms when the  factors  are  nonbinary. 
(Finite field transforms  normally have nonbinary factors.) 
This is only  a  minor problem,  but it does disrupt the  oth- 
erwise  orderly  organization of the calculations. If  it can 
be  eliminated  at no cost, it should  be. 

To  see  the adjustment terms, consider  the Fourier 
transform 

Ej = 2 aijei, 

and suppose n = n’n”. Replace each of the indices by a 
coarse  and vernier index as follows: 

n-1 

i=O 

= i’ + n,i“ ., 
I = 0, . . ., n’ - I ,  

I = 0, . . ’ )  n” - 1; 

, n’ - 1, 

.,I 

j = n’;;J + j“ j ’ = O ,  . . .  

j” = 0 ,  . . ., n” - 1,  

Then 

i“=” ir-0 

Expand  the product in the  exponent and let a’” = 7 ,  an” = 

/3. The  term a”‘“’”“~’ = 1 and can  be dropped.  Then 

Er,,,j,+j,, = 13i . j , [a i , jo ,  y . 

Notice that  the inner sum is an n” X n” Fourier  transform 
for each value of i’ and the  outer sum is an n’ X n’ Fourier 
transform for each value of if’. The  factor multiplying the 
inner  sum is a minor nuisance. We can make it vanish 
simply by changing the definition of the BCH code. We 
will define an equivalent  two-dimensional code, whose 
performance properties  are  the  same as  a BCH code  and 
which circumvents the need for  the  extra  compensation 
factor. 

71‘- 1 ,P 1 

i ’ = 0  ill=” 1 

Let n = n‘n” where n’ and n” are relatively prime. Let 
the code  consist of all two-dimensional GF(q)-valued time 
functions ci i ,  i = 0, . . ., n’ - 1 ,  i’ = 0, . . ., n” - 1 ,  such 
that the two-dimensional  transform {Cjj,} satisfies 

where the  subscripts  are modulo n‘ and modulo n“, re- 
spectively.  This is a  linear  t-error-correcting code which 
is different  from  a  BCH code in only a trivial way. The 
rate  and minimum distance are unchanged. The  rate is the 
same because of the following theorem. 

Theorem 7 The two-dimensional conjugacy class of j 
modulo n’ and j modulo n” has  the  same number of ele- 
ments as the  conjugacy class of j modulo n’n’’. 

Proof Let r be the smallest integer  such that  both 2“’ = j 
modulo n’ and 27 = j modulo n” are satisfied. Let s be the 
smallest  integer such that 27 = j modulo n’n”. Then 27 = 

an”‘’ + j ,  and 2;; = bn’n” + j for  some a and for some b. 
Obviously, the smallest such rand  the smallest such s are 
identical. 

We show  the distance of the code is at least 2t + I by 
showing a  decoding procedure  for t errors. Given  a  re- 
ceived  word with two-dimensional  transform R,,, define 
the syndromes Sj = R(J mod ~ , ,  mod n,,), j = I ,  . . ., 2t .  Use 
the Berlekamp-Massey  algorithm and a  recursive exten- 
sion to obtain Sj, 1 ,  . . ., n;  and  set E(jmod n,, jmod ,,,, ~ = Sj ,  
j = 1, . . ., n. Since n’ and n” are relatively prime,  every 
syndrome finds its  own  place in Eij,. We must prove  that 
this procedure gives the  correct  frequency domain error 
pattern if fewer than t errors  occurred. 

But if a  single,error takes place in row i, and  column i;, 
then Sj = (/31kyik)’. The  parenthesized  term is a power of 
the  primitive  element a ,  unique for each row and column 
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pair. Thus,  for v errors, the syndromes  are of the  form 

k = l  

where X ,  is a unique  power of CY for  each  error location 
(ik, i i ) .  Recursively  extending these  syndromes  and fold- 
ing them  back  into the two-dimensional spectrum gives 
Ejj, if t or  fewer  errors took place. Finally, 

Cjj, = R,, - E,,, 

and  a  two-dimensional  inverse  transform  completes the 
decoding. 

Long  codes in small fields 
As the blocklength increases,  BCH  codes become unsat- 
isfactory for several reasons.  Not only does d / n  vanish if 
the  rate is fixed,  but at the same time the decoding com- 
putations must  take place in an  ever larger field. The al- 
ternant  codes  represent  one way to modify BCH codes  to 
improve minimum distance and so offset the first dis- 
advantage.  The second disadvantage,  however,  has not 
received much attention. We  will develop this  problem 
here,  and give some early steps  toward a  solution. 

A  practical decoder  for a BCH  code of blocklength n = 

is a large Galois field. We  will describe some codes of 
large blocklength that can be decoded in a small Galois 
field. Although the  rate of these  codes is inferior to  BCH 
codes of the  same n and d, their  lesser complexity may 
make them the only affordable choice in some appli- 
cations. 

q”’ - 1 requires computations in GF(qm). If n is large,  this 

We will use a two-dimensional code with n = 2” - 1 
rows  and the  same number of columns.  Hence,  the block- 
length of the  code is n2, but we can hope to  do all of the 
decoding with computations in the field GF(2”). 

Before defining the  codes, we first discuss  decoding 
procedures  and a two-dimensional  version of the  BCH 
bound. The  codes will be defined to fit the desired  decod- 
ing procedure.  Let a single error  occur  at row i and col- 
umn i’, let the row locator be X ,  = CY‘, and let the column 
locator be Y, = a”. Then  the syndrome S,, is 
s,, = CYijairj’ = X J Y ’  

and if v errors  occur, then 

1 1’ 

s,, = 1 XlY:‘ 
k=l  

Suppose the syndromes S , , ,  S,,, S,,, . . ., Sl,,tare known 
and v 5 t .  Then 

S,, = X,Yl + X,Y, + . ’ . + X”Y”, 
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s,, = X ,  Y; + X,Yi + ’ . . + X,Y“, 

0 

0 

0 

s,,,, = XIY;‘ + X,Y; + . . . + x”Y;. 
This set of equations is familiar from  the decoding of a 
Reed-Solomon code.  There is one difference; here  the Y, 
need  not  be  distinct because  several  errors might occur in 
the  same column. However, it is a simple matter  to  com- 
bine the  terms with the same Yk to obtain  a similar set of 
equations with  smaller v and  this  smaller v also satisfies 
v 5 t.  Then,  the Berlekamp-Massey algorithm followed 
by recursive extension will yield SI,, S,,, . . ’, Sin. Be- 
cause  errors  can  occur in the  same column the  procedure 
does  not uniquely give (X,, Y,) k = I ,  . . ., v ,  but  does 
give partial information which can be  used in decoding. 

In general, we have the following. 

Theorem 8 Suppose  that v 5 t errors  occur, and for  any 
integers m,, m i ,  a ,  u’, the  syndromes Sm,+nl,mb+a,l, 1 = 

I ,  . . ., 2t,  are known. Then  these uniquely define the  syn- 
dromes Sm,+al,mb+n,l, I = 1, . . ., n .  

Proof 

- - X,:+nl ;;+n’l - 
Smo+o/,mh+n‘l Y - 1 (X”,”;”(X,”Y,”’)‘. 

k = l  k=l  

Let V’ be the number of distinct  over k and let 
Y,,, k‘ = 1, . . ., V I ,  denote  these.  Let X k ,  denote  the sum 
of the  factors multiplying Y: in each  equation.  (It is the 
same for  each 1.)  Then 

Y ’  

Sm”+n/,mb+n,r = 1 xk,Y:, I = 1 > . . . , 2t ,  
k’=l 

where the Pk, are now distinct and v’ 5 t. The Berlekamp- 
Massey algorithm followed by recursive extension will 
produce  the remaining syndromes 

Y‘ 

Smo+a/,mb+n’l = Xk,Yi, I = 1 , .  . . , n. 
k’= 1 

Hence, by this theorem, any 2t syndromes in a  straight 
line (horizontal, vertical, or  at any  angle)  can be extended 
to all syndromes in that  line. Further,  because of con- 
jugacy constraints,  each of these new syndromes  also  de- 
termines all syndromes in its conjugacy  class. We  will re- 
turn  to this  point in the  examples below. 

Now  let us see how the  BCH  bound generalizes to  two 
(or more)  dimensions. Suppose  that we had 2t contiguous 
syndromes  anywhere in the first row.  These can be  ex- 
tended to give all syndromes in the first row. Similarly 2t 
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I 2 3 4 5 6 7 8 9 IO I !  I2 13 14 IS 16 17 18 19 20 21 
"" 
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l P P P P P P P P P P  P P P P P P 

3 P  P P P P   P P P   P P P P  
4 
S P  P P P P P P   P P P  
6 P  
7 P  P P P P P P P P  
8 

IO P P 
9 P P P P P  P P P 

I I P P P P P  P P P 
12 P 
1 3 P P P P P  P P P 
1 4 P  P P 
1 5 P P P P P  P P P 
16 
17 
18 
19 

I 

Figure 7 Two-dimensional parity frequencies. 

contiguous  syndromes anywhere in the second  row  can 
be extended  to give all syndromes in the  second row.  Fur- 
ther, 2t contiguous syndromes  anywhere in each of the 
first 2t rows can be extended to give all syndromes in each 
of the first 2t rows, and hence 2t contiguous syndromes in 
every column. These can be extended  to give all syn- 
dromes  and  hence suffice to give the  error  pattern.  The 
simplest example is the  case of a square array of 2t X 2t 
known syndromes.  The general  situation is as follows. 

Theorem 9 Given any a ,  a' and m,, 1 = I ,  . . ., 2t ,  the  set 
of (2t)' syndromes 

1' = 1 . . . 2t. 1 = 1 . . . 2t 
S ~ ~ ( ~ l + l ' ) , ~ r ' ( ~ l l + l ' ) + l  > 1 ,  , ,  

uniquely determines the error  pattern provided v 5 t er- 
rors took place, and ~1 is relatively prime to n. 

Proof Apply Theorem 8 for  each 1 to determine the  syn- 

Now,  because I' ranges over all n values, we can redefine 
the  index I' to  absorb rn, so that  the known syndromes  are 
Scll,,a,l,+l, I' = 1, . . ., n;  1 = 1, . . ., 2t.  Apply Theorem 8 
again for each I' to determine the  syndromes S ,,/,,,,,/, +/, I' = 

I ,  . . ., / r ;  1 = I ,  . . ., 1 2 .  We can now redefine the in- 
dex 1 to  absorb L I ' I '  so that we know S,ll , , l ,  I' = I ,  

the  index al' ranges over all n values. Hence, all syn- 
dromes  are  determined,  and so is the  error  pattern. 

dromes ~ ~ I ( N l l + l ' ) . a ' ( n l l + l "  
1' = I . . . n' 1 = 1 . . . 2t. > ,  

. . ., / 1 ;  1 = 1 ,  . . . , n. Since u is relatively prime to n,  

Based  upon  Theorem 9, for  each a ,  u ' ,  m,, I = 1 ,  . ' ., 
2t ,  we can define a two-dimensional code % as the set of 
arrays cii, such  that  the two-dimensional  transform satis- 
fies 

Cu(*l+/,),u,(ml+l,)+l = 0 1 = 1 1 1 1  ' ' ' 2t. I' = I 3 ,  ' ' . 2t. 

This code  has minimum distance  at least 2t + I provided 
a is relatively prime to n .  

We give an example of a binary code defined as a 
square two-dimensional code in the field GF(2"'); take t = 

8, n = 255, so the blocklength is 255' = 65 025. We  will 
work through the selection of parity frequencies so that 
all  of the parity  frequencies in the block j = I ,  . . . , 2t; 

tees  that  the remaining syndromes can  be computed. 
,j ' = I ,  . . . , 2t can be computed.  Theorem 9 then guaran- 

First take SI,, SI,, . . ., as parity  frequencies. Each 
of these is  in a different conjugacy class,  and each class 
has eight elements, so each of these parity  frequencies is 
equivalent to eight parity bits.  These can be extended  to 
S I 3 , ,  j '  = 1, . . . , n ,  if at most terrors  occurred and then by 
the  conjugacy constraints Slj,, SZj,, S,j,, S,j,, and S,,;j,, 

S,,, . . ., SI,., as parity frequencies. This adds I I X 8 
more  parity  bits  and determines Sj,, Sf,, Sj,, S,, S j I 6 , . j  = 

I ,  . . ., n .  Continue ifl this way to  choose all the parity 
frequencies shown in Fig. 7. These determine  the  remain- 
ing frequencies in the 2t X 2t corner and  hence all of the 
frequencies if at most t errors  occurred. Each  parity fre- 
quency is equivalent to eight parity  bits. The  code is a 
(65 025, 64 337, 17) code.  Its  virtue is that it is easily de- 
coded despite its blocklength. 

j '  = I , .  . . , n are all known. Next  take S,,, S,,, S,,, S,,, 

We first describe a conceptual frequency domain de- 
coder;  later we simplify this by bypassing many of the 
Fourier  transforms. 

Given a received word,  compute its  two-dimensional 
Fourier  transform. This requires 5 10 two-hundred-and- 
fifty-five-point Fourier transforms. Perform a Berlekamp- 
Massey  algorithm along the first row, recursively extend, 
and  use  conjugacy constraints  to fill in rows 2 ,  4 ,  8 ,  and 
16. Do the  same along the first column to find columns 2 ,  
4,  8 ,  and 16. Repeat for row 3, then  column 3 and so on. 
When 2t rows  are  complete, then all columns  can  be 
found. An inverse  two-dimensional Fourier transform 
gives the  error  pattern. 

A simpler  procedure is as follows.  Compute the two- 
dimensional Fourier transform  only at  the 86 parity fre- 
quencies.  Each of these is an eight-bit  number. Insert 
these at  the  appropriate positions of a 16 by 16 array of 
numbers  representing the 16 by 16 frequencies in the up- 
per left corner. Now decode the first row, extending syn- 
dromes  and using conjugacy constraints  to fill in all pos- 
sible entries in the 16 X 16 array.  Take  the  inverse 
Fourier transform of the first row.  The nonzero  locations 
specify columns in the time domain codewords  at which 
errors  occur.  Each  nonzero magnitude gives the  sum of 
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the row locators  for  errors in this  column.  Some  columns 
with three  or more errors may not  show  up here  because 
the row locators add to  zero. Discard the  syndromes  out- 
side the 16 by 16 array. 

Continue in this way with each  odd numbered  row of 
the  sixteen  rows, when  necessary  decoding a column just 
to obtain some needed syndromes through the conjugacy 
constraints.  Each of the sixteen rows, when the  inverse 
transform is taken, has nonzero values only in the eight 
(or  fewer) columns  containing errors. Identify these eight 
columns. In  each column the  transforms in the  sixteen 
rows  provide  sixteen  magnitudes. One such set of magni- 
tudes  can  be  written in terms of the row error locators for 
that column, 

TI = x, + x, + . . . + X ” ,  

T, = X :  + X :  + . . . + X: ,  

0 

0 

0 

TI, = + x:” + . . . + X i 6 ,  

where v is the number of errors in that column.  Since v 5 

8, this set can be decoded in the  same way to find the 
rows in which this  column has  errors. 

Altogether, this decoder  requires  the computation of 
86 Fourier  transforms, and 24 passes through  the basic 
decoding  algorithm,  each such  pass consisting of a 
Berklekamp-Massey  algorithm, a recursive extension, 
possible  computation of conjugacy relations, and a 255- 
point  inverse Fourier transform. All data  paths  are eight 
bits wide, Galois field computations  are eight bits by eight 
bits, and  most of the  computations simply re-exercise the 
same  procedures, and so can use the  same  hardware. 
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