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Transform Techniques for Error Control Codes

By using the theory of finite field Fourier transforms, the subject of error control codes is described in a language familiar
to the field of signal processing. The many important uses of spectral techniques in error control are summarized. Many
classes of linear codes are given a spectral interpretation and some new codes are described. Several alternative encoder/
decoder schemes are described by frequency domain reasoning. In particular, an errors-and-erasures decoder for a BCH
code is exhibited which has virtually no additional computations over an errors-only decoder. Techniques for decoding
BCH, RS, and alternant codes (Goppa codes) a short distance beyond the designed distance are discussed. Also, a
modification to the definition of a BCH code is described which reduces the decoder complexity without changing the

code’s rate or minimum distance.

Introduction

Fourier transforms have found wide application in signal
processing and in the study of communication wave-
forms; study of these transforms has been well rewarded.
A close analogue of the Fourier transform can be defined
on the vector space of n-tuples over the Galois field GF(qg)
whenever n = ¢ — 1 or a submultiple as was noticed by
Pollard [1]. Transforms over Galois fields have recently
been introduced into the study of error control codes as a
vehicle to reduce decoder complexity first by Gore [2],
and later by Michelson [3], Lempel and Winograd [4], and
Chien and Choy [5]. However, these transforms can be
made to play a much more central role in the subject.
Known ideas of coding theory can be described in a fre-
quency domain setting that is much different from the fa-
miliar time domain setting, but closely related to treat-
ments based on the so-called Mattson-Solomon poly-
nomial [6]. Cyclic codes can be defined as codes whose
codewords have certain specified spectral components
equal to zero. Alternant codes (and Goppa codes) can be
given a similar interpretation. Also, the decoding of many
codes (including BCH, Reed-Solomon, and Goppa codes)
can be described spectrally.

This emerging viewpoint is welcome and important for
a number of reasons. Firstly, any new vantage point on an
established discipline will usually bring new insights.
Thus, existing codes can be classified in yet another way,

and hence interrelationships can be seen in a new light.
Secondly, there are strong pedagogical advantages since
most engineers are well versed in transform techniques,
especially those dealing with waveform design or signal
processing. Thirdly, computational or implementation ad-
vantages often are found in a frequency domain decoder.
Certainly, it is important to know as many decoder tech-
niques as possible so that the simplest can be chosen for a
given application. Finally, new codes, algorithms, and
techniques can be sought from another point of view.

This paper will begin with some tutorial sections that
develop part of the subject of error control codes in a
transform setting. First of all, we want to set up the view-
point, terminology, and analogies with signal processing
theory so that the new results that come later can be ex-
plained easily. But we also hope to stimulate interest in
and to accelerate the development of a spectral point of
view to coding and to popularize the ideas of [2, 4] and
[5]. It is our belief that the spectral formulation and termi-
nology bring the subject much closer to the subject of sig-
nal processing and make error control coding more acces-
sible to the nonspecialist in coding theory.

We then turn from the tutorial tone to give some new
techniques. The spectral interpretation is used to describe
encoder/decoder implementations for BCH and Reed-
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Solomon codes. A new technique for correcting erasures
and errors is described. This technique requires virtually
no additional complexity over the decoder for correcting
errors only.

We also describe techniques for decoding codes, in-
cluding Goppa codes, beyond the designed distance;
techniques for modifying the definition of BCH codes so
that the decoder is simpler; and techniques for designing
codes of very long blocklength that, although weak in per-
formance, can be decoded using arithmetic in small fields.
These techniques are described for their own merits, but
they are also presented as evidence supporting our claim
that the spectral point of view is quite rewarding and
worth further development.

Finally, by the examples discussed and the general tone
of the paper, we hope to underscore our view that it is as
important to massage codes to fit known decoding al-
gorithms as it is to seek new codes with good properties
but having no known practical decoders.

Finite field transforms

The Fourier transform plays a basic role in the study of
real-valued or complex-valued signals when the time vari-
able is continuous, and the discrete Fourier transform
plays a parallel role when the time variable is discrete.
Fourier transforms also exist for functions of a discrete
index that take values in a finite field. Such transforms are
very useful in the study of error control codes, but they
are less well known than Fourier transforms over the
complex field, and so we review them in this section. The
basic ideas appear earlier in [1].

Recall the definition of the discrete Fourier transform
of a vector of complex numbers

P
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—jemN ik
P = e lp,' k=0, -
¢

i

where here j = \/—1. The Fourier kernel is an Nth root
of unity in the field of complex numbers. In the finite
field, GF(¢™), an element « of order # is an nth root of
unity. Drawing on the analogy between ¢ > and a, we
have the following definition.

Definition 1 Lete ={eli=10,---, n— I} beavector
over GF(q), where n divides ¢ — 1 for some m, and let
« be an element of GF(¢™) of order »n. The finite field
Fourier transform of the vector e is the vector over
GF(¢"), E = {E,1j =0, -, n— 1}, given by

n—1
E=> a%, j=0---n~-1.
i=0

For simplicity of exposition, we will usually restrict atten-

tion to values of n satisfying n = g™ — 1. These values of n
will be called primitive blocklengths. Then « is a primitive
element of GF(g™). It is natural to call the discrete index i
““time’” and e the time domain function or the signal and
also call the discrete index j ‘‘frequency’’ and E the fre-
quency domain function or the spectrum. Just as real-val-
ued functions can have complex-valued Fourier trans-
forms, so too can GF(g)-valued signals have GF(¢")-val-
ued Fourier transforms.

Theorem 1  Over GF(q), a field of characteristic p, a
vector and its spectrum are related by
n—1

o i
E = 2 a'e,
i=0

! o
N g,
n modulo p [ ’

(’i =
Proof Recall that in any field,
M= 1= = D" T+ ),

and by definition of «, «" is a root of the left side for all r.
Hence «" is a root of the last term for all » # 0 modulo n.
But this is equivalent to

n-1

K
Za’ZO
=0

while if r = 0,

r # 0 modulo #,

n—1

> & = nmodulo p,

=0

which is not zero if n is not a multiple of the field charac-
teristic, p. Using these facts, we have

n—1 n—1 n—1

n—1

Soa Yy akjek = Zek >« = (n modulo pe,.

=0 k=0 k=0  j=0

Finally, if the field has characteristic p, then for some in-
tegers, g — 1 = p* — lis a multiple of n, and, consequently
n is not a multiple of p. Hence n modulo p # 0. This
proves the theorem.

The Fourier transform has many strong properties
which carry over to the finite field case. Suppose that

e,=fg i=0,n—1
Then
n:l i /I n;] ik l n:l n:l i)
Ej:Zafi(vZa G,()=— Gk(la 1)
i=0 n g=o N g=o i=0
We then have the convolution property
l n:l
E = ; > F_ G

k

0

with the understanding that all subscripts are interpreted
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modulo n (or equivalently, that the spectra are defined
for all k£ and are periodic with period n). There is also a
Parseval formula. From the convolution,

n—1 - 1 n:l
1,
E; = 2 afig, =~ F G,
i=0 n e
Take j = 0 to get
n-1 1 n—1
Z f;gi = Z anka'
i=0 1 g—o

When dealing with polynomials, the polynomial ¢(x) =

e, X'+ -+ ex + e is associated with a polynomial
E(x) = E_x""'+---+ Ex + E, by means of the finite
field Fourier transform. This polynomial is called the
spectrum polynomial or the associated polynomial of
e(x). It was introduced to the study of error control codes
by Mattson and Solomon [6], although not in the termi-

nology of the Fourier transform.

The following theorem relates the roots of these poly-
nomials to the properties of the spectrum.

Theorem 2 a) The polynomial ¢(x) has a root at o if
and only if the jth spectral component £, equals zero. b)
The polynomial E(x) has a root at &« ' if and only if the ith
time component ¢, equals zero.

Proof  Part a is immediate since

n—1
ela’) = 2 eia” =E,.

i=0

Part b follows in the same way.

Thus, in the finite fields, when one speaks of roots of
polynomials or of spectral components equal to zero, one
really speaks of the same thing, but the terminology and
the insights are different, and the two notions appeal to
different audiences.

Cyclic codes

A code over GF{(g) is a set of time domain signals of
length n called codewords. If a Fourier transform exists
for length n, then each codeword has a spectrum in an
extension field GF(¢") called the frequency domain code-
word. A cyclic code is a code such that the linear combi-
nation of two codewords is a codeword, and the cyclic
shift of a codeword is a codeword.

A cyclic code over GF(g) is conventionally described in
terms of a generator polynomial g(x) over GF(g) of degree
n — k. Every codeword is represented by a polynomial of
degree n — 1, written as c(x) = s(x)g(x), where s(x) is a
signal polynomial of degree £ — 1. This is a convolution in
the time do-.ain
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Figure 1 Encoding via the transform.

n—1

G = Z ik
k=0

Therefore, in the frequency domain, the encoding opera-
tion can be written as a product C; = G,S . For fixed gen-
erator G,, any spectrum that satisfies this expression is a
frequency domain codeword, provided that all com-
ponents in the time domain are GF(g)-valued. Because
the signal spectrum S, is arbitrary, the only significant
role of G| is to specify frequencies where the codeword
spectrum C, is zero. Thus, we can define a cyclic code
alternatively as follows. Given a set of spectral com-
ponents j,, - - -, j,_, called parity frequencies, the set of
words over GF{g) whose spectrum is zero in components
Ji» o J,_, is a cyclic code.

Notice that although each codeword in a cyclic code is
a vector over GF(g), the spectrum is a vector over
GF(q™). Hence, we may think of a cyclic code as the set
of inverse Fourier transforms of all spectral vectors that
are constrained to zero in several prescribed components
provided that said Fourier transforms are GF(g)-valued.
It is not possible to choose any spectrum that is zero in
the prescribed components; some of these may have in-
verse transforms with components that are not in GF(g).

However, if m = 1, that is, if n = ¢ — 1, then every
spectrum consistent with the constraints yields a code-
word. One may encode by filling the unconstrained com-
ponents of the spectrum with information symbols and
then taking the inverse transform as illustrated in Fig. 1.

The most popular class of cyclic code is the class of
BCH codes. From the spectral point of view we have the
following definition.

Definition 2 A primitive t-error-correcting BCH code of
blocklength n = g™ — | is the set of all words over GF(qg)
whose spectrum is zero in a specified block of 2 con-
secutive components.
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Figure 2 Hamming (7, 4) code in the frequency domain.

The adjective *‘consecutive’” is the key one in special-
izing the definition of a cyclic code to that of a BCH code.
It is well known that a BCH code corrects ¢ errors. In the
next section we give the proof couched in spectral termi-
nology. The remainder of this section is concerned with
encoding.

First suppose that n = ¢ — 1 {or possibly a submultiple
of ¢ — 1). The BCH code is then known as a Reed-Solo-
mon code. The encoding is as follows. Some set of 21 con-
secutive frequencies (e.g., the first 2r) are chosen as the
symbols constrained to zero. The information symbols
are loaded into the remaining n — 2¢ symbols, and the
inverse Fourier transform is taken to produce a (non-
systematic) codeword.

For the more general BCH code, the encoding is more
complex. Again, 2¢ consecutive locations are chosen to
be zero. The remaining symbols must be chosen to repre-
sent the information only in those ¢" possible ways that
have GF(g)-valued transforms; but of course we do not
wish to do this by trial and error.

Recall that over the complex numbers, a function V( f)
has a real-valued transform if V¥(~ f) = V(f). The analo-
gous condition is given by the following well-known theo-
rem, which may be found in [7].

Theorem 3 Let C.,j =0, n— I, take elements in
GF(¢") where nis adivisor of ¢" — . Then ¢, i=0,- - -,
n — 1, are all elements of GF(g) if and only if the following
equations, called conjugacy constraints, are satisfied.
C(;:qummln .]':0,"',”_ L

Proof By definition

-

¢, = > a"c,

i=0

j=0,---,n-—1.

As is well known, for a field of characteristic p and any
integer r, (u + b)" = a” + b" . Therefore,

n—1
= (Z

i=0

q n—1
ij " ati 4
(29 Ci) = Z o

i=0
If ¢, is an element of GF{g) for all /, then ¢} = ¢, Con-
sequently,

qi mod n*

Conversely, suppose that for all j, C7 = C_. Then

n—1 H—1

iaj g _ Z iqi |
> a G
i=0 i=0

j=0,--,n— 1L
Let k = ¢/. Since g is relatively prime to n = ¢" — I.asj
ranges over all values between 0 and n — 1, k also ranges
over all values between 0 and n — 1. Hence

n—1 n—1
O ik __ \1 ik |
>« G= L ac
i=0 i=0

; k=0,--.n—1,
and by uniqueness of the Fourier transforms ¢ = ¢, for all
i. Thus, ¢;is aroot of x* — xfor all i and all such roots are

elements of GF(g).

Using Theorem 3, we can easily construct the Ham-
ming (7, 4) code in the frequency domain. This is shown
in Fig. 2. Frequencies C and C, are chosen as parity fre-
quencies so that a single error can be corrected. The in-
formation is contained at frequencies C, and C,. The re-
maining frequencies are constrained by Theorem 3. Theo-
rem 3 also requires that C;") = (, so that C can only have
the value 0 or 1. Thus, the equivalent **bit content’” of C
is one bit. The equivalent bit content of C, is three bits.
Thus, the four information bits of the Hamming code can
be used to uniquely specify the spectrum. The informa-
tion bits are inserted into the frequency domain rather
than the time domain.

In the general case, the integers modulo # are divided
into conjugacy classes of the form

A =14j. 4. 4. b

If the spectral component C, is specified, then every other
spectral component whose index is in the conjugacy class
of j must be a power of C;and hence cannot be separately
specified. (It is suggestive to use the term “*chord’” for the
set of frequencies whose indices are in the same con-

jugacy class.) Further, if the conjugacy class has r mem-
bers, then we must have

=,

4 J
Consequently, we are not free to choose any element of
GF(q") for C,, but only those of order ¢ — 1. Since every

element of GF(¢™) has order dividing ¢" — 1, it is clear
that the size of every conjugacy class divides m.
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Thus, to specify an encoder, we break the first ¢” — |
integers into conjugacy classes, and select one integer to
represent each class. These representatives specify the
uniquely assignable symbols. To form a BCH code, a
block of 2¢ spectral components are chosen as parity fre-
quencies and set to zero. The remaining assignable sym-
bols are information symbols, arbitrary except for occa-
sional constraints on the order. All other symbols in a
chord are not free; they are obligatory frequencies.

Table 1 shows the situation for GF(64). If we choose
the first column as free symbols and take C,, C,, C,, C,,
C., and C, as parity frequencies, then we have a triple-
error-correcting BCH code. Then C, C,, C,, C,, C,,,
C.., G,y Cy, Cypp and G are the informatlon symbols C,
and C,, must be symbols of order 2. C,, must be an ele-
ment of order 3. C, must be an element of order 1. All
other symbols are arbitrary elements of GF(64). It re-
quires a total of 45 information bits to specify these sym-
bols. Hence, we have the (63, 45) r = 3 BCH code.

After these free symbols are loaded, the obligatory
symbols are padded with appropriate powers. The com-
plete spectrum is then transformed into the codeword.

Decoding in the frequency domain

The BCH bound is proved very simply and intuitively in
the frequency domain. This proof is a variation of a time
domain proof of Chien [8] that we have transferred into
the frequency domain.

Theorem 4 (BCH bound) 1f a vector cpi=0,-n-
1, has less than d nonzero components and if the spec-
trum is zero on any d — 1successive components (C. = 0,
J=J, 1. +d — 1), then ¢, = 0 for all /.

Proof Leti . .- -, i denote the v nonzero components
of ¢, v < d. Define the locator polynomial A(x):

H (1 — xa'™)
k=

=AX+ A XN AX A

Interpreted as a vector, A is a frequency spectrum which
is judiciously defined so that its inverse transform A = {\}
equals zero (by Theorem 2) at every time i, at which ¢, #
0. The product A,c, in the time domain is zero; therefore,
the convolution in the frequency domain is zero.

n=—1

> AL, =0

k=0

But the vector A is nonzero only in a block of length at
most d and A = | so that

N

i)
I
|
/

AC

k=K
1

¢

Eod
I}
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Table 1 Structure of spectrum over GF(64).
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This is the equation of a linear feedback shift register that
generates all the C; from any block of them of length
d — 1. But C is zero in a block of length ¢ — 1. Using this
block as an initial condition, the linear feedback shift reg-
ister generates all the rest; hence, all terms of C are zero,
and ¢ must be the all-zero vector.

Now consider the task of decoding a received word for
a BCH or Reed-Solomon code. The original decoding
technique described by Reed and Solomon [9] had a
strong frequency domain flavor, but thereafter techniques
evolved primarily in the time domain, although some fre-
quency domain variables (the syndromes) do creep in.
What amounts to a frequency domain decoder was first
proposed by Mandelbaum [10], though in the terminolo-
gy of the Chinese Remainder Theorem. Such a decoder
was implemented in a computer program by Paschburg

().

Consider decoding a received word r, = ¢, + ¢,, i =
0, -+, n — 1, consisting of a codeword and an error
word. Figure 3 shows a comparison of a time domain im-
plementation of a BCH code, a frequency domain imple-
mentation, and several hybrid implementations. In the
frequency domain implementation, one first computes R,
the transform of the received word r. The transform con-
sists of the transform of the codeword and the transform
of the error:

R=C+E j=0---n-1.
J J J

Since codeword C, is Zero on a block of 2r components
(say from I to 21), we have 2¢ known values of E| called
the syndromes:

S,=E =R, j=1,--2.
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Suppose there are v < t errors. As in the proof of Theo-
rem 4, define the error-locator polynomial A(x):

Alx) = 1"[ (1 — xa™).
k=1

Since in the time domain A, = 0 whenever e, # 0, we have
\e, = 0and so

n—1
> AE,_ =0
=0

(It does no harm to sum out to n — 1 even though A, = 0
for j > t.) The convolution is a set of n equations in n — ¢
unknowns: ¢ coefficients of A(x) and n — 2¢t components of
E. Of the n equations, there are f equations that involve
only components of A and known components of E, and
these are always solvable for A. The remaining com-
ponents of E can be obtained by recursive extension; that
is, sequentially computed from A using the above con-
volution equation. This computation can be described as
the operation of a linear feedback shift register with tap
weights given by the coefficients of A. In this way E| is
computed for all j, and C; = R, — E. An inverse Fourier
transform completes the decoding.

The key step of computing A from the known 2t
components of E can be done by the elegant algorithm of
Berlekamp [ 12} which was described in terms of shift reg-
isters by Massey [13]. We will discuss some modifications
of this algorithm in later sections, so we restate it here.

Theorem 5 (Berlekamp-Massey algorithm)  Let Sio+1’
8 be given. Let the following set of recursive
equations be used to compute A®”(x):
n—1

A =3 ATUS

r Jotr—i?
=0

(A, is a scalar known as the discrepancy)

! A(T)(x) — A(T*l)(x) — ATXBW;”(X),

B7(x) = (1 = 8)xB" "(x) + 8 xAT'A" " (),

r =1, - -+, 2. the initial conditions are A(x) = 1,
BY(x) = 1,and 8, = | if both A, # 0and deg B" "(x) >
max deg A (x) and otherwise 8 = 0. Then A*’(x) is the
smallest degree polynomial such that A%’ = 1 and

n—1

@2t _ _ 2)
%Ai Siers =0 r=1+degA®, - 2z
=
A proof can be found in[12] or [13]. If S, ,---, S _  are

Jo+1° > Mje+2t
the syndromes of a codeword for which at most ¢ errors

occurred, then A%”(x) has degree equal to the number of
errors and

n—1
D AFS. . =0

Jotr—i
J=0

r=t+1, -2t

(but not conversely).

R. E. BLAHUT

The decoder can be used with an encoder that is either
in the time domain or the frequency domain. If the encod-
er is in the frequency domain, then the information sym-
bols are used to specify certain components of the spec-
trum whose inverse transform then gives the time domain
codeword. With this scheme, the corrected spectrum is
the information. The decoder does not have an inverse
transform. The frequency domain encoder may be sim-
pler than the time domain encoder if » is composite be-
cause a fast transform may be simpler than a convolution.

The final circuit of Fig. 3 shows a hybrid implementa-
tion. Here the transform of the error pattern is computed
by recursive extension in the frequency domain, but the
correction is done in the time domain. This circuit is simi-
lar in appearance to the first circuit, but the development
has been much different. The syndrome generator is the
same as the direct transform. The Chien search is essen-
tially the same as the inverse transform. It is a v X n
transform with a GF(g™)-valued output vector compared
to an n X n transform with a GF(g)-valued output. The
fourth circuit has the advantage of a simpler appearance
than the first.

In view of the many variations summarized by Fig. 3,
the designer has a number of options from which to
choose. It should be obvious that his choice will depend
not only on the code parameters such as blocklength and
minimum distance, but also on how the implementation is
divided between hardware and software, and even on the
type of circuitry available to him.

Notice that each of the circuits of Fig. 3 has both a
Fourier transform and an inverse Fourier transform,
though in some cases these appear under the names
*‘Chien search’ or ‘‘syndrome generator,”” and in some
cases not all of the output components need be computed.
Thus, one needs efficient methods for computing the
Fourier transforms. As is well known, the Fourier trans-
form can be efficiently computed by a fast Fourier trans-
form algorithm whenever n = ¢ — 1 is composite, and
this is sometimes used to justify choice of a composite
blocklength. But even when g™ — 1 is prime the transform
often is still practical. Circuitry to implement the full n X
n matrix multiplication can be quite simple for moderate
n. For example, when n is prime and « has a square root
B, one can also use the chirp transform. This is a conve-
nient variation of the Fourier transform based on the cal-
culation

n—1 n—1 n—1

Bﬂ'z z B(i—j)z(Bwizci) _ Z Bzijci — 2 auci - Cj'
i=0 i=0

i=0
The term on the left can be easy to implement in hard-2
ware. It consists of a pointwise product of ¢, with g
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Figure 3 Implementation of BCH codes: (a) time domain implementation; (b) frequency domain implementation; (¢) mixed domain
implementation—time domain encoder, frequency domain decoder; (d) mixed domain implementation—time domain encoder, hybrid

decoder.

(n multiplications) followed by a convolution with Bi2 (an erasures and errors are very simply explained, and the
n-tap digital filter) followed by a pointwise product with reason why the decoder works is clearly visible. Further,
B (n multiplications). the sharp insight allows us to propose a simple adaptation

of the Berlekamp-Massey algorithm so that both erasures
and errors can be decoded with virtually no hardware

Erasure and error decodin .
g other than that required for the errors-only decoder.

BCH codes also are used for protection with channels
that make both erasures and errors. A decoding algorithm
for this purpose was discovered by Forney [ 14]. The deri-
vation is manipulative and difficult to understand in-
tuitively since it introduces some new variables in an arbi-
trary way. By transforming the discussion into the fre-
quency domain, algorithms for decoding messages with r=c;t e+, i=0,---,n—1 305

Let v be the vector of erased symbols. Suppose that
erasures are made in locations i, i,, - - -, i,. (In other
components v, = 0.) The received word is a codeword

corrupted by errors and erasures,

i
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Let @ be any vector that is zero at every erased location
and otherwise nonzero. In particular, define @ as fol-
lows. Let U, = a", 1= 1, - - -, p, denote the erasure loca-
tions. Define the erasure-locator polynomial

n—1 P
Qx) = > X =[] (- xU).

k=0 =1
This is defined so that the inverse transform of the vector
Q) has components w, equal to zero whenever v, # 0.
Therefore, wp, = 0. Then

or, =olc; + e, +v)=0c + e,
or

’ _ . + ’

Fo= et e,

where we have defined the modified received word r;, =
w,r,, and the modified error vector ¢, = w,e,. The modified
error vector e’ has errors in the same locations as e. The
problem now is to decode r’ to find ¢’. In the frequency

domain
R =Q*C)+E.

But Q is nonzero in a block of length p + 1 and by con-
struction of a BCH code, C is zero in a block of length 2¢.
Consequently,  * C is zero in a block of length 2¢ — p. In
this block, define the modified syndrome T, by T, = R
Then T, = (Q +R), = E/.

Hence, just as in the errors-only case, from these 27 — p
known values of E' we can find the error-locator poly-
nomial A(x) provided the number of errors is less than
(2t — p)/2. Once the error-locator polynomial is known,
we can combine it with the erasure-locator polynomial
and proceed as in the errors-only case. To do this, first
define the error-and-erasure-locator polynomial I'(x) =
O(x)A(x). The inverse Fourier transform of I' is zero at
every erasure or error. That is, y, = 0if ¢, QO or v, # 0.
Therefore, vde, + v) =0, I+ (E +V)=20and I is
nonzero in a block of length at most 2t — p + 1. Hence,
the 2¢ known values of E + V can be recursively extended
to n values by using this convolution equation and the
known value of I'. Then

C,=R,~ (E,+ V).

An inverse Fourier transform completes the decoding.

The step of computing the error-locator polynomial
from the modified syndromes can use the Berlekamp-
Massey algorithm. However, it is possible to do much
better by combining several steps. To describe how to do
this it is necessary to refer back to the procedure of the
Berlekamp-Massey algorithm as summarized by Theo-
rem 5. The idea of the Berlekamp-Massey algorithm'is to
compute A(x) by a recursive procedure, starting with an

initial estimate A“’(x) = 1 and an initial choice of another
polynomial called the update polynomial B (x) = 1, and
proceeding through 27 iterations.

In the case of erasures, the syndrome is replaced with
the modified syndrome in the equation for A ,

AT — Z A;r—l)T

n—j
=0

After n iterations starting with the initial values A'”(x) =
B“(x) = 1, the error-locator polynomial A(x) is obtained.

But what happens if we start instead with the values
A%x) = B”(x) = Q(x)? Then notice that
AT x)Qx) = A7) — A xB"V(0)Q(x),
BV (x)Q(x) = (1 — 8 )xB" "(x)Qx)

+ 8, x0T AT (00 |

and if we define I'”(x) = A" (x)Q(x) and compute A_by

A=Y TS =3 100,
Jj=0

n—y

A= (2 A‘;*“Qn_j_k) S,= > AT,
j k=0

Therefore, if we initialize the Berlekamp-Massey al-
gorithm with Q(x) instead of with 1, the modified syn-
dromes are computed implicitly and need not explicitly
appear, while the algorithm generates recursively the er-
ror-and-erasure-locator polynomial I'(x) according to the
equations

F(r)(x) — Iﬂ(rfl)(x) _ ArXB(rfl)(x),
B”() = (1 — 8 )xB" "(x) + 8,.xA T (x),

e

. -1
A =D TS

n—j°

i=0

The resulting decoder is shown in Fig. 4. The only change
from the decoder for errors only is the computation of the
erasure-locator polynomial, which is trivial compared to
other decoding computations.

Finally, notice that it does not matter what symbol ac-
tually appears in an erased symbol; it can be set to the
most likely estimate of the received symbol, if the appli-
cation uses this information to assess the probability of
correct decoding.

Alternant codes

The decoding techniques we have described apply not
only to BCH codes, but also to alternant codes. Alternant
codes comprise a class of linear codes introduced by
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Figure 4 Error and erasure decoding for BCH codes: (a) frequency domain implementation; (b) mixed domain encoder—time domain

encoder, hybrid decoder.

Helgert [15] and include the class of codes introduced by
Goppa [16]. Delsarte [ 17] showed that an alternant code is
a subset of slightly modified Reed-Solomon code. Choose
h a fixed n-vector of nonzero components over GF(g™),
and choose a Reed-Solomon code over GF(g™) with de-
signed distance 2¢ + 1. The alternant code consists of all
GF(g)-valued vectors e such that ¢, i =0, - -, n— 1,is
a codeword in the Reed-Solomon code. Alternant codes
are highly regarded because some of them have true mini-
mum distance considerably larger than the designed dis-
tance (asymptotically close to the Gilbert bound).

The definition of the alternant codes is easily translated
into the frequency domain where it takes on more of a
signal processing flavor. Let g, = h:.l, which is always
defined since 4, # 0, and let G and H denote the trans-
forms of g and h. Then since g, = 1 for all i, (G = H)
equals one at j = 0 and otherwise equals zero. (H is an
invertible filter.) The alternant code € is the set of vectors

whose transforms C, j =0, - - -, n — 1, satisfy two condi-
tions.

N—‘l

DH_C=0 k=12

i=0

and Ci =C, with indices interpreted modulo » in both

conditions. The first of these conditions is a convolution
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corresponding to the time domain product of the more
usual definition; the second condition ensures that the
time domain codewords are GF(g)-valued. Thus, the
codeword spectrum is filtered by H prior to specifying the
2t contiguous parity frequencies.

A Goppa code is an alternant code of designed distance
2t + 1 with G described by a polynomial of degree 2¢,
called the Goppa polynomial.

The alternant codes can be decoded just as the BCH
codes. All that needs to be added is a step to modify the
syndromes by the inverse of the vector h either by multi-
plying in the time domain or convolving in the frequency
domain. No other change is necessary. Hence, any fre-
quency domain or time domain BCH decoder can decode
alternant codes out to the designed distance 2r + 1. How-
ever, since the appeal of alternant codes lies in their much
larger minimum distance, it is not clear that an alternant
code used with a BCH decoder has any advantage over a
BCH code used with a BCH decoder. Alternant codes
will not have practical importance until a constructive
procedure is found for obtaining the good ones, and a de-
coding algorithm is found for decoding beyond the de-
signed distance. Some small steps in this direction are dis-
cussed in the next section.
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Decoding beyond the BCH bound

If every codeword in a code % has a certain set of 2¢ con-
tiguous spectral components equal to zero, then by the
BCH bound, the minimum distance of the code is at least
2¢ + 1 and most of the common decoding algorithms will
correct up to ¢ errors. However, the minimum distance of
the code might actually be larger than 2¢ + 1, and in any
case some patterns of more than ¢ errors may be correc-
table.

The variations that can occur are illustrated by the fol-
lowing four examples:

1. A binary BCH code with all of the parity frequencies
in a block of length 2¢ but with the actual minimum
distance larger than 2r + 1. (The Golay code is an ex-
ample of such a code.)

2. A cyclic code with parity frequencies that are not con-
tiguous.

3. A decoder for some of the (¢ + 1)-error patterns in a r-
error-correcting Reed-Solomon code.

4. A decoder for an alternant code such as a Goppa code.

Berlekamp [12] discusses decoding of BCH codes
beyond the BCH bound by forcing appropriate constraint
equations in the frequency domain to be satisfied, but the
techniques quickly become unmanageable as the number
of errors increases beyond . Hartmann [ 18] gives some
closely related frequency domain techniques that again
involve searching through sets of nonlinear equations for
solutions. We will describe here some time domain de-
coding techniques that decode BCH or alternant codes a
small distance beyond the designed distance. These tech-
niques are motivated by [12, 18], but for some appli-
cations the complexity appears to grow more slowly as
the number of errors increases beyond ¢. The basic idea is
to add extra discrepancies as unknown variables, decode
in terms of these variables, and then solve for the vari-
ables by some kind of search over low weight error pat-
terns and when available, by using a priori facts such as
that the codeword is GF(g)-valued. We will only discuss
the decoding of errors; if desired, the ideas of the pre-
vious section may be added to decode erasures as well.

We start the discussion with a Reed-Solomon code of
designed distance 2¢ + 1. Then any polynomial A(x) of
degree 1 + v with ¢ + v distinct roots is a legitimate error-
locator polynomial if

n—1

DAS, =0 r=l+rt4uv, 20

i=0

The smallest-degree such polynomial (if there is one) cor-
responds to the maximum-likelihood codeword. If it is of
degree at most ¢, this polynomial is produced by the

Berlekamp-Massey algorithm. Even if there are more
than ¢ errors, the smallest-degree polynomial may be

unique, and the received word then can be uniquely de-
coded.

Suppose there are ¢t + 1 errors, then the two unknown
syndromes S, ., S,,,, will be enough, if known, to find
A(x). Hence, analytically continue the Berlekamp-
Massey algorithm through two more iterations with these
new syndromes as unknowns. Then we have

A, AT)

2041728427 2141

A(2r+2)(x) — xZ]A(Zt)(X)

A2t+zx2]B(2t)(x)’

(1-35
~[a,, x+(1-3

2f+1)

€ {0’ 1}’ A21+1’ A2r+2 € GF(q"’), and 82r+1
whenever A, . = 0. Except for 6, , 4,.,,, and A,
everything on the right is known from the 2r syndromes.
Transform the frequency domain vector A*"® into the
time domain by transforming the two components on the

right to get
PR - [1-5,, A ATl

i 20+17 26427 2641

i (1 -5

where 8, =0

—2iq, (20
a A,

—2iq; @0
A[Azt-m 2t+1)A2t+2a ]bi ’

where we have used the general fact that if E'J = E, , then
the inverse transform satisfies e'i = a"ei. We must now
choose the unknowns, if possible, so that the error pat-
tern contains at most ¢ + | nonzero components. If deg
A®” < ¢ and the number of distinct zeros of A*” equals the
degree of A®”, then the number of errors equals the de-
gree of A”". This case is easily checked.

If there is only one solution for A**® with r + 1 zero

components and a corresponding A%*?(x) of degree 1 +
I, a unique pattern of ¢+ + 1 errors can be found. Let
= ki
A21+1 = Ay,
cases to be considered are

= &’ whenever they are nonzero. The

1. }\:21+2) — }\:21) _ aklafibEZt)’

2. }\;2!+2) — }\;21) o akga-ZihEZt)7

3. A;2r+2) — }\:21) _ aklavib;Zt) . akgafZibl(.Zt),

4. }\(.2H-2) - }\(.2() _ akgafklafﬁ}\(?l) _ akla‘ib;ﬂ).

i i i

»

Each of these cases is to be searched over £, = 0, - - -
q— 2 k,=0,---,q— 2forasolution with AT = 0 for
exactly r + 1 values of . With these values for the un-
knowns, the polynomial A®**®(x) must have degree ¢ + 1.
Then A®*?(x) can be used to recursively extend the syn-
dromes, starting from the known syndromes, and using

n—1i
— N\ Ao
S, = =2 A,

—J
k=0

j=24 1, n

An inverse Fourier transform completes the decoding.
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Searching through the four cases above appears quite
tedious to the reader, but is very orderly and simple in
structure, and shift register circuits can be easily designed
to search for a solution. One can organize the search in a
variety of ways. Among the possibilities, one of the less
obvious is a histogram approach. For example, with case
4, for each value of k, prepare a histogram of (A" —
oMo (@A), Any component &, of the histogram
that takes the value ¢ + 1 corresponds to a possible ¢ + 1
error pattern.

The decoder can be further extended to decode ¢t + »
errors. Although the equations become lengthy, it seems
that such an approach may be practical outtoz + 3 or¢ +
4 depending on the blocklength of the code.

Now consider binary codes. These differ from Reed-
Solomon codes in that the decoder can be simplified as
described below, and also because many of the ¢ + v error
patterns found may correspond to nonbinary error pat-
terns and so must be discarded. When treating binary cy-
clic codes, we will make use of the fact that the
Berlekamp-Massey algorithm of Theorem 5 can be sim-
plified because A_ = 0 for all even r. Published proofs of
this important fact [7, 12] are quite lengthy. An easy proof
is given in the following theorem.

Theorem 6 In GF(2"), suppose for any linear feedback
shift register A(x), and any sequence §,, §,, - - -, §
satisfying §,, = Szj, that

2v—1

n—1

S;= =2 A8, =1
i=1

Define the next member of the sequence by

n—1

Szv = Z Aiszu—i;
i=1

then §,, = S%

Proof

/n—1 2 n—1 n—1
Snz/ = (Z« AiSV—i) = Z Aisifi = Z Azz‘SZVVZi'
i—1

i=1 =1
On the other hand,

n—1 n—1 n—1

Sy, = _kz ASu = 2 2 ANS,
=1

k=1 i=1
But by symmetry every term in the sum with i # k ap-
pears twice, so in GF(2") those two terms add to zero.
Hence, only the diagonal terms contribute, and

|

n—1
_ 2
SZV - AiSzv—Zi’
1

i
which agrees with the expression for Si and so proves the
theorem.
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Thus, for even r, A is zero and we can analytically
combine two iterations to give, for even r,

A(I')(x) - A(rfz)(x) _ Arile(rfz)(X)’
BVx) = (1 — 8 _J)"B" P(x) + 5, XA AT(x).

Now suppose that we have a binary BCH code of de-
signed distance 2 + 1, and we wish to correct all patterns
of t+ + 1 (or fewer) errors whenever they are uniquely
decodable. The only measurement data available to the
decoder are contained in the 2¢ syndromes S, §,, - - -,
S, All other frequencies either can take on arbitrary val-
ues or are completely determined from the syndromes by
the constraints. The algorithm can be iterated again to
give

A(ZH»Z)()() — /\(21)()() _ A XB(Z’)(X)-

2f+1

Transform the frequency domain vector A" by trans-
forming the components on the right to get

2t+2) (2t) —iy (20
A =N FA b

and suppose a pattern of ¢ or fewer errors was not found.

Prepare a histogram of a'A*’/b*’ over the nonzero
components of GF(g). If one component (or more) of the
histogram equals ¢ + 1, this corresponds to a candidate
error pattern for that value of A__ . For each of these can-
didates, the corresponding polynomial A*""(x) can then
be used to extend the syndromes in the frequency do-
main. Those cases that do not satisfy the conjugacy con-
straints can be discarded at this point. An inverse Fourier
transform for each candidate gives an error pattern. If it is
unique, it is the correct error pattern.

Next consider a binary code for which the parity fre-
quencies are not contiguous. An example is the (63, 28,
15) binary cyclic code with parity frequencies C, C,, C,,
C..C,, C, . and C,. This code should be preferred to the
(63, 24, 15) BCH code because of a superior rate, but the
BCH code might be chosen because of its well-known de-
coding algorithms. However, with a little extra com-
plexity, we can modify a frequency domain BCH decoder
to handle the (63, 28, 15) code. Using the procedure dis-
cussed above, all patterns of seven or fewer errors that
agree with the twelve contiguous parity frequencies are
found. Then S, is computed for each of these candidates.
Only one will agree with the measured value of S, .

The same ideas apply to a BCH code with more than
t + | errors. To extend the decoder more than one error
beyond the BCH bound requires more complex equa-
tions, but to go a small distance they are still quite man-
ageable. For ¢ + 2 errors,
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(a) (b)

Figure 5 Two-dimensional spectrum over Galois field GF(8):
(a) unconstrained spectrum, (b) constrained spectrum.

A% () = A% (x) — A

B<2t+z>(x) =(1-5

XB(Zr)(X),

2141

B®(x) + 5, XA

2f+1 2{+1

A(Zt)(x) ,

2t+1)

and

A(2t+4)(x) =(1-5,. A AL

28417 2t437 2t+1

XZ)A(Zt)(x)
A, B (x).

x + ( 243

2t+1 2H—1)

Take the Fourier transform

A A7 —li ))\f2l)

2t+172¢43 2[+1 i

-+ (1 ) A a‘.‘}i)bzfzt)

2t+1) 2(+3

A = (-8

1

—(@A,,, o

2t+1

and search for values of the unknowns that have r + 1 or
¢ + 2 components of A\*"* equal to zero. Many of these
will correspond to nonbmary error patterns and so must
be rejected later.

Finally, we come to Goppa codes. Let G(x) be the
Goppa polynomial, and from the spectrum of the received
signal R, let the syndromes be computed by

(or instead, in the time domain, multiply to find g_l.lrl. =
hyr). Decode beyond the designed distance just as for
the Reed-Solomon code. The simplifications to the
Berlekamp-Massey algorithm for BCH codes due to con-
Jjugacy constraints do not apply. In general, one can ex-
pect that many candidate error patterns with ¢ + 1 errors
will initially be found. For each of these, the filtered syn-
dromes can be extended; then the inverse Fourier trans-
form is taken and multiplied by g,. No more than one pat-
tern of 7 + 1 errors can be binary. Alternatively, working
in the frequency domain, the filtered syndromes can be
inverse-filtered using G as the tap weights of a finite im-
pulse response filter. This convolves G with the filtered
syndromes. The filter output must satisfy the conjugacy
constraints or be rejected. Only one candidate error pat-
tern will survive this test. An inverse Fourier transform
gives the time domain error pattern.

Codes based on multidimensional transforms
Multidimensional Fourier transforms also can be used to
define error control codes. We shall consider several ex-
amples, but the most familiar example is the two-dimen-
sional product code. This is a two-dimensional array of
elements from GF(g) such that every row is a codeword
in a code €, and every column is a codeword in a code €,.
A cyclic product code is a product code in which the rows
and columns are from cyclic codes €, and €,. To ensure
that the cyclic product code is actually cyclic, one im-
poses the condition that the number of rows and the num-
ber of columns are relatively prime. But, for a general
multidimensional transform code, the dimensions need
not be relatively prime.

Multidimensional transforms have been used for the
study of error control codes in the guise of the Mattson-
Solomon polynomial. A treatment of cyclic product codes
with two-dimensional transforms can be found in Lin and
Weldon [19]. Papers by Delsarte, Goethels, and MacWil-
liams [20] and by Kasami, Lin, and Peterson [21] are rep-
resentative of the use of multidimensional transforms.
For simplicity, we will limit discussion to the two-dimen-
sional transform.

Let e, be an n X n', two-dimensional array, which will
be called a two-dimensional time function, where n and n'
both divide g™ — 1 for some m. Let 8 and y be elements of
GF(g") of order n and n' respectively. The array

i u l]'
o = €y
will be called the two-dimensional spectrum and the in-
dices j and j' are the frequency variables. It is obvious
that

n—1

z —l] —i J’

f the one-dimensional inverse transform.

1 1
nn

j

by inspection o

We can choose n = n’ ™ — 1. Then 8

primitive element, and

‘ u i J'
n”

=gq =y =aqa,a

\

AT
a o E_ ..
i)

Consider a two-dimensional spectrum over GF(g). For
definiteness we will illustrate with GF(8) and n = 7 as
shown in Fig. 5(a). Each square in the grid contains an
octal symbol. We define a code by selecting a set of N —
K of these components to be (two-dimensional) parity fre-
quencies, which are constrained to be zero as in Fig. 5(b).
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The remaining set of K components are filled with K in-
formation symbols, and then the inverse transform (two-
dimensional) is taken. The time function is the codeword
corresponding to the information symbols. Clearly, this is
a linear code, and any choice of the parity frequencies
defines another linear code. In general, these codes are
not cyclic codes.

If the code is in a subfield of GF(gq) [GF(2) is the only
subfield of GF(8)], one must restrict the set of codewords
to those that have only components in the subfield. This is
a subfield-subcode. One could also extend the idea of an
alternant code to a multidimensional alternant code by
multiplying by a two-dimensional template before ex-
tracting the subfield-subcode.

For an example, as shown in Fig. 6(a), choose all of the
elements in a set of vertical stripes and a set of horizontal
stripes to be parity frequencies. All the two-dimensional
time domain functions with these frequencies equal to
zero are the codewords. That is,

n—1 n—1

iy
> Y aate, = 0
i=0 =0

for each parity frequency jj'. This can be interpreted in
another way by defining the two-dimensional polynomial

n—1 n—1

e(x,y) = Z 2 eii,xiyi'

i=0 i'=0
so that the code satisfies e(a’, o) = 0 for every j and
every j' that are parity frequencies. Since the parity fre-
quencies were defined on vertical and horizontal stripes,
we have

e(d’, y) = 0,
e(x, aj') =0

for every j and every j' that are parity frequencies. But
this says that for fixed i, e, is a cyclic code and for fixed
i’, e, is a cyclic code. That is, e, is a product code. Prod-
uct codes were studied by Elias [22], who showed that the
minimum distance is the product of the minimum dis-
tances of the two codes. It was proved by Burton and
Weldon [23] that if dimensions n and n' are relatively
prime, then the product code of two cyclic codes is equiv-
alent to a cyclic code.

If we take the stripes of parity frequencies to be con-
tiguous, then we have a code that is the product of two
Reed-Solomon codes. Figure 6(b) illustrates a (49, 25) d =
9 code over GF(8) defined spectrally. Each of the 25 infor-
mation symbols can be loaded with an octal information
character, and the result is transformed to the time do-
main to obtain the codeword.
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(c) (d)
Figure 6 Spectra of some codes over Galois field GF(8): (a)

product of cyclic codes; (b) product of Reed-Solomon codes; (c)
dual of a product code; (d) product of (7, 4) BCH codes.

Table 2 Structure of two-dimensional spectrum over GF(8).
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The same structure can be used to obtain a code over
GF(2) by selecting only those codewords that are binary.
To do this constructively in the frequency domain, only
an independent set of frequencies may be specified. Theo-
rem 3 is easily extended to a two-dimensional version
which requires that

c: =C
N

(2 mod n)2j’ mod n)’
from which we can construct Table 2. Each row of the

table shows a constrained set of frequencies. Any mem-
ber of the row can be chosen as parity or as an arbitrary
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information symbol. The remaining symbols in a row are
not arbitrary. The frequency C,, can only be 0 or 1 be-
cause it is its own square. The remaining information
symbols are octal. Altogether 49 bits specify the spec-
trum, but of course some of these are parity and contain
no information.

Figure 6(d) shows the specialization of Fig. 6(b) to a
binary code. There are only 16 open frequencies which,
because of the constraints, can encode 16 bits. This is a
consequence of the fact that row ! and column 1 have
their parity symbols scattered among different rows of
Table 2. The code is an unimpressive (49, 16, 9) code.

The second case, illustrated in Fig. 6(c), is a dual to the
idea of a product code. A rectangle a frequencies high and

. b frequencies wide is chosen for the set of parity frequen-

cies. It is easily seen that the minimum distance satisfies
d= 1+ min (a, b).

Hence the example gives (49, 45, 3) code over GF(8). The
binary subfield subcode is a (49, 39) ¢ = 3 code.

In the next two sections, we will make use of two-di-
mensional codes to introduce some new codes with spe-
cial properties.

Fast BCH codes

We have seen that for any BCH code, the encoder/de-
coder involves two Fourier transforms, possibly realized
as a Chien search or as a syndrome computer. If » is com-
posite, then a fast algorithm can be used for the Fourier
transforms so as to reduce considerably the computa-
tional load. However, the fast Fourier transform requires
some adjustment terms when the factors are nonbinary.
(Finite field transforms normally have nonbinary factors.)
This is only a minor problem, but it does disrupt the oth-
erwise orderly organization of the calculations. If it can
be eliminated at no cost, it should be.

To see the adjustment terms, consider the Fourier
transform

n—1
_ i
E = >« €,
i=0

and suppose n = n'n’. Replace each of the indices by a
coarse and vernier index as follows:

i=i +ni i'=0,---, 10 -1,
=0, 0~ 1;
. " /4 ot ’
J:n.]+‘] J:O,"',n_l,
j =0, 0 -1
Then
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n—1 n'—1
A+ @+
E @ ¢

W+ Pnlif

=0 i'=0

3

Expand the product in the exponent and let o =y, a" =
B. The term o™’ = 1 and can be dropped. Then

n'—1 w—1
By = z g [alw Z Vmﬂeiwn'i" :
i'=0 "=0

Notice that the inner sum is an n” X n" Fourier transform
for each value of i’ and the outer sum is an n’ X »’ Fourier
transform for each value of i”. The factor multiplying the
inner sum is a minor nuisance. We can make it vanish
simply by changing the definition of the BCH code. We
will define an equivalent two-dimensional code, whose
performance properties are the same as a BCH code and
which circumvents the need for the extra compensation
factor.

Let n = n'n” where n' and »n" are relatively prime. Let
the code consist of all two-dimensional GF{(¢g)-valued time
functions ¢, i =0,- - -,n' = 1,i' =0, -, 0"~ 1,such
that the two-dimensional transform {C,} satisfies
c. =C, =C. =---=C,_, =0

11 22 33 2¢,2t

where the subscripts are modulo »" and modulo #’, re-
spectively. This is a linear r-error-correcting code which
is different from a BCH code in only a trivial way. The
rate and minimum distance are unchanged. The rate is the
same because of the following theorem.

Theorem 7  The two-dimensional conjugacy class of j

modulo »" and j modulo 1" has the same number of ele-

o

ments as the conjugacy class of j modulo n'n.

Proof Let rbe the smallest integer such that both 27j = j
modulo n" and 27j = jmodulo »” are satisfied. Let s be the
smallest integer such that 2% = j modulo n'n". Then 2'j =
an'n” + j,and 2°j = bn'n" + j for some « and for some b.
Obviously, the smallest such r and the smallest such s are
identical.

We show the distance of the code is at least 2¢ + 1 by
showing a decoding procedure for ¢ errors. Given a re-
ceived word with two-dimensional transform R,,, define
the syndromes S: = R od w. jmoawy J = 1507, 21. Use
the Berlekamp-Massey algorithm and a recursive exten-
sion to obtain S, 1, - - -, n;and set E; . o= S§,
j=1, -+, n Since n' and »" are relatively prime, every
syndrome finds its own place in E,,. We must prove that
this procedure gives the correct frequency domain error
pattern if fewer than ¢ errors occurred.

Butifa single,error takes place in row /, and column i,;,
then §, = (8"y™Y. The parenthesized term is a power of
the primitive element «, unique for each row and column
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pair. Thus, for v errors, the syndromes are of the form

_ j

S,= > Xl
k=1

where X, is a unique power of « for each error location
(A i,'(). Recursively extending these syndromes and fold-
ing them back into the two-dimensional spectrum gives
E,, if t or fewer errors took place. Finally,
Cy =Ry, — Ey,
and a two-dimensional inverse transform completes the
decoding.

Long codes in small fields

As the blocklength increases, BCH codes become unsat-
isfactory for several reasons. Not only does d/n vanish if
the rate is fixed, but at the same time the decoding com-
putations must take place in an ever larger field. The al-
ternant codes represent one way to modify BCH codes to
improve minimum distance and so offset the first dis-
advantage. The second disadvantage, however, has not
received much attention. We will develop this problem
here, and give some early steps toward a solution.

A practical decoder for a BCH code of blocklength n =
q" — 1 requires computations in GF(g™). If nis large, this
is a large Galois field. We will describe some codes of
large blocklength that can be decoded in a small Galois
field. Although the rate of these codes is inferior to BCH
codes of the same » and d, their lesser complexity may
make them the only affordable choice in some appli-
cations.

We will use a two-dimensional code with n = 2™ — 1
rows and the same number of columns. Hence, the block-
length of the code is #°, but we can hope to do all of the
decoding with computations in the field GF(2™).

Before defining the codes, we first discuss decoding
procedures and a two-dimensional version of the BCH
bound. The codes will be defined to fit the desired decod-
ing procedure. Let a single error occur at row / and col-
umn /', let the row locator be X, = o', and let the column
locator be ¥, = a". Then the syndrome S, is

S., =

v iy
Ji o« _XIYI’

and if v errors occur, then

Y’

XY

J
i k

Suppose the syndromes S, S

and v = r. Then

St S pare known

11’ ~12?

S =X Y + XY, + -+ XY,

v
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+ XY

v

2 2
S, =X Y+ X, ¥, +- -

]
°
[
Sl,Zt = leit + XZY:t teot Xlezft'

This set of equations is familiar from the decoding of a
Reed-Solomon code. There is one difference; here the Y,
need not be distinct because several errors might occur in
the same column. However, it is a simple matter to com-
bine the terms with the same Y, to obtain a similar set of
equations with smaller v and this smaller » also satisfies
v < t. Then, the Berlekamp-Massey algorithm followed
by recursive extension will yield §,,, §,,. - -+, §,,. Be-
cause errors can occur in the same column the procedure
does not uniquely give (X,, ¥,) k = 1, - - -, », but does
give partial information which can be used in decoding.

In general, we have the following.

Theorem 8 Suppose that v < r errors occur, and for any

integers m,, m;, a, a’, the syndromes S, ., .. .1 =
1, - -, 2t, are known. Then these uniquely define the syn-
dromes § [=1,---, n.

motal,my+a’l’

Proof

v v
+al '+all _ meyym aya\t
S o atmybart = 2 Xy = PG ¢ i Ve VXY
k=1 k=1
Let v be the number of distinct X; Y% over k and let
Y.,k =1,-- -, denote these. Let X,, denote the sum
of the factors multiplying ¥ ,: in each equation. (It is the
same for each [.) Then
— ¥ Y l = s e .
Smo+a[,m{)+a'1 - Z X"’Yk’ = 1’ ’ 2t’
k'=1
where the Yk, are now distinct and v’ = ¢. The Berlekamp-
Massey algorithm followed by recursive extension will
produce the remaining syndromes

v

_ v vl
Smo+al,mb+a'l - Z X 'Yk'
k'=1

Hence, by this theorem, any 2¢ syndromes in a straight
line (horizontal, vertical, or at any angle) can be extended
to all syndromes in that line. Further, because of con-
jugacy constraints, each of these new syndromes also de-
termines all syndromes in its conjugacy class. We will re-
turn to this point in the examples below.

Now let us see how the BCH bound generalizes to two
(or more) dimensions. Suppose that we had 2¢ contiguous
syndromes anywhere in the first row. These can be ex-
tended to give all syndromes in the first row. Similarly 2¢
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Figure 7 Two-dimensional parity frequencies.

contiguous syndromes anywhere in the second row can
be extended to give all syndromes in the second row. Fur-
ther, 2¢ contiguous syndromes anywhere in each of the
first 2¢ rows can be extended to give all syndromes in each
of the first 2¢ rows, and hence 2¢ contiguous syndromes in
every column. These can be extended to give all syn-
dromes and hence suffice to give the error pattern. The
simplest example is the case of a square array of 2¢ X 2¢
known syndromes. The general situation is as follows.

Theorem 9 Givenany a,a and m,, [=1,- - -, 21, the set
of (2£)* syndromes

=1, 2 0=1,,2

Sa(m,+l'),a’(ml+l')+l

uniquely determines the error pattern provided v < r er-
rors took place, and « is relatively prime to n.

Proof Apply Theorem 8 for each [ to determine the syn-
dromes S(l(m,+l’),a’(m,+l’)+l’ I = lL-yml=1,--- 2
Now, because !’ ranges over all » values, we can redefine
the index /' to absorb m, so that the known syndromes are

St v I'=1,---,m;l=1,---, 2t Apply Theorem 8
again for each /' to determine the syndromes S, .,..,» [ =
L« nyl =1, -+ n We can now redefine the in-

dex [/ to absorb 'l so that we know S, . " = I,
Ll =1, -, n. Since « is relatively prime to n,

the index «/' ranges over all n values. Hence, all syn-

dromes are determined, and so is the error pattern.

Based upon Theorem 9, for each a, a', m,, [ =1, - - -,
2¢, we can define a two-dimensional code ¥ as the set of
arrays c,, such that the two-dimensional transform satis-
fies
=0 [=1,---260 =128

almpHl) a (m+ 1)+

This code has minimum distance at least 2¢ + | provided
a is relatively prime to n.

We give an example of a binary code defined as a
square two-dimensional code in the field GF(2"); take r =
8, n = 255, so the blocklength is 255% = 65 025. We will
work through the selection of parity frequencies so that
all of the parity frequencies in the block j = I, - - -, 2f;
j'=1,-- -, 2tcan be computed. Theorem 9 then guaran-
tees that the remaining syndromes can be computed.

First take S, S,,, - - -, §, ,, as parity frequencies. Each
of these is in a different conjugacy class, and each class
has eight elements, so each of these parity frequencies is

equivalent to eight parity bits. These can be extended to

S”.,,j' =1, -+, n,if at most r errors occurred and then by
the conjugacy constraints S, ., S,., S,,, Sy and S 6
Jj =1, nare all known. Next take S,,, S,,, S,,. S,,,
Sy ©© s 8,5, as parity frequencies. This adds 11 x 8
more parity bits and determines Siie S 8o Sigs Sie0 J =
1, - - -, n. Continue in this way to choose all the parity

frequencies shown in Fig. 7. These determine the remain-
ing frequencies in the 2¢ X 2t corner and hence all of the
frequencies if at most ¢ errors occurred. Each parity fre-
quency is equivalent to eight parity bits. The code is a
(65 025, 64 337, 17) code. Its virtue is that it is easily de-
coded despite its blocklength.

We first describe a conceptual frequency domain de-
coder; later we simplify this by bypassing many of the
Fourier transforms.

Given a received word, compute its two-dimensional
Fourier transform. This requires 510 two-hundred-and-
fifty-five-point Fourier transforms. Perform a Berlekamp-
Massey algorithm along the first row, recursively extend,
and use conjugacy constraints to fill in rows 2, 4, 8, and
16. Do the same along the first column to find columns 2,
4, 8, and 16. Repeat for row 3, then column 3 and so on.
When 2t rows are complete, then all columns can be
found. An inverse two-dimensional Fourier transform
gives the error pattern.

A simpler procedure is as follows. Compute the two-
dimensional Fourier transform only at the 86 parity fre-
quencies. Each of these is an eight-bit number. Insert
these at the appropriate positions of a 16 by 16 array of
numbers representing the 16 by 16 frequencies in the up-
per left corner. Now decode the first row, extending syn-
dromes and using conjugacy constraints to fill in all pos-
sible entries in the 16 X 16 array. Take the inverse
Fourier transform of the first row. The nonzero locations
specify columns in the time domain codewords at which
errors occur. Each nonzero magnitude gives the sum of
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the row locators for errors in this column. Some columns
with three or more errors may not show up here because
the row locators add to zero. Discard the syndromes out-
side the 16 by 16 array.

Continue in this way with each odd numbered row of
the sixteen rows, when necessary decoding a column just
to obtain some needed syndromes through the conjugacy
constraints. Each of the sixteen rows, when the inverse
transform is taken, has nonzero values only in the eight
(or fewer) columns containing errors. Identify these eight
columns. In each column the transforms in the sixteen
rows provide sixteen magnitudes. One such set of magni-
tudes can be written in terms of the row error locators for
that column,

T,=X +X,+ - +X,

= 2 2 PN 2
T,=X'+X+ - -+ X,
L]
[
L]

_ vi6 16 16
T,=X +X°+ -+ X

where v is the number of errors in that column. Since v =
8, this set can be decoded in the same way to find the
rows in which this column has errors.

Altogether, this decoder requires the computation of
86 Fourier transforms, and 24 passes through the basic
decoding algorithm, each such pass consisting of a
Berklekamp-Massey algorithm, a recursive extension,
possible computation of conjugacy relations, and a 255-
point inverse Fourier transform. All data paths are eight
bits wide, Galois field computations are eight bits by eight
bits, and most of the computations simply re-exercise the
same procedures, and so can use the same hardware.
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