286

RAYMOND A. LORIE AND JORGEN F. NILSSON

Raymond A. Lorie
Jorgen F. Nilsson

An Access Specification Language for a Relational Data
Base System

We address the problem of executing high level language queries submitted to a relational data base system. As a step in
the process of constructing an “‘efficient’” compiler for a high level language we suggest the elaboration of an inter-
mediate level language acting as a target language for the optimizer part of the compiler. This language may be con-
ceived as one of several levels in a chain of abstract machines mapping a nonprocedural relational language onto
primitive data base access operations. It is our conjecture that the introduction of an access specification language

provides a conceptual platform facilitating the handling of the

Introduction

Several proposals for nonprocedural relational data base
query languages have emerged in the past years, ¢.g.
[1-3]. Besides the simple underlying data model the main
advantage claimed by the creators of these languages is
the fact that they are nonprocedural, since the access
paths to be utilized in the eventual execution of the query
are not specified explicitly in the language.

Evidently, the absence of access path specification
places a heavy burden on the implementors of a compiler
for such a language. The compilation algorithm must take
into account the characteristics of the various access
paths existing in the data base. Ideally, the compiler
should act as an automatic programmer who, according to
the physical characteristics of the data base, chooses an
overall access strategy to be expressed as a procedural
retrieval specification.

In this paper, however, we are not dealing with the opti-
mization problem as such. We present a proposal for an
intermediate language for a relational data base system.
This language, called the Access Specification Language
(AsL), allows for explicit and complete specification of the
access paths to be exploited in the computation of a

‘e

optimization’’ problem.

query. Thus, the language is procedural, yet it allows for
the full specification of accesses without introduction of
unnecessary details.

Since the language is intended to serve as an inter-
mediate language in the compilation of relational data
base expressions, ASL statements are represented by tree-
like structures. However, for expository reasons we pre-
sent an equivalent string language. There exists a close
resemblance between the syntax classes of the string lan-
guage and the nodes of the tree. In order to avoid con-
fusions in naming, the procedures of the string language
communicate among themselves via named arguments
and return variables, much as do subroutines in a classi-
cal programming language. The names of the arguments
and return variables are thus local names, whereas names
of data base objects (stored in the catalog) are global. In
the tree language the explicit data transfer amongst proce-
dures is carried out by a simple addressing scheme (bind-
ing).

This work was done in the context of developing a com-
piler for the relational language sQL [1] for System R [4].
System R is a prototype developed at the IBM Research

Copyright 1979 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM I. RES. DEVELOP. & VOL. 23 ¢ NO. 3 « MAY 1979

Laboratory in San Jose, CA; it is intended only as a ve-
hicle for data base research.

System R has two main components. The lower level
component is the Research Storage System (RSS) with its
corresponding interface (RSI). The upper level com-
ponent, called Relational Data System (RDS), maps a high
level SQL statement onto the RSS.

The issue of compilation versus interpretation has been
discussed in [5]. The role of the ASL would be the same in
a compiler or interpreter environment. Since a com-
pilation approach is used in System R, the RDS functions
are generally performed at compile time; the compiled
code for each data base statement is in fact a series of
calls to the RSI.

We shall first describe the target language of the com-
piler (the rRS1). Then the structure of the RDS will be shown
in order to place the ASL interface in its context. The Ac-
cess Specification Language will then be defined. A first
section will deal with queries involving a single relation.
The following sections will then show how several ASL
procedures are used together in the case of multirelation
and/or multiblock queries. Finally a last section will de-
scribe how ASL is used to specify the processing needed
for other SQL facilities like GROUP BY and HAVING.

Outline of Research Storage System (Rss)

This section describes the basic concepts of the RSS with-
out any implementation considerations. Minor deviations
have been introduced in order to simplify the description.
Furthermore, aspects of the access method that are not
essential to the purpose of this paper have been omitted.
Thus, the notions of transactions, locks and segments,
however important, are not covered.

® RSS objects
The RSS objects are:

1. Relations and lists constituting tables of data.

A table is a sequence of tuples. Each tuple is an or-

dered sequence of fields, each field containing a single

data value. The values of a field from all tuples of a

table constitute a domain. When there is no ambiguity

we do not make the distinction between field and do-
main. Relations and lists differ in the access opera-
tions as explained below.

2. Two types of access structures for relations:

a. The images (indexes) give the illusion that the
tuples of the relational table are sorted on the im-
age key domain(s).

b. The binary links make associations between tuples
in two relations. A link is a set of disjoint link-oc-

IBM J. RES. DEVELOP. o VOL. 23 & NO. 3 e MAY 1979

currences, each linking one tuple from the parent
relation to an arbitrary number of tuples from the
child relation.
3. Scans.
The scans support the access of relations and lists on a
tuple-by-tuple basis. A scan is first open and then a
NEXT operation is invoked to return the next tuple in
the scan.

An RsS data base is a collection of named relations,
lists, images and binary links with which are associated
identifiers called respectively RID, LID, 1ID and BLID.

Relations, lists, links and images may be created and
dropped by programs accessing the data base. The cata-
log part of the RSS data base (which we are not going to
describe) contains the attributes of these objects. By con-
trast, the scans used for accessing the tuples are associ-
ated with the accessing programs and are therefore tem-
porary. A scan (identified by a scan identifier, siD) is like
an incarnation of a coroutine, offering a set of operations
corresponding to the type of the scan. The scans come in
four types: relational scans, list scans, image scans and
binary link scans.

The order of the tuples retrieved through a relational
scan is arbitrary (dependent on the physical order, which
is subject to change). In a list the order of the tuples in the
retrieval is that of the original insertion. A special func-
tion allows for the production of a sorted list. The order of
the tuples in a link occurrence is the parent followed by
the children in arbitrary but invariant order.

With each tuple in a given relation is associated a
unique address called the tuple identifier (TID). RSS pro-
vides operations for the direct addressing of a tuple using
the TiD. In this context, however, we are dealing with
TID's solely as an internal concept in scan operations.

® RSS operations
The scan operations are OPEN, NEXT, PARENT (binary link
scan only), CLOSE.

OPEN:

The OPEN operation creates a scan and returns the SiD
of the scan.

Parameters:
Relational scan: RID
List scan: LID

Image scan: RID, IID (the identifier of an image on the
relation RID) and a list of starting key values for the
key domains in the image together with a match cri-

287

RAYMOND A. LORIE AND JORGEN F. NILSSON

288

terion for the key values =, >= or >. A special
match criterion, first, implies complete scan (key
values ignored, hence).

B-link scan: BLID, SID. The SiD must identify an open
scan on one of the two relations associated with the
binary link, thus providing a TID identifying the link-
occurrence to be scanned. The scan is positioned be-
fore the first child tuple.

A scan object, once created, comprises internally an
identifier of the data base object from which tuples are to
be extracted (RID, LID, BLID on RID’s, IID on RID) and a
position on the object. In addition an image scan com-
prises a start key value used as starting point for the re-
trieval through the NEXT operation. At the opening, the
scan is positioned before the first tuple of the object. The
NEXT operation advances the scan to the next tuple of the
object which fulfills the search predicates (see below) and
returns the tuple value. In a sequence of NEXT operations
on a scan, a tuple of the associated data object is visited at
most once. Several scans may coexist on the same data
base object.

NEXT:

The NEXT operation repositions a scan and returns a
tuple from the relation or list associated with the scan
(or a null value indicating that the scan has been ex-
hausted).

Parameters: SID, a search predicate and some scan type
dependent parameters described below. The search
predicate is a normalized predicate (disjunctive normal
form) composed of atomic comparison formulae:

search-predicate ::= clause { OR clause }

clause ::= comparison { AND comparison }
comparison I = pIDrelat-op constant

relat-op t=Zl<=>>==1=

DID 2= domain identifier

(unique inside relation)

(The symbols [] indicate an optional occurrence, { }
indicate zero, one or more occurrences.) In addition,
for the image-scan a list of stop key values may be pro-
vided together with a stop criterion: <, <=, =, none.

PARENT: (for binary links)
Parameters: SID, search-predicate

The scan is positioned on the parent tuple of the current
link-occurrence and the tuple value is returned pro-
vided that the search predicate is true for that tuple.

CLOSE:

Parameter: SID.

RAYMOND A. LORIE AND JORGEN F. NILSSON

The scan object SID is dropped; i.e., no references in-
volving SID can be made to the data base.

CREATE and DROP relations, lists, images and links.
INSERT tuple into relation or list.
DELETE tuple from relation.
BUILDLIST:
Parameters: SID, search-predicate, list-sort-spec.

Produces a list of sorted tuples from a collection of
tuples indicated by the siD of an open scan and a search
predicate. The fields of the source table to be included
in the list are indicated together with the sort attribute:
ascending or descending. In addition, if SID identifies an
image scan, a key value list and a stop criterion (<,
<=, =, none) may be provided. Duplicate tuples may
optionally be removed (UNIQUE attribute). The opera-
tion returns the LID of the target list of the sort opera-
tion.

Outline of the Relational Data System

Figure 1 represents schematically the overall structure of
the rRDS. The analysis phases imply classical compiler
transformations and need no comments. Prior to the se-
lection of an access strategy in the optimization phase, a
“‘normalization’” is performed on the internal representa-
tion of the query, involving integration of views and syn-
onyms and conversion of some queries containing sub-
queries into queries containing a join but no subquery. In
principle, the next phase of the optimization process
takes into consideration potentially all ASL programs
which would yield the answer to the query. The one esti-
mated to be the most efficient in terms of CpuU time and
data base access operations is selected for synthesis. In
the synthesis phase ASL is used to specify the procedure
to be followed in order to produce the answer to the

query.

Access Specification Language

ASL is introduced in a stepwise manner, starting with
simple SQL examples and correspondingly simple ASL
programs, and ending up with ASL constructs covering es-
sentially all of SQL.

Syntactically an AsL program (in the string form) con-
sists of procedures producing the query table result
through mutual calls.

ASL-program ::= ASL-proc { ASL-proc }

The AsL procedures of a program communicate solely
by explicit references (generally via a CALL) to a proce-

IBM J. RES. DEVELOP. @ VOL. 23 ¢ NO. 3 ®» MAY 1979

dure name and parameter/result transfer, therefore pro-
viding a decomposition of the overall task into rather in-
dependent units.

Single relation queries

® Scan procedures
A scan procedure is provisionally defined as follows:

scanproc =
SCANPROC scanprocid [(param {, param }) |;
{ temp-obj-defn ; }
SCAN scanspec [WHERE predicate |;
[IF restriction THEN]
RETURN (ret-expr {, ret-expr });
END;

Initially the scan managed by the procedure is inactive.
When the procedure is invoked for the first time the pa-
rameters are transferred, and the temporary objects that
are defined in the procedure are evaluated. Thereafter, a
scan is opened on a permanent data base relation or on
one of the temporary objects just evaluated and a tuple
value is returned. Every time the procedure is reinvoked,
a tuple value is computed and returned until the scan is
exhausted. The scan is then dropped.

Let us now analyze the various statements inside a
scan procedure.

temp-obj-defn 1=

LET RELATION relatid (domid {, domid }) =

buildprocid [(id {,id })]l
(id{,id}) =

buildprocid [(id {.id })]!
CREATE IMAGE imageid ON relatid FOR domid |
LET (id {,id }) = buildvalueprocid [(id {,id })]

LET LIST listid

The statements create respectively a relation, list, image,
or scalar(s). These objects may be referred to in the pro-
cedure in which they are embodied using the established
names (relatid and domids in the LET statement, for ex-
ample). The temporary objects are dropped when the in-
carnation of the procedure is terminated (i.e., at the ex-
haustion of the scan). For the creation of the relation or
list the tuples to be inserted in the temporary objects are
defined in a build procedure identified by buildprocid (see
section ‘‘Build procedures’’). Scalar values are defined
by invoking a build value procedure; such scalars are
used in the implementation of subqueries (see section
*‘Sub-queries’’).

scanspec =
relatid { image-spec | link-spec } | listid

A scan specification specifies the object to be scanned
and the type of scan: relational-, image-, link- or list-scan.

IBM J. RES. DEVELOP. e VOL. 23 @ NO. 3 ¢ MAY 1979

RDS
SQL

r parser

l name resolution

analysis

DB Catalog

optimization

{ normalization

permutation,’ -—
cost estimate

synthesis

l ASL-generation —I

ASL

r code generation J

RS1
I RSS |

Figure 1 Structure of the Relational Data System (RDS).

image-spec I =
USING IMAGE imageid [FROM constant][TO constant] |
USING IMAGE imageid AT constant {, constant }
link-spec ::=
USING LINK linkid (PARENT | CHLDRN) OF scanprocid

The link-occurrence to be scanned is specified implicitly
as the scan position of the newest incarnation of the in-
dicated scan procedure.

The WHERE clause is used to introduce the search pred-
icate, which can be mapped directly onto the RSS search
predicate. The logical restriction of the IF statement is
discussed in section ‘‘Sub-queries.”’ Note, however, that
this restriction predicate allows for the specification of
predicates which cannot be expressed by an RSS search
predicate. It should also be noted that any time a constant
is shown in the syntax it can also be a value passed as a
parameter.

ret-expr arith-expr | aggr-expr
arith-expr :: = arithmetic expression
aggr-expr = aggr-fct-id (arith-expr) | COUNT

The aggr-fct-id’s identify aggregate functions like aver-
age, maximum, minimum and sum. COUNT is an argu-
mentless function returning the number of tuples in the
scan.

289

RAYMOND A. LORIE AND JORGEN F. NILSSON

(main)

scanproc

restrict

Figure 2 Scan procedure on relation R.

It is convenient to use a simple graphical representation
to show the structure of the main ASL constructs, omitting
all details. Figure 2 represents a scan procedure: The up-
per box represents the definition of temporary objects
while the following ones represent the scan and the re-
striction part of the procedure. The lower box is used for
a construct which will be explained later. The tag (main)
indicates that this scan is seen by the caller of the AsL
interface.

In the examples given throughout the paper, most of
which are taken from [1], we use the following simple
data base:

EMP (EMPNO, ENAME, SAL, DNO, JOB, AGE, MGR)
DEPT (DNO, DNAME, LOC)

Example 1

SELECT NAME
FROM EMP
WHERE DNO = 50

If arelation scan is used in connection with a search pred-
icate the ASL program becomes

SCANPROC A;
SCAN EMP WHERE DNO = 50;
RETURN (NAME);
END;

This procedure (imagine it is called from the environ-
ment) specifies a relational scan to be opened on EMP us-
ing the search predicate DNO = 50. The scan procedure A
performs an RSS NEXT operation every time it is invoked
and returns the NAME field of each tuple.

Utilizing an image on DNO the program becomes

SCANPROC A;
SCAN EMP
USING IMAGE EMP_DNO AT 50;
RETURN (NAME);
END;

Such a procedure can be easily compiled as shown in [5].
290 The next paragraph shows the object program in a PL/-

RAYMOND A. LORIE AND JORGEN F. NILSSON

like language. STATUS is a variable permanently associ-
ated with the scan procedure. It is initialized to ‘IN-
ACTIVE',

PROC A}
DCL STATUS STATIC INIT(INACTIVE");
IF STATUS = ‘INACTIVE' THEN

DO; sid = OPEN-REL-SCAN (EMP);
STATUS = ‘ACTIVE';
END;
tuple = NEXT(sid, <DNO, =, 50>);
IF tuple = NULL THEN
DO; CLOSE (sid);
STATUS = ‘INACTIVE’;
RETURN (NULL);
END;
RETURN (tuple.NAME);
END;

Example 2

SELECT NAME, DNO
FROM EMP
ORDER BY DEPT

If there exists an image on the column DNO of the relation
EMP the following ASL procedure could be used:

SCANPROC A;
SCAN EMP
USING IMAGE EMP_DNO;
RETURN (NAME,DNO);
END;

If such an image does not exist one needs to sort the re-
sult and the scan will be done on the temporary list con-
taining the sorted tuples. The following construct will be
used to that effect.

® Build procedures

buildproc :: =

BUILDPROC buildprocid [(param {, param })];
{ temp-obj-defn ; }
SCAN scanspec [WHERE search-predicate |;
[IF restriction THEN]
INSERT INTO (RELAT | LIST):

id {,id } [SorRTEDBYid {,id } [UNIQUE] |;

END;

Syntactically the build procedure is like the scan proce-
dure except for the INSERT clause. The semantic dif-
ference is that the build procedure does not return indi-
vidual tuples during a scan, but rather accumulates the
whole result in an object, the Rss identifier of which is
returned to the invoker. The INSERT statement specifies
the type of the object to be created (relation or list) and
the names to be given to its columns.

IBM J. RES. DEVELOP. e VOL. 23 & NO. 3 ® MAY 1979

Figure 3 shows the graphical representation of a scan
procedure invoking a build procedure producing the list
L. Note the meaning of the arrow originating in the upper
box of the scan procedure: Before opening the scan on
the list L the list is constructed by invoking the build pro-
cedure. This procedure is not seen by the caller of the ASL
interface and is tagged (sub) by analogy to subroutines.

The following example shows how a build procedure is
used for the compilation of an SQL query with the ORDER
BY option.

Consider again example 2. Tuples are ordered by pro-
ducing a temporary list of sorted tuples. Since the pro-
gram is supposed to deliver the result on a tuple-by-tuple
basis the list is scanned by the (main) procedure A.

SCANPROC A;
LET LIST L(NM,DEP) = B;
SCAN L;
RETURN (NM,DEP);
END;
BUILDPROC B;
SCAN EMP;
INSERT INTO LIST: NAME,DNO SORTED BY DNO;
END;

The LET statement in procedure A invokes B, which re-
turns the RsS lid of the list created in B. The list is assigned
the local name L with domains NM,DEP for reference in A.

The compilation would produce the following program:

PROC A;
DCL STATUS STATIC INIT(INACTIVE');
IF STATUS = ‘INACTIVE’ THEN
po; lid = B;
sid = OPEN-LIST-SCAN(lid);
STATUS = ‘ACTIVE';
END;
tuple = NEXT (sid);
IF tuple = NULL THEN
DO; CLOSE(sid);
STATUS = ‘INACTIVE’;
END;
RETURN (tuple);
END;
PROC B;
sid = OPEN-REL-SCAN(EMP);
lid = BUILDLIST(sid ,NM,DNO,increasing DNO);
RETURN(lid);
END;

IBM J. RES. DEVELOP. & VOL. 23 & NO. 3 ¢ MAY 1979

{sub)

buildproc
R

(main)

scanproc

Figure 3 Scan and build procedures.

Collaborating AsL procedures

We have introduced the two basic building blocks of the
ASL and we now turn to the more general case of queries
involving more than one relation.

Basically, the FROM clause of a SELECT statement in
SQL specifies a Cartesian product subject to a restriction
in the WHERE clause. (Frequently these restrictions are
such that the Cartesian product becomes an equi-join.)

Interaction among ASL procedures for the specification
of joins is specified via a new ASL statement: FOREACH
TUPLE. The definition of the scanproc (and buildproc) is
completed as follows:

scanproc =
SCANPROC . . .

[IF restriction . . .]
FOREACH TUPLE [id {, id } UNIQUE];
[LETid {,id } = scanprocid [(id {,id })];]
RETURN . . .
END;

Suppose a first scan procedure, say S, retrieves, upon
invocation, a tuple, say ¢, fulfilling the search predicate of
the WHERE clause and the restriction of the IF clause. If
the FOREACH TUPLE statement is present, the LET state-
ment specifies a scan procedure, say S’, which is itself
invoked with parameter values corresponding to the cur-
rent tuple 7. The scan procedure s’ returns a tuple ¢'. The
fields of both r and +' may participate in the return ex-
pressions specified in the RETURN clause of s. A sub-
sequent invocation of s will not advance the scan defined
inside s but will advance the scan inside s’ and return a

291

RAYMOND A. LORIE AND JORGEN F. NILSSON

(main) (co) thereby avoiding the development of a full Cartesian
product when only a small portion of it is of any interest.

scanproc scanproc
The object programs for such a pair of procedures ap-

pear as follows:

PROC A;
DCL STATUS STATIC INITCINACTIVE');
IF STATUS = ‘INACTIVE' THEN
DO; sid = OPEN-IMAGE-SCAN(DEPT.DNO, ' Evanston’);
STATUS = *ACTIVE’;
X: tuple = NEXT (sid);
IF tuple = NULL THEN
DO; CLOSE(sid);
STATUS = ‘INACTIVE’;
END;

Figure 4 Join using FOREACH TUPLE.

new tuple ¢" yielding a composite tuple ¢, ”. Only when
the scan in S’ is exhausted is the scan in s advanced. For
each new tuple in § the scan procedure s’ is reinvoked
with new parameter values and the temporary objects are
then reevaluated. The UNIQUE attribute can be used only
if the scan is done along an access path (list or image)
which insures that tuples are ordered on the columns
specified with the UNIQUE attribute. (This feature is used
in queries involving GROUP BY.)

END;
tuple’ = B(tuple.DNO);
IF tuple’ = NULL THEN GO TO X;
RETURN (tuple’ .ENAME, tuple.DNAME));
END;
PROC B(DNUM);
DCL STATUS STATIC INITCINACTIVE');
IF STATUS = ‘INACTIVE’ THEN
DO; sid = OPEN-IMAGE-SCAN(EMP,DNO,DNUM);
STATUS = ‘ACTIVE’;
END;
Example 3 tuple = NEXT(sid);
IF tuple = NULL then
DO; CLOSE(sid);
STATUS = ‘INACTIVE’;
END;
RETURN(tuple);
END;

Figure 4 represents graphically such a join mechanism.
(co) is used by analogy to coroutines.

The principle is illustrated below for an equi-join be-
tween two relations.

SELECT ENAME, DNAME

FROM EMP, DEPT

WHERE EMP.DNO = DEPT.DNO
AND LOC = ‘Evanston’

Suppose there exists an index on the LOC domain of
DEPT and also an index on the DNO domain of the EMP
relation. The optimizer may have decided to rearrange
the (virtual) Cartesian product generation, exploiting the
EMP relation through the DEPT relation:

Note that the AsL definition for procedure B specifies
that the index be used. Tt could also have specified that a
link to be used (if there is a link from DEPT to EMP). The
scan procedure B would then become

SCANPROC A; ,
. . SCANPROC B';
SCAN DEPT USING IMAGE DEPT_LOC AT ‘Evanston’;
SCAN EMP USING LINK DEPT_EMP CHILDRN OF A;
FOREACH TUPLE
RETURN(NAME);
LET ENAME = B(DNO); END

RETURN(ENAME,DNAME);
END;
SCANPROC B(DNUM);
SCAN EMP USING IMAGE EMP__DNO AT DNUM;

The explicit reference to the procedure name A in B’
above is not an invocation of A; it only indicates the link
occurrence on which the link scan in B’ is to be opened.

RETURN(ENAME);
END;
General joins
It is essential to note that for each tuple found by scan- Having shown how simple SQL queries can be expressed
proc A the scanproc B is activated as often as needed to in terms of ASL programs and how the latter programs can
exhaust its scan. Only then is the scan in A advanced. be compiled into RSS operations, we now take up the
Also, every scanproc considers only the tuples that sat- problems associated with the compilation of SQL into ASL
292 isfy the predicates local to the corresponding scan, at a more abstract and general level.

RAYMOND A. LORIE AND JORGEN F. NILSSON IBM }. RES. DEVELOP. & VOL. 23 & NO. 3 « MAY 1979

Rather than making an account of a complete com-
pilation algorithm we hint at some underlying principles
in an optimizing compiler, providing at the same time the
background and justification for the introduction of par-
ticular linguistic notions in ASL.

Conceptually, an SQL query is decomposed into
(sub)query units, called SELECT-blocks, each of which
consists of the SELECT and FROM clause, possibly with a
WHERE, GROUP BY, HAVING or ORDER BY clause.

The process for computing general joins can be de-
scribed by using the scan procedures and build proce-
dures introduced in the previous section. Let us first look
at a case in which no intermediate result needs to be
created.

For each SELECT block participating in a query the opti-
mizer has to decide as to the order in which the virtual
Cartesian product of the participating relations must be
built (see example 3). Likewise the optimizer has to select
among the various access paths such as images versus
links for the individual relations of the chosen per-
mutation.

Assuming that the optimizer part of the compiler is able
to carry out this task utilizing suitable cost estimate func-
tions, the generation of ASL programs is, in principle,
straightforward: Let R, R,, - - -, R, be the original se-
quence of relations in a SELECT-block and R, R,. - - -, R,,
the permutation chosen in the cost evaluation process.
The ASL specification consists of a chain of scan proce-
dures, each procedure invoking the next one on the chain.
The relation R, is scanned. For each tuple retrieved rela-
tion R, is scanned. For each composite tuple R, , R, the
relation R, is scanned etc. This generalizes the concept of
collaborating ASL procedures. At any point in the process
one can consider that we are joining a virtual composite
scan (for example R,, Ry, " Ry with the next scan
R, 10 simplify the notation let us rename R, R, - - -
asR.R, -

As far as the Boolean expression of the query WHERE
clause is concerned, individual conjuncts are to be dis-
tributed along the chain of scan procedures so that each
conjunct contains references to data obtained in its own
scan procedure or in any scan procedure to the left.

Some of the predicates may be integrated into and ex-
ploited directly in RSS operation(s); this is often the case
for equi-join predicates when links and images can be
used. The remaining distributed predicates of the original
WHERE clause form the restriction clause of the ASL pro-
cedures.

iIBM J. RES. DEVELOP. & VOL. 23 4 NO. 3 ¢ MAY 1979

(main) (co) (co)

-
scanproc scanproc scanproc
Rl RZ Rn

Figure 5 Join specification.
(sub)
- L:
buildproc
R.
i
——
scanproc
L

Figure 6 Using a temporary relation.

This decomposition scheme applies recursively to
SELECT blocks participating in Boolean expressions as
subqueries of the major query. Hence, restriction clauses
may comprise references to a chain of ASL procedures, as
we shall see later when explaining the restriction clause in
detail.

General joins can sometimes be produced more effi-
ciently if intermediate results are created. In such cases
build procedures are used in connection with scan proce-
dures. The generation of temporary objects is potentially
worthwhile (the cost estimator has to decide) in two situa-
tions.

a. The cardinality of one of the factor relations, say R,
can be diminished using a local predicate,i.c., a predi-
cate referring to columns of the relation R, only. A
build procedure is first used to create a temporary re-
sult (a list, for example) and then a scan procedure is
used to scan the temporary object. If such a method is
used for Rr,, Fig. 5 is altered as shown in Fig. 6.

b. It may be advantageous to compute a join by using a
mechanism resembling a merge of ordered lists. As-
sume both relations are ordered on the join domains.
Then the first relation is scanned normally. For every
tuple returned by the first scan the group of matching
tuples in the second relation is scanned (the tuples in

293

RAYMOND A. LORIE AND JORGEN F. NILSSON

294

(sub) (co)
[:
- .
buildproc scanproc
R, R,
{main) (co)
— -
scanproc scanproc
Rt
Figure 7 Intermediate result for a join.

the group are contiguous because of the ordering). The
top position of a group is remembered so that the same
group can be efficiently scanned again for the next
tuples in the first scan if they happen to have the same
value(s) for the join domain(s). Generally, lists must
be built in order to provide the relevant orderings. For
example, if we refer to Fig. 5, the method can use a
merge to join the composite scan, say (R, R,, = * -, R),
with the relation R,, . This can be done only if the
composite scan returns the tuples in the appropriate
order. If this is not the case the composite tuples
should be materialized before the join with R, can be
performed. Again a build procedure is used to create
the sorted intermediate result. This build procedure
will itself invoke all scan procedures needed to obtain
the composite tuples. Figure 7 illustrates this case.

Sub-queries

The restriction clause in the scan (or build) procedure has
been introduced earlier. We now show the full power of
the restriction clause in connection with the compilation
of subqueries.

1= (restriction bool-op restriction)
I NEG restriction | pred-block

restriction

bool-op ©I= AND!OR

pred-block ::= ({temp-obj-defn ; } comparison)
comparison :: = val-comp | set-comp

val-comp = arith-expr comp-op arith-expr
comp-op =<|>I<=|>=|=]|71=
set-comp = ident set-op ident

set-op != SUBSET | PROPSUBSET | EQSET
ident 2= relation-id | list-id

A predicate block (pred-block) in a particular scanproc
Sis used instead of a comparison only when one (or both)
of the operands of the comparison is the result of a sub-

RAYMOND A. LORIE AND JORGEN F. NILSSON

query the result of which depends on the tuple retrieved
in this scanproc s (this case is called correlation in SQL). If
the subquery is not correlated, then it can be evaluated as
a definition at the top of the scanproc s, or even before
the scanproc s is invoked.

Example 4
Consider the following example with a correlated sub-

query:

SELECT NAME

FROM EMP X

WHERE SAL > SELECT AVG(SAL)
FROM EMPY
WHERE X.DNO = Y.DNO

In a straightforward computation of the above query a
scan would be defined on the relation EMP. Then for each
tuple returned by that scan another procedure would be
invoked which should return as a scalar value the average
salary in the department. In order to distinguish between
a scan returning a single tuple as result of an aggregation
function and a scalar, a new construct called build value
procedure is introduced. It is syntactically similar to a
scanproc retrieving a single tuple.

The ASL program would be as follows:

SCANPROC A;
SCAN EMP
IF (LET AVGSAL = B(DNO) ; SAL > AVGSAL) THEN
RETURN(NAME)
END;
BUILDVALUESCAN B(DNUM);
SCAN EMP;
IF DNO = DNUM THEN
RETURN (AVG(SAL)):
END;

The BUILDVALUE procedure behaves exactly as a scan
procedure except that it returns a value rather than a
scan.

Figure 8 represents subqueries graphically: (a) illus-
trates a case without correlation: the value of the sub-
query can be evaluated once at the beginning of the
query; (b) illustrates a case with correlation: the subquery
is called from within the restriction clause and therefore
evaluated once for each tuple in the scan.

Set comparison
Set comparison can occur in the restriction clause. The
following shows how ASL handles these comparisons.

Example
Find those departments in which all job types are repre-
sented:

IBM J. RES. DEVELOP. ® VOL. 23 ® NO. 3 ® MAY 1979

SELECT DNO

FROM EMP X

WHERE (SELECT UNIQUE JOB
FROM EMP)

(SELECT UNIQUE JOB
FROM EMP.Y
WHERE Y.DNO = X.DNO)

A possible ASL specification is as follows:

SCANPROC A;
LET LIST ALLJOBS(JOB) = B;
SCAN EMP;
IF (LET LIST DNOJOBS(JOB) = C(DNO);
ALLJOBS EQSET DNOJOBS) THEN
RETURN(DNO):
END;
BUILDPROC B;
SCAN EMP;
INSERT INTO LIST: JOB SORTED BY JOB UNIQUE;
END;
BUILDPROC C(DNUM);
SCAN EMP WHERE DNO = DNUM;
INSERT INTO LIST: JOB SORTED BY JOB UNIQUE;
END;

The set comparison is carried out as a comparison of
sorted lists, in a fashion similar to merging. Alternatively,
one may choose to perform the set comparison by com-
paring appropriately indexed relations (using two parallel
scans on the comparable key domains of the images):

SCANPROC A';

CREATE IMAGE 11 ON EMP FOR JOB;

SCAN EMP;

IF (LET RELAT DNOJOBS(JOB) = B(DNO);
CREATE IMAGE I2 ON DNOJOBS FOR JOB;
11 EQSET I12) THEN

RETURN(DNO);

END;

Queries with GROUP BY / HAVING clauses

GROUP BY queries lead to ASL programs very similar to
those obtained for queries with subqueries (see example
4).

Example 5

SELECT DNO, AVG(SAL)
FROM EMP
GROUP BY DNO

leads to the following ASL program (note how duplicates
are eliminated:

iBM J. RES. DEVELQP. ® VOL. 23 @ NO. 3 « MAY 1979

(sub) o (sub)

-proc -proc¢

{main) (main)

scanproc scanproc

(a) (b)

Figure 8 Specification of subqueries: (a) without correlation;
(b) with correlation. (**-pro¢’’ stands for buildproc or buildvalue-
proc.)

SCANPROC A;
LET LIST L(DNO) = B;
SCAN L;
FOREACH TUPLE
LET AVGSAL = C(DNO);
RETURN (DNO, AVGSAL);
END;
BUILDPROC B;
SCAN EMP;
INSERT INTO LIST: DNO UNIQUE;
END;
SCANPROC C(Dy;
SCAN EMP WHERE DNO = D;
RETURN (AVG(SAL));
END;

It is often efficient to compute GROUP BY queries by
building a list of tuples sorted on the group column(s).
Such a strategy uses the UNIQUE attribute of the FOREACH
statement; it is expressed as follows:

SCANPROC A;
LET LIST L(DNO,SAL) = B;
SCAN L;
FOREACH TUPLE DNO UNIQUE

LET AVGSAL = C(DNO);

RETURN (DNO, AVGSAL);
END;

BUILDPROC B;
SCAN EMP;
INSERT INTO LIST: DNO,SAL SORTED BY DNO:
END;

SCANPROC C(D);
SCAN EMP WHERE DNO = D;
RETURN (AVG(SAL));
END;

205

RAYMOND A. LORIE AND JORGEN F. NILSSON

(sub) (co) (co)

LZ
buildproc SCanproc scanproc
R (sub)
(sub) 1 2 3 .
’—I: buildproc —
L, 3) 4) (5)
(co) (co)
. ©)
(2) SCANProc SCAnPToc
R, R
. 7 (8)
(main),
SCANPTOC
! (co)
4}
(9)

Figure 9 A complex ASL specification.

Also, the more general case of a combined GROUP BY /
HAVING query can be handled with the constructs pre-
viously described. We give a generic example:

Example 6

SELECT f(COL1,COL2)

FROM R

WHERE predi

GROUP BY COL1,COL2

HAVING pred2(aggr-func(coL3))

A possible ASL program is as follows:

SCANPROC A;
LET LIST L(COL1,COL2) = B;
SCAN L;
IF (LET AGGRID = C(COL1,COL2);
pred2(AGGRID) THEN
RETURN(f(COLI1,COL2));
END;
BUILDPROC B:
SCAN R;
IF predi THEN
INSERT INTO LIST: COL.1,COL2
ORDER BY COL1,COL2 UNIQUE;
END;
BUILDVALUEPROC C(P1,P2);
SCAN R;
IF (COL1 = P! AND COL2 = P2) THEN
RETURN(aggr-func(CoL3));
296 END;

RAYMOND A. LORIE AND JORGEN F. NILSSON

Buiiding of asL structures for complex queries

The constructs that have been presented can be used as
building blocks to develop arbitrarily complex ASL speci-
fications. Figure 9 gives schematically an example of such
a complex specification.

Blocks 1 and 9 implement a GROUP BY as shown in ex-
ample 5 (second strategy). In order to use that strategy a
sorted list L, must be produced. This is done by a build-
proc (2) which inserts in a list (and sorts) the tuples ob-
tained by joining the composite tuples stored in L, with
tuples from relation R, (block 7) and R, (block 8). L, is built
by scanning R, (block 3), joining them with tuples in R,
and R, using a complex join predicate involving a sub-
query correlated with values in R, R,, R, (block 6).

Insert, delete, update

In the implementation of System R ASL has been extended
to support not only queries but deletions, updates and in-
sertions. The principle of these extensions is simple: The
RETURN statement in the (main) scan procedure is re-
placed by a delete or update statement or by an insert
statement which specifies that the returned tupies must be
inserted into a previously defined relation. These exten-
sions could also be used to implement set operations like
union and difference.

Concluding remarks

A general scheme for the compilation of SQL into primi-
tive data base operations has been established in the form
of a language which can be used as target in the decompo-
sition of arbitrarily complex queries. The decomposition
has been illustrated by outlining the general principles
and supporting them with examples.

It should be mentioned here that the idea of decomposi-
tion has been used in other systems. Let us discuss the
approaches used in [3] and [6].

Consider, for example, the sample query used in [3] to
illustrate the optimization in INGRES. The sample data
base is similar to the one used throughout this paper and
the query consists of finding the employees over 40 work-
ing at a given location and who make more than their
managers. In [3] it is shown how such a query is decom-
posed into four simple ones, three of them using tempo-
rary files T, T, and T

1. store in T, the departments at the given location;

2. store in T, the employees over 40;

3. for each value x of a department in T, construct a T,
containing the employees in T, who work in depart-
ment x;

4. for each tuple in T, use the EMP file to find out if his
salary is larger than the salary of his manager.

IBM J. RES. DEVELOP. e VOL. 23 @ NO. 3 & MAY 1979

Such a decomposition resembles the decomposition
used in ASL. It is, however, more algebraic and has the
disadvantage of requiring temporary files to be built at
each step. In ASL the same strategy can be expressed—
and we leave this as an exercise for the reader. But ASL
allows many alternative strategies to be specified. The
following one, for example, does not require any inter-
mediate file:

1. fetch a department;

2. for each such department find the employees over 40
that work in that department;

3. for each such employee find the salary of the manager
and compare it with the salary of the employee.

We are not saying that such a strategy is better but only
showing the flexibility of AsL for expressing a wide vari-
ety of strategies. Note also that AsL allows for the com-
plete specification of the access path to be used in the
simple query.

In PRTV [6] the result of the optimizer is an algebraic
expression with operators like projection, join, selection
etc. Such an expression is then given as input to the inter-
preter. This approach is again algebraic and intermediate
results are created. In ASL the strategies are described at
alower, more procedural level. This allows for describing
how a join is to be computed rather than considering the
join as a basic operator.

These comparisons emphasize the flexibility of the ASL
approach. It should also be clear, for example, that it is
possible to write an ASL program using a relation which
does not appear in the query itself. Such a relation, if
properly indexed, may provide an efficient access path
into a relation of the query, e.g., if the two relations are
coupled by an appropriate link. We realize that certain
limitations exist in the current form of asL. For example,
it does not allow for the specification of some join meth-
ods proposed in (7], based on the manipulation of lists of
tuple identifiers. We believe, however, that our basic de-
composition scheme can readily be extended to support
some of these most sophisticated strategies.

Finally, although we have addressed the problem of
compiling SQL 2 in particular, the decomposition prin-
ciples outlined as well as the linguistic form of ASL are
believed to be of general interest in the context of rela-
tional query languages.

Acknowledgments
The authors acknowledge the support of W. F. King and
D. Chamberlin. Also we are grateful to M. Astrahan and

IBM J. RES. DEVELOP. ® VOL. 23 # NO. 3 e MAY 1979

P. Griffiths for their discussions and suggestions leading
to clarification of some points throughout the preparation
of this paper.

Appendix: astL syntax
ASL-program ::= scanproc { scanproc | buildproc |
buildvalueproc }
scanproc =
SCANPROC scanprocid [(param {, param })] ;
{ temp-obj-defn ; }
SCAN scanspec [WHERE predicate J;
[1F restriction THEN]
FOREACH TUPLE | id {, id } UNIQUE];
[LETid {,id } = scanprocid [(id {,id })];]
RETURN (ret-expr {, ret-expr });
END;
buildproc :: =
BUILDPROC buildprocid [(param {, param }) |;
{ temp-obj-defn ; }
SCAN scanspec [WHERE predicate];
[1F restriction THEN |
FOREACH TUPLE| id {, id } UNIQUE],
[LETid {,id } = scanprocid [(id {,id})]]
INSERT INTO { RELAT | LIST):
id {,id } [SORTEDBY id {, id } [UNIQUE | J;
END;
buildvalueproc :: =
BUILDVALUEPROC . . . same as SCANPROC . . .
temp-obj-defn =
LET RELATION relatid (domid {, domid }) =
buildprocid [(id {,id })]I
LET LIST listid (id {,id }) =
buildprocid [(id {,id}) 1!
LET (id{,id}) =
buildvalueprocid [(id {,id })]|
CREATE IMAGE imageid ON relatid FOR domid
scanspec =
relatid { image-spec | link-spec } | listid
image-spec =
USING IMAGE imageid [FROM constant][TO constant] |
USING IMAGE imageid AT constant {, constant }
link-spec ::=
USING LINK linkid (PARENT \ CHLDRN) OF scanprocid

predicate ::= clause { OR clause }

clause :1= comparison { AND comparison }

comparison ::= DID relat-op constant

relat-op n=<l<=l> ===

DID = domain identifier

restriction ::= (restriction bool-op restriction)
INEG restriction | pred-block

bool-op ::= AND|OR

pred-block ::=({ temp-obj-defn ; } comp)

comp :r = val-comp | set-comp

val-comp :: = arith-expr comp-op arith-expr 297

RAYMOND A. LORIE AND JORGEN F. NILSSON

comp-op D= > <=]>=]= "= ger, B. W. Wade, and V. Watson, ‘“SYSTEM R: Relational
set-comp 1= ident set-op ident Approach to Data Base Management,”” ACM Trans. Data-
base Syst. 1, No. 2, 97-137 (1976).

set-op *1= SUBSET | PROPSUBSET | EQSET 5. R. A. Lorie and B. W. Wade, **The Compilation of a Very
ident o= relation-id ! list-id High Level Data Language,”” Research Report RJ2008, IBM
ret-expr ::= arith-expr | aggr-expr Research Laboratory, San Jose, CA, 1977.]

. 6. S.J. P. Todd, ‘‘The Peterlee Relational Test Vehicle—a sys-
arith-expr ::= arithmetic expression

tem overview,” IBM Syst. J. 15, No. 4, 285-308 (1976).
aggr-expr = aggr-fct-id (arith-expr)| COUNT 7. M. W. Blasgen and K. P. Eswaran, ‘‘On the Evaluation of
Queries in a Relational Data Base System,’” Research Report

RJ1745, IBM Research Laboratory, San Jose, CA, 1976.
References

1. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P.
Griffiths, R. A. Lorie, J. W. Mehl, P. Reisner, and B. W.
Wade, **SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control,”” IBM J. Res. Develop. 20, No. 6, Received October 25, 1978; revised December 21, 1978
560-575 (1976).

2. M. M. Zloof, **Query by Example,”” Proc. AFIPS 1975 NCC
44, AFIPS Press, Montvale, NJ, pp. 431-437.

3. M. Stonebraker, E. Wong, P. Kreps and G. Held, ‘*The De-
sign and Implementation of INGRES,” ACM Trans. Data- Raymond A. Lorie is located at the IBM Research Divi-
base Syst. 1, No. 3, 189-222 (1976).

. sion laboratory, 5600 Cottle Road, San Jose, California
4. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. . K . X R
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. 95193; Jorgen F. Nilsson is at Grundtvicsvej 8B, 3. DK-
Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, 1. L. Trai- 1864 Copenhagen, Denmark.

298

RAYMOND A. LORIE AND JORGEN F. NILSSON IBM J. RES. DEVELOP. & VOL. 23 4 NO. 3 & MAY 1979

