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Introduction 
Several  proposals for nonprocedural relational data  base 
query  languages  have  emerged in the  past years, e.g. 
[ 1-31. Besides the simple underlying data model the main 
advantage claimed by the creators of these languages is 
the  fact that they are  nonprocedural, since the  access 
paths to be utilized in the  eventual execution of the  query 
are not specified explicitly in the  language. 

Evidently,  the  absence of access path specification 
places a heavy  burden on the  implementors of a compiler 
for  such a language. The compilation algorithm must take 
into account the characteristics of the various access 
paths  existing in the data  base.  Ideally, the  compiler 
should  act as an automatic programmer who,  according to 
the physical characteristics of the  data  base,  chooses an 
overall access strategy to be expressed as a procedural 
retrieval  specification. 

In this paper,  however, we are not dealing with the  opti- 
mization problem as such. We present a proposal for an 
intermediate language for a relational data base system. 
This  language, called the A c c ~ ~ s s  Specificution Lunguuge 
(ASL), allows for explicit and complete specification of the 
access  paths to be exploited in the computation of a 

query.  Thus, the language is procedural, yet it allows for 
the full specification of accesses without  introduction of 
unnecessary details. 

Since the language is intended to  serve  as an inter- 
mediate language in the  compilation of relational data 
base expressions, ASL statements  are represented by tree- 
like structures.  However,  for  expository reasons we pre- 
sent an equivalent string language. There exists a close 
resemblance  between the  syntax  classes of the string lan- 
guage and the nodes of the tree. In order  to avoid con- 
fusions in naming, the  procedures of the string language 
communicate among themselves via named arguments 
and return  variables, much as  do  subroutines in a classi- 
cal programming language. The  names of the arguments 
and return  variables are  thus local names, whereas names 
of data base  objects  (stored in the catalog) are global. In  
the tree language the explicit data  transfer amongst proce- 
dures is carried out by a simple addressing scheme (bind- 
ing). 

This work was  done in the  context of developing a  com- 
piler for  the relational language SQL [ I ]  for System R [4]. 
System R is a prototype developed at the IBM Research 
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Laboratory in San Jose, CA; i t  is intended only as  a ve- 
hicle for  data  base research. 

System R has  two main components.  The lower level 
component is the Resorrrch Storage  System (RSS) with  its 
corresponding  interface (RSI).  The upper level com- 
ponent, called Relntion(r1 DatM System (RDS), maps a high 
level SQL statement  onto the RSS. 

The issue of compilation versus interpretation  has  been 
discussed in [5] .  The role of the ASL would be the same in 
a compiler or  interpreter  environment. Since a  com- 
pilation approach is used in System R ,  the RDS functions 
are generally  performed at compile time;  the compiled 
code  for  each  data base statement is in fact a  series of 
calls to  the RSI. 

We  sha!l first describe  the  target language of the com- 
piler (the  RSI). Then the  structure of the RDS will  be shown 
in order  to place the ASL interface in its context.  The Ac- 
cess Specification Language will then be defined. A first 
section will deal with queries  involving a single relation. 
The following sections will then  show how several ASL 

procedures  are used together in the  case of multirelation 
and/or multiblock queries. Finally a last section will de- 
scribe  how ASL is used to specify  the  processing  needed 
for other SQL facilities like GROUP BY and HAVING. 

Outline of Research Storage System (RSS) 

This  section describes the  basic concepts of the RSS with- 
out  any  implementation considerations. Minor deviations 
have been introduced in order  to simplify the  description. 
Furthermore,  aspects of the access method that  are not 
essential to the  purpose of this paper have been omitted. 
Thus,  the notions of transactions, locks and segments, 
however important,  are not covered. 

RSS o b j e c t s  
The RSS objects  are: 

I .  Krlcltior1.s and lists constituting tcrhles of data. 
A trrhlr is a sequence of tuples.  Each tuple is an or- 
dered sequence of fields, each field containing a single 
data value. The values of a field from all tuples of a 
table constitute  a domain. When there is no ambiguity 
we do not make the distinction  between field and do- 
main. Relations and  lists differ in the access  opera- 
tions as explained below. 

2 .  Two  types of access  structures  for relations: 
a.  The irnrrgrs (indexes)  give the illusion that  the 

tuples of the relational table  are sorted on the im- 
age key domain(s). 

b. The binrrry links make associations between tuples 
in two  relations. A link is a  set of disjoint link-oc- 

currences, each linking one  tuple  from  the parent 
relation to  an arbitrary number of tuples  from the 
child relation. 

3.  Sccrns. 
The  scans support  the access of relations  and  lists on  a 
tuple-by-tuple basis. A  scan is first open and then a 
NEXT operation is invoked to return the next tuple in 
the  scan. 

An RSS data base is a collection of named relations, 
lists. images and binary links with which are  associated 
identifiers called respectively RID, LID, IID and BLID. 

Relations, lists, links and  images may be created  and 
dropped by programs  accessing the  data  base.  The  cata- 
log part of the RSS data base  (which we are not going to 
describe)  contains the attributes of these  objects. By con- 
trast. the scans used for  accessing the tuples are  associ- 
ated with the accessing  programs  and are therefore tem- 
porary.  A  scan (identified by a  scan identifier, SID) is like 
an incarnation of a  coroutine, offering a  set of operations 
corresponding to the  type of the  scan.  The  scans  come in 
four types: relational scans. list scans, image scans and 
binary link scans. 

The order of the  tuples  retrieved through a relational 
scan is arbitrary  (dependent on the physical order, which 
is subject to change). In a list the  order of the tuples in the 
retrieval is that of the original insertion. A special func- 
tion allows for the  production of a  sorted list. The  order of 
the  tuples in a link occurrence is the parent followed by 
the  children in arbitrary but invariant order. 

With each tuple in a given relation is associated a 
unique address called the  tuple identifier (TID). RSS pro- 
vides operations  for the  direct addressing of a tuple using 
the TID. In this context,  however, we are dealing with 
TID'S solely as an internal concept in scan operations. 

R S S  opcrvr tions 
The s c c r n  oprurtions are OPEN, NEXT, PARENT (binary link 
scan only),  CLOSE. 

OPEN: 

The OPEN operation creates  a  scan and returns  the SID 

of the scan. 

Parameters: 

Relational scan: RID 

List scan: LID 

Image scan: RID,  IID (the identifier of an image on the 
relation RID) and a list of starting key values for  the 
key domains in the image together with a match cri- 
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terion for  the key values =, >= or >. A  special 
match criterion, j irs t ,  implies  complete  scan  (key 
values  ignored, hence). 

B-link scan: BLID, SID. The SID must identify an  open 
scan  on  one of the two  relations  associated with the 
binary  link, thus providing a TID identifying the link- 
occurrence  to be scanned.  The  scan is positioned be- 
fore  the first child tuple. 

A scan  object,  once  created,  comprises internally an 
identifier of the data base object from which tuples are  to 
be extracted (RID, LID, BLID on RID’S, IID on RID) and a 
position on  the  object.  In addition an image scan com- 
prises a start key value used as starting point for  the  re- 
trieval through the NEXT operation. At the opening, the 
scan is positioned  before the first tuple of the  object.  The 
NEXT operation  advances  the  scan  to  the next tuple of the 
object which fulfills the  search  predicates (see below) and 
returns  the tuple  value. In a sequence of NEXT operations 
on a scan, a  tuple of the associated  data object is visited at 
most once. Several scans may coexist on the  same  data 
base object. 

NEXT: 

The NEXT operation  repositions a scan and returns a 
tuple  from the relation or list associated with the  scan 
(or a null value indicating that  the scan has been ex- 
hausted). 

Parameters: SID, a  search predicate  and some scan  type 
dependent  parameters  described below. The  search 
predicate is a normalized predicate (disjunctive  normal 
form)  composed of atomic comparison formulae: 

search-predicate :: = clause { OR clause } 
clause :: = comparison { AND comparison } 
comparison :: = DID relat-op  constant 
relat-op : : = < l < = I > l > = I = I 1 =  
DID :: = domain identifier 

(unique inside  relation) 

(The symbols [ ] indicate an optional occurrence, { } 
indicate zero, one or more occurrences.) In addition, 
for  the image-scan a list of stop key values may be pro- 
vided together with a stop  criterion: <, < =, =, none. 

PARENT: (for binary links) 

Parameters: SlD, search-predicate 

The  scan is positioned on  the  parent tuple of the current 
link-occurrence and the  tuple  value is returned pro- 
vided that  the search predicate is true  for  that tuple. 

CLOSE: 

Parameter: SID. 288 
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The  scan object SID is dropped; i .e . ,  no references  in- 
volving SID can be  made to  the  data  base. 

CREATE and DROP relations, lists, images  and  links. 

INSERT tuple  into relation or list. 

DELETE tuple  from  relation. 

BUILDLIST: 

Parameters: SID, search-predicate,  list-sort-spec. 

Produces a list of sorted tuples from  a  collection of 
tuples  indicated by the SID of an  open  scan and a search 
predicate.  The fields of the  source  table  to be  included 
in the list are indicated together with the  sort  attribute: 
ascending or descending. In addition, if SID identifies an 
image scan, a key value list and a stop criterion (<, 
<= , = , none) may be provided.  Duplicate  tuples may 
optionally be removed (UNIQUE attribute).  The  opera- 
tion returns  the LID of the target list of the  sort  opera- 
tion. 

Outline of the Relational Data System 
Figure 1 represents schematically the overall structure of 
the RDS. The analysis phases imply classical  compiler 
transformations and need no comments. Prior to  the  se- 
lection of an access strategy in the optimization phase, a 
“normalization” is performed on the internal representa- 
tion of the  query, involving integration of views and syn- 
onyms  and  conversion of some  queries containing sub- 
queries  into queries  containing a join but no subquery. In 
principle, the next phase of the optimization process 
takes into consideration  potentially all ASL programs 
which would yield the answer  to  the  query.  The one esti- 
mated to be the  most efficient in terms of CPU time and 
data base access  operations is selected  for  synthesis. In 
the synthesis phase ASL is used to specify the  procedure 
to be followed in order  to  produce  the  answer  to  the 
query. 

Access Specification Language 
ASL is introduced in a stepwise  manner, starting with 
simple SQL examples and correspondingly simple ASL 

programs,  and ending  up with ASL constructs covering es- 
sentially all of SQL. 

Syntactically an ASL program (in the string form)  con- 
sists of procedures  producing the query  table  result 
through mutual calls. 

ASL-program :: = AsL-proc { AsL-proc ] 

The ASL procedures of a program  communicate solely 
by explicit  references  (generally via a CALL)  to a proce- 
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dure  name  and parameteriresult transfer, therefore pro- 
viding a  decomposition of the overall  task  into rather in- 
dependent units. 

Single  relation  queries 

0 Scrrn procerlwes 
A scan procedure is provisionally defined as follows: 

scanproc : : = 

SCANPROC scanprocid [ ( param {, param } ) 1; 
{ temp-obj-defn ; } 
SCAN scanspec [ WHERE predicate 1; 
[ IF restriction THEN ] 
RETURN ( ret-expr {, ret-expr } ); 
END ; 

Initially the scan managed by the  procedure is inactive. 
When the procedure is invoked for  the first time the pa- 
rameters  are  transferred, and the temporary objects  that 
are defined in the  procedure are  evaluated.  Thereafter, a 
scan is opened on a  permanent data base  relation or on 
one of the temporary objects  just evaluated and a tuple 
value is returned.  Every time the  procedure is reinvoked, 
a tuple  value is computed and returned until the  scan is 
exhausted.  The scan is then dropped. 

Let us now analyze  the  various statements inside  a 
scan procedure. 

temp-obj-defn :: = 

LET RELATION relatid ( domid {, domid } ) = 

LET LIST listid ( id {, id } ) = 

CREATE  IMAGE imageid ON relatid FOR domid I 
LET ( id {, id } ) = buildvalueprocid [ ( id {, id } ) ] 

buildprocid [ ( id {, id } ) ] I 

buildprocid [ ( id {. id } ) ] I 

The  statements  create respectively  a  relation,  list,  image, 
or  scalar(s).  These objects may be  referred to in the  pro- 
cedure in which they are embodied using the established 
names  (relatid  and  domids in the LET statement,  for ex- 
ample). The temporary objects  are  dropped when the in- 
carnation of the procedure is terminated (i.e., at the  ex- 
haustion of the  scan).  For  the  creation of the  relation or 
list the tuples to be  inserted in the temporary objects  are 
defined in a build procedure identified by buildprocid (see 
section  “Build procedures”).  Scalar values are defined 
by invoking a build value procedure;  such  scalars  are 
used in the implementation of subqueries  (see section 
“Sub-queries”). 

scanspec : : = 

relatid { image-spec 1 link-spec } I listid 

A scan specification specifies the object to be scanned 
and  the type of scan: relational-,  image-, link- or  list-scan. 

RDS 
SQL 

Innlysis 

>ptimi7ation I 

cost estimate 

I 
I 

,ynthe\is 

ASL-gencrntion 

ASL 

code  generation 

1 

RS1 

RSS 

Figure 1 Structure of the Relrrtional Dtrtcr System (RDS). 

image-spec : : = 

USING IMAGE imageid [ FROM constant ] [ TO constant ] I 
USING IMAGE imageid AT constant {, constant } 

USING LINK linkid (PARENT I CHLDRN) OF scanprocid 

The link-occurrence to be scanned is specified implicitly 
as the scan position of the  newest  incarnation of the in- 
dicated scan procedure. 

link-spec : : = 

The WHERE clause is used to  introduce  the search  pred- 
icate, which can be mapped directly onto the RSS search 
predicate.  The logical restriction of the IF statement is 
discussed in section “Sub-queries.”  Note,  however,  that 
this  restriction  predicate  allows for  the specification of 
predicates which cannot be expressed by an RSS search 
predicate. It  should  also be noted that any time  a constant 
is shown in the  syntax it can also be a value  passed as a 
parameter. 

ret-expr :: = arith-expr I aggr-expr 
arith-expr :: = arithmetic  expression 
aggr-expr : : = aggr-fct-id ( arith-expr ) I COUNT 

The aggr-fct-id’s identify aggregate  functions like aver- 
age, maximum, minimum and sum. COUNT is an argu- 
mentless  function  returning the number of tuples in the 
scan. 289 
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scanproc 

restrict 

u 
Figure 2 Scan procedure  on  relation R. 

It is convenient  to use a  simple  graphical  representation 
to  show  the  structure of the main ASL constructs, omitting 
all details. Figure 2 represents a scan  procedure:  The up- 
per box represents the definition of temporary objects 
while the following ones  represent  the  scan and the  re- 
striction  part of the procedure.  The lower box is used for 
a construct which will be explained later.  The tag  (main) 
indicates that this scan  is  seen by the caller of the ASL 

interface. 

In the  examples given throughout  the  paper, most of 
which are taken from [I] ,  we use the following simple 
data base: 

EMP (EMPNO,  ENAME,  SAL,  DNO, JOB, AGE, MGR) 

DEPT (DNO,  DNAME, LOC) 

E,urtmple I 

SELECT  NAME 

FROM  EMP 

WHERE DNO = SO 

If a  relation  scan is used in connection with a search pred- 
icate the ASL program  becomes 

SCANPROC A ;  

SCAN EMP WHERE DNO = SO; 

RETURN  (NAME); 

END; 

This procedure (imagine it  is called from the  environ- 
ment) specifies a relational scan  to be  opened on EMP us- 
ing the  search predicate DNO = 50. The scan procedure A 

performs an RSS NEXT operation every time it is invoked 
and returns  the NAME field  of each tuple. 

Utilizing an image on DNO the program  becomes 

SCANPROC A; 

SCAN EMP 

USiNG  iMAGE EMP-DNO AT SO; 

RETURN  (NAME): 
END: 

Such  a procedure can be easily  compiled as shown in [ 5 ] .  
The  next  paragraph shows the  object program in a PLII- 290 
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like language. STATUS is a  variable  permanently associ- 
ated with the scan procedure.  It is initialized to ‘IN- 

ACTIVE’. 

PROC A; 

DCL  STATUS STATIC INIT(‘INACT1VE’); 

IF STATUS = ‘INACTIVE’  THEN 

DO: sid = OPEN-REL-SCAN  (EMP); 

STATUS = ‘ACTIVE’; 

END; 

tuple = NEXT(Sid,  <DNO, =, 50>); 
IF tuple = NULL THEN 

DO; CLOSE (sid); 
STATUS = ‘INACTIVE’; 

RETURN (NULL); 

END; 

RETURN (tuple.NAME): 
END; 

E.rample 2 

SELECT  NAME,  DNO 

FROM EMP 
ORDER BY DEPT 

If there  exists an image on the column DNO of the relation 
EMP the following ASL procedure could be used: 

SCANPROC A; 

SCAN EMP 

USING IMAGE EMP-DNO: 

RETURN  (NAME,DNO); 

END; 

If such an image does not exist one  needs  to sort  the  re- 
sult  and the  scan will be done  on  the temporary list con- 
taining the  sorted  tuples.  The following construct will be 
used to  that effect. 

Build procedures 

buildproc : : = 

BUILDPROC buildprocid [ ( param {, param } ) 1; 
{ temp-obj-defn ; } 
SCAN scanspec [ WHERE search-predicate 1; 
[ IF restriction THEN ] 
INSERT  INTO ( RELAT I LIST ): 

id {, id } [ SORTED BY id {, id } [ UNIQUE ] 1; 
END; 

Syntactically the build procedure is like the  scan  proce- 
dure  except for the INSERT clause.  The semantic dif- 
ference is that  the build procedure  does not return indi- 
vidual tuples during a scan, but rather accumulates the 
whole result in an object,  the RSS identifier of which- is 
returned  to  the invoker. The INSERT statement  specifies 
the type of the object to be created (relation or list) and 
the names to be given to its columns. 
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Figure 3 shows  the  graphical  representation of a scan 
procedure invoking a build procedure producing the list 
L.  Note  the meaning of the arrow originating in the  upper 
box of the scan procedure: Before  opening the  scan on 
the list L the list is constructed by invoking the build pro- 
cedure. This  procedure is not seen by the caller of the ASL 

interface and is tagged (sub) by analogy to  subroutines. 

The following example  shows  how  a build procedure is 
used for  the compilation of an SQL query with the ORDER 

BY option. 

Consider again example 2 .  Tuples  are  ordered by pro- 
ducing  a  temporary list of sorted  tuples. Since the pro- 
gram is supposed  to deliver the result on a tuple-by-tuple 
basis the list is scanned by the (main) procedure A. 

SCANPROC A; 

LET LIST  L(NM,DEP) = B; 

SCAN L; 

RETURN  (NM,DEP); 

END; 

BUILDPROC B; 

SCAN EMP; 

INSERT INTO LIST: NAME.DN0 SORTED BY DNO; 

END: 

The LET statement in procedure A invokes B, which re- 
turns the RSS lid  of the list created in B. The list is assigned 
the local name L with domains NM,DEPfOr reference in A. 

The compilation would produce  the following program: 

PROC A; 

DCL STATUS STATIC INIT(‘INACT1VE’); 
IF STATUS = ‘INACTIVE’  THEN 

DO; lid = B; 

sid = OPEN-LIST-SCAN(1id); 

STATUS = ‘ACTIVE’; 

END; 

tuple = NEXT (sid); 
IF tuple = NULL  THEN 

DO; CLosE(sid); 
STATUS = ‘INACTIVE’; 

END; 

RETURN (tuple); 
END; 

PROC B ; 
sid = OPEN-REL-SCAN(EMP); 

lid = BUILDLIST(Sid,NM,DNO,inCreaSiIIg DNO); 

RETURN(1id); 

END: 
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Figure 3 Scan and  build procedures. 

Collaborating ASL procedures 
We have  introduced the two  basic building blocks of the 
ASL and we now turn  to the  more  general case of queries 
involving more  than one relation. 

Basically, the FROM clause of a SELECT statement in 
SQL specifies a  Cartesian product subject to a  restriction 
in the WHERE clause.  (Frequently  these restrictions are 
such that  the Cartesian product becomes an equi-join.) 

Interaction among ASL procedures  for  the specification 
of joins is specified via a new ASL statement: FOREACH 

TUPLE. The definition of the  scanproc (and  buildproc) is 
completed as follows: 

scanproc : : = 

SCANPROC . . . 

[ IF restriction . . . ] 
FOREACH TUPLE [ id {, id } UNIQUE 1; 

. . .  

[ LET id {, id } = scanprocid [ ( id {, id } ) 1; ] 
RETURN . . . 
END; 

Suppose a first scan procedure, say S ,  retrieves, upon 
invocation, a tuple, say t ,  fulfilling the search predicate of 
the WHERE clause and the restriction of the I F  clause. If 
the FOREACH TUPLE statement is present,  the LET state- 
ment  specifies a scan procedure,  say s’, which is itself 
invoked with parameter values corresponding  to  the  cur- 
rent  tuple t .  The scan procedure s ’ returns a tuple t’ .  The 
fields of both t and t ’  may participate in the  return  ex- 
pressions specified in the RETURN clause of s. A sub- 
sequent invocation of s will not advance  the scan defined 
inside s but will advance  the  scan inside S ’  and return a 291 
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Figure 4 

ainIs  , ,r- ;I) ! 
scanproc scanproc 

Join using FOREACH TUPLE. 

new tuple t” yielding a  composite tuple t ,  t“. Only when 
the  scan in S‘ is exhausted is the  scan in s advanced.  For 
each new tuple in s the  scan  procedure s‘ is reinvoked 
with new parameter values and the temporary objects  are 
then reevaluated.  The UNIQUE attribute can be used  only 
if the  scan is done along an access path (list or image) 
which insures  that tuples are  ordered on the columns 
specified with the UNIQUE attribute. (This feature is used 
in queries involving GROUP BY.)  

Figure 4 represents graphically such  a  join mechanism. 
(co) is used by analogy to  coroutines. 

The principle is illustrated below for an equi-join be- 
tween two relations. 

SELECT  ENAME,  DNAME 

FROM  EMP,  DEPT 

WHERE  EMP.DNO = DEPT.DN0 

AND  LOC = ‘Evanston’ 

Suppose  there  exists  an index on the LOC domain of 
DEFT and also an index on the DNO domain of the EMP 

relation. The optimizer may have decided to rearrange 
the (virtual) Cartesian  product generation, exploiting the 
EMP relation  through  the DEPT relation: 

SCANPROC  A; 

SCAN  DEPT  USING  IMAGE  DEPT-LOC  AT ‘Evanston’; 
FOREACH  TUPLE 

LET  ENAME = B(DN0); 

RETURN(ENAME,DNAME); 
END; 

SCANPROC  B(DNUM); 

SCAN  EMP  USING  IMAGE  EMP”DN0 AT DNUM; 

RETURN(ENAME); 
END; 

It is essential to note that for  each tuple  found by scan- 
proc A the  scanproc B is activated as  often as needed to 
exhaust its scan. Only then is the  scan in A advanced. 
Also, every  scanproc  considers only the tuples that  sat- 

292 isfy the  predicates local to the corresponding scan, 

thereby  avoiding the  development of a full Cartesian 
product when only a small portion of  it  is of any interest. 

The  object programs for  such  a pair of procedures  ap- 
pear as follows: 

PROC  A : 
DCL  STATUS  STATIC  INIT(‘1NACTIVE’); 

IF  STATUS = ‘INACTIVE’  THEN 

DO: sid = OPEN-IMAGE-SCAN(DEPT,DNO,’EVanston’); 
STATUS = ‘ACTIVE’; 

X: tuple = NEXT (sid); 
IF tuple = NULL THEN 

DO; CLosE(sid); 
STATUS = ‘INACTIVE’; 

END; 

END; 

tuple’ = B(tUpIe.DN0); 

IF tuple’ = NULL THEN GO  TO x;  
RETURN  (tUpk’.ENAME,  tUpk.DNAME)); 

END; 
PROC  B(DNUM); 

DCL  STATUS  STATIC  INIT(‘INACT1VE’); 

IF  STATUS = ‘INACTIVE’  THEN 

DO: sid = OPEN-IMAGE-SCAN(EMP,DNO,DNUM); 
STATUS = ‘ACTIVE’; 

END; 

tuple = NEXT(Sid); 

IF tuple = NULL then 
DO; CLOSE(sid); 

STATUS = ‘INACTIVE’; 
END ; 

RETURN(tUpk);  

END: 

Note  that  the ASL definition for  procedure B specifies 
that  the index be used.  It could also  have specified that  a 
link to be used (if there is a link from DEPT to EMP). The 
scan procedure B would then become 

SCANPROC E’; 

SCAN  EMP  USING  LINK  DEF’LEMP  CHILDRN  OF  A; 

RETURN(NAME); 

END: 

The explicit  reference to  the  procedure name A in B’ 
above is not an invocation of A;  it only  indicates the link 
occurrence  on which the link scan in B‘ is to be opened. 

General joins 
Having  shown how simple SQL queries can be expressed 
in terms of ASL programs and how the  latter programs can 
be compiled into RSS operations, we now take  up the 
problems  associated with the compilation of SQL into ASL 

at a  more  abstract  and general  level. 
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Rather than making an account of a complete com- 
pilation algorithm we hint at some underlying principles 
in an optimizing  compiler,  providing  at  the  same  time the 
background and justification for  the introduction of par- 
ticular linguistic notions in ASL. 

Conceptually, an SQL query is decomposed  into 
(sub)query  units, called SELECT-blocks, each of which 
consists of the SELECT and FROM clause, possibly with a 
WHERE, GROUP BY,  HAVING or ORDER BY clause. 

The  process  for computing  general  joins  can be de- 
scribed by using the  scan  procedures and build proce- 
dures introduced in the previous section. Let us first look 
at  a  case in which no intermediate result needs to be 
created. 

For each SELECT block participating in a query the opti- 
mizer has to decide as to the order in which the virtual 
Cartesian product of the  participating  relations  must be 
built (see example 3 ) .  Likewise the optimizer has  to select 
among the various access  paths  such as images 1 w s u s  
links for  the individual relations of the  chosen per- 
mutation. 

Assuming that the optimizer part of the compiler is able 
to carry  out this  task utilizing suitable cost  estimate func- 
tions,  the generation of ASL programs is, in principle, 
straightforward: Let R,, R,. . . . , R ~ ,  be the original se- 
quence of relations in a SELECT-block and R,, ,  Ri,, . . ., R i n  

the permutation  chosen in the  cost evaluation process. 
The ASL specification consists of a chain of scan  proce- 
dures,  each procedure invoking the next one on the  chain. 
The relation R ~ ,  is scanned.  For  each tuple retrieved rela- 
tion Rj, is  scanned.  For each composite tuple R ~ , ,  Ri, the 
relation R ~ ,  is scanned etc. This  generalizes the  concept of 
collaborating ASL procedures. At any  point in the  process 
one can consider that we are joining a virtual composite 
s w n  (for example Ri, ,  Ri,, . . ., RiJ with the  next scan 
Ri(j+,,. To simplify the notation let us rename Ri, ,  Ri, . . . 
as R , ,  R, . . .. 

As far as the Boolean expression of the  query WHERE 

clause is concerned, individual conjuncts  are  to be dis- 
tributed  along the chain of scan procedures so that each 
conjunct contains references to data obtained in its own 
scan  procedure  or in any scan procedure  to the left. 

Some of the predicates may be  integrated  into and  ex- 
ploited directly in RSS operation(s); this is often the  case 
for equi-join  predicates when links and images can be 
used. The remaining distributed predicates of the original 
WHERE clause form  the  restriction  clause of the ASL pro- 
cedures. 

scanproc I' 
Figure 5 Join  specification. 

(sub) 

-1 buildproc 

1 

Figure 6 Using a  temporary  relation. 

This  decomposition scheme applies  recursively to 
SELECT blocks participating in Boolean expressions as 
subqueries of the major query.  Hence, restriction clauses 
may comprise references to a chain of ASL procedures,  as 
we shall see  later when explaining the restriction clause in 
detail. 

General joins can sometimes be  produced  more effi- 
ciently if intermediate  results are  created. In such  cases 
build procedures  are used in connection with scan proce- 
dures.  The generation of temporary  objects is potentially 
worthwhile (the  cost estimator has  to  decide) in two  situa- 
tions. 

a. The cardinality of one of the  factor relations,  say Ri, 

can be diminished using a local predicate, i . c . ,  a predi- 
cate referring to columns of the relation R,  only. A 
build procedure is first used to create  a temporary  re- 
sult (a  list,  for example) and then a scan  procedure is 
used to scan the temporary object. If such  a method is 
used for R , ,  Fig. 5 is altered as shown in Fig. 6. 

b. It may be advantageous to compute  a join by using a 
mechanism resembling a merge of ordered lists. As- 
sume  both  relations are  ordered on the  join  domains. 
Then the first relation is scanned normally. For  every 
tuple returned by the first scan  the group of matching 
tuples in the second  relation is scanned  (the tuples in 293 
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I' 
1 n 

l3-r scanproc 

Figure 7 Intermediate  result for a join. 

the group  are contiguous because of the  ordering). The 
top position of a group is remembered so that  the same 
group  can be efficiently scanned again for  the next 
tuples in the first scan if they  happen to  have  the  same 
value(s) for the  join domain(s). Generally,  lists  must 
be built in order  to provide the relevant  orderings. For 
example, if we refer to Fig. 5, the method can use  a 
merge to  join  the composite scan, say (R,,  R,, . . ., R J ,  

with the relation R ~ + , .  This can be done only if the 
composite scan returns the tuples in the  appropriate 
order. If this is not the  case  the composite  tuples 
should be materialized before the  join with R ~ + ~  can be 
performed. Again a build procedure is used to  create 
the  sorted intermediate result. This build procedure 
will itself invoke all scan procedures needed to obtain 
the composite tuples.  Figure 7 illustrates  this case. 

Sub-queries 
The restriction  clause in the  scan  (or build) procedure  has 
been introduced  earlier. We now show the full power of 
the restriction  clause in connection with the compilation 
of subqueries. 

restriction : :  = ( restriction  bool-op  restriction ) 

bool-op :: = AND I OR 

pred-block :: = ( { temp-obj-defn ; } comparison ) 
comparison : : = Val-comp I set-comp 
Val-comp : : = arith-expr  comp-op arith-expr 
comp-op : : =  < I > 1 <= I >= 1 = 1 l= 
set-comp :: = ident set-op ident 
set-op : :  = SUBSET I PROPSUBSET 1 EQSET 

ident : : = relation-id I list-id 

I NEG restriction I pred-block 

A predicate block (pred-block) in a particular scanproc 
S is used  instead of a comparison  only when one  (or  both) 

294 of the  operands of the comparison i s  the result of a sub- 

query the result of which depends on the tuple  retrieved 
in this scanproc s (this case is called  correlation in SQL). I f  
the subquery is not correlated,  then it can be evaluated as 
a definition at  the  top of the  scanproc S,  or  even before 
the scanproc s is invoked. 

Example 4 
Consider  the following example with a  correlated  sub- 
query: 

SELECT  NAME 

FROM EMP X 

WHERE  SAL > SELECT  AVG(SAL) 

FROM EMP  Y 

WHERE  X.DNO = Y.DNO 

In a straightforward  computation of the above query  a 
scan would be defined on the  relation EMP. Then for each 
tuple returned by that scan another procedure would be 
invoked which should return as  a  scalar value the average 
salary in the  department. In order  to distinguish between 
a scan  returning a single tuple as result of an aggregation 
function and  a  scalar,  a new construct called build value 
procedure is introduced. It is syntactically similar to  a 
scanproc retrieving a single tuple. 

The ASL program would be as follows: 

SCANPROC  A; 

SCAN  EMP 

IF (LET  AVGSAL = B(DN0)  : SAL > AVGSAL)  THEN 

RETURN(NAME) 

END; 

BUILDVALUESCAN  B(DNUM); 

SCAN  EMP; 

IF DNO = DNUM  THEN 

RETURN  (AVWSAL)): 
END: 

The BUILDVALUE procedure behaves exactly as  a  scan 
procedure  except that it returns  a value rather than a 
scan. 

Figure 8 represents  subqueries graphically: (a) illus- 
trates  a  case without correlation:  the value of the  sub- 
query can be evaluated once  at  the beginning of the 
query; (b) illustrates a  case with correlation:  the  subquery 
is called from within the  restriction  clause and therefore 
evaluated once  for  each tuple in the  scan. 

Set comparison 
Set comparison can occur in the restriction clause.  The 
following shows how ASL handles these comparisons. 

E,\-rrmplc 
Find those  departments in which all job types are  repre- 
sented: 
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SELECT  DNO 

FROM  EMP X 

WHERE  (SELECT  UNIQUE JOB 

FROM  EMP) 
- - 

(SELECT  UNIQUE JOB 
FROM  EMP.Y 

WHERE  Y.DNO = X.DN0) 

A  possible ASL specification is as follows: 

SCANPROC  A; 
LET  LIST  ALLJOBS(J0B) = B; 

SCAN  EMP; 

IF  (LET  LIST  DNOJOBS(J0B) = C(DN0); 
ALLJOBS  EQSET  DNOJOBS)  THEN 

RETURN(DN0): 

END; 

BUILDPROC  B; 

SCAN  EMP; 

INSERT  INTO  LIST:  JOB  SORTED BY JOB  UNIQUE; 
END; 

BUILDPROC  C(DNUM); 

SCAN  EMP  WHERE  DNO = DNUM; 

INSERT  INTO  LIST:  JOB  SORTED BY JOB  UNIQUE; 

END; 

The set  comparison is carried  out as a  comparison of 
sorted  lists, in a  fashion similar to merging. Alternatively, 
one may choose  to perform the  set  comparison by com- 
paring appropriately  indexed  relations  (using two parallel 
scans on the comparable key domains of the  images): 

SCANPROC  A’; 

CREATE  IMAGE I1 ON  EMP FOR JOB; 

SCAN  EMP; 

IF (LET  RELAT  DNOJOBS(J0B) = B(DN0); 

CREATE  IMAGE 12 ON  DNOJOBS  FOR  JOB; 

I 1  EQSET 12) THEN 

RETURN(DN0); 
END; 

Queries with GROUP BY / HAVING clauses 
GROUP BY queries lead to ASL programs very similar to 
those  obtained for  queries with subqueries  (see  example 
4). 

Exumple 5 

SELECT  DNO,  AVG(SAL) 

FROM EMP 
GROUP BY DNO 

leads to  the following ASL program (note how duplicates 
are eliminated: 

v scanproc 

(main ) 
7 

Figure 8 Specification of subqueries:  (a) without correlation; 
(b) with correlation.  (“-proc”  stands for buildproc or buildvalue- 
proc.) 

SCANPROC  A; 

LET  LIST  L(DN0) = B; 

SCAN L;  

FOREACH  TUPLE 

LET  AVGSAL = C(DN0); 

RETURN  (DNO,  AVGSAL); 

END; 

BUILDPROC B; 
SCAN EMP; 

INSERT  INTO  LIST:  DNO  UNIQUE; 

END; 

SCANPROC  C(D); 

SCAN  EMP  WHERE  DNO = D; 

RETURN  (AVG(SAL)); 

END; 

It is often efficient to  compute GROUP BY queries by 
building a list of tuples sorted on the  group column(s). 
Such  a  strategy  uses the UNIQUE attribute of the FOREACH 

statement; it is expressed as follows: 

SCANPROC A: 

LET  LIST  L(DN0,SAL) = B; 

SCAN L; 

FOREACH  TUPLE  DNO  UNIQUE 

LET AVGSAL = C(DN0); 

RETURN  (DNO,  AVGSAL); 

END; 
BUILDPROC  B; 

SCAN  EMP; 

INSERT  INTO  LIST:  DN0,SAL  SORTED BY DNO: 

END; 

SCANPROC  C(D); 

SCAN  EMP  WHERE  DNO = D; 

RETURN  (AVG(SAL)); 
END; 295 
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Also, the  more  general  case of a combined GROUP BY / 
HAVING query  can  be  handled  with  the  constructs  pre- 
viously  described.  We  give a generic  example: 

Exotrzple 6 

SELECT f(COL,l .COL2) 

FROM R 
WHERE predI 
GROUP BY COLl,COL2 

HAVING pred2(aggl--func(c0~1)) 

A possible ASL. program is a s  follows: 

SCANPROC  A; 

LET  LIST  L(COLI,COL2) = B; 

SCAN L; 

IF (LET AGGRID = C(COLl,COL2): 

pred2(AciG~lD)THEN 
RETURN(f(COL1  ,COL2)); 

END; 

BUILDPROC B: 
SCAN  R; 

IF predl T H E N  

INSERT  INTO LIST: COLl.COL2 

OKDER BY COLl,COL2  UNIQUE; 

END; 

HUlLDVALUEPROC C(PI,P2); 

SCAN  R; 

IF (COLI = PI  AND  COL2 = P2) THEN 

RETURN(aggr-fUnC(COL3)); 

296 END; 

Building of ASL structures  for  complex  queries 
The  constructs  that  have  been  presented  can  be  used  as 
building  blocks  to  develop  arbitrarily  complex ASL speci- 
fications.  Figure 9 gives  schematically  an  example of such 
a  complex  specification. 

Blocks 1 and 9 implement  a GROUP BY as  shown in ex- 
ample 5 (second  strategy). In order  to  use  that  strategy a 
sorted  list L ,  must  be  produced.  This is done  by a build- 
proc (2) which  inserts in a list  (and  sorts)  the  tuples  ob- 
tained by joining  the  composite  tuples  stored in L, with 
tuples  from  relation R, (block 7) and R, (block 8). L, is  built 
by scanning R,  (block 3), joining  them  with  tuples in R, 

and R:$, using a complex  join  predicate  involving a sub- 
query  correlated  with  values in R, ,  R,, R,? (block 6). 

Insert,  delete,  update 
In  the  implementation of System R ASL has  been  extended 
to  support not only  queries  but  deletions,  updates  and in- 
sertions.  The  principle of these  extensions  is  simple:  The 
RETURN statement in the  (main)  scan  procedure is re- 
placed by a delete  or  update  statement  or by an  insert 
statement  which  specifies  that  the  returned  tuples  must  be 
inserted  into a previously  defined  relation.  These  exten- 
sions  could  also  be  used  to  implement  set  operations  like 
union  and  difference. 

Concluding  remarks 
A general  scheme  for  the  compilation of SQL into  primi- 
tive  data  base  operations  has  been  established in the  form 
of a language  which  can  be  used  as  target in the  decompo- 
sition of arbitrarily  complex  queries.  The  decomposition 
has  been  illustrated by outlining  the  general  principles 
and  supporting  them  with  examples. 

It  should  be  mentioned  here  that  the  idea of decomposi- 
tion  has  been  used in other  systems.  Let  us  discuss  the 
approaches  used in [3] and [6].  

Consider,  for  example,  the  sample  query  used in [3] to  
illustrate  the  optimization in INGRES. The  sample  data 
base is similar  to  the  one  used  throughout  this  paper  and 
the  query  consists of finding the  employees  over  40  work- 
ing at  a  given  location  and who make  more  than  their 
managers. In  [3] it is shown  how  such a query is decom- 
posed  into  four  simple  ones,  three of them  using  tempo- 
rary files T, ,  T, and T : ~ :  

I .  store in T,  the  departments  at  the  given  location; 
2. store in T, the  employees  over  40; 
3. for  each  value x of a department in T,  construct a T, 

containing  the  employees in T, who  work in depart- 
ment x; 

4.  for  each  tuple in T, use  the EMP file to find out  if his 
salary is larger  than  the  salary  of  his  manager. 
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Such  a  decomposition resembles  the decomposition 
used in ASL. It  is,  however, more  algebraic and has  the 
disadvantage of requiring temporary files to be built at 
each step. In ASL the  same strategy can be expressed- 
and we leave  this as an exercise  for  the  reader. But ASL 

allows many  alternative strategies  to be specified. The 
following one,  for example, does not require  any  inter- 
mediate file: 

I .  fetch a department; 
2 .  for  each such department find the employees over 40 

3. for  each such  employee find the salary of the  manager 
that work in that department; 

and compare it with the  salary of the employee. 

We are not saying that such a  strategy is better but only 
showing the flexibility of ASL for expressing a wide vari- 
ety of strategies. Note also that ASL allows for the com- 
plete specification of the access path to be used in the 
simple query. 

In PRTV [6] the result of the optimizer is an algebraic 
expression with operators like projection,  join, selection 
etc.  Such  an expression is then given as input to  the  inter- 
preter. This  approach is again algebraic and intermediate 
results are  created. In ASL the strategies  are described at 
a  lower,  more  procedural  level.  This allows for describing 
how a join is to be computed rather than  considering the 
join as a basic operator. 

These comparisons  emphasize the flexibility of the ASL 

approach. It should also be clear,  for  example,  that it is 
possible to write an ASL program using a  relation which 
does not appear in the query  itself. Such a relation, if 
properly indexed, may provide an efficient access path 
into a relation of the  query, e.g. ,  if the  two  relations are 
coupled by an appropriate link. We realize that  certain 
limitations exist in the  current form of ASL. For  example, 
it does not allow for the specification of some  join  meth- 
ods proposed in [ 7 ] ,  based on the manipulation of lists of 
tuple identifiers. We believe, however, that our basic de- 
composition scheme can readily be extended  to  support 
some of these most sophisticated strategies. 

Finally, although we have addressed the  problem of 
compiling SQL 2 in particular,  the decomposition  prin- 
ciples  outlined as well as the linguistic  form of ASL are 
believed to be of general interest in the  context of rela- 
tional query languages. 

Acknowledgments 
The authors acknowledge  the support of W. F. King and 
D. Chamberlin. Also we are grateful to M. Astrahan and 

P. Griffiths for their  discussions and suggestions  leading 
to clarification of some  points  throughout the preparation 
of this paper. 

Appendix: ASL syntax 
ASL-program 1 :  = scanproc { scanproc I buildproc I 

scanproc : : = 

buildvalueproc } 

SCANPROC scanprocid [ ( param {, param } ) ] ; 
{ temp-obj-defn ; } 
SCAN scanspec [ WHERE predicate 1; 
[ IF restriction THEN ] 
FOREACH TUPLE [ id {, id } UNIQUE 1; 

RETURN ( ret-expr {, ret-expr } ): 
[ LET id {, id } = scanprocid [ ( id {, id } j 1; ] 

END; 

buildproc :: = 

BUILDPROC buildprocid [ ( param {, param } ) 1; 
{ temp-obj-defn ; } 
SCAN scanspec [ WHERE predicate 1; 
[ IF restriction THEN ] 
FOREACH TUPLE [ id {, id } UNIQUE 3; 

[ LET id {, id } = scanprocid [ ( id {, id } ) 1; ] 

id {, id } [ SORTED BY id {, id } [ U N I Q U E ]  1; 
INSERT  INTO ( RELAT I LIST ): 

END; 

buildvalueproc : : = 

temp-obj-defn : : = 

BUILDVALUEPROC . . . Same as SCANPROC . . . 

LET RELATION relatid ( domid {, domid } ) = 

buildprocid [ ( id {, id } j ] 1 
LET LIST listid ( id {. id } ) = 

buildprocid [ ( id {, id } ) ] I 
LET ( id {, id } ) = 

CREATE  IMAGE imageid ON relatid FOR domid 

relatid { image-spec 1 link-spec } I listid 

USING IMAGE imageid [ FROM constant ] [TO constant ] I 
USING IMAGE imageid AT constant {, constant } 

USING  LINK linkid ( PARENT I CHLDRN ) OF scanprocid 

buildvalueprocid [ ( id {,  id } ) ] 1 

scanspec : : = 

image-spec : : = 

link-spec : : = 

predicate : : = clause { OR clause } 
clause : : = comparison { AND comparison } 
comparison :: = DID relat-op constant 
relat-op : :=  < I <= I > 1 >= I = I l= 
DID : :  = domain  identifier 
restriction :: = ( restriction bool-op restriction ) 

bool-op : : = AND I OR 

pred-block : :  =( { temp-obj-defn ; } comp ) 
comp : : = Val-comp I set-comp 
Val-comp :: = arith-expr  comp-op arith-expr 

I NEG restriction I pred-block 
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cornp-op ::=< 1 > 1 <= 1 >= 1 = l= 

set-cornp :: = ident  set-op  ident 
set-op :: = SUBSET I PROPSUBSET I EQSET 

ident :: = relation-id I list-id 
ret-expr : : = arith-expr I aggr-expr 
arith-expr 1 :  = arithmetic  expression 
aggr-expr :: = aggr-fct-id ( arith-expr )I COUNT 
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