Arnold Weinberger

High-Speed Programmable Logic Array Adders

Programmable Logic Array (PLA) adders are described which perform an addition in one cycle with a single pass
through a PLA and require a reasonable number of product terms for an 8-, 16-, or even a 32-bit adder. The PLA features
two-bit input decoders feeding an AND array followed by an OR array whose outputs are pairwise Exclusive-ored. Carry-
look-ahead adder equations, adapted to the PLA to require relatively few product terms, are adjusted for maximum
sharing of product terms. The number of unique product terms is a relative measure of one of the physicual dimensions of
the PLA. Equations for contiguous sum bits are grouped into strings, each using a common input carry. A procedure
optimally assigns sum bits to strings to further minimize the total number of unique product terms. The methods are
extended to PLAs with decoders of increased inputs and substantially reduced product terms. They can serve as dedi-
cated macro functions on a chip, using special decoders relevant to adders. As a result, the other PLA dimension
comprising the number of outputs from all input decoders increases only moderately, and can even decrease, with larger
decoders. Finally, the PLA adder can be further substantially compressed by splitting the OR array into two parts such
that a row of the AND array is shared between two product terms, and an OR array column is shared between two sums of
product terms.

Introduction

Programmable Logic Arrays, PLAs[1, 2], have been suc- 1. Two-bit input decoders, where a pair of inputs and
cessfully applied to the design of control logic and simple their inverters are replaced by a two-input decoder,
functions such as counters, small adders, etc. Large add- and

ers have usually been implemented on standard PLAs it- 2. Exclusive-OR (XOR) outputs, where a pair of OR array
eratively, a few bits per cycle. With previous methodol- outputs are XORed.

ogy, the implementation of a large width adder in one
cycle with a single pass through a PLLA has generally re-
quired too many product terms to be economical. The
number of product terms in the AND array is a measure of
one of the dimensions of a PLA and is directly related to
the silicon area on a chip as well as the signal delay
through the PLA.

Two-bit decoders can, in turn, be replaced by fewer
decoders having more than two inputs to further reduce
the number of product terms. To avoid an uneconomical
increase in the number of decoder outputs, however, the
decoders are restricted to produce only outputs that are
pertinent to the add function. The result is a PLA design

. . . dedicated to adders.
This paper describes one-cycle adder designs for stan-

dard PLAs as well as for PLLAs dedicated to adders. The

standard PLA adder is an improved version of one de- Adder equations are expressed in a suitable manner to
scribed elsewhere by the author [3]. These designs reduce take advantage of these features and of various methods
the number of product terms to acceptable levels even for of sharing product terms among sums of product terms.
16- and 32-bit adders. Two features of standard PLA de- In particular, strings of output sum bits, each comprising
signs are particularly useful in reducing the number of one or more contiguous sums, are expressed in terms of
logical product terms. These are: their common carry using well-known carry-look-ahead

Copyright 1979 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

163

IBM J. RES. DEVELOP. e VOL. 23 ¢ NO. 2 ¢« MARCH 1979 ARNOLD WEINBERGER

164

i
|
|
|
AND I OR
(SEARCH) | (READ)
array | array
|
|
|
|
Figure 1 PLA (Programmable Logic Array).
A B
A
——— PT= f2B)"...
ANDs4 - pr=apmy-...
—j——— PT=A-12(B)"...
(a)
A B
y
—————PT= f2(B)+..
NORs b———— PT=A+72(B) +...
-~~~ PT=A4+2(B) +

(b)

Product term

PT
.I 0 (unconnected)}
..L 1 (connected)

Logical product (AND)

+ Logical sum (OR)

Figure 2 Personalization of AND (SEARCH) array using (a)
real ANDs, or (b) NORs.

methods, and a procedure is developed to optimize string
sizes to additionally reduce the number of product terms.

The AND array which contains the unique product
terms can be further reduced through the sharing of a row

ARNOLD WEINBERGER

of the array by two product terms. Similarly, the OR ar-
ray, which generates logical sums of product terms, can
also be reduced through the sharing of a column of the
array by two sums of products. The split rows and col-
umns are particularly effective in dedicated PLA adders,
although they may also be useful for other logical func-
tions using PLAs.

Standard PLAs

A PLA consists basically of an AND array and an OR array
in series, as shown in Fig. 1. The array names, AND-OR,
describe the generic logic levels of the SEARCH-READ ar-
rays of an associative table [4]. The two arrays may be
implemented with types of logic other than AND-OR; a
widely-used logic, implemented with MOS technology, is
NOR-NOR.

The generic AND (SEARCH) array produces an array of
product terms of the inputs to the PLA. Each prod-
uct term is the AND of functions of the individual inputs,
A,B,C, ..., asin Eq. (1):

Product term = f1(A) - f2(B) - (1)

Each input enters the AND in one of three states: true,
complement, or don’t care. The true and complement
lines of each input intersect the AND array at two connec-
tions which are personalized for one of the three states.
The personalization (illustrated for the input A) is of
the forms shown in Fig. 2(a) when the generic AND
(SEARCH word) is implemented with a real AND, and is of
the form shown in Fig. 2(b) when implemented with a
NOR. It should be noted that only one connection at most
is made at the intersections of the AND array with the true
and complement lines of an input. For the don’t care
state, no connections are made. To personalize the two
connections it is sufficient to provide a single switching
device to which either the true, the complement, or nei-
ther line is connected.

The generic OR (READ) array produces a generic OR of
selected product terms on each array output. The array is
personalized with a single bit at each intersection of a
product term with an output line. A 1 selects the product
term, a 0 does not. Each array output is the real orR of
selected product terms if the array is comprised of real
ORs, as in Fig. 3. If the array is comprised of NORs, each
output is the NOR of selected product terms.

A complete set of minterms (maxterms) corresponds to
the positive (negative) outputs of an n-bit decoder. Fig-
ures 2(a) and (b) can be interpreted as providing a one-bit
decoder for input A: Fig. 2(a) provides the two maxterms
A and A, while Fig. 2(b) provides the corresponding two
minterms A and A.

IBM J. RES. DEVELOP. & VOL. 23 & NO. 2 « MARCH 1979

The personalized two-bit cell at the intersection of a
product term with the one-bit decoder outputs corre-
sponds to selecting the subset of minterms (maxterms) to
comprise the desired function. Figures 4(a) and (b) illus-
trate the four possible functions of input A, of which three
are used. Figure 4(a) shows the possible products of max-
terms, each maxterm included or not according to the
function to be personalized. A 1 is ORed with the maxterm
if it is not included in the function, while a 0 is Ored if it is
included. Similarly, Fig. 4(b) shows the possible sums of
minterms, each minterm included according to the func-
tion to be personalized. A 1 is ANDed with the minterm if
included, a 0 if not.

The number of product terms can be significantly re-
duced by substituting two-bit decoders for a pair of one-
bit decoders [5]. The total number of decoder outputs re-
mains the same. The product term now represents the
AND of functions of pairs of inputs, as in Eq. (2):

Product term = f1(Al, Bl) - f2(A2, B2) - 2)

Figure 5 shows the 16 possible functions of inputs A
and B, of which 15 may be used. Figure 5(a) shows the
possible products of maxterms, while Fig. 5(b) shows the
possible sums of minterms. The latter defines functions of
A and B to correspond to a NOR implementation of a prod-
uct term, as in Eq. (3).

Product term = f1(Al, Bl) + f2(A2,B2) + (3)
This corresponds to Fig. 4(b) for one-bit decoders. It
should be noted that only three switching devices are
needed to personalize the four bits since the last function,
requiring four connections, is unused [6].

Two-input decoders have already been applied to a
standard PLA [2] and will be shown to be particularly
useful for adders.

Another economizing PLLA feature is the use of XOR
outputs [7], where pairs of OR array outputs are xXoRred to
produce a single PLA output. Figure 6 shows the PLA
expanded to include two-input decoders and XOR outputs.

Adders

A typical adder adds two a-bit numbers, A(A,,. . ., A,_)
and B(B, . . ., B,_)) together with an input carry C,, to
produce a sum S(S,, . . ., §,_,) and an output carry C_
(C,). Using the single-bit-position functions,

G,=AB, P, =A+B, H=AVB,

a carry C, from any bit position / can be expressed di-
rectly in terms of these functions and C,, as in Egs. (4)
and (5):

IBM J. RES. DEVELOP. ® VOL. 23 @ NO. 2 ¢ MARCH 1979

Xl X2 -
PT1 ——— X1=PT1+PT2 4.
PT2 ——— X2=PTI +PT3+...
PT3 -

| I
| |
| |

Figure 3 Personalization of OR (READ) array.

4 4
F—————f(A)=(4d+1): (4+1)= 1+ 1=don’tcare
— ———HA)=(4+0) (A+1)=A1=4
ANDs _
———f{A)=(A+1)- (A+0)=1"A=4
———f(4)=(4+0)* (4+0)= 4+ 4=0(unused)
(a)
A
A 4
— — —— f(A)=A*0+ A4°0= 0+ 0 =don’tcare
NO L — —— {(A)=A 1+ A 0=4+0=4
Rs ———(A)=A0+A 1=0+A=7A
e HA)=A 1+ A" 1=A+ A=0 (unused)
(b)

Figure 4 One-input functions using a one-input decoder and a
personalized two-bit cell with (a) complement decode outputs
and maxterm personalization, or (b) true decode outputs and
minterm personalization.

o3 [iln] .
l:l:[H);*:l ’ Pa’ (5)

o
il
=

where 3, and IT are symbols for OR and AND, respectively,
H* means either H or P may be used, H** means
either H or G may be used, G,=¢C,=C, and I_’n =
C,, = C,. (Itis desirable to substitute P or G for H where
possible since P = A + Band G = A + B require but one
connection while H = A V B requires two connections in

the AND array, as shown in Fig. 5.)

165

ARNOLD WEINBERGER

A B

[o 1 2 3\
1 I |

T
(A

*B) (4°B) (A*B) (4*B)

f(4,8)
’
,

1)~ dontcare =(0)+(0 Y+(0 Y+ (0)
1)= A+B <(AB)+(0)+(0 Y+(0)
A+B I
A+B !
aA+8

A

——=C 1) C 1Ly 1)
——=(A+B)*(1L) (1)

o

N
<
-]

> NORs

ANDsﬁ

|

SIS

w W oW

———=(1) (A+B) - (A+B)*(A+B)~> 4- “(0)+(4°B)+(A*B)+(A*B)

———(A+B) (A+B)* (A+B)* (A+B)~ 0(unused) = (A*B)*+(A*B)+(4:B)+ (4" B)

(a) (b}

Figure 5 Two-input functions using a two-bit decoder and a personalized four-bit cell with (a) complement decode outputs and max-
term personalization, or (b) true decode outputs and minterm personalization.

Also, a sum bit can be expressed as a function of the
output carry from the preceding bit position and ex-
panded into an XOR of two entities, one of which includes
a distant carry, as in Eqgs. (6) and (7):

izt [en2 i1
0L ¥ Hom S
=HNVG,)V H, +C,), 6) b=i+i y
§S,=HNC,, =HNYGH, +H, - C,.) GH!, = ,,;,-ﬂ Lgﬂ Ht*] B,
~ (H,Y GH.,)Y (H,, - C,,)
= (H,V GHI)V (", + ;) 7 In a similar fashion, the output carry can be expressed

as an XOR of two entities, one of which includes a distant

where Gf: +, = carry-generate condition for bit group i + 1 carry, as shown in Egs. (8) and (9):

through j (high-to-low order, i = j), Hﬁ 4+, = strict carry-

propagate condition (mutually exclusive with G7,), and

Cp=GH,+ H, -C, = GH VH-C,,

GH] = Gl + HJ, = inclusive carry-propagate condi- ={GH} Y {H] + C,,}.)
tion, which can be expressed as sums of product terms, as ~ : ; ; ;
follows: Cow = G(J) + H; Gy = G; v H(; "Gy
i [a1 ={G}V{H,+C, } 9)
Gy, = Z [H H t} G, Equations (6) through (9) can also be expressed as func-
a=i+1 Lb=i+1

tions of the distant carry of opposite polarity. The se-

H = ﬁ H lected forms of the equations provide more opportunities
i+1 b’

166

b=i+1

ARNOLD WEINBERGER

for sharing product terms.

IBM J. RES. DEVELOP. ® VOL. 23 e NO. 2 ¢« MARCH 1979

PLA adder designs
The adder equations can now be applied to the PLA of
Fig. 6.

Addend and augend of the same bit position, A, and B,,
enter a common decoder, so that the intersection of an
AND with the decoder outputs can produce one of the six
useful adder functions of A and B, i.¢., G,, P,, H,, or their
complements. The input carry C, enters as the sole input
to a decoder. (For uniformity, a two-input decoder is pro-
vided for €, with one input unused.)

A string of K contiguous sum bits is generated as a
function of a common carry into the string, using Eqgs. (6)
and (7). Positive and negative strings of sum bits are
shown in Egs. (10) and (11), respectively:

S, ={H}V{C,,),
r J—1 a—1 A
3 *k
Hi [H Hb} Pa
a=i+1 Lp=i+1
- 141 -
S;=97 i'[Hﬂ;*}‘Gj >
b=i+1
) a—1
cne ST m o,
a=i+1 Lb=i+1
. J
H - H™ -G, | .
v a=i+1 ¢ b=a+1 b ! ’ (10)
+ I:Ij + _j+1
S; = HIV{C, b

Jj—1 a—1 1
A ST m)a,

a=i+1 Lb=i+1

T

-1
S, = 4+Hl.-[ﬂ Ht]-Pj

b=i+1

e 3T H*;*]PU

L a=i+1 Lb=i+1

v 2 ﬁa‘{ﬂ Hi:l'Pj (11

IBM J. RES. DEVELOP. § VOL. 23 & NO. 2 4 MARCH 1979

AND
(SEARCH)
array

OR
(READ)
array

Figure 6 PLA with two-input decoders and XOR outputs.

fori=j— K+ 1,..., j— 1; high-to-low order; i < j.
Note that A, = A, + ...+ H, of the bracket to the
right of the Exclusive-oR is actually implemented with
product terms already present in the left brackets of the
string of sums. The reader can verify that the different
representations of Eq. (12) are equivalent:

. J — —]_1 - —
H;-H: EHa: ZHalinHﬂ;*]GJ-'_Hj

a=it+1 a=i+1 b=a+1
-1 -1

— . & *®]

= > Ha-[I1 HJ-P],+HJ.. (12)
a=i+1 b=a+1

The common carry shared by the sum bits of a string is
expressed as a sum of product terms according to Eq. (4)
or (5) and is generated in the AND array. Clearly, if the
sum bits are grouped into few but large strings, few such
common carries, and hence few product terms for these
carries, would be needed. On the other hand, the number
of product terms needed for a sum bit in a string increases
with the distance of the sum bit from the common carry.
Therefore, the total number of product terms needed for
the adder is minimized by choosing an optimal grouping
of sum bits to strings.

Three string types are identified: low-order, inter-
mediate, and high-order.

A low-order string includes a product term represent-
ing the input carry C,, or C, , the low-order sum bits im-
plemented according to Eq. (10) or (11), and the prod-
uct terms representing the output carry of the string ac-
cording to Eq. (4) or (5). The indexes (j — 1, j) become
(n — 1, in). Note that the high-order sum of the string, S,
(fori = j — K + 1) of Eq. (10), shares some of its product

167

ARNOLD WEINBERGER

168

Strings

4 A A
l BO l Bl BZ BB 84 BS B ’ B7 3 Eout mmﬁ
{ vlvlj_lv_liyl L3y)

Two-input decoders xor|xor|xorfxor|xorfxor{xorR|xORIXOR
i — 1} 1|1
i, — 1] |2
B G, — 1 3
Gg — 1| {1f {1 4
Ce He G, —- 1| pf {11 5
Hy Hy Cin 1|y 6
H, > y |1 7
H4 P5 —- 1|1 8
H, Py —- 1 9
Hy Gy - 1 10
ﬁ3 H:‘ PS — 1 11
(P, —w4 1| o] o] 11 12
Hy P, —l 11 [1] (1] |1]1 13
{ H, HY I 1| 1} [1f (21 14
Hy Hy H P, — |1] {1} |1} 2 15
C, H3' HY H3' HE* Py —={ 1] 1} |1] [1 16
L H Hy H3 HY Hy Cin — (1] {1f 7] 1 17
H, 1| 1| {11 18
H| G, — (1] [1]1 19
H, G, — 1 20
H, P, 1 21
H, H}* G, — 1)1 22
H, G, —11} |1 23
H, HY Gy —11| |1 24
G, —1 25

AND array OR array

Figure 7(a) Eight-bit PLA adder: PL A format.

terms with the output carry of the strong C, of Eq. (4), and
S, of Eq. (11) shares product terms with C, of Eq. (5). For
example, the product term H, - H* - ... - H'_ - G,
of Eq. (4) can be shared with the product term H, -
HY, - ... - H'_ - G,of the left bracket of Eq. (10).
Therefore, it is advantageous to use the same polarity
output carry from the string as the sum bits. Since the
sum bits are a function of the opposite polarity input carry
to the string, it is also advantageous to alternate polarities
of strings. It should also be noted that when sharing prod-
uct terms between S, and C, (or S, and C,), the common
factor H, must be used and P, (or Gi) cannot be sub-

stituted for it, i.e., H* (or H**) does not apply.

The number of unique product terms needed for a low-
order string of K sum bits and its output carry is: 1 for the
input carry, 1 + 2 + 4 + . . . + 2(K — 1) for the sum bits
(noting that some product terms are shared, e.g., HJ.), and
2 for the additional unique (non-shared) product terms

ARNOLD WEINBERGER

contained in the output carry of the string. Equation (13)
expresses T, , the number of unique product terms of the
low-order string:

T

low

=3 for K =1,
=14+[1+2+4+...+2(K-D]+2
=K>-K+4 forK>1. (13)

For K = 1, the low-order sum is generated more efficient-
ly according to Eq. (14) or (15):
Sn~l = {Hn~ ’ Cin} v {Hn~1 ' Cin}’ (14)

S, ,=1{H,_,-CIV{H,_ -C. (15)

1

together with the opposite polarity output carry of this
string, C,_, =P _ +H _ -C,orC,_ =G, +H_ -
C,, respectively. The two product terms of S, _, (or S _))
and the additional unique product term for C,_, (or C,_)

add up to three unique product terms for a low-order

IBM J. RES. DEVELOP. e VOL. 23 e NO. 2 « MARCH 1979

M A+ H CHG,) (+H

Figure 7(b) Eight-bit PLA adder: equations.

string of one. If a low-order string of one is used, the next
string is of the same polarity as the low-order sum in or-
der to make use of the opposite polarity output carry of
the low-order string.

An intermediate string uses the product terms of the
output carry of the preceding string to generate the sum
bits according to Eq. (10) or (11). It also generates the
output carry of the string according to Eq. (4) or (5), re-
spectively.

The number of unique product terms for an inter-
mediate string, T, of size K > 1is one less than for a low-
order string because the input carry to the intermediate
string has already been counted as part of the preceding
string. For K = 1 they are equal. However, the output
carry of the string has additional product terms equal to
L, the number of bit positions of lower order than the
string.

T,=K'-K+3+L forK=1. (16)

A high-order string generates the high-order sum bits
as for an intermediate string. However, the output carry
of the string, C,, is needed only as an output of the adder,
C_ ., so that it can be generated according to Eq. (8) or (9)

out’

IBM 1. RES. DEVELOP. ¢ VOL. 23 ¢ NO. 2 ¢ MARCH 1979

+H, *Hy P
THHHF
+Hu.Hu.Hn.Hu,17
3 4 5 6 7
+Hn.Hu.Hu_H--.Hu.E
3 4 5 6 7 i

mn

H* HorPmaybe used
H** Hor G maybe used

as a function of the input carry to the string, as shown in
expanded form in Eq. (17) or (18):

J a—1
Cout= P0+H0.z |:H Hﬂ;*jlpa]
b=t

a=1
j—1 -1
_ . _
vi> H, [[H,,] P+ H + cm},)
a=0

i Ta-1
C-vout: GO+H0'Z [H:]'GaJ

-1 i-1
v Ha-[[1 H’;*}Gj+Hj+Cj+l]. (18)

Here, product terms can be shared between C_,, and S‘O
(or Cout and §,), so that opposite polarities are selected.
Also, Eq. (12) is used to take advantage of product terms
already present in the sums of the string. Therefore,
only one additional unique product term is needed for

Cout or Cout *

The number of unique product terms for the high-order
string, T, is L + 1 less than for an intermediate string,
since the output carry is a function of the input carry to

the string:

T .=K*-K+2 forK=1. (19)

high

Figure 7(a) illustrates an eight-bit adder that generates
the outputs in a one-cycle pass through the PLLA. The out-

169

ARNOLD WEINBERGER

170

Table 1 Transition values for optimum intermediate string siz-
es.

Ko (K+1) 23 3¢ 4 45
L, 3 9 17
AL, 6 8 10

Table 2 Illustration of procedure for optimal string assignment.

First-pass string assignment
(Nos. are string sizes)

Final string assignment

5443321
55443321} no change
555 443321
+
1 5443321 54 43322
+ 4+
25443321 54 43 3 32
+ + +
354 433 21 S 4 4 43 32
+ + + +
4 5443321 S5 5 44332

+ above numbers marks strings to be increased by one.
/ through numbers marks remainder to be absorbed.

put sum bits are divided into three strings of 3, 3, and 2
bits, high-to-low order. The strings have been optimized
to further reduce the total number of product terms to 25.
An entry in the AND array is noted with a function of the
decoder inputs, i.e., G, = A, B, etc. These functions can
be readily converted to personalized four-bit cells by
means of Fig. 5. Figure 7(b) expresses the eight-bit adder
in equation form to correspond to the PLLA format used.

Optimization

An optimum string size is determined by minimizing the
total number of product terms (7) averaged over the
string size (K). We begin with the low-order string and
proceed toward the higher-order strings.

An optimum low-order string is either one or two bits
long, since

(T,,,/K)min =3 for K= lor2. (20

For an intermediate string, the minimum number of prod-

uct terms averaged over the string size,
(T/K)min = [(K* = K + 3 + L)/K]lmin forK =1,

is a function of L, the number of bits of lower order than
the string. Successive (higher-order) intermediate strings

ARNOLD WEINBERGER

should therefore be increasing monotonically. We deter-
mine the transition value of L, L, for which string sizes K
and K + 1 are equally efficient, i.e.,

(K* - K+3+L)/K
=[(K+1) - (K+1)+3+LJ/(K+1),

L=K+K-3 for K = 1. 21

t

For K = 1, L, is negative, which means that an inter-
mediate string size of two is always more efficient than a
string of one.

Table 1 lists various transition values as well as
changes in transition values. It shows that, after three
lower-order bit positions, the next string size is equally
efficient at two or three; after nine lower-order bit posi-
tions, the next string size is equally efficient at three or
four; etc.

The change in transition values, AL,, where
AL = LK< K+ 1) - L(K—1<K)
=K*+K-3)-[K-D*+K-1)-13]
= 2K, (22)

shows that a pair of equal intermediate string sizes (two
K — 1sizes) are followed by a pair of next larger size (two
K sizes) for optimum assignment of intermediate string
sizes. In other words, after a low-order string of one is
arbitrarily selected and followed by an intermediate string
of two, pairs of next higher string sizes follow (pairs of
threes, pairs of fours, etc.).

An optimum high-order string is determined in relation
to the other strings. First we note that if the high-order
string is greater than (or smaller than) the adjacent inter-
mediate string by two or more, the combined number of
product terms for the two strings can be reduced by re-
ducing (or increasing) the high-order string by one and
increasing (or reducing) the adjacent string by one.

This leads to the following empirical procedure for as-
signing string sizes: We begin with a low-order string of
one (the smaller of the two optimal sizes), followed by a
single string of two and pairs of strings of three, four, etc.
If the bit positions of the adder are exhausted when the
high-order string is equal to or one greater than the adja-
cent string, the first-pass string assignment is final. If the
high-order string is less than the adjacent string, the latter
becomes the new high-order string and the former high-
order string is deemed a remainder to be absorbed by the
intermediate strings as follows: First, the low-order string
of one is increased to two, the next string of two is in-
creased to three, the higher-order of the two strings of

IBM J. RES. DEVELOP. » YOL. 23 @ NO. 2 ®« MARCH 1979

Table 3 Number of product terms for (a) eight-bit adder, (b) 16-bit adder, and (c) 32-bit adder, using a conventional PLA. K = string
size, L = number of lower-order bit positions, and T = number of product terms.

Bit position Bit position
01 2 3 45 6 7 C, 23 4 56 7 8 9 10 12 13 14 15 C,
K 3 3 2 K 4 4 3 3 2
(a) L 2 — (b) L 8 5 2 —
T 8 1 6 T 14 23 14 11 6
@ product terms product terms
Bit position
01234 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 G,
K S 5 5 4 3 3 2 1
(c) L 22 17 9 6 3 1 —
T 22 45 40 24 15 12 6 3
product terms
three is increased to four, the higher-order of the next pair A B Aq By A B,
of intermediate strings is increased by one, etc., until the Yy ! g Y Y
L1 2

remainder is exhausted.

Table 2 illustrates the above procedure for assigning
strings to achieve a minimum number of product terms.
The assignment is not necessarily unique. For some adder
sizes a different assignment can achieve the same mini-
mum. For example, the eight-bit adder of Fig. 7 can also
be implemented with 25 product terms using string sizes
2, 3,2, and 1, high-to-low order.

Table 3 illustrates the relevant parameters for eight-bit,
16-bit, and 32-bit adders, using 25, 68, and 195 product
terms, respectively.

Decoders with more than two inputs

Additional reduction in the number of product terms for
an adder may be obtained using four-input or higher-input
decoders while preserving the generality of use of the
PLA. A product term may now be defined as the AND of
functions of input groups, with an input group comprising
the inputs of a decoder. With standard decoders, how-
ever, this results in a wider AND array and more costly
decoding. For example, a four-input decoder replacing
two two-input decoders doubles the number of decoder
outputs from 8 to 16, an eight-input decoder replacing
four two-input decoders increases the number of decoder
outputs from 16 to 256, etc. In the limit, a single decoder
accepting all adder inputs becomes a conventional ROM
decoder, while each product term can represent any func-
tion of the decoder inputs without the need of an OR ar-

IBM J. RES. DEVELOP. e VOL. 23 NO. 2 ¢ MARCH 1979

-«— Input weight —e

2 1 0| = Outputweight— |§ 5 4 3 2 1 0
G H P {GoHllHO'HllP;)H]l
S G TN -
o Y1 \t+tH+G J\tR G, 0o n
(a) (b)
G=A*B H=AVB P=A+B

Figure 8 Special decoders generating elementary symmetric
functions from (a) one pair of adder inputs, and (b) two adjacent
pairs of adder inputs.

ray. In short, the single decoder and the AND array com-
prise a complete ROM whose outputs are any desired
logic functions of the inputs.

Special decoders, however, can permit more inputs per
decoder without expanding the width of the AND array or,
at most, only moderately expanding it. One type of spe-
cial decoder produces elementary symmetric functions to
take advantage of symmetry which is derived from the
relative weights of the adder inputs. Thus, the adder input
of bit position i, A, or B,, has a relative weight of 1 when
the input is not zero; A,_, or B,_| has a relative weight of 2
when not zero; A_, or B,_, arelative weight of 4 when not
zero; etc. The decoder generates the unique values of the
combined weights of its inputs. For example, two pairs of
adder inputs of adjacent bit positions have relative
weights of 2, 2, 1, and 1. They enter the special decoder

171

ARNOLD WEINBERGER

4 10 B

lBolBl B,|B, 13

Tlffl“l i

Bll BIZ
|

4
Bl

Low- High- Intermediate

order order —
dg Ay Ay 04 Aip 43 4 AISCll}—A-ﬂCOUl/__H/_——Nﬁ/_—&_\
4315\ S15514 SO Sl SZ s3 S4 55 s6 s7 s8 S9 SIU Sll 512 Sl3

1

Decoders

L1 |

Exclusive-ORs

e | []
R T A

f 1

Ci, > 1 {1
H, tif {2
H12V613 1 3
512{ C‘;H}lg** _ 1 i 1] 1 4
orlen, - if it 1] |n 5
i, - of (1] {lx 6
Ay V6, 1 7
Hy| Gy, 11 8
Hy| G, 1 9
HSVGQ 513) — 1 10
H VR Gl - 1 1
GH, - 1| 1} 1] 12

(L g L
c, Hg“ GHi?" _ 1 {tf [1f [x 13
s w | GHp > NEUBHEE 14
. Wl e C, — y 1| (4] o 15
H, i (1| |i 16
HVG, R 17
H, Gl 11 18
Hy | G| - 1 19
HNVG, Gg 1 20
HYE | G - 1 21
GH, HERERERER p2)
H, | GH, 1| (1]] 1| |2 23

5D S ——s
A AL - REANORE :
4 6 8 10

H, | H~ . o | GHY = 0l D]l b 26
P o i e ST, ”
H, tf |1 |1 1)1 28
HNG, ={ 1] J1f [1]1 29
i | ¢ —{ 1] i 30
H, > 1 31
HYVG, | G, ~ [1]1 32
HVE | G -~ | |1 33
GH,, 1 34
N —11 35

Figure 9(a) 16-bit adder using four-input and five-input special decoders: PLLA format.

which generates seven elementary symmetric functions

representing the combined input values ranging from 0 to

6. Any adder function of the four inputs can be generated

from a combination of the seven decoder outputs. By

contrast, a conventional two-input decoder assumes rela-

tive input weights of 8, 4, 2, and 1, requiring 16 outputs
172 ranging in value from 0 to 15.

ARNOLD WEINBERGER

Figure 8 compares two-input and four-input special
decoders showing the generated outputs. It is noted that
replacing a pair of two-input special decoders with one
four-input special decoder increases the number of de-
coder outputs from six to seven. By contrast, with con-
ventional decoders, the number of outputs doubles—from
eight to 16.

IBM J. RES. DEVELOP. ¢ VOL. 23 ¢ NO. 2 ¢« MARCH 1979

Sis=Hs¥C)
S14=(H V(G TP~ C

"))
8;5= {(Els)f v {514§

512={(H|2V(713)}V{(ﬁ13)+fl4}
S”={(1711)}V{512}
510={(Hlovc_“)}v{(ﬁ”)+c’lz}
" (11,)-(6%{)) <z_110vc17,>
+(HY) (G} [t (H,DTC,
+(HgVR) " (G i) +H, D+,
5, = {5 v ()
S, ={(H6V57); v 1(ﬁ7)+68;
;. (175)-@%)‘1 (H VG,
| +(Hy) =G\ (+ (A +T,
(H4V§5)-(62) (ﬁs).(gg)_'_([_]sv(—;?)
S, = +(H,NP) (G + () +Cy
s, ={<173)}v{54}
5, =§(HZVG3)}V§(E3)+€4}
()" (GD) (H,VG)
VT @Y (R He,
_ (HOVEQ'(G;) (’71)'(5;)+(H2V53)
S = +(H NP (GO |+ (H+C,

~ =3
(G (Ho¥G))* (G

vV (H) (G + (HVG,)
+(H)+C,

‘out

+(Hy) (G

Py B
C= +014'ﬁ5 B
+G,0G5°Chy
— 13
C,= (GH})

+(H;) (CY

~ =9
C,= (GHp)
93
10)

9*+ Lies = 13
+(Hy)t (Hy) (GHY

+(Hy)+ (GH

(R ()€

C,= (GH)

+(H))+ (GH))

+(H,)+ (GHLY)

+H) HD) (@

Figure 9(b) 16-bit adder using four-input and five-input special decoders: equations.

The width of the AND array can be further reduced by
customizing each decoder to produce only those func-
tions that the product terms require, particularly for de-
coders with a large number of inputs. For example, an
eight-input special decoder which accepts four adjacent
pairs of adder inputs of relative weights 8, 8,4,4,2,2, 1,
and 1, produces 3] elementary symmetric functions rep-
resenting weights 0 through 30. However, the number of
different functions of these inputs actually needed by the
product terms of a 32-bit adder varies from six to ten. In
other words, the width of the AND array is actually less
for eight-input custom decoders than for decoders with
fewer inputs. At the same time, the number of product
terms is also reduced. The reduction of the AND array in
both dimensions results in a set of more complex func-
tions produced by the custom decoders.

IBM }. RES. DEVELOP. & VOL. 23 & NO. 2 @« MARCH 1979

A custom decoder is particularly useful for the low-or-
der inputs with which the input carry may be combined in
one decoder.

Adders using four- and five-input decoders

The 16-bit adder defined in Figs. 9(a) and (b) will be used
to demonstrate the effect of using four- and five-input
decoders for adder designs. A five-input custom decoder
is used for the inputs comprising the input carry, Cj,, and
the two pairs of inputs to the low-order bit positions 14
and 15. The remaining decoders accept four inputs each,
comprising pairs of inputs of adjacent bit positions.

Adder outputs are again grouped in strings of con-
tiguous sum bits. The low-order string includes the two
positive low-order sum bits, S, and §,,. They exit di-

173

ARNOLD WEINBERGER

174

1 1 {-=——— Input weight

6 5 4 3 2 1 0 -«——— Output weight
v ' i
(GrGy) (GrH) Gi*'E_H (H;"H D]ji?Fi+l (PoHy) (f’,-t”,.H)
<+H’.'Gi+1> <+PI-GI.+1>
(= don'tcare =6+ 5+ 4+3 +2+1+0
y B J (H,,) =6+4+2+0
A(.H,) =5FITT
V(H,.VEH_])=WT)
N0R5< (HNP, n P=4+3%0
4 4 G6*h =g¥3F4
» @Gt =3F2+F17F0
= GHYY =7FT1+0
L HYYH =3
Note: GIT'=G+H G, =P +H T
G7-1§+1=}_)i+Hi.pi+l H::+1:Hi'Hi+l

Figure 10 Personalization of AND array functions controlled by a four-input symmetric function generator.

rectly from the custom five-input decoder, together with reduce decoder outputs, as will be subsequently dem-

the output carry from the string, C,,, which enters the onstrated. This principle was applied earlier in simpler

AND array to help generate the carries C,,, C,, and C,. form to single-bit propagate functions, where P or G
Succeeding strings of sum bits comprise (S, and S), was substituted for H, and is extendable to multi-bit
(8,45 8,00 Sgand), (S, S, S.,and §)), and (§,, S,, S, propagate functions.
and). 3. It can be noted in Fig. 9(b) that the left bracket of an
equation for a high-order sum of a string, e.g., §,, can-
The general equations for the sums and the carries can not share product terms with the carry from the string,
be derived in a manner similar to those for the adder using either 6-’4 or C,. Therefore, C4 is arbitrarily selected to
a PLA with two-input decoders. A few differences are produce successive sum outputs of the same polarity.
noted: This is in contrast to Fig. 7(a), where such product
term sharing requires alternating polarities of strings.
1. A product term is expressed as the AND of functions of To enable this kind of product term sharing, the left
the new decoders. An entry in the AND array is a func- bracket of the high-order sum of a string, such as §,,
tion of the respective decoder inputs. The four-input would be expressed as

decoders may still be conventional, with an entry in
the AND array readily converted to a personalized 16-
bit cell. The conversion follows from an extension of +(H, - HYY - (G)
Fig. 5 to a four-bit decoder. However, when special

decoders are used, the conversion of an entry in the

(ﬁ4'P5+H4'G5)

+(H, - HY) - (G)

AND array to a personalized cell of fewer than 16 bits which takes three product terms instead of two. The
requires different rules. product term, (H, - H) - (G;), could then be shared
2. The double asterisk attached to the strict propagate between §, and the carry-look-ahead expression for
function, HZ“**, means that G—H;+1 may be used as C,, but without any advantage in total number of prod-
don’t-care conditions; e.g., G'' may be substituted uct terms and with the possible disadvantage of alter-
for HZ“. This simplifies personalization and may also nating polarities of strings. However, such sharing be-

ARNOLD WEINBERGER IBM J. RES. DEVELOP. @ VOL. 23 @ NO. 2 &« MARCH 1979

comes economical for string sizes of six or greater.
The optimized strings of the 16-bit adder of Fig. 9 calls
for string sizes of only four and two.

An empirical procedure for optimally assigning string
sizes, similar to one described earlier, results in the fol-
lowing number of product terms (and string sizes): for an
8-bit adder, 13 product terms (string sizes 4, 2, and 2); for
a 16-bit adder, 35 product terms (string sizes 4, 4, 4, 2,
and 2); and for a 32-bit adder, 99 product terms (string
sizes 6,6, 6,4, 4, 4, and 2).

Figure 10 illustrates the bit personalization for the vari-
ous functions of a four-bit special decoder. The decoder is
an elementary symmetric function generator producing
positive outputs and driving an AND array consisting of
NORs. Note that a maximum of only six switching devices
needs to be provided for personalizing a function because
the function requiring all seven columns to be connected
is never used. It is assumed that a switching device is
located between two adjacent columns and can be shared
between the two columns. Therefore, six devices can be
shared by the seven columns, with each device connected
to its left column (connection pointing left), its right col-
umn (connection pointing right), or neither column (no
connection shown). No devices need be provided be-
tween adjacent sets of columns. Also note that an elemen-
tary symmetric function is not connected if it is included
in the desired function, corresponding to the rule for a
conventional decoder with positive outputs driving an
AND array consisting of NORs. If the AND array is imple-
mented with ANDs, the decoder should produce com-
plement outputs.

Other expressions may be substituted for some of those
in the AND array of Fig. 9 to reduce the number of device
connections. For example, the complement of the in-
clusive two-bit propagate function G;"' may be sub-
stituted for the strict propagate function H:'' without af-
fecting the outputs of the adder. The substitution reduces
the maximum number of connections in Fig. 10 from six
to four. Rearranging the outputs of the decoder permits
reducing the number of devices that need to be provided,
even assuming that a device can be shared only between
its two adjacent columns. As shown more explicitly in
Fig. 11, only four devices are needed for bit positions 10
and 11, and five devices for bit positions 8 and 9, to per-
sonalize the respective functions.

14° Bl4’ AIS’
B,., and C, produces the two low-order sum bits directly,
as well as the carry C|, driving the AND array, as shown in
Fig. 12. The positive C, is intended for the NOR imple-

mentation of the AND array in Fig. 9 where C_‘14 is needed

The five-input custom decoder for inputs A

IBM J. RES. DEVELOP. e VOL. 23 e NO. 2 ¢ MARCH 1979

i+1
Ai Bi BI'+1
vy l ¥
22 11 -+—— Input weight
6 0 5 2 3 4 1 |e—Outputweight
ol 127l 19l g, —rrerres
i & g w (H VG) =5+4+1+0
orsd T TR P @ =3 aFiFo Y
0P 7 [Pl(cié) =6F5+4
o B s A (GH))) =Z+1+0
| | i | | | |
N A
S Lo] l}ﬂﬁg) =6+4+2+0
1 =] =] A
QY BT wve,) =sFaFTTO
NORs i |7 q}q>(1L18vz79) =4+3+0 ®
21010 R s —reres
P DL @) =TerETE0

Device connected

Device not connected

Figure 11 Personalization of AND array functions using (a)
four devices with a maximum of four connections, and (b) five
devices with a maximum of four connections.

14 By, Ays Bys G
B B BN B |
Custom decoder
Sis Sia
| l
Ca S|14 Sys
; » don’t care
NORs Q——«
— (Cyy)

Figure 12 Custom decoder for low-order bit positions of 16-bit
adder.

for several product terms. If the AND array is imple-
mented with ANDs, the custom decoder should generate
C,,
The width of the AND array reduces to 50 columns using
the special decoders consisting of seven elementary sym-
metric function generators with seven columns each and
the custom decoder with one column for the AND array.

175

ARNOLD WEINBERGER

176

Custom decoder

13 13
(G} (GHp) (H,¥Gyy) (Hpy)

- don’t care

NORs<

~513
- (GH3)

ﬁﬂ@ﬂﬂ
~D~D~[JJ~—LFJ~D

_13
-+ (G))

\

Figure 13 Custom decoder for bit positions 12 and 13 of 16-bit
adder.

If custom decoders replace the elementary symmetric
function generators, the width of the AND array is further
reduced. Moreover, still fewer devices are needed and
only one device connection is made at the intersection of
an AND array row with the outputs of a custom decoder.
For example, Fig. 13 shows the custom decoder outputs
for bit positions 12 and 13 of the 16-bit adder of Fig. 9, as
well as the AND array personalization for the five unique
functions the decoder must provide. Again, the decoder
generates complement functions to drive a NOR imple-
mentation of the AND array. Based on the number of
unique functions needed, the total width of the AND array
of the 16-bit adder is reduced to 37.

The 16-bit dedicated PLA adder can be further com-
pressed horizontally and vertically using schemes which
eliminate array sections of unconnected devices [8]. It
should be noted in Fig. 9(a) that the arrays are rather
sparsely populated with entries (representing connected
devices). For example, the first row contains entries only
in the columns of the low-order decoder, in the AND ar-
ray, and of the sum bits S, and S, in the OR array. A
compressed 16-bit adder is illustrated in Fig. 14. First, the
OR array is split into a left and a right part to permit an
AND array row to be shared by two product terms. The
left and right product terms sharing a row are shown sepa-
rated with a heavy vertical line. Second, OR array col-
umns are also shared between pairs of outputs, the split in

ARNOLD WEINBERGER

the column being indicated by a heavy horizontal line.
Third, the inputs and outputs are arranged to enable large
sections of unused ends of rows of columns to be trun-
cated. The number of AND array rows is thus reduced to
22, and the combined number of columns is reduced to
55. The latter are composed of ten columns for the left orR
array, eight for the right oR array,and6 + 4 + 6 + 5 + 6
+ 5 + 4 + 1 for the custom decoder outputs driving the
AND array. (Note that Gf“ can be substituted for
Hii+]*>l<.

Adders using decoders with larger number of inputs
Using custom decoders, it is possible to continue the
trade-off between decoder complexity and array size.
For example, with four adder bit position inputs to a
decoder, custom decoders of eight and nine inputs may be
used. The nine-input decoder would be assigned to the
low-order four-bit positions plus the input carry C,,. The
decoder would generate the low-order four sum bits di-
rectly as well as the signal representing the carry out of
the decoder inputs to drive the AND array.

When optimum string sizes are used, the number of
product terms (and string sizes) needed for an eight-bit,
16-bit, and 32-bit adder is six (string sizes 4 and 4), 19
(string sizes 4, 4, 4, and 4) and 54 (string sizes 8, 8, 4, 4, 4,
and 4), respectively.

If carried to the limit in which all inputs to the adder
enter a single custom decoder, the “‘decoder’” becomes a
custom designed adder without the need of arrays.

Summary and conclusions

It has been demonstrated that one-cycle addition of a
wide data path can be effectively implemented with one
pass through a PLA. Effectiveness is measured in the
number of product terms needed, since that number re-
lates to the chip area required by a PLA as well as to the
delay through the PLLA AND and OR arrays. The adder is
designed to take advantage of two-bit input decoders and
Exclusive-OR outputs—two features which can presently
be incorporated in a standard PLA.

Adder equations with carry-look-ahead have been
adapted to the PLA features to use product terms spar-
ingly and to maximize sharing of product terms among
different functions of product terms. For example, a
string of contiguous sum bits is expressed using a com-
mon carry of one polarity so that the product terms repre-
senting the carry are shared by the several sum bits. The
development of a procedure that determines the optimum
string sizes into which the adder sum bits are grouped to
minimize the total number of product terms has also been
demonstrated.

IBM J. RES. DEVELOP. » VOL. 23 @ NO. 2 ® MARCH 1979

4o Ay A, Ay A As Ay 4

¥

Ag

l

A9 AIO A 2 4 s
By | B Bio| Bui| Bia| Bis| Bys s
Pl el el

15 Y14 s4 SS s6 S7

Decoders I l |

XORXORIXORIXO!

P el
| L

[XORIXORXORIX O
Sll Sl() 59 SB

Figure 14 Compressed 16-bit PLA adder.

A standard PLLA will normally implement a number of
functions, one of which may be an adder. With LSI,
PLAs will increasingly be used as macros on a chip, tai-
lored to specific functional needs. If a PLA is dedicated to
an adder, further efficiencies can be gained. Input decod-
ers with more than two inputs can further reduce the
number of product terms needed. At the same time, the
width of the AND array of a PLA, the dimension which
measures the number of decoder outputs, can be reduced
by substituting special decoders to produce functions
relevant to addition. As a result, both the height and the
width of a PLLA adder can be significantly reduced.

A dedicated PLLA adder can be further compressed in
size by splitting the OR array of the PLA into two parts
with the single AND array between them. Many of the AND
array rows, which normally contain a single product

IBM J. RES. DEVELOP. @ VOL. 23 & NO. 2 « MARCH 1979

A T T T T]] T
e Hy G, HVP, Gl -]
Ins GH, HNG, G, —11
i | [~ #,vP G) H G, ~ | |1
11| |+ H,VEG, G H, G| ={ |11
1 < H, G, HNVG, | 1} j1f2
1] 1] = H G H, = 1] [1] |1]t
1] {1] |1] fe H,VG, GH, — 1] 11} 11| |1
b [1] fif |1 i, vl ey W 1 f 1] o
g [fo] {1 2 GH, - Wl ey = 1| [}] p
i [{of 2]] e u, | CH] . Hly S e 1y 1} |1
1| b 1] [1f 1] e " " GH, q, —{ |11
il]]] (1] e o, H,' | cmly | HLYG, -1
i e faf] | " H” . wl oeny | 1 [1
i 1]] o n H" H ' Hy DTl T
TRORORE Al
i] 1y [] e Y
RENER H,, Si2 513
111 H VG,
11] [i, Gl
T1- | ol
o sVG, Gy
;" A Gy
w 1

term, can thus be shared between two product terms.
Also, an OR array column can be split to contain two sums
of product terms, instead of one, by providing distinct
outputs at the top and bottom of the column.

References

1. W.N. Carr and J. P. Mize, MOS/LSI Design and Application,
McGraw-Hill Book Co., Inc., New York, 1972.

2. J. C. Logue, N. F. Brickman, F. Howley, J. W. Jones, and
W. W. Wu, ‘‘Hardware Implementation of a Small System in
Programmable Logic Arrays,”” IBM J. Res. Develop. 19, 110
(1975).

3. A. Weinberger, ‘‘Parallel Adders Using Standard PLAs,”
Proceedings of the Fourth Symposium on Computer Arith-
metic, Santa Monica, CA, October 25-27, 1978.

4. M. Flinders, P. L. Gardner, J. F. Minshull, and R. J. Llew-
elyn, ‘‘Functional Memory as a General Purpose System
Technology,”” Proceedings of the IEEE Computer Group
Conference, June 1970, pp. 314-324.

5. A. Weinberger, ‘‘Functional Memory Using Multistate Asso-
ciative Cells,”” U.S. Patent #3,761,902, 1973.

177

ARNOLD WEINBERGER

6. A. Weinberger, *‘Device Sharing in Array Logic,”” IBM Tech. Received August 24, 1978; revised October 23, 1978
Disc. Bull. 19, 1357 (1976).

7. J. W. Jones, ‘‘Array Logic Macros,”” IBM J. Res. Develop.
19, 120 (1975). h hor is located h A
8. A. Weinberger, “‘Logic Array with Multiple Read-Out Ta- The author is located at the IBM Data Systems Division

bles,” U.S. Patent #3,975,623, 1976. laboratory, Poughkeepsie, New York 12602.

178

ARNOLD WEINBERGER IBM J. RES. DEVELOP. e VOL. 23 e NO. 2 ¢ MARCH 1979

