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High-speed Programmable  Logic  Array  Adders 

Programmable  Logic  Array  (PLA)  adders  are  described  which  petform  an  addition  in  one  cycle with a  single  pass 
through  a  PLA  and  require  a  reasonable  number  ofproduct  terms  for  an 8-, 16-, or even  a 32-bit adder.  The  PLA  features 
two-bit  input  decoders  feeding  an AND array  followed  by  an OR array  whose  outputs  are  pairwise  Exclusive-oRed.  Carry- 
look-ahead  adder  equations,  adapted  to  the  PLA  to require relatively f e w  product  terms,  are  adjusted  for  maximum 
sharing  ofproduct  terms.  The  number  of  unique  product  terms  is  a  relative  measure  of  one  of  the  physical  dimensions  of 
the  PLA.  Equations  for  contiguous  sum  bits  are  grouped  into  strings,  each  using  a  common  input  carry. A procedure 
optimally  assigns  sum  bits  to  strings  to  further  minimize  the  total  number  of  unique  product  terms.  The  methods  are 
extended  to  PLAs with decoders of increased  inputs  and  substantially  reduced  product  terms.  They  can  serve  as  dedi- 
cated  macro  functions on a  chip,  using  special  decoders  relevant  to  adders. As  a  result,  the  other  PLA  dimension 
comprising  the  number of outputs  from all input  decoders  increases  only  moderately,  and  can  even  decrease, with  larger 
decoders.  Finally,  the  PLA  adder  can  be  further  substuntially  compressed  by  splitting  the OR array into  two  parts  such 
that  a  row  of  the AND array  is  shared  between  two  product  terms,  and  an OR array column  is  shared  between  two  sums of 
product  terms. 

Introduction 
Programmable  Logic Arrays,  PLAs [ 1, 21, have been suc- 
cessfully applied to  the design of control logic and simple 
functions such as  counters, small adders,  etc.  Large add- 
ers  have usually been  implemented on  standard  PLAs it- 
eratively, a few bits per cycle. With previous  methodol- 
ogy, the implementation of a large width adder in one 
cycle with a single pass through  a PLA  has generally re- 
quired too many product  terms  to be economical. The 
number of product terms in the AND array is a  measure of 
one of the dimensions of a PLA and is directly  related to 
the silicon area  on a chip as well as  the signal delay 
through the  PLA. 

This paper  describes one-cycle adder designs for stan- 
dard  PLAs as well as  for  PLAs dedicated to adders.  The 
standard PLA adder is an improved  version of one de- 
scribed  elsewhere by the  author [3]. These designs  reduce 
the number of product  terms  to  acceptable levels even  for 
16- and 32-bit adders.  Two  features of standard  PLA de- 
signs are particularly useful in reducing the number of 
logical product terms.  These  are: 

1 .  Two-bit input decoders, where  a  pair of inputs and 
their  inverters are replaced by a  two-input decoder, 
and 

2. EXChISiVe-OR (XOR)  outputs, where  a  pair of OR array 
outputs  are xoRed. 

Two-bit decoders  can, in turn, be  replaced by fewer 
decoders having more  than  two  inputs to  further reduce 
the number of product  terms.  To avoid an uneconomical 
increase in the  number of decoder  outputs,  however, the 
decoders  are  restricted  to  produce only outputs  that  are 
pertinent to the add  function.  The result is a PLA design 
dedicated to  adders. 

Adder equations  are  expressed in a  suitable manner to 
take advantage of these  features and of various methods 
of sharing product terms among  sums of product  terms. 
In particular,  strings of output sum bits,  each comprising 
one  or more  contiguous sums,  are  expressed in terms of 
their common carry using well-known carry-look-ahead 
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Figure 1 PLA (Programmable Logic Array), 
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Figure 2 Personalization of AND (SEARCH) array using (a) 
real ANDs, or (b) NORs. 

methods, and a procedure  is developed to optimize  string 
sizes  to additionally reduce  the number of product  terms. 

The AND array which contains  the  unique  product 
terms can be  further  reduced through the sharing of a row 164 
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of the array by two  product terms.  Similarly, the OR ar- 
ray, which generates logical sums of product  terms, can 
also be  reduced through  the sharing of a  column of the 
array by two  sums of products.  The split rows  and col- 
umns  are particularly  effective in dedicated PLA adders, 
although  they may also be  useful for  other logical func- 
tions using PLAs. 

Standard PLAs 
A PLA consists  basically of an AND array  and  an OR array 
in series,  as shown in Fig. 1. The  array  names, AND-OR, 

describe  the generic logic levels of the SEARCH-READ ar- 
rays of an  associative  table [4]. The  two  arrays may be 
implemented with types of logic other  than AND-OR; a 
widely-used logic, implemented with MOS technology, is 
NOR-NOR. 

The generic AND (SEARCH) array  produces  an  array of 
product terms of the  inputs  to  the PLA. Each prod- 
uct  term is the AND of functions of the individual inputs, 
A, B ,  C ,  . . ., as in Eq. (1): 

Product  term = f l(A) . f 2 ( B )  . . . . . (1) 

Each input enters  the AND in one of three  states:  true, 
complement, or don't  care.  The  true  and complement 
lines of each  input intersect  the AND array  at  two connec- 
tions which are personalized for  one of the  three  states. 
The personalization  (illustrated for  the  input A)  is of 
the  forms shown in Fig. 2(a) when the generic AND 

(SEARCH word) is implemented with a real AND, and is  of 
the form  shown in Fig. 2(b) when implemented with a 
NOR. It should be noted  that only one  connection  at most 
is made at  the  intersections of the AND array with the  true 
and  complement  lines of an  input.  For  the  don't  care 
state, no connections are made. To  personalize  the two 
connections it is sufficient to provide  a single switching 
device to which either  the  true,  the  complement, or nei- 
ther line is connected. 

The generic OR (READ) array produces a  generic OR of 
selected product terms  on  each  array  output.  The  array is 
personalized with a single bit at  each  intersection of a 
product term with an  output line. A 1 selects  the  product 
term, a 0 does  not.  Each array output is the real OR of 
selected product terms if the  array is comprised of real 
ORs, as in Fig. 3. If the  array is comprised of NORS, each 
output is the NOR of selected product terms. 

A complete set of minterms  (maxterms) corresponds  to 
the  positive  (negative) outputs of an n-bit decoder. Fig- 
ures 2(a) and (b) can  be  interpreted  as providing a one-bit 
decoder  for input A: Fig. 2(a) provides the  two maxterms 
A and A ,  while Fig. 2(b) provides the  corresponding two 
minterms A and A. 
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The personalized two-bit cell at  the  intersection of a 
product term with the one-bit decoder  outputs  corre- 
sponds  to selecting the  subset of minterms  (maxterms) to 
comprise the desired function.  Figures  4(a) and (b) illus- 
trate  the four  possible  functions of input A ,  of which three 
are  used. Figure 4(a) shows  the possible products of max- 
terms,  each maxterm  included or not according  to  the 
function to be personalized.  A 1 is oRed with the maxterm 
if it is not included in the function, while a 0 is oRed if it is 
included.  Similarly,  Fig. 4(b) shows  the possible sums of 
minterms,  each  minterm included according  to  the func- 
tion to be  personalized.  A 1 is ANDed with the minterm if 
included,  a 0 if not. 

The number of product  terms can be significantly re- 
duced by substituting  two-bit decoders  for a  pair of one- 
bit decoders [ 5 ] .  The  total number of decoder  outputs re- 
mains the  same.  The  product term now represents the 
AND of functions of pairs of inputs,  as in Eq. ( 2 ) :  

Product term = f l ( A l ,  B1) . f2(A2,   B2)  . . . . . ( 2 )  

Figure 5 shows the 16 possible functions of inputs A 
and B ,  of which 15 may be used. Figure 5(a) shows  the 
possible products of maxterms, while Fig. 5(b) shows  the 
possible  sums of minterms. The  latter defines  functions of 
A and B to  correspond  to a NOR implementation of a  prod- 
uct term,  as in Eq. (3). 

Product  term = f l ( A 1 ,  B1) + f2(A2,   B2)  + . . . . (3) 

This corresponds  to Fig.  4(b) for one-bit decoders.  It 
should  be  noted that only three switching  devices are 
needed to personalize the  four bits  since the last  function, 
requiring four connections, is unused [6]. 

Two-input decoders have  already  been  applied to a 
standard PLA [ 2 ]  and will be  shown to be  particularly 
useful for  adders. 

Another economizing PLA  feature is the use of XOR 

outputs [7], where  pairs of OR array outputs  are xoRed to 
produce a single PLA  output. Figure 6 shows  the  PLA 
expanded to include  two-input decoders and XOR outputs. 

Adders 
A  typical adder  adds  two n-bit numbers, A(A,,  . . ., An-J 
and B(B,, . . ., Bn-J together with an input carry Ci, to 
produce a sum S(S,, . . ., Sn-J and an  output  carry Gout 
(CJ. Using the single-bit-position functions, 

Gi = AiB2, Pi = Ai + Bi,  Hi = Ai V Bi ,  

a carry Ci from any bit position i can be expressed di- 
rectly in terms of these functions  and Cin, as in Eqs. (4) 
and (5): 

x1 x 2  --- 

TF X l = P T I + P T 2  +.. .  
X 2 = P T I   + P T 3 + . . .  

PT3 _" . 

I I  
I I  

I 1  

Figure 3 Personalization of OR (READ) array. 
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Figure 4 One-input functions using a one-input decoder and a 
personalized two-bit cell with (a) complement decode outputs 
and  maxterm personalization, or (b) true decode outputs and 
minterm personalization. 

where Z and II are symbols for OR and  AND,  respectively, 
H* means either H or P may  be used, H** means 
either H or G may be used, Gn = Ci, = C n ,  and P, = 
ci, = C,. (It is desirable  to  substitute P or G for H where 
possible  since P = A + B and G = A + B require  but  one 
connection while H = A V B requires  two  connections in 
the AND array,  as  shown in Fig. 5.) 165 
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Figure 5 Two-input functions using a  two-bit decoder and  a  personalized  four-bit cell with (a) complement  decode  outputs  and max- 
term personalization, or (b) true  decode  outputs  and minterm  personalization. 

Also,  a sum bit can be expressed  as a function of the 
output carry from  the preceding bit position and ex- 
panded into an XOR of two  entities,  one of which  includes 
a distant carry,  as in Eqs. (6) and (7): 

Si = Hi V Ci+l = Hi V (Gj+l + Hi+l . Cj+l) 

= (Hi V Gi+l) V (H:+, . Cj+l) 

= (Hi V G:+,) V (ai+l + cj+l), (6) 
- 

si = Hi V C i + l  = Hi V (GH;,, + Hi+, . Cj+l) 
- 

= (Hi V GH:+l) V (H:+l . cj+l) 
= (Hi V GH:,,) V (e+l + Cj+l), (7) 

where G;+l = carry-generate condition for bit group i + 1 
through j (high-to-low order, i 5 j ) ,  H:+l = strict  carry- 
propagate  condition  (mutually  exclusive with G;+J, and 
GH;,, = Gi+l + Hi+, = inclusive carry-propagate condi- 
tion, which can be expressed as sums of product  terms,  as 
follows: 

Gi+l = [ H:] . Ga, 
o=i+l b=i+l 

= fi Hh, 
b=i+l 166 
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GH:+, = { 2 [ ff H t ]  . Gal + [ 5' H:] . P j ,  
a=i+l  b= i+ l  b=i+l 

q:+l = 1 H b ,  

h=i+l 

-+, = [ ri H;*] . pa.  
a=i+l b=i+l  

In a similar fashion,  the  output  carry can  be expressed 
as  an XOR of two entities,  one of which includes  a  distant 
carry,  as shown in Eqs. (8) and (9): 

C,,, = G?; + Hi . cj+l = GHi V Hi  . ci+l 
= {m;} v {Hi + Cj,,}, (8) 

= {Gi} v {Hi + cj+s. (9) 

C,,, = Gi + Hi  ' Cj+, = Go V Hi  . Cj+, 

Equations (6) through (9) can also be  expressed  as func- 
tions of the distant  carry of opposite polarity. The se- 
lected  forms of the  equations provide more opportunities 
for sharing product  terms. 
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PLA  adder designs 
The  adder  equations  can now be  applied to  the PLA of 
Fig. 6. 

Addend and augend of the  same bit position, Ai and Bi, 
enter a common decoder, so that  the  intersection of an 
AND with the  decoder  outputs  can  produce  one of the six 
useful adder  functions of Ai and Bi,  i.e., Gi, Pi, Hi ,  or their 
complements. The  input  carry Ci, enters  as  the sole  input 
to a decoder.  (For uniformity,  a  two-input decoder is pro- 
vided for C,, with one input  unused.) 

A  string of K contiguous sum bits is generated  as a 
function of a  common  carry into the  string, using Eqs. (6) 
and (7). Positive and negative  strings of sum bits are 
shown in Eqs. (10) and ( ] I ) ,  respectively: 

sj = {Hj} v {Cj+J, 

si = 1 + H i .  [ E H:* 
h=i+ 1 

s i =  1; t H i  ’ [ fi H:] . Pj  
b=i+ l  

j-1 

b=a+1 

+ H i  + cj+, 

t t 
XOR --- 

I ’  ’ 
M 

(SEARCH) 
AND 

I I I I 

Figure 6 PLA with two-input  decoders and XOR outputs. 

for i = j  - K + 1,  . . ., j - 1; high-to-low order; i < j .  
Note  that H : + l  = H i + l  + . . . + H i  of the  bracket  to  the 
right of the Exclusive-OR  is actually  implemented with 
product terms  already present in the left brackets of the 
string of sums. The  reader can verify that  the different 
representations of Eq. (12) are equivalent: 

j j- 1 

H:+, = H a  = 2 H a .  [ n C j  + H j  

j- 1 

a=i+l n=i+ l  h=n+l 

The common carry  shared by the  sum  bits of a string is 
expressed  as a sum of product terms  according  to  Eq. (4) 
or ( 5 )  and is generated in the AND array. Clearly, if the 
sum bits are grouped into few but  large strings, few  such 
common carries,  and  hence few product  terms  for these 
carries, would be needed. On the other  hand,  the number 
of product terms needed for a  sum bit in a string increases 
with  the  distance of the sum bit from the common carry. 
Therefore,  the  total  number of product terms needed for 
the  adder is minimized by choosing an  optimal grouping 
of sum bits to strings. 

Three string types  are identified: low-order, inter- 
mediate, and high-order. 

A low-order string includes a product term represent- 
ing the input carry Ci, or Ci,, the low-order sum bits im- 
plemented  according to  Eq. (IO) or (1 l), and the  prod- 
uct terms representing the  output  carry of the string ac- 
cording to  Eq. (4) or (5). The indexes ( j  - 1, j )  become 
( n  - 1, in). Note  that  the high-order  sum of the string, Si 
(for i = j - K + 1) of Eq.  (lo),  shares  some of its  product 167 
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AND array 

Figure 7(a) Eight-bit PLA adder: PLA format. 

terms with the  output  carry of the strong C, of Eq. (4), and 
si of Eq. (11) shares  product  terms with C, of Eq. (5). For 
example, the product  term H: . H:,, . . . . . H*_l . Gj 
of Eq. (4) can be  shared with the  product  term Hi . 
H:,, . . . . . H*_l . Gj of the left bracket of Eq. (10). 
Therefore, it is advantageous  to  use  the  same polarity 
output carry  from the string as  the sum bits. Since the 
sum bits are a function of the  opposite polarity input  carry 
to  the string, it is also advantageous to  alternate polarities 
of strings. It should also  be  noted  that  when  sharing prod- 
uct  terms between Si and C, (or si and E,), the common 
factor Hi must be used and Pi (or G i )  cannot be sub- 
stituted for it,  i.e., H*i (or H*T) does not apply. 

The number of unique  product  terms  needed  for a low- 
order string of K sum  bits  and its output  carry is: 1 for  the 
input  carry, 1 + 2 + 4 + . . . + 2(K - I )  for  the sum  bits 
(noting that  some  product  terms  are  shared,  e.g., Rj), and 
2 for  the additional  unique  (non-shared) product terms 

C )R array 

contained in the  output  carry of the string. Equation (13) 
expresses T,ow, the  number of unique product  terms of the 
low-order string: 

T,,w = 3 for K = 1, 

= 1 + [ 1 + 2 + 4 +  . . . +  2 ( K - 1 ) ] + 2  

= K 2 - K + 4   f o r K > 1 .  (13) 

For K = 1 ,  the low-order  sum is generated more  efficient- 
ly according to Eq. (14) or (15): 

Sn_, = {ffn-l * Gin> v {fin-, . CiJ7 ( 14) 

sn-l = V I n p 1  . C,,} v {an-l . CinL (15) 

together with the  opposite polarity output  carry of this 
string, Cn-, = P n P l  + H,-, . tin, or C,_, = G,-l + Hnpl . 
C,,, respectively. The  two  product  terms of SnP1 (or sn-,) 
and  the additional unique  product  term  for Cn-* (or Cn-J 
add  up to  three  unique  product  terms  for a  low-order 
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Figure 7(b) Eight-bit PLA adder: equations. 

string of one. If a  low-order string of one is used,  the  next 
string is of the  same polarity as  the low-order  sum in or- 
der  to make use of the  opposite polarity output carry of 
the low-order  string. 

An intermediate  string uses the  product  terms of the 
output  carry of the preceding  string to  generate  the sum 
bits  according to  Eq. (10) or (1 1). It  also  generates the 
output  carry of the string  according to  Eq. (4) or ( 9 ,  re- 
spectively. 

The number of unique  product  terms for an inter- 
mediate  string, Ti,  of size K > 1 is one  less  than for a low- 
order string because  the input carry  to  the intermediate 
string  has  already  been counted  as  part of the preceding 
string. For K = 1 they  are  equal.  However,  the  output 
carry of the string has additional  product terms  equal  to 
L ,  the number of bit  positions of lower order than the 
string. 

T ~ = K ' - K + ~ + L  f o r ~ 2 1 .  ( 16) 

A high-order  string generates  the high-order  sum  bits 
as for an intermediate  string. However,  the  output carry 
of the string, C,, is needed only as  an  output of the  adder, 
Gout, so that it can be generated according to  Eq. (8) or (9) 
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C,= G ,  
+ H,' G7 
+H;'H;*Cin 

H* H or cmay be used 
H" H or G may be  used 

as a  function of the  input carry to  the  string,  as shown in 
expanded form in Eq. (17) or (18): 

Cout = Po + Ho . [E1 H:*] pa)  
a=l b=l 

a=O . [ E ff:] . Pi + H i  + Cj+, , (17) 
b=a+l 1 

tout = [Go + H0 . [ 5' HZ] . Gal 
a=1 b = l  

. [ E H z * ]  . Gj + H, + c,+, . (18) 
a=O b=a+l 1 

Here,  product  terms can  be shared  between Cout and so 
(or Eout and So),  so that  opposite polarities are  selected. 
Also,  Eq. (12) is used to  take  advantage of product  terms 
already present in the sums of the string. Therefore, 
only one additional  unique product  term  is needed for 

cout  or G u t .  

The number of unique  product  terms  for  the high-order 
string, Thigh, is L + 1 less  than  for  an  intermediate string, 
since  the  output  carry is a function of the  input  carry  to 
the string: 

Thigh = K 2  - K + 2 for K 2 1. (19) 

Figure 7(a) illustrates an eight-bit adder  that  generates 
the  outputs in a one-cycle  pass through the  PLA.  The out- 169 
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Table 1 Transition  values  for  optimum intermediate  string  siz- 
es. 

L, 3 9 17 " _  

4 6 8 10 

Table 2 Illustration of procedure  for  optimal string assignment. 

First-pass  string  assignment  Final  string  assignment 
(Nos. are  string sizes) 

5 4 4 3 3 2 1  
5 5 4 4 3 3 2 1  

5 5 5 4 4 3 3 2 1  
no change 

+ 
1 5 4 4 3 3 2 1   5 4 4 3 3 2 2  

2 5 4 4 3 3 2 1  

1 5 4 4 3 3 2 1   5 4 4 4 3 3 2  

4 5 4 4 3 3 2 1  5 5 4 4 3 3 2  

+i 
5 4 4 3 3 3 2  

i + +  
+ + + +  

/ through numbers marks remainder to be absorbed. 
+ above numbers marks strings to be increased by one 

put  sum bits are divided into  three strings of 3, 3, and 2 
bits, high-to-low order.  The strings have  been optimized 
to  further reduce the total  number of product  terms  to 25. 
An entry in the AND array is noted with a function of the 
decoder  inputs,  i.e., Gi = A i .  Bi ,  etc.  These  functions can 
be readily converted  to personalized  four-bit cells by 
means of Fig. 5.  Figure 7(b)  expresses  the eight-bit adder 
in equation form to  correspond  to  the  PLA  format used. 

Optimization 
An optimum string  size is determined by minimizing the 
total  number of product  terms ( T )  averaged  over the 
string  size ( K ) .  We begin with the low-order  string and 
proceed  toward the higher-order  strings. 

An optimum low-order string is either  one  or two bits 
long,  since 

(T l , lw /K)  min = 3 for K = 1 or 2 .  (20) 

For  an intermediate string,  the minimum number of prod- 
uct  terms averaged over  the string size, 

( T i / K )  min = [ ( K 2  - K + 3 + L ) / K ]  min for K 2 1,  

is a function of L ,  the number of bits of lower  order than 
the string. Successive (higher-order) intermediate strings 170 
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should  therefore  be  increasing  monotonically. We deter- 
mine the transition value of L ,  L,, for which string  sizes K 
and K + 1 are equally efficient, i.e., 

( K 2  - K + 3 + L ) / K  

= [ (K  + 1)2 - ( K  + 1 )  + 3 + L ] / ( K  + I ) ,  

L t = K 2 + K - 3  f o r K 2 1 .  (21) 

For K = 1, L, is negative, which means  that  an inter- 
mediate string size of two is always more efficient than a 
string of one. 

Table 1 lists various  transition  values as well as 
changes in transition  values. It  shows  that,  after  three 
lower-order bit positions,  the next  string  size is equally 
efficient at two or  three;  after nine lower-order bit posi- 
tions,  the next  string  size is equally efficient at  three  or 
four: etc. 

The change in transition values, ALt,  where 

AL, = L,(K ++ K + 1) - Lt(K - I ++ K )  

= ( K 2  + K - 3 )  - [ (K - + ( K  - 1 )  - 31 

= 2K,  (22)  

shows that  a  pair of equal intermediate string sizes  (two 
K - 1 sizes) are followed by a pair of next larger  size  (two 
K sizes) for optimum  assignment of intermediate string 
sizes. In other  words,  after a  low-order string of one is 
arbitrarily  selected and followed by an intermediate string 
of two, pairs of next  higher  string  sizes follow (pairs of 
threes, pairs of fours,  etc.). 

An optimum high-order string is determined in relation 
to  the  other strings. First we note  that if the high-order 
string is greater  than  (or  smaller than)  the  adjacent inter- 
mediate  string by two  or  more,  the  combined number of 
product terms for  the  two strings  can  be reduced by re- 
ducing (or  increasing) the high-order string by one  and 
increasing  (or reducing) the  adjacent string by one. 

This leads to  the following empirical procedure  for  as- 
signing string sizes: We begin with a low-order string of 
one (the  smaller of the  two optimal sizes), followed by a 
single string of two  and pairs of strings of three,  four,  etc. 
If the bit positions of the  adder  are  exhausted when the 
high-order string is equal  to  or  one  greater than the adja- 
cent string, the  first-pass string  assignment is final. If the 
high-order string is less than the adjacent string,  the  latter 
becomes the new high-order  string  and the  former high- 
order string is deemed a  remainder to  be  absorbed by the 
intermediate  strings as follows: First,  the  low-order string 
of one is increased to  two,  the next string of two is in- 
crzased  to  three,  the higher-order of the  two strings of 
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Table 3 Number of product  terms  for  (a) eight-bit adder,  (b) 16-bit adder,  and  (c) 32-bit adder, using a  conventional PLA. K = string 
size, L = number of lower-order bit positions,  and T = number of product  terms. 

Bit position Bit position 

0 1 2  3 4 5  6 7 $ ,  0 I 2 3 4 5 6 7 8 9 10 I I  12 13 14 15 C,, 
~~~ ~ ~~ ~~ ~~~~~ 

K 3  3  2 4 4 3 3 2 
(a) L 2 (b) L 8 5 2 

T 8 I I  6 T 14 23 14 1 1  6 

~ ~ ~~ 

K 

~~ ~ ~~~ ~~~ 

- - 

@product  terms @ product  terms 

Bit position 

0 1 2  3 4 5 6 7  8 9 10 I 1  12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  28  29 30 31 C,, 

5 
17 
40 

4 4 3 3 2 1 
13 9 6 3 1 
28 24 15 12 6 3 

- 

@product terms 

three is increased to  four, the higher-order of the next pair 
of intermediate  strings is increased by one,  etc., until the 
remainder is exhausted. 

Table 2 illustrates the above  procedure for assigning 
strings to achieve a minimum number of product  terms. 
The assignment is not necessarily  unique. For  some adder 
sizes a different assignment  can  achieve the  same mini- 
mum. For  example,  the eight-bit adder of Fig. 7 can also 
be implemented with 25 product  terms using string sizes 
2 ,  3, 2 ,  and 1, high-to-low order. 

Table 3 illustrates the relevant parameters  for eight-bit, 
16-bit, and 32-bit adders, using 25, 68, and 195 product 
terms, respectively. 

Decoders with more than  two inputs 
Additional reduction in the  number of product  terms for 
an adder may be obtained using four-input or higher-input 
decoders while preserving  the  generality of use of the 
PLA.  A product term may now be defined as  the AND of 
functions of input groups, with an input group comprising 
the inputs of a  decoder. With standard decoders, how- 
ever, this results in a wider AND array and more  costly 
decoding. For  example,  a four-input decoder replacing 
two two-input decoders doubles  the number of decoder 
outputs from 8 to 16, an eight-input decoder replacing 
four two-input decoders increases the number of decoder 
outputs from 16 to 256, etc. In the limit, a single decoder 
accepting all adder  inputs becomes a conventional ROM 
decoder, while each  product term can represent any  func- 
tion of the decoder  inputs without the need of an OR ar- 

G H P  

(a) (b)  

G = A ' B  H = A V B   P = A + B  

Figure 8 Special  decoders  generating  elementary  symmetric 
functions  from (a) one  pair of adder  inputs,  and  (b)  two  adjacent 
pairs of adder  inputs. 

ray. In short, the single decoder and the A N D  array com- 
prise a complete ROM whose outputs  are any  desired 
logic functions of the  inputs. 

Special decoders,  however, can permit more  inputs  per 
decoder without expanding  the width of the A N D  array or, 
at  most, only moderately  expanding  it. One type of spe- 
cial decoder produces  elementary symmetric functions to 
take advantage of symmetry which is derived from the 
relative weights of the  adder inputs. Thus,  the  adder input 
of bit position i, A !  or B, ,  has a relative weight of 1 when 
the input is not zero; A i _ ,  or Bi+,  has a relative weight of 2 
when not zero; Ai-2  or B1-, a relative weight of 4 when not 
zero;  etc.  The  decoder  generates the  unique values of the 
combined weights of its inputs. For example, two  pairs of 
adder inputs of adjacent bit positions have relative 
weights of 2, 2 ,  I ,  and 1. They enter the special decoder 171 
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Figure 9(a) 16-bit adder using four-input and five-input special decoders: PLA format. 

which generates seven elementary symmetric functions Figure 8 compares two-input and  four-input special 
representing  the combined input  values  ranging  from 0 to decoders showing the generated outputs.  It is noted that 
6. Any adder  function of the  four inputs  can  be  generated replacing a pair of two-input  special decoders with one 
from a combination of the seven decoder  outputs. By four-input special decoder increases the  number of de- 
contrast,  a conventional  two-input decoder  assumes rela- coder outputs from six to  seven. By contrast, with con- 
tive input weights of 8, 4, 2, and I ,  requiring 16 outputs ventional decoders,  the number of outputs doubles-from 
ranging in value from 0 to 15. eight to 16. 



Figure 9(b) 16-bit adder using four-input and  five-input  special decoders: equations. 

The width of the AND array can be further reduced by 
customizing  each decoder  to produce  only those func- 
tions that the product  terms  require, particularly for de- 
coders with a large number of inputs. For  example, an 
eight-input special decoder which accepts  four adjacent 
pairs of adder  inputs of relative weights 8,  8, 4, 4, 2,  2, 1 ,  
and 1 ,  produces 31 elementary  symmetric functions rep- 
resenting weights 0 through 30. However,  the number of 
different functions of these inputs  actually needed by the 
product  terms of a 32-bit adder varies from six to  ten. In 
other  words,  the width of the AND array is actually  less 
for eight-input custom  decoders than for  decoders with 
fewer inputs. At the  same  time,  the  number of product 
terms is also reduced.  The reduction of the AND array in 
both  dimensions results in a set of more  complex  func- 
tions produced by the custom decoders. 
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A custom decoder is particularly  useful for the low-or- 
der inputs with which the input  carry may be  combined in 
one  decoder. 

Adders using four- and five-input decoders 
The 16-bit adder defined in Figs. 9(a) and (b) will be used 
to  demonstrate  the effect of using four-  and five-input 
decoders  for  adder designs. A five-input custom decoder 
is used for  the  inputs  comprising  the input carry, Ci,, and 
the  two  pairs of inputs to  the  low-order bit positions 14 
and 15. The remaining decoders  accept  four  inputs  each, 
comprising  pairs of inputs of adjacent bit positions. 

Adder outputs  are again grouped in strings of con- 
tiguous sum bits. The low-order  string  includes the two 
positive  low-order sum bits, SI5 and S,4. They exit di- 173 
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NORs 

Figure 10 Personalization of AND array functions controlled by a  four-input  symmetric function  generator. 

rectly from the  custom five-input decoder,  together with 
the  output carry  from the string, C,,, which enters the 
AND array to help generate the carries C,,, C H ,  and C,. 
Succeeding  strings of sum  bits  comprise ( S , 3  and S,,), 
(SI,, S,,,, S, ,  and SJ, (S7, S,, S,, and S,), and (S3, S,, SI, 
and So) .  

The general equations  for the  sums and  the  carries can 
be derived in a manner similar to  those  for  the  adder using 
a PLA with two-input decoders. A few differences are 
noted: 

1 .  A product  term is expressed  as the AND of functions of 
the new decoders. An entry in the AND array is a  func- 
tion of the  respective  decoder inputs. The four-input 
decoders may still be conventional, with an entry in 
the AND array readily converted  to a  personalized 16- 
bit cell. The  conversion follows from an extension of 
Fig. 5 to a four-bit decoder.  However, when special 
decoders  are  used,  the conversion of an entry in the 
AND array to a  personalized cell of fewer than 16 bits 
requires different rules. 

2 .  The double asterisk  attached  to  the  strict propagate 
function, HS+'"*, means that may be used as 
don't-care  conditions;  e.g., G:" may be  substituted 

174 for HE+'. This simplifies personalization and may also 

reduce decoder  outputs, as will be subsequentlv dem- 
onstrated. This  principle was applied earlier in simpler 
form to single-bit propagate functions,  where P or G 
was substituted for H ,  and is extendable  to multi-bit 
propagate functions. 

3. It  can  be  noted in Fig. 9(b) that the left bracket of an 
equation for a high-order sum of a string,  e.g., S,, can- 
not share product terms with the  carry from the string, 
either c, or C,. Therefore, C, is arbitrarily  selected to 
produce successive sum outputs of the  same polarity. 
This is in contrast  to Fig. 7(a),  where  such product 
term sharing requires alternating  polarities of strings. 
To enable this kind of product  term sharing,  the left 
bracket of the  high-order sum of a string, such as S, ,  
would be expressed  as 

(H, . P 5  + H ,  . GJ 

+ (B, . H;") . (Gl) 
+ ( H ,  . HZ) . (G:) 

which takes three  product  terms instead of two.  The 
product term, ( H ,  . H:) . (Gi), could then be  shared 
between S, and  the carry-look-ahead expression for 
C,, but without  any advantage in total  number of prod- 
uct terms  and with the possible disadvantage of alter- 
nating polarities of strings. However,  such sharing be- 
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comes economical for string  sizes of six or greater. 
The optimized  strings of the 16-bit adder of Fig. 9 calls 
for string sizes of only four and two. 

An empirical procedure for optimally assigning string 
sizes, similar to  one described earlier,  results in the fol- 
lowing number of product  terms (and string  sizes): for  an 
8-bit adder, 13 product  terms (string sizes 4, 2,  and 2); for 
a 16-bit adder, 35 product  terms (string sizes 4, 4,  4,  2, 
and  2);  and for a 32-bit adder, 99 product  terms (string 
sizes 6,  6,  6, 4, 4,  4, and 2 ) .  

Figure 10 illustrates the bit personalization for  the vari- 
ous functions of a  four-bit special decoder.  The  decoder is 
an elementary symmetric function generator producing 
positive outputs and driving an AND array consisting of 
NORS. Note that a maximum of only six switching  devices 
needs  to be provided for personalizing a  function  because 
the function requiring all seven  columns to be  connected 
is never  used.  It is assumed that a  switching  device is 
located  between two adjacent  columns and  can be  shared 
between  the  two columns.  Therefore, six devices can be 
shared by the seven columns, with each device connected 
to its left column  (connection pointing left), its right col- 
umn (connection  pointing  right), or neither  column (no 
connection  shown). No devices  need  be  provided be- 
tween  adjacent sets of columns. Also note  that  an elemen- 
tary  symmetric  function is not connected if it is included 
in the desired function, corresponding to  the rule for a 
conventional decoder with positive outputs driving an 
AND array  consisting of NORS. If the AND array is imple- 
mented with ANDS, the  decoder should produce com- 
plement outputs. 

Other expressions may be  substituted for  some of those 
in the AND array of Fig. 9 to reduce the  number of device 
connections. For  example,  the complement of the in- 
clusive two-bit propagate function G:" may be  sub- 
stituted  for the strict propagate  function H:" without af- 
fecting the  outputs of the  adder.  The  substitution reduces 
the maximum number of connections in Fig. 10 from six 
to  four. Rearranging the  outputs of the  decoder permits 
reducing the number of devices  that  need to be provided, 
even assuming that a device  can  be shared only  between 
its two adjacent columns. As shown more explicitly in 
Fig. 11, only four  devices  are needed for bit positions 10 
and 1 1 ,  and five devices  for bit positions 8 and 9, to per- 
sonalize the  respective functions. 

The five-input custom  decoder  for  inputs A,, ,  B,,, A,,, 
B,,, and Cin produces  the two  low-order sum bits directly, 
as well as  the  carry C,, driving the AND array,  as shown in 
Fig. 12. The positive C,, is intended for  the NOR imple- 
mentation of the AND array in Fig. 9 where c,, is needed 
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NORs 

NORs 

-Output weight 

(HI,)  = 6 + 4 + 2 + 0  

(H lov~ l l )  = 5 + 4 + 1 + 0 

(5;;) = 3 + 2 + l + 0  

( G ; ; )  = 6 + 5 + 4  
-~ 

(..;;I = 2 +  I + o  
I I I I I I I  
I I I I I I I  

(g , )  = 6 + 4 + 2 + 0  

(H,j = 5 + 3 + l  

~" -~ 

(H,VG,) = 5 + 4 + 1 + 0 

(mi) = 2 + 1 + 0 

( H , V q j  = 4 + 3 + 0  

(G i j  = 3 + 2 + 1 + 0  

Device connected 

Device not connected 

Figure 11 Personalization of AND array  functions using (a) 
four devices with a maximum of four  connections,  and (b) five 
devices with a maximum of four  connections. 

I , , , I 'r 'I4 

Custom decoder 

t 
C 

Figure 12 Custom decoder  for low-order bit positions of 16-bit 
adder. 

for several  product terms. If the AND array is imple- 
mented with ANDS, the custom decoder should  generate 

c 4 .  

The width of the AND array reduces to 50 columns using 
the special decoders consisting of seven elementary sym- 
metric  function generators with seven columns  each and 
the custom decoder with one column for  the AND array. 175 
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T I Custom decoder 

41 

Figure 13 Custom decoder  for bit positions 12 and 13 of 16-bit 
adder. 

If custom decoders replace the  elementary symmetric 
function generators,  the width of the AND array is further 
reduced.  Moreover, still fewer devices are needed and 
only one device connection is made at  the  intersection of 
an AND array  row with the  outputs of a custom  decoder. 
For example, Fig. 13 shows the  custom decoder outputs 
for bit positions 12 and 13  of the 16-bit adder of Fig. 9, as 
well as the AND array personalization for  the five unique 
functions the  decoder must  provide.  Again, the  decoder 
generates complement  functions to  drive a NOR imple- 
mentation of the AND array. Based on the number of 
unique  functions needed, the  total width of the AND array 
of the 16-bit adder is reduced to 37. 

The 16-bit dedicated  PLA  adder  can be further com- 
pressed horizontally and vertically using schemes which 
eliminate  array sections of unconnected devices [8]. It 
should  be  noted in Fig. 9(a) that  the  arrays  are  rather 
sparsely  populated  with entries (representing  connected 
devices).  For  example,  the first row contains  entries only 
in the columns of the low-order decoder, in the AND ar- 
ray, and of the  sum bits SI, and SI,, in the OR array. A 
compressed 16-bit adder is illustrated in Fig. 14. First, the 
OR array is split into a left and a right part  to permit an 
AND array row to  be  shared by two product  terms.  The 
left and right product  terms sharing  a row are shown  sepa- 
rated with a  heavy  vertical  line. Second, OR array col- 

176 umns  are also shared  between pairs of outputs,  the split in 
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the column being indicated by a  heavy  horizontal  line. 
Third, the  inputs  and outputs  are arranged to enable large 
sections of unused ends of rows of columns  to be trun- 
cated.  The number of AND array  rows is thus reduced to 
22, and  the  combined  number of columns is reduced to 
55. The  latter  are composed of ten columns for  the left OR 

array, eight for the right OR array,  and 6 + 4 + 6 + 5 + 6 
+ 5 + 4 + 1 for  the custom decoder  outputs driving the 
AND array.  (Note  that Gi" can be substituted  for 
H Y * .  

Adders using decoders with larger number of inputs 
Using custom  decoders, it is possible to  continue  the 
trade-off between decoder complexity  and array size. 
For example, with four  adder bit position inputs  to a 
decoder, custom decoders of eight and nine inputs may be 
used.  The nine-input decoder would be  assigned to the 
low-order  four-bit positions plus the  input carry Gin. The 
decoder would generate  the low-order four sum  bits di- 
rectly as well as  the signal representing the  carry out of 
the  decoder inputs to drive the AND array. 

When optimum string sizes are  used,  the number of 
product terms (and  string  sizes)  needed for  an eight-bit, 
16-bit, and 32-bit adder is six (string  sizes  4 and 4), 19 
(string sizes 4 ,4 ,4 ,  and 4) and 54 (string  sizes 8 ,  8, 4 ,4 ,4 ,  
and  4),  respectively. 

If carried to  the limit in which all inputs  to  the  adder 
enter a single custom decoder,  the "decoder"  becomes  a 
custom designed adder without the need of arrays. 

Summary  and conclusions 
It  has been demonstrated  that  one-cycle addition of a 
wide data path  can  be effectively implemented with one 
pass through a PLA. Effectiveness is measured in the 
number of product terms  needed, since that number  re- 
lates to the  chip area required by a PLA as well as  to the 
delay through the  PLA AND and OR arrays.  The  adder is 
designed to take advantage of two-bit  input decoders and 
Exclusive-OR outputs-two features which can  presently 
be  incorporated in a standard  PLA. 

Adder  equations with carry-look-ahead have been 
adapted  to  the  PLA  features  to use product  terms spar- 
ingly and to maximize  sharing of product terms among 
different functions of product terms.  For  example, a 
string of contiguous  sum bits is expressed using a com- 
mon carry of one  polarity so that  the  product  terms repre- 
senting  the  carry are  shared by the  several sum  bits. The 
development of a procedure that determines  the optimum 
string  sizes  into  which the  adder sum bits are grouped to 
minimize the total number of product terms  has also been 
demonstrated. 
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Figure 14 Compressed 16-bit PLA  adder. 

A standard PLA will normally implement  a  number of 
functions,  one of which may be an adder. With LSI, 
PLAs will increasingly be used as  macros  on a chip, tai- 
lored to specific functional needs. If a PLA is dedicated  to 
an adder,  further efficiencies can  be  gained. Input decod- 
ers with more  than two inputs  can further  reduce  the 
number of product terms needed. At the  same  time,  the 
width of the AND array of a PLA, the dimension which 
measures the  number of decoder  outputs, can  be  reduced 
by substituting  special decoders  to  produce functions 
relevant to addition. As a result,  both  the height and  the 
width of a PLA adder can  be significantly reduced. 

A dedicated PLA adder can  be further  compressed in 
size by splitting the OR array of the PLA into two  parts 
with the single AND array between them. Many of the AND 

array rows, which normally  contain  a single product 

term, can thus be shared between two  product  terms. 
Also, an OR array  column  can  be split to  contain two sums 
of product terms,  instead of one, by providing  distinct 
outputs at the  top  and bottom of the  column. 
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