
Arnold Weinberger

High-speed Programmable Logic Array Adders

Programmable Logic Array (PLA) adders are described which petform an addition in one cycle with a single pass
through a PLA and require a reasonable number ofproduct terms for an 8-, 16-, or even a 32-bit adder. The PLA features
two-bit input decoders feeding an AND array followed by an OR array whose outputs are pairwise Exclusive-oRed. Carry-
look-ahead adder equations, adapted to the PLA to require relatively f e w product terms, are adjusted for maximum
sharing ofproduct terms. The number of unique product terms is a relative measure of one of the physical dimensions of
the PLA. Equations for contiguous sum bits are grouped into strings, each using a common input carry. A procedure
optimally assigns sum bits to strings to further minimize the total number of unique product terms. The methods are
extended to PLAs with decoders of increased inputs and substantially reduced product terms. They can serve as dedi-
cated macro functions on a chip, using special decoders relevant to adders. As a result, the other PLA dimension
comprising the number of outputs from all input decoders increases only moderately, and can even decrease, with larger
decoders. Finally, the PLA adder can be further substuntially compressed by splitting the OR array into two parts such
that a row of the AND array is shared between two product terms, and an OR array column is shared between two sums of
product terms.

Introduction
Programmable Logic Arrays, PLAs [1, 21, have been suc-
cessfully applied to the design of control logic and simple
functions such as counters, small adders, etc. Large add-
ers have usually been implemented on standard PLAs it-
eratively, a few bits per cycle. With previous methodol-
ogy, the implementation of a large width adder in one
cycle with a single pass through a PLA has generally re-
quired too many product terms to be economical. The
number of product terms in the AND array is a measure of
one of the dimensions of a PLA and is directly related to
the silicon area on a chip as well as the signal delay
through the PLA.

This paper describes one-cycle adder designs for stan-
dard PLAs as well as for PLAs dedicated to adders. The
standard PLA adder is an improved version of one de-
scribed elsewhere by the author [3]. These designs reduce
the number of product terms to acceptable levels even for
16- and 32-bit adders. Two features of standard PLA de-
signs are particularly useful in reducing the number of
logical product terms. These are:

1 . Two-bit input decoders, where a pair of inputs and
their inverters are replaced by a two-input decoder,
and

2. EXChISiVe-OR (XOR) outputs, where a pair of OR array
outputs are xoRed.

Two-bit decoders can, in turn, be replaced by fewer
decoders having more than two inputs to further reduce
the number of product terms. To avoid an uneconomical
increase in the number of decoder outputs, however, the
decoders are restricted to produce only outputs that are
pertinent to the add function. The result is a PLA design
dedicated to adders.

Adder equations are expressed in a suitable manner to
take advantage of these features and of various methods
of sharing product terms among sums of product terms.
In particular, strings of output sum bits, each comprising
one or more contiguous sums, are expressed in terms of
their common carry using well-known carry-look-ahead

Copyright 1979 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor. 163

IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 ARNOLD WEINBERGER

Figure 1 PLA (Programmable Logic Array),

A B

t3 I+--

A B
I ---

~ "_ P T = f 2 (B) +. , .
NORs "_ P T = z + f 2 (B) + ...

-" P T = A + ~ ~ (B) + ...

PT Product term

& 0 (unconnected)

1 (connected)

. Logical product (AND)

+ Logical sum (OR)

Figure 2 Personalization of AND (SEARCH) array using (a)
real ANDs, or (b) NORs.

methods, and a procedure is developed to optimize string
sizes to additionally reduce the number of product terms.

The AND array which contains the unique product
terms can be further reduced through the sharing of a row 164

ARNOLD WEINBERGER

of the array by two product terms. Similarly, the OR ar-
ray, which generates logical sums of product terms, can
also be reduced through the sharing of a column of the
array by two sums of products. The split rows and col-
umns are particularly effective in dedicated PLA adders,
although they may also be useful for other logical func-
tions using PLAs.

Standard PLAs
A PLA consists basically of an AND array and an OR array
in series, as shown in Fig. 1. The array names, AND-OR,

describe the generic logic levels of the SEARCH-READ ar-
rays of an associative table [4]. The two arrays may be
implemented with types of logic other than AND-OR; a
widely-used logic, implemented with MOS technology, is
NOR-NOR.

The generic AND (SEARCH) array produces an array of
product terms of the inputs to the PLA. Each prod-
uct term is the AND of functions of the individual inputs,
A, B , C , . . ., as in Eq. (1):

Product term = f l(A) . f 2 (B) (1)

Each input enters the AND in one of three states: true,
complement, or don't care. The true and complement
lines of each input intersect the AND array at two connec-
tions which are personalized for one of the three states.
The personalization (illustrated for the input A) is of
the forms shown in Fig. 2(a) when the generic AND

(SEARCH word) is implemented with a real AND, and is of
the form shown in Fig. 2(b) when implemented with a
NOR. It should be noted that only one connection at most
is made at the intersections of the AND array with the true
and complement lines of an input. For the don't care
state, no connections are made. To personalize the two
connections it is sufficient to provide a single switching
device to which either the true, the complement, or nei-
ther line is connected.

The generic OR (READ) array produces a generic OR of
selected product terms on each array output. The array is
personalized with a single bit at each intersection of a
product term with an output line. A 1 selects the product
term, a 0 does not. Each array output is the real OR of
selected product terms if the array is comprised of real
ORs, as in Fig. 3. If the array is comprised of NORS, each
output is the NOR of selected product terms.

A complete set of minterms (maxterms) corresponds to
the positive (negative) outputs of an n-bit decoder. Fig-
ures 2(a) and (b) can be interpreted as providing a one-bit
decoder for input A: Fig. 2(a) provides the two maxterms
A and A , while Fig. 2(b) provides the corresponding two
minterms A and A.

IBM J. RES. DEVELOP. VOL. 23 NO. 2 8 MARCH 1979

The personalized two-bit cell at the intersection of a
product term with the one-bit decoder outputs corre-
sponds to selecting the subset of minterms (maxterms) to
comprise the desired function. Figures 4(a) and (b) illus-
trate the four possible functions of input A , of which three
are used. Figure 4(a) shows the possible products of max-
terms, each maxterm included or not according to the
function to be personalized. A 1 is oRed with the maxterm
if it is not included in the function, while a 0 is oRed if it is
included. Similarly, Fig. 4(b) shows the possible sums of
minterms, each minterm included according to the func-
tion to be personalized. A 1 is ANDed with the minterm if
included, a 0 if not.

The number of product terms can be significantly re-
duced by substituting two-bit decoders for a pair of one-
bit decoders [5] . The total number of decoder outputs re-
mains the same. The product term now represents the
AND of functions of pairs of inputs, as in Eq. (2) :

Product term = f l (A l , B1) . f2(A2, B2) (2)

Figure 5 shows the 16 possible functions of inputs A
and B , of which 15 may be used. Figure 5(a) shows the
possible products of maxterms, while Fig. 5(b) shows the
possible sums of minterms. The latter defines functions of
A and B to correspond to a NOR implementation of a prod-
uct term, as in Eq. (3).

Product term = f l (A 1 , B1) + f2(A2, B2) + (3)

This corresponds to Fig. 4(b) for one-bit decoders. It
should be noted that only three switching devices are
needed to personalize the four bits since the last function,
requiring four connections, is unused [6].

Two-input decoders have already been applied to a
standard PLA [2] and will be shown to be particularly
useful for adders.

Another economizing PLA feature is the use of XOR

outputs [7], where pairs of OR array outputs are xoRed to
produce a single PLA output. Figure 6 shows the PLA
expanded to include two-input decoders and XOR outputs.

Adders
A typical adder adds two n-bit numbers, A(A,, . . ., An-J
and B(B,, . . ., Bn-J together with an input carry Ci, to
produce a sum S(S,, . . ., Sn-J and an output carry Gout
(CJ. Using the single-bit-position functions,

Gi = AiB2, Pi = Ai + Bi, Hi = Ai V Bi ,

a carry Ci from any bit position i can be expressed di-
rectly in terms of these functions and Cin, as in Eqs. (4)
and (5):

x1 x 2 ---

TF X l = P T I + P T 2 +.. .
X 2 = P T I + P T 3 + . . .

PT3 _" .

I I
I I

I 1

Figure 3 Personalization of OR (READ) array.

A

-

_" f (A)=A.O+A*O=O+O=don'tcare

_" f (A) = ~ - l + A * O = X + O = A

f (A) = z - o + A . l = O + A = x

~ _ _

"_ ~~

_" ~ _ _ -
f (A) = ; l . I + A . l = A + A = O (u n u s e d)

(b)

Figure 4 One-input functions using a one-input decoder and a
personalized two-bit cell with (a) complement decode outputs
and maxterm personalization, or (b) true decode outputs and
minterm personalization.

where Z and II are symbols for OR and AND, respectively,
H* means either H or P may be used, H** means
either H or G may be used, Gn = Ci, = C n , and P, =
ci, = C,. (It is desirable to substitute P or G for H where
possible since P = A + B and G = A + B require but one
connection while H = A V B requires two connections in
the AND array, as shown in Fig. 5.) 165

ARNOLD WEINBERGER IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

AND'

Figure 5 Two-input functions using a two-bit decoder and a personalized four-bit cell with (a) complement decode outputs and max-
term personalization, or (b) true decode outputs and minterm personalization.

Also, a sum bit can be expressed as a function of the
output carry from the preceding bit position and ex-
panded into an XOR of two entities, one of which includes
a distant carry, as in Eqs. (6) and (7):

Si = Hi V Ci+l = Hi V (Gj+l + Hi+l . Cj+l)

= (Hi V Gi+l) V (H:+, . Cj+l)

= (Hi V G:+,) V (ai+l + cj+l), (6)
-

si = Hi V C i + l = Hi V (GH;,, + Hi+, . Cj+l)
-

= (Hi V GH:+l) V (H:+l . cj+l)
= (Hi V GH:,,) V (e+l + Cj+l), (7)

where G;+l = carry-generate condition for bit group i + 1
through j (high-to-low order, i 5 j) , H:+l = strict carry-
propagate condition (mutually exclusive with G;+J, and
GH;,, = Gi+l + Hi+, = inclusive carry-propagate condi-
tion, which can be expressed as sums of product terms, as
follows:

Gi+l = [H:] . Ga,
o=i+l b=i+l

= fi Hh,
b=i+l 166

ARNOLD WEINBERGER

GH:+, = { 2 [ff H t] . Gal + [5' H:] . P j ,
a=i+l b= i+ l b=i+l

q:+l = 1 H b ,

h=i+l

-+, = [ri H;*] . pa.
a=i+l b=i+l

In a similar fashion, the output carry can be expressed
as an XOR of two entities, one of which includes a distant
carry, as shown in Eqs. (8) and (9):

C,,, = G?; + Hi . cj+l = GHi V Hi . ci+l
= {m;} v {Hi + Cj,,}, (8)

= {Gi} v {Hi + cj+s. (9)

C,,, = Gi + Hi ' Cj+, = Go V Hi . Cj+,

Equations (6) through (9) can also be expressed as func-
tions of the distant carry of opposite polarity. The se-
lected forms of the equations provide more opportunities
for sharing product terms.

IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

PLA adder designs
The adder equations can now be applied to the PLA of
Fig. 6.

Addend and augend of the same bit position, Ai and Bi,
enter a common decoder, so that the intersection of an
AND with the decoder outputs can produce one of the six
useful adder functions of Ai and Bi, i.e., Gi, Pi, Hi , or their
complements. The input carry Ci, enters as the sole input
to a decoder. (For uniformity, a two-input decoder is pro-
vided for C,, with one input unused.)

A string of K contiguous sum bits is generated as a
function of a common carry into the string, using Eqs. (6)
and (7). Positive and negative strings of sum bits are
shown in Eqs. (10) and (] I) , respectively:

sj = {Hj} v {Cj+J,

si = 1 + H i . [E H:*
h=i+ 1

s i = 1; t H i ’ [fi H:] . Pj
b=i+ l

j-1

b=a+1

+ H i + cj+,

t t
XOR ---

I ’ ’
M

(SEARCH)
AND

I I I I

Figure 6 PLA with two-input decoders and XOR outputs.

for i = j - K + 1, . . ., j - 1; high-to-low order; i < j .
Note that H : + l = H i + l + . . . + H i of the bracket to the
right of the Exclusive-OR is actually implemented with
product terms already present in the left brackets of the
string of sums. The reader can verify that the different
representations of Eq. (12) are equivalent:

j j- 1

H:+, = H a = 2 H a . [n C j + H j

j- 1

a=i+l n=i+ l h=n+l

The common carry shared by the sum bits of a string is
expressed as a sum of product terms according to Eq. (4)
or (5) and is generated in the AND array. Clearly, if the
sum bits are grouped into few but large strings, few such
common carries, and hence few product terms for these
carries, would be needed. On the other hand, the number
of product terms needed for a sum bit in a string increases
with the distance of the sum bit from the common carry.
Therefore, the total number of product terms needed for
the adder is minimized by choosing an optimal grouping
of sum bits to strings.

Three string types are identified: low-order, inter-
mediate, and high-order.

A low-order string includes a product term represent-
ing the input carry Ci, or Ci,, the low-order sum bits im-
plemented according to Eq. (IO) or (1 l), and the prod-
uct terms representing the output carry of the string ac-
cording to Eq. (4) or (5). The indexes (j - 1, j) become
(n - 1, in). Note that the high-order sum of the string, Si
(for i = j - K + 1) of Eq. (lo), shares some of its product 167

IBM J. RES, DEVELOP, VOL. 23 NO. 2 MARCH 1979 ARNOLD WEINBERGER

168

AND array

Figure 7(a) Eight-bit PLA adder: PLA format.

terms with the output carry of the strong C, of Eq. (4), and
si of Eq. (11) shares product terms with C, of Eq. (5). For
example, the product term H: . H:,, H*_l . Gj
of Eq. (4) can be shared with the product term Hi .
H:,, H*_l . Gj of the left bracket of Eq. (10).
Therefore, it is advantageous to use the same polarity
output carry from the string as the sum bits. Since the
sum bits are a function of the opposite polarity input carry
to the string, it is also advantageous to alternate polarities
of strings. It should also be noted that when sharing prod-
uct terms between Si and C, (or si and E,), the common
factor Hi must be used and Pi (or G i) cannot be sub-
stituted for it, i.e., H*i (or H*T) does not apply.

The number of unique product terms needed for a low-
order string of K sum bits and its output carry is: 1 for the
input carry, 1 + 2 + 4 + . . . + 2(K - I) for the sum bits
(noting that some product terms are shared, e.g., Rj), and
2 for the additional unique (non-shared) product terms

C)R array

contained in the output carry of the string. Equation (13)
expresses T,ow, the number of unique product terms of the
low-order string:

T,,w = 3 for K = 1,

= 1 + [1 + 2 + 4 + . . . + 2 (K - 1)] + 2

= K 2 - K + 4 f o r K > 1 . (13)

For K = 1 , the low-order sum is generated more efficient-
ly according to Eq. (14) or (15):

Sn_, = {ffn-l * Gin> v {fin-, . CiJ7 (14)

sn-l = V I n p 1 . C,,} v {an-l . CinL (15)

together with the opposite polarity output carry of this
string, Cn-, = P n P l + H,-, . tin, or C,_, = G,-l + Hnpl .
C,,, respectively. The two product terms of SnP1 (or sn-,)
and the additional unique product term for Cn-* (or Cn-J
add up to three unique product terms for a low-order

ARNOLD WEINBERGER IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

Figure 7(b) Eight-bit PLA adder: equations.

string of one. If a low-order string of one is used, the next
string is of the same polarity as the low-order sum in or-
der to make use of the opposite polarity output carry of
the low-order string.

An intermediate string uses the product terms of the
output carry of the preceding string to generate the sum
bits according to Eq. (10) or (1 1). It also generates the
output carry of the string according to Eq. (4) or (9 , re-
spectively.

The number of unique product terms for an inter-
mediate string, Ti, of size K > 1 is one less than for a low-
order string because the input carry to the intermediate
string has already been counted as part of the preceding
string. For K = 1 they are equal. However, the output
carry of the string has additional product terms equal to
L , the number of bit positions of lower order than the
string.

T ~ = K ' - K + ~ + L f o r ~ 2 1 . (16)

A high-order string generates the high-order sum bits
as for an intermediate string. However, the output carry
of the string, C,, is needed only as an output of the adder,
Gout, so that it can be generated according to Eq. (8) or (9)

IBM J . RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979

C,= G ,
+ H,' G7
+H;'H;*Cin

H* H or cmay be used
H" H or G may be used

as a function of the input carry to the string, as shown in
expanded form in Eq. (17) or (18):

Cout = Po + Ho . [E1 H:*] pa)
a=l b=l

a=O . [E ff:] . Pi + H i + Cj+, , (17)
b=a+l 1

tout = [Go + H0 . [5' HZ] . Gal
a=1 b = l

. [E H z *] . Gj + H, + c,+, . (18)
a=O b=a+l 1

Here, product terms can be shared between Cout and so
(or Eout and So), so that opposite polarities are selected.
Also, Eq. (12) is used to take advantage of product terms
already present in the sums of the string. Therefore,
only one additional unique product term is needed for

cout or G u t .

The number of unique product terms for the high-order
string, Thigh, is L + 1 less than for an intermediate string,
since the output carry is a function of the input carry to
the string:

Thigh = K 2 - K + 2 for K 2 1. (19)

Figure 7(a) illustrates an eight-bit adder that generates
the outputs in a one-cycle pass through the PLA. The out- 169

ARNOLD WEINBERGER

Table 1 Transition values for optimum intermediate string siz-
es.

L, 3 9 17 " _

4 6 8 10

Table 2 Illustration of procedure for optimal string assignment.

First-pass string assignment Final string assignment
(Nos. are string sizes)

5 4 4 3 3 2 1
5 5 4 4 3 3 2 1

5 5 5 4 4 3 3 2 1
no change

+
1 5 4 4 3 3 2 1 5 4 4 3 3 2 2

2 5 4 4 3 3 2 1

1 5 4 4 3 3 2 1 5 4 4 4 3 3 2

4 5 4 4 3 3 2 1 5 5 4 4 3 3 2

+i
5 4 4 3 3 3 2

i + +
+ + + +

/ through numbers marks remainder to be absorbed.
+ above numbers marks strings to be increased by one

put sum bits are divided into three strings of 3, 3, and 2
bits, high-to-low order. The strings have been optimized
to further reduce the total number of product terms to 25.
An entry in the AND array is noted with a function of the
decoder inputs, i.e., Gi = A i . Bi , etc. These functions can
be readily converted to personalized four-bit cells by
means of Fig. 5. Figure 7(b) expresses the eight-bit adder
in equation form to correspond to the PLA format used.

Optimization
An optimum string size is determined by minimizing the
total number of product terms (T) averaged over the
string size (K) . We begin with the low-order string and
proceed toward the higher-order strings.

An optimum low-order string is either one or two bits
long, since

(T l , lw /K) min = 3 for K = 1 or 2 . (20)

For an intermediate string, the minimum number of prod-
uct terms averaged over the string size,

(T i / K) min = [(K 2 - K + 3 + L) / K] min for K 2 1,

is a function of L , the number of bits of lower order than
the string. Successive (higher-order) intermediate strings 170

ARNOLD WEINBERGER

should therefore be increasing monotonically. We deter-
mine the transition value of L , L,, for which string sizes K
and K + 1 are equally efficient, i.e.,

(K 2 - K + 3 + L) / K

= [(K + 1)2 - (K + 1) + 3 + L] / (K + I) ,

L t = K 2 + K - 3 f o r K 2 1 . (21)

For K = 1, L, is negative, which means that an inter-
mediate string size of two is always more efficient than a
string of one.

Table 1 lists various transition values as well as
changes in transition values. It shows that, after three
lower-order bit positions, the next string size is equally
efficient at two or three; after nine lower-order bit posi-
tions, the next string size is equally efficient at three or
four: etc.

The change in transition values, ALt, where

AL, = L,(K ++ K + 1) - Lt(K - I ++ K)

= (K 2 + K - 3) - [(K - + (K - 1) - 31

= 2K, (22)

shows that a pair of equal intermediate string sizes (two
K - 1 sizes) are followed by a pair of next larger size (two
K sizes) for optimum assignment of intermediate string
sizes. In other words, after a low-order string of one is
arbitrarily selected and followed by an intermediate string
of two, pairs of next higher string sizes follow (pairs of
threes, pairs of fours, etc.).

An optimum high-order string is determined in relation
to the other strings. First we note that if the high-order
string is greater than (or smaller than) the adjacent inter-
mediate string by two or more, the combined number of
product terms for the two strings can be reduced by re-
ducing (or increasing) the high-order string by one and
increasing (or reducing) the adjacent string by one.

This leads to the following empirical procedure for as-
signing string sizes: We begin with a low-order string of
one (the smaller of the two optimal sizes), followed by a
single string of two and pairs of strings of three, four, etc.
If the bit positions of the adder are exhausted when the
high-order string is equal to or one greater than the adja-
cent string, the first-pass string assignment is final. If the
high-order string is less than the adjacent string, the latter
becomes the new high-order string and the former high-
order string is deemed a remainder to be absorbed by the
intermediate strings as follows: First, the low-order string
of one is increased to two, the next string of two is in-
crzased to three, the higher-order of the two strings of

IBM J. RES. DEVELOP. VOL. 2 13 NO. 2 MARCH 1 979

Table 3 Number of product terms for (a) eight-bit adder, (b) 16-bit adder, and (c) 32-bit adder, using a conventional PLA. K = string
size, L = number of lower-order bit positions, and T = number of product terms.

Bit position Bit position

0 1 2 3 4 5 6 7 $, 0 I 2 3 4 5 6 7 8 9 10 I I 12 13 14 15 C,,
~~~ ~ ~~ ~~ ~~~~~ 

K 3  3  2 4 4 3 3 2 
(a) L 2 (b) L 8 5 2 

T 8 I I  6 T 14 23 14 1 1  6 

~ ~ ~~ 

K 

~~ ~ ~~~ ~~~ 

- - 

@product  terms @ product  terms 

Bit position 

0 1 2  3 4 5 6 7  8 9 10 I 1  12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  28  29 30 31 C,, 

5 
17 
40 

4 4 3 3 2 1 
13 9 6 3 1 
28 24 15 12 6 3 

- 

@product terms 

three is increased to  four, the higher-order of the next pair 
of intermediate  strings is increased by one,  etc., until the 
remainder is exhausted. 

Table 2 illustrates the above  procedure for assigning 
strings to achieve a minimum number of product  terms. 
The assignment is not necessarily  unique. For  some adder 
sizes a different assignment  can  achieve the  same mini- 
mum. For  example,  the eight-bit adder of Fig. 7 can also 
be implemented with 25 product  terms using string sizes 
2 ,  3, 2 ,  and 1, high-to-low order. 

Table 3 illustrates the relevant parameters  for eight-bit, 
16-bit, and 32-bit adders, using 25, 68, and 195 product 
terms, respectively. 

Decoders with more than  two inputs 
Additional reduction in the  number of product  terms for 
an adder may be obtained using four-input or higher-input 
decoders while preserving  the  generality of use of the 
PLA.  A product term may now be defined as  the AND of 
functions of input groups, with an input group comprising 
the inputs of a  decoder. With standard decoders, how- 
ever, this results in a wider AND array and more  costly 
decoding. For  example,  a four-input decoder replacing 
two two-input decoders doubles  the number of decoder 
outputs from 8 to 16, an eight-input decoder replacing 
four two-input decoders increases the number of decoder 
outputs from 16 to 256, etc. In the limit, a single decoder 
accepting all adder  inputs becomes a conventional ROM 
decoder, while each  product term can represent any  func- 
tion of the decoder  inputs without the need of an OR ar- 

G H P  

(a) (b)  

G = A ' B  H = A V B   P = A + B  

Figure 8 Special  decoders  generating  elementary  symmetric 
functions  from (a) one  pair of adder  inputs,  and  (b)  two  adjacent 
pairs of adder  inputs. 

ray. In short, the single decoder and the A N D  array com- 
prise a complete ROM whose outputs  are any  desired 
logic functions of the  inputs. 

Special decoders,  however, can permit more  inputs  per 
decoder without expanding  the width of the A N D  array or, 
at  most, only moderately  expanding  it. One type of spe- 
cial decoder produces  elementary symmetric functions to 
take advantage of symmetry which is derived from the 
relative weights of the  adder inputs. Thus,  the  adder input 
of bit position i, A !  or B, ,  has a relative weight of 1 when 
the input is not zero; A i _ ,  or Bi+,  has a relative weight of 2 
when not zero; Ai-2  or B1-, a relative weight of 4 when not 
zero;  etc.  The  decoder  generates the  unique values of the 
combined weights of its inputs. For example, two  pairs of 
adder inputs of adjacent bit positions have relative 
weights of 2, 2 ,  I ,  and 1. They enter the special decoder 171 

WEINBERGER IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 ARNOLD 



Figure 9(a) 16-bit adder using four-input and five-input special decoders: PLA format. 

which generates seven elementary symmetric functions Figure 8 compares two-input and  four-input special 
representing  the combined input  values  ranging  from 0 to decoders showing the generated outputs.  It is noted that 
6. Any adder  function of the  four inputs  can  be  generated replacing a pair of two-input  special decoders with one 
from a combination of the seven decoder  outputs. By four-input special decoder increases the  number of de- 
contrast,  a conventional  two-input decoder  assumes rela- coder outputs from six to  seven. By contrast, with con- 
tive input weights of 8, 4, 2, and I ,  requiring 16 outputs ventional decoders,  the number of outputs doubles-from 
ranging in value from 0 to 15. eight to 16. 



Figure 9(b) 16-bit adder using four-input and  five-input  special decoders: equations. 

The width of the AND array can be further reduced by 
customizing  each decoder  to produce  only those func- 
tions that the product  terms  require, particularly for de- 
coders with a large number of inputs. For  example, an 
eight-input special decoder which accepts  four adjacent 
pairs of adder  inputs of relative weights 8,  8, 4, 4, 2,  2, 1 ,  
and 1 ,  produces 31 elementary  symmetric functions rep- 
resenting weights 0 through 30. However,  the number of 
different functions of these inputs  actually needed by the 
product  terms of a 32-bit adder varies from six to  ten. In 
other  words,  the width of the AND array is actually  less 
for eight-input custom  decoders than for  decoders with 
fewer inputs. At the  same  time,  the  number of product 
terms is also reduced.  The reduction of the AND array in 
both  dimensions results in a set of more  complex  func- 
tions produced by the custom decoders. 

IBM 1. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 

A custom decoder is particularly  useful for the low-or- 
der inputs with which the input  carry may be  combined in 
one  decoder. 

Adders using four- and five-input decoders 
The 16-bit adder defined in Figs. 9(a) and (b) will be used 
to  demonstrate  the effect of using four-  and five-input 
decoders  for  adder designs. A five-input custom decoder 
is used for  the  inputs  comprising  the input carry, Ci,, and 
the  two  pairs of inputs to  the  low-order bit positions 14 
and 15. The remaining decoders  accept  four  inputs  each, 
comprising  pairs of inputs of adjacent bit positions. 

Adder outputs  are again grouped in strings of con- 
tiguous sum bits. The low-order  string  includes the two 
positive  low-order sum bits, SI5 and S,4. They exit di- 173 

ARNOLD WEINBERGER 



NORs 

Figure 10 Personalization of AND array functions controlled by a  four-input  symmetric function  generator. 

rectly from the  custom five-input decoder,  together with 
the  output carry  from the string, C,,, which enters the 
AND array to help generate the carries C,,, C H ,  and C,. 
Succeeding  strings of sum  bits  comprise ( S , 3  and S,,), 
(SI,, S,,,, S, ,  and SJ, (S7, S,, S,, and S,), and (S3, S,, SI, 
and So) .  

The general equations  for the  sums and  the  carries can 
be derived in a manner similar to  those  for  the  adder using 
a PLA with two-input decoders. A few differences are 
noted: 

1 .  A product  term is expressed  as the AND of functions of 
the new decoders. An entry in the AND array is a  func- 
tion of the  respective  decoder inputs. The four-input 
decoders may still be conventional, with an entry in 
the AND array readily converted  to a  personalized 16- 
bit cell. The  conversion follows from an extension of 
Fig. 5 to a four-bit decoder.  However, when special 
decoders  are  used,  the conversion of an entry in the 
AND array to a  personalized cell of fewer than 16 bits 
requires different rules. 

2 .  The double asterisk  attached  to  the  strict propagate 
function, HS+'"*, means that may be used as 
don't-care  conditions;  e.g., G:" may be  substituted 

174 for HE+'. This simplifies personalization and may also 

reduce decoder  outputs, as will be subsequentlv dem- 
onstrated. This  principle was applied earlier in simpler 
form to single-bit propagate functions,  where P or G 
was substituted for H ,  and is extendable  to multi-bit 
propagate functions. 

3. It  can  be  noted in Fig. 9(b) that the left bracket of an 
equation for a high-order sum of a string,  e.g., S,, can- 
not share product terms with the  carry from the string, 
either c, or C,. Therefore, C, is arbitrarily  selected to 
produce successive sum outputs of the  same polarity. 
This is in contrast  to Fig. 7(a),  where  such product 
term sharing requires alternating  polarities of strings. 
To enable this kind of product  term sharing,  the left 
bracket of the  high-order sum of a string, such as S, ,  
would be expressed  as 

(H, . P 5  + H ,  . GJ 

+ (B, . H;") . (Gl) 
+ ( H ,  . HZ) . (G:) 

which takes three  product  terms instead of two.  The 
product term, ( H ,  . H:) . (Gi), could then be  shared 
between S, and  the carry-look-ahead expression for 
C,, but without  any advantage in total  number of prod- 
uct terms  and with the possible disadvantage of alter- 
nating polarities of strings. However,  such sharing be- 

ARNOLD WEINBERGER IBM J .  RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 



comes economical for string  sizes of six or greater. 
The optimized  strings of the 16-bit adder of Fig. 9 calls 
for string sizes of only four and two. 

An empirical procedure for optimally assigning string 
sizes, similar to  one described earlier,  results in the fol- 
lowing number of product  terms (and string  sizes): for  an 
8-bit adder, 13 product  terms (string sizes 4, 2,  and 2); for 
a 16-bit adder, 35 product  terms (string sizes 4, 4,  4,  2, 
and  2);  and for a 32-bit adder, 99 product  terms (string 
sizes 6,  6,  6, 4, 4,  4, and 2 ) .  

Figure 10 illustrates the bit personalization for  the vari- 
ous functions of a  four-bit special decoder.  The  decoder is 
an elementary symmetric function generator producing 
positive outputs and driving an AND array consisting of 
NORS. Note that a maximum of only six switching  devices 
needs  to be provided for personalizing a  function  because 
the function requiring all seven  columns to be  connected 
is never  used.  It is assumed that a  switching  device is 
located  between two adjacent  columns and  can be  shared 
between  the  two columns.  Therefore, six devices can be 
shared by the seven columns, with each device connected 
to its left column  (connection pointing left), its right col- 
umn (connection  pointing  right), or neither  column (no 
connection  shown). No devices  need  be  provided be- 
tween  adjacent sets of columns. Also note  that  an elemen- 
tary  symmetric  function is not connected if it is included 
in the desired function, corresponding to  the rule for a 
conventional decoder with positive outputs driving an 
AND array  consisting of NORS. If the AND array is imple- 
mented with ANDS, the  decoder should produce com- 
plement outputs. 

Other expressions may be  substituted for  some of those 
in the AND array of Fig. 9 to reduce the  number of device 
connections. For  example,  the complement of the in- 
clusive two-bit propagate function G:" may be  sub- 
stituted  for the strict propagate  function H:" without af- 
fecting the  outputs of the  adder.  The  substitution reduces 
the maximum number of connections in Fig. 10 from six 
to  four. Rearranging the  outputs of the  decoder permits 
reducing the number of devices  that  need to be provided, 
even assuming that a device  can  be shared only  between 
its two adjacent columns. As shown more explicitly in 
Fig. 11, only four  devices  are needed for bit positions 10 
and 1 1 ,  and five devices  for bit positions 8 and 9, to per- 
sonalize the  respective functions. 

The five-input custom  decoder  for  inputs A,, ,  B,,, A,,, 
B,,, and Cin produces  the two  low-order sum bits directly, 
as well as  the  carry C,, driving the AND array,  as shown in 
Fig. 12. The positive C,, is intended for  the NOR imple- 
mentation of the AND array in Fig. 9 where c,, is needed 

1BM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 

NORs 

NORs 

-Output weight 

(HI,)  = 6 + 4 + 2 + 0  

(H lov~ l l )  = 5 + 4 + 1 + 0 

(5;;) = 3 + 2 + l + 0  

( G ; ; )  = 6 + 5 + 4  
-~ 

(..;;I = 2 +  I + o  
I I I I I I I  
I I I I I I I  

(g , )  = 6 + 4 + 2 + 0  

(H,j = 5 + 3 + l  

~" -~ 

(H,VG,) = 5 + 4 + 1 + 0 

(mi) = 2 + 1 + 0 

( H , V q j  = 4 + 3 + 0  

(G i j  = 3 + 2 + 1 + 0  

Device connected 

Device not connected 

Figure 11 Personalization of AND array  functions using (a) 
four devices with a maximum of four  connections,  and (b) five 
devices with a maximum of four  connections. 

I , , , I 'r 'I4 

Custom decoder 

t 
C 

Figure 12 Custom decoder  for low-order bit positions of 16-bit 
adder. 

for several  product terms. If the AND array is imple- 
mented with ANDS, the custom decoder should  generate 

c 4 .  

The width of the AND array reduces to 50 columns using 
the special decoders consisting of seven elementary sym- 
metric  function generators with seven columns  each and 
the custom decoder with one column for  the AND array. 175 

ARNOLD WEINBERGER 



T I Custom decoder 

41 

Figure 13 Custom decoder  for bit positions 12 and 13 of 16-bit 
adder. 

If custom decoders replace the  elementary symmetric 
function generators,  the width of the AND array is further 
reduced.  Moreover, still fewer devices are needed and 
only one device connection is made at  the  intersection of 
an AND array  row with the  outputs of a custom  decoder. 
For example, Fig. 13 shows the  custom decoder outputs 
for bit positions 12 and 13  of the 16-bit adder of Fig. 9, as 
well as the AND array personalization for  the five unique 
functions the  decoder must  provide.  Again, the  decoder 
generates complement  functions to  drive a NOR imple- 
mentation of the AND array. Based on the number of 
unique  functions needed, the  total width of the AND array 
of the 16-bit adder is reduced to 37. 

The 16-bit dedicated  PLA  adder  can be further com- 
pressed horizontally and vertically using schemes which 
eliminate  array sections of unconnected devices [8]. It 
should  be  noted in Fig. 9(a) that  the  arrays  are  rather 
sparsely  populated  with entries (representing  connected 
devices).  For  example,  the first row contains  entries only 
in the columns of the low-order decoder, in the AND ar- 
ray, and of the  sum bits SI, and SI,, in the OR array. A 
compressed 16-bit adder is illustrated in Fig. 14. First, the 
OR array is split into a left and a right part  to permit an 
AND array row to  be  shared by two product  terms.  The 
left and right product  terms sharing  a row are shown  sepa- 
rated with a  heavy  vertical  line. Second, OR array col- 

176 umns  are also shared  between pairs of outputs,  the split in 

I ARNOLD  WEINBERGER 

the column being indicated by a  heavy  horizontal  line. 
Third, the  inputs  and outputs  are arranged to enable large 
sections of unused ends of rows of columns  to be trun- 
cated.  The number of AND array  rows is thus reduced to 
22, and  the  combined  number of columns is reduced to 
55. The  latter  are composed of ten columns for  the left OR 

array, eight for the right OR array,  and 6 + 4 + 6 + 5 + 6 
+ 5 + 4 + 1 for  the custom decoder  outputs driving the 
AND array.  (Note  that Gi" can be substituted  for 
H Y * .  

Adders using decoders with larger number of inputs 
Using custom  decoders, it is possible to  continue  the 
trade-off between decoder complexity  and array size. 
For example, with four  adder bit position inputs  to a 
decoder, custom decoders of eight and nine inputs may be 
used.  The nine-input decoder would be  assigned to the 
low-order  four-bit positions plus the  input carry Gin. The 
decoder would generate  the low-order four sum  bits di- 
rectly as well as  the signal representing the  carry out of 
the  decoder inputs to drive the AND array. 

When optimum string sizes are  used,  the number of 
product terms (and  string  sizes)  needed for  an eight-bit, 
16-bit, and 32-bit adder is six (string  sizes  4 and 4), 19 
(string sizes 4 ,4 ,4 ,  and 4) and 54 (string  sizes 8 ,  8, 4 ,4 ,4 ,  
and  4),  respectively. 

If carried to  the limit in which all inputs  to  the  adder 
enter a single custom decoder,  the "decoder"  becomes  a 
custom designed adder without the need of arrays. 

Summary  and conclusions 
It  has been demonstrated  that  one-cycle addition of a 
wide data path  can  be effectively implemented with one 
pass through a PLA. Effectiveness is measured in the 
number of product terms  needed, since that number  re- 
lates to the  chip area required by a PLA as well as  to the 
delay through the  PLA AND and OR arrays.  The  adder is 
designed to take advantage of two-bit  input decoders and 
Exclusive-OR outputs-two features which can  presently 
be  incorporated in a standard  PLA. 

Adder  equations with carry-look-ahead have been 
adapted  to  the  PLA  features  to use product  terms spar- 
ingly and to maximize  sharing of product terms among 
different functions of product terms.  For  example, a 
string of contiguous  sum bits is expressed using a com- 
mon carry of one  polarity so that  the  product  terms repre- 
senting  the  carry are  shared by the  several sum  bits. The 
development of a procedure that determines  the optimum 
string  sizes  into  which the  adder sum bits are grouped to 
minimize the total number of product terms  has also been 
demonstrated. 

IBM J .  RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 



f 
s, I SI” s9 s* 

Figure 14 Compressed 16-bit PLA  adder. 

A standard PLA will normally implement  a  number of 
functions,  one of which may be an adder. With LSI, 
PLAs will increasingly be used as  macros  on a chip, tai- 
lored to specific functional needs. If a PLA is dedicated  to 
an adder,  further efficiencies can  be  gained. Input decod- 
ers with more  than two inputs  can further  reduce  the 
number of product terms needed. At the  same  time,  the 
width of the AND array of a PLA, the dimension which 
measures the  number of decoder  outputs, can  be  reduced 
by substituting  special decoders  to  produce functions 
relevant to addition. As a result,  both  the height and  the 
width of a PLA adder can  be significantly reduced. 

A dedicated PLA adder can  be further  compressed in 
size by splitting the OR array of the PLA into two  parts 
with the single AND array between them. Many of the AND 

array rows, which normally  contain  a single product 

term, can thus be shared between two  product  terms. 
Also, an OR array  column  can  be split to  contain two sums 
of product terms,  instead of one, by providing  distinct 
outputs at the  top  and bottom of the  column. 

References 
1. W. N.  Carr and J. P. Mize, MOSlLSlDesign  and  Application, 

McGraw-Hill Book  Co.,  Inc.,  New York, 1972. 
2. J. C.  Logue,  N. F. Brickman,  F.  Howley, J. W. Jones, and 

W. W. Wu, “Hardware Implementation of a Small  System in 
Programmable  Logic Arrays,” IBM J .  Res.  Develop. 19, 110 
(1975). 

3 .  A.  Weinberger,  “Parallel Adders Using Standard  PLAs,” 
Proceedings of the Fourth Symposium on Computer  Arith- 
metic, Santa Monica, CA,  October 25-27, 1978. 

4. M. Flinders, P. L.  Gardner, J. F. Minshull, and R. J. Llew- 
elyn,  “Functional Memory as a  General Purpose  System 
Technology,” Proceedings of the IEEE Computer  Group 
Conference, June 1970, pp. 314-324. 

5 .  A.  Weinberger, “Functional Memory  Using Multistate Asso- 
ciative  Cells,” U.S.  Patent #3,761,902, 1973. 177 

IBM J. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 ARNOLD WEINBERGER 



6. A. Weinberger, “Device Sharing in  Array Logic,” IBM Tech. Received  August  24, 1978; revised  October  23, 1978 

7. J .  W. Jones, “Array Logic Macros,” IBM J .  Res.  Develop. 

8. A. Weinberger, Array with Multiple Read-Out Ta- The author  is  locuted at  the IBM Data  Systems  Division 

Disc. Bull. 19, 1357  (1976). 

19, 120 (1975). 

bles,” U.S. Patent #3,975,623,  1976. laboratory,  Poughkeepsie,  New York 12602. 

178 

ARNOLD WEINBERGER IBM 1. RES. DEVELOP. VOL. 23 NO. 2 MARCH 1979 


