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Reduction of Storage  Fragmentation  On  Direct  Access 
Devices 

A technique is described for partially  reorganizing the  contents  of disk storage so as to reduce the level of fragmentation. 
The method  entails  choosing that  fraction of the  contents which is estimated  to  have  the  greatest impact on  the  free space 
distribution, followed by the relocation of these data to more favorable  locations, subject to  the  system integrity require- 
ments. 

1. Introduction 
Consider  a  memory system in which intervals of a  linear 
address  space  are allocated and de-allocated  dynamically. 
A  situation may arise  where  there  exists a substantial 
amount of free  space, but  its utility is low because  it  con- 
sists of a large number of small intervals. This condition is 
generally  referred to  as  storage  fragmentation, a problem 
which has received extensive investigation.  References 
[ 1-41 provide an  entry  into  the  literature.  Approaches  to 
the problem  generally fall into  two  categories: storage al- 
location  methods and techniques for reorganization. 
Work on reorganization  techniques for fragmentation  re- 
duction appears  to  have been  motivated primarily by 
questions related to  the  use of main or  random  access 
memory.  Relatively  little attention  appears  to  have been 
devoted  to reorganization in the  context of secondary 
storage management. 

This  problem, although conceptually  similar to  that  for 
main storage, is actually  substantially  different because of 
the way disk space is used.  Occupancy rates tend to be 
high,  residence  times for  data  sets  are typically  measured 
in days  rather than seconds,  and storage  management is 
done  on a daily or weekly  basis.  Individual records gener- 
ally occupy a small fraction of the  space, so that a free 
interval of one or two  percent of the  overall volume, 
which may be  an  unusable fragment in the main memory 
context, is here actually rather large. Moreover, system 
integrity requirements impose restrictions  on how data 
items  are moved. 

This paper  treats  the problem of disk  reorganization in 
the  context of storage management for  the IBM  MVS op- 
erating system. Disk space is provided  by  devices (disk 
drives) such as IBM 3330-1  1’s. Each  contains  several vol- 
umes  or  packs, which for 3330-11’s consist of what we 
regard as a linear space of tracks  Ti,  i = 1 ,  2, . . ., 15 352, 
with approximately 13 000 byteshrack. 

Entities  stored in this space  are  termed  data  sets,  each 
of which is generally stored  on a single pack.  The mini- 
mum unit of space allocation is a single track.  Space allo- 
cation is subject to  the MVS rules, which are approxi- 
mately as follows: The first space  request  associated with 
a  given data  set  must be satisfied with no  more  than five 
extents, where an extent is a contiguous set of tracks  Tj, 
Tj+l, . . ., Tj+g. Subsequent  requests may be satisfied by 
allocating additional extents, but the maximum  number of 
extents per data  set is sixteen. If a request  cannot be 
granted,  the  associated task is abnormally  terminated 
(ABENDed). 

An extent may be  reclaimed  (de-allocated), as  the re- 
sult of user action or by the  system  space management. 
In  the  latter  case, unused allocated  extents may be re- 
claimed, or  entire  data  sets may be migrated (shifted to 
a slower medium,  such as  tapes). 

Space management is generally  invoked on a daily or 
weekly basis, with the objective of providing sufficient 
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space until the  next  scheduled invocation [ 5 ] .  Specific cri- 
teria  for migrating data  sets may vary by installation,  but 
the following is not untypical. Data  sets  are migrated until 
a certain  threshold of occupation is reached,  for example, 
no more  than 85% of the volume occupied.  In addition, 
data  sets with an  excessive number of extents (more  than 
eight,  for example) are migrated and  scheduled  for auto- 
matic  restoration. This  process  reduces  the  number of ex- 
tents, leaving more  potential for expanding data  sets with- 
out exceeding the  extent limit of 16. At this point, a deter- 
mination is made of the usability of the resulting free 
space. If the available space is overly fragmented,  the al- 
ternatives today are  to  either migrate  additional data  sets 
or  to  copy  the  contents of the volume. The  former ap- 
proach is generally  not  desirable because  the migrated 
data  sets may soon be  referenced. The  latter  alternative, 
copying  the  pack in order to coalesce the  free  space, is 
what is often done in practice. A large MVS installation 
may have a schedule for copying the  contents of several 
disks nightly. This is  an  expensive  operation, requiring  a 
substantial  amount of machine  time, system re-wL, as 
well as manual handling of packs. 

A possible alternative  to  either additional migration or 
volume copying is a partial reorganization in place. Such 
an operation might be  advantageous if a substantial im- 
provement in the  free  space distribution is obtained  at  the 
expense of moving a small fraction of the disk contents. 
Since copying is an operation which due  to its  expense 
can be  done  only  infrequently for  each disk pack, partial 
reorganization might yield an improved average  space 
distribution, with fewer  extents  per  data  set. This could 
result in decreased  arm travel for  batch  operations, as 
well as fewer job ABENDS due to exceeding the allowable 
number of extents. An additional advantage is the possi- 
bility of reorganizing disk  packs in parallel with normal 
operation. 

The objective of a reorganization is to  improve  the us- 
ability of the available free  space.  How  then  can  one tell 
whether  one  space distribution is superior  to  another? 
This is a question  which  has not been fully answered, al- 
though  measures of fragmentation have been  proposed 
[6]. However,  decisions  on  whether  to  copy a  volume are 
often  made on the basis of histograms of free interval 
sizes.  The  approach  taken below is to  attempt  to move 
data so as to  increase  the  amount of available space in 
large free intervals. 

The following is a synopsis of the  paper.  The  approach 
to reorganization is  described in Section 2 .  This consists 
of a  procedure for  choosing a set of extents,  then moving 
this chosen  set  to  new locations in the volume  (the  terms 
pack and volume will be  used  interchangeably  below). 
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Section 3 considers  the  construction of selection  func- 
tions, whose objective is to  choose  extents  whose  current 
locations are  judged  to be least  advantageous. Sections 4 
and 5, respectively, describe  the  use of selection  func- 
tions  to pick relocatable extents and the  movement of 
these  extents  to new locations. Section 6 considers the 
possibility of performing  iterative reorganization,  that  is, 
carrying  out the  above  procedures  more  than once. The 
results of experiments  on a  number of volumes  from the 
IBM Research Center,  Yorktown,  are given in Section 7. 
Substantial improvements  were obtained in the  free  space 
distribution at  the  expense of moving only a fraction of 
the volume contents. Analysis of a simple  model,  de- 
scribed in the appendix, suggests that  the  favorable re- 
sults should not be surprising. 

2. Outline of the method 
The  set of extents  and  free  spaces occupying a volume is 
regarded  as  a sequence of spaces Si, i = 1, 2 . . ., M ,  
where Si is contiguous to Si- l  and Si+,. Each Si may be 
either a  free space  or  an  extent. An interval Ij , ,  is the 
smallest  contiguous set of tracks containing Sj and S,, j  5 

k .  If both Sj and S, are  free  spaces,  then Zj,, is termed a 
proper interval. The number of occupied tracks in an 
interval and  the length of the  interval  are  denoted by Lj, ,  
and ktj,,, respectively. 

The objective of reorganizing the pack is to improve the 
usability of the available free  space,  decreasing  the num- 
ber of small free intervals. Clearly there  are many pos- 
sible  ways to  do so. For  example, a list could be made of 
all free  spaces, followed by an  attempt  to find extents  to 
fill the smallest ones. Most such  approaches run into  the 
problem of having to  consider large combinations of ex- 
tents  and  free  intervals, resulting in substantial computa- 
tional  complexity. 

The method adopted  here simplifies the computation by 
separating  the  reorganization process  into  two essentially 
independent phases.  The first results in the selection of a 
set of proper intervals (defined above). Extents residing 
in these  intervals are  termed chosen or movable. 

In  the second phase, an attempt is made  to move the 
chosen  extents  to new locations. The  intended effect is 
twofold:  Chosen intervals  are cleared and  their original 
contents used to fill small fragments of available  storage 
elsewhere in the  pack. 

The restriction to  proper intervals  was instituted  to re- 
strict  the  amount of computation.  The  overall number of 
intervals  and the  number of proper  intervals  are, respec- 
tively,  approximately  proportional to  the  square of the 
number of spaces (of which  there might be several thou- 
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sand) and the  square of the number of free  spaces (of 
which there might be  a  few  hundred). 

Interval selection is carried  out through the  use of two 
measures G and C defined on  the  intervals. Gj,, repre- 
sents what might be  considered  an  estimated gain or ben- 
efit from attempting to  clear Zi ,k ,  and Cj,, is the  cost of 
moving its contents. 

3. Cost and gain functions 
A  reasonable  measure of the  cost of choosing Z i , k ,  con- 
forming to  common  device  characteristics,  is Mi,k,  the 
number of occupied tracks in the interval. 

Cj,, = Mi,,. (1) 

This is the  cost function which will be assumed through- 
out  the  paper. 

Factors which  affect the gain obtained from choosing 
an interval Zj,, include: 

1. The size  (number of tracks) of the  interval, Lj,,. 
2 .  The sizes of the individual extents in the interval. It is 

preferable to move small extents, which might be  used 
to fill fragments of available  storage. 

3 .  The distribution of extents within the  interval, Le., a 
measure of how these  extents fragment the interval. 

4. Statistics describing the  free space and  extent size dis- 
tributions. 

5. The algorithm for relocating chosen  extents. 

Before  discussing  specific gain functions,  it  is convenient 
to develop  some additional notation and definitions. 

Let Vj,, = (q , ,  m,, m,, q,, . . .) be a tuple associated 
with the interval Zj,,. The quantity qi denotes  the number 
of tracks in the ith free  space in the interval  counting from 
the leftmost or  lowest numbered track. Similarly, m, rep- 
resents  the number of tracks  occupied by the ith extent. 

As an  example,  consider  an interval I,,,, whose  spaces 
S,, S,, and S, are,  respectively, a  free space of  five tracks, 
an  extent occupying eight tracks,  and a free  space of three 
tracks.  Then V,,, = ( 5 ,  8 ,  3 ) .  Underlined numbers repre- 
sent  extents. 

Definition 
An allowable insertion of an  extent is one which  places an 
extent into either a left or right justified  position in a free 
space. 

Definition 
An operation O(li,,) on an interval I j , ,  is a sequence of 
removals  and  allowable  insertions of extents  into  the in- 
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The result of an operation is a new numbering for the 
spaces {Si} in the  pack  and a new set of intervals.  Note 
that if the interval {Zj,k} is proper,  the result of the opera- 
tion on lj,k is an interval in the new ordering, Z;,,. That  is, 
the boundaries of Zi,, are boundaries for  spaces in the new 
ordering. An operation on a proper interval Zj,, with its 
associated Vi,, thus yields an Zl,,, with an  associated Vk,,. 

Definition 
A  clearing operation changes Vi,, to Vi,,e = ( q , ) .  That  is, 
all extents  are  removed. 

An operation 0 ( I i , J  may be  performed as a sequence of 
{Oi(Zrn.%)} of operations on proper subintervals {Z,,,} of Zi,,. 

Definition 
Associated with an operation 0(Zj,,) on  proper interval Zj,, 
is a gain G(Vj,,,V:,,), where V;,, is the resulting  interval. 
If 0 is the clearing operation, this is denoted simply by 
G(Vj,k) 0‘ Gj,k‘ 

A concept  one might associate with a gain function is 
that equivalent changes should provide  equivalent  gains. 
One way of formalizing  this notion is the following: 

Definition 
A gain function for  an operation O(Zj,,) is termed regular 
iff G(Vi,,, = XGi(Vm,,, V,,,,) for any  sequence 
{O,(Vm,,, V,,,,)} of proper subintervals I, , ,  of Ij ,k .  

As an illustration of the notion of regularity,  consider 
the  intervals  shown in Fig. 1. Suppose Zl,3 is chosen,  i.e., 
a decision is made to  clear this interval.  How  then should 
one regard Given the  decision,  the difference be- 
tween  clearing I,,, and I l s ,  might be considered equivalent 
to clearing an interval  such as I,,,,, which is identical to 
that resulting from the removal of rn, from I,,,. Clearing 
11,5 would then be  equivalent  to clearing and I,,,,,. 
Note  that the  resulting  change in the distribution  and the 
extents  to be  moved are  the  same. 

Regularity may,  however, not always be appropriate. 
This is partly because  the selection and  relocation  phases 
of the reorganization are  independent, so that  the opera- 
tion which will be  carried  out  on a particular interval is 
not precisely determined in advance.  Suppose  for ex- 
ample that  the  intervals discussed above  are not cleared, 
but rather have their  contents moved to a left justified 
position. Here  the  results of choosing Z,,5 would not be 
identical to  those  obtained from I,,,,, and Z30,32. 

It  can be  shown that a sufficient condition  for a function 
G to be regular for  the clearing operation is that it be of 
the form 
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Gj,, = H(Lj ,J  - ZH(qJ - W m i )  q,, mi E V,,,. (2) 

The  above provides  a  valuation of free  intervals which 
is a function H(.) of their size. P(mi)  may be regarded as 
the  expected reduction in the value of the overall free 
space resulting from the reinsertion of an  extent of size 
mi. 

Two regular gain functions were  used  in the experi- 
ments. Both have H = P, with H ( x )  = x' and x log x, 
respectively. These  tend  to  favor large intervals with low 
occupancy and a few  large free  spaces.  For  example, an 
interval with Vi,, = (50, 2,50) would be favored  over  ones 
with V's  given by ( I ,  2, 99) and (25, 1, 25). 

A number of irregular gain functions were  also consid- 
ered with the one  chosen for the  experiments given by 

This produces a ratio R = G/C with the following proper- 
ties: 

1 .  It is dimensionless.  This may be desirable because vol- 
umes in practice  exhibit different usage patterns. 
Some  have  relatively large and others relatively small 
extents and free  spaces. 

2. R is upper bounded by the  inverse of the  space utiliza- 
tion within the  interval. 

3 .  R tends  to  increase with the level of fragmentation 
within the  interval.  For example,  location of a single 
extent in the center  produces a larger  value than  one 
near  the edge. 

The  above G thus  tends  to  favor badly fragmented in- 
tervals with low average utilization and with small ex- 
tents. Experimental results suggest that it leads  to  the 
choice of those intervals which might be  picked  from  a 
visual inspection of the  space allocation map. 

4. interval  selection 
Once C and G functions have  been  defined, an attempt 
can  be  made to maximize the overall  gain,  possibly  sub- 
ject  to some limit on  the expected cost. This  section dis- 
cusses some  simple procedure  for obtaining  sub-optimal 
sets of intervals, based on choosing those with suffi- 
ciently large benefitkost ratios. 

Algorithm 1 
Let IJ be a threshold, C, a cost limit, and Q a set of chosen 
intervals. Let Ij,k fl Q denote  the  intersection of I,,, with 
the union of intervals in Q. Let I,,, n* Q be  the  set of 
intervals in Q which intersect Ij,, and I,,, U [Z,,, f l *  Q] be 
the interval  obtained by the union of Ii,, and  those mem- 
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Figure 1 Intervals  comprised of extents and free  spaces. 

bers of Q which intersect I,,, (Zi,, is assumed  to be 
proper). Initially, Q is empty. 

F o r j  = 1,  2 , .  . . 
i = j -  1 , j -  2 , .  . . , 1 .  

For proper Zi,,, such  that Mi,,  # 0, 

If Ii , ,  n Q = 0, then 

If R,,, 2 $, and 

c,,j < c,, 
add Zi,i to Q. 

If I i , j  n Q # 0, then 

If It , ,  U [ I , , j  f l *  Q] has a G/C 2 IJ 
and C < C,, 

remove Zi , j  n* Q from Q and add 

Zi,j U [Z,,, n* Q]. 0 

Algorithm 1 produces a set of disjoint proper intervals 
each of which has  an R 2 $, where $ may be chosen  to 
restrict  the overall cost.  It should  be noted  that this set is 
not  necessarily unique;  two  proper  intervals Ij,, and 
may each have an  associated R 2 IJ, but their union may 
not. The choice of one may thus preclude the choice of 
the  other. 

In the case of G regular [with C given by (l)], the prob- 
lem of interval selection is simplified by the  fact  that 
many suitable G's (i.e., gain functions  which are easy to 
compute and which yield desirable  interval  choices)  tend 
to produce ratios R which  grow with the  interval  size.  To 
see why this is so, note  that if the  pattern of free  spaces 
and  extents is roughly  uniform, the  quantities ZH(q,),  
CP(rni), and C will tend  to be  proportional to  the interval 
size.  Thus, if H ( L )  grows  faster than L ,  so does R .  On the 143 
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other  hand, H(L)  = KL is not  suitable, since 

Gj,k = K[Lj,$ - Cqi ]  - S ' ( m t )  mi,  qi E Vj,$ (4) 

is independent of the location of extents within the inter- 
val. This would result,  for  example, in intervals with  as- 
sociated V's of ( 1 ,  1, 100) and (50, 1, 51) being judged 
equally  desirable for selection. 

The result of the  growth of R with the  interval size is 
that Algorithm 1 tends to choose a single interval.  This 
was confirmed by experiments using the regular gain 
functions of the  previous  section, resulting in the adop- 
tion,  for  these  functions, of a procedure which simply 
chooses  that  proper interval with the  largest  value of G 
subject  to C 5 C,. This will be referred to  as Algorithm 2 .  

5. Relocation of chosen  extents 
Phase 2 of the  procedure assigns  locations to  the  chosen 
extents and constructs a schedule for moving them.  Two 
essentially different approaches  are: a) migration of the 
extents  to  another medium, followed by reinsertion, and 
b) reorganization in place.  The  latter  alternative was cho- 
sen so as  to avoid any requirements for manual  inter- 
vention  and also  to  permit movement of the  extents dur- 
ing normal system operation. 

Movement of an  extent  is  constrained by the  data integ- 
rity requirements of the  system. Specifically,  this  means 
that an extent must  be fully replicated  before the original 
is erased, so that a valid copy is always  available in case 
of system  failure. 

Let  the  set of chosen  extents be described by {Ej} ,  j = 

1, 2 ,  . . ., nc. Relocating these  extents  involves a number 
of operations. Space must  be  allocated according  to some 
schedule Tjci,, i = I ,  2, . . ., nc, from  the  free  space list 
which is obtained  from Phase 1. A schedule  must then be 
constructed which describes  the  order in which the cho- 
sen  extents  are  moved. 

More  precisely,  a  description of Phase 2 requires: 

1. Specification of the  schedule T,,,,. This might for ex- 
ample be largest or smallest first. 

2 .  The assignment function which determines which free 
space is allocated to a  given  interval (e.g.,  best fit or 
first fit [ 1, 41). 

3 .  The effect on  the  free  space list of assigning a location 
to  an  extent.  For  example,  the resulting  fragment 
could be added  to  the list. 

4. The schedule for moving extents  to new  locations. 

The following algorithm  provides an assignment of ex- 
tents  to free spaces which are  not  contained in  intervals 144 
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chosen in Phase 1.  The goal is to eliminate  small free in- 
tervals and thus  to effect  a further shift of available  space 
to large  intervals. The algorithm is based on a best fit cri- 
terion, with space assigned to  extents in order of decreas- 
ing size.  Thus  fragments  created  on insertion can  be filled 
by small extents, many of which typically occupy  one  or 
two  tracks. 

Algorithm 3 
Chosen  extents  are  sorted by size  and denoted by {Ej}, 
ij = 1 ,  2 ,  . . ., nc, where i < jimplies L(EJ 2 L(Ej) .  Let S 
denote a set of free  spaces not  included  in the  set of cho- 
sen intervals.  Initially, S includes all such  spaces. 

1. 
2 .  

3. 

4. 

5 .  

6. 

Set j +" 0.  
j t j +  1. 
I f j  > nc, the  procedure terminates. 
Find  a free interval in S which provides  a best fit for Ej,  
and remove it from S. If no such  interval exists, go to 
2 .  
Move  the extent  into  the lowest numbered  tracks in 
the space  obtained by 3 .  
Add the fragment  resulting  from  insertion of Ej to  the 
free  space list S. 
Go to 2 .  0 

The overall effect of the reorganization  can  be im- 
proved by attempting to move to a left justified position 
within their chosen  intervals  those  chosen  extents not 
successfully relocated  by Algorithm 3 .  

Algorithm 4 
1 .  Perform the  operations indicated in Algorithm 3. 
2 .  Let E J j ,  k )  be the  set of extents remaining in I j X  after 

1 ;  i < n implies E J j ,  k)  is to the left of E,(j, k ) .  
3. For i = I ,  2, . . ., move E J j ,  k )  to  the  leftmost feasible 

position in Ij,$. This  is a  position  which may have been 
cleared by moving a  lower-numbered extent, but 
which does not overlap  the  current location of Ei( j ,  k ) .  

0 

6. Iterated  reorganization 
Application of the  above techniques results in a new or- 
ganization of the  volume  contents.  Let A,, and A ,  denote 
respectively the original and new organizations, and 6 the 
reorganization process: 

Definition 
A  reorganization process 6 is termed$na/ if 

52(A,,) = 5(5(A,,)) = <(A,) (6) 

for any initial organization A,,. 
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Consider  the  insertion of an  extent  at  the left  edge of a 
free  space Si. Let Si denote  the remainder of this space 
after insertion (if the remainder is empty Si will denote 
the right boundary of Si). The ratio R = G/C and  the gain 
function G are  termed nonincreasing on insertion (NONI) 
if the ratio R associated with each  proper  interval contain- 
ing Si is no smaller than  that  for  the  corresponding  proper 
interval  containing s:. 

Intuitively, the NONI property may be  expected  to hold 
for suitable gain functions, since  insertion of an  extent 
decreases  the  number of free  tracks  without increasing 
the number of free  spaces.  Examples of gain functions 
which yield NONI ratios [with C given by (l)] are (3) and 
the regular C’s resulting  from H = P with H ( x )  = x’ or 
x log x. 

Proposition 1 
Suppose 5 is  the application of Algorithms 1 and 4 with 
C, = m, G is regular, and R NONI. Suppose  further  that all 
chosen  extents  are  relocated.  Then 5 is final. 

Proof 
Reorganization may be viewed as  the result of two opera- 
tions: a) the removal of all chosen  extents  and  b) their 
reinsertion. 

It is first shown that  no nonempty proper  intervals with 
R 2 $ remain after a). Suppose  there  is  such  an interval 
Z ; , k ,  with Ri,k 2 $. Since all chosen  extents  are  removed, 
Z i , k  must include some  chosen  subset {Ze,m}c of proper in- 
tervals in the original organization. Let C, and C, denote, 
respectively,  the  number of occupied tracks in {Ze,m}c and 
Z ; , k .  Let ZqIr denote  the interval  before the removal of 
the  extents  contained in {Ze,m}c. 

The regularity of G implies that 

Gar = G;,k + ‘ G e , m  1e.m E (7) 
but 

G:,k 
c, 2 $, 

and 

Thus 

so that Gq,). would have been chosen; Rq,T 2 $. No proper 
intervals remain with cost benefit ratios 2 $ after  (a). 
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The NONI property  insures  that  no  such intervals  re- 
main after  (b). m 

If C, < 30, the reorganization will in general not  be 
final, even for regular G and R NONI. It  is  not difficult to 
show, however, that  intervals in A ,  (the resulting organi- 
zation) for which R 2 $ and C 5 C, intersect  those cho- 
sen in the selection phase of 5 .  

Suppose reorganization is to  be performed with a limit 
of 2 x  tracks to  be  moved. Is it better  to reorganize in two 
passes, each moving x tracks, or in a  single pass with a 
limit of 2x? If G is regular,  the gain (as  measured by G) 
from  the choice of the  two  passes is the  same  as  that ob- 
tained by a single pass using the same chosen intervals. 
Moreover,  the  above argument  suggests that  the choice 
for two  passes will tend  to be  more restrictive.  Thus, if G 
is regular and a good measure of the  expected gain,  a 
single pass may be superior. 

Suppose G is irregular. Then  the initial reorganization 
may create  some new  intervals with high values of R.  
That  is,  the first pass may create additional  opportunities. 
This  was  found to  be  the  case in the  experiments. 

7. Experimental  results 
This section describes  the  outcome of experiments on the 
contents of a number of disk  packs at  the IBM Thomas J.  
Watson Research  Center,  Yorktown  Heights,  NY.  Re- 
sults  are given for  four  representative  volumes. 

Letf(x)  denote  the  fraction of free  space comprised of 
intervals no larger than x .  Similarly,  let u(x) be the frac- 
tion of occupied space (excluding  one-time  allocation for 
permanent data  sets)  contained in extents  no larger  than 
x .  The function ~ ( x )  may  be  regarded as  predictor of stor- 
age requests  for  the  pack. 

The initial space  and utilization distribution and  the re- 
sults of reorganization for  each of the  packs  are illustrated 
in a set of figures. 

Figures 2-8 show  for volumes 1 to 4, respectively,  the 
following curves: 

1. f , (x ) ,  the distribution of free  space  before reorganiza- 
tion. Numbers  at  the right-hand side of the figures in- 
dicate  the size of the largest free  space. 

2 .  f , ( x ) ,  the result of a  reorganization <,, which  consists 
of the application of Algorithms 1 and 4 with a thresh- 
old $ = 2 and C, set  to (3, the total  number of free 
tracks on  the volume. G is the irregular  function (3) 
described in Section 3.  
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Figure 2 Distribution of free  space  for  volume 1 (12 610 occu- 
pied, 2742 free  tracks). Number of tracks  moved-f,(x): 478;f,(x) 
and &(x): 1250; &(x): 1228; f , (x ) :  2722. 
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Figure 4 Distribution of free  space  for  volume 2 (12 922 occu- 
pied, 2430 free  tracks). Number  of tracks moved-j;(x): 576; 
f,(n) and f,(n): 901; &(x): 851; f4(x): 1990. 

3. &(x), the result of applying  a  second iteration of 5 ,  to 
the result obtained in ( 2 ) .  If A,, represents  the original 
organization, &(x) is the  free  space distribution for 

4. &(x), the result of applying a transformation 5, con- 
sisting of Algorithms 2 and 4 with C, equal  to  the num- 
ber of tracks  moved in the two iterations of 5 .  G is 
given by 

G = Lj,k log Lj,k - Cq,  - Bm, log mi 

5,(5,(A,)). 

q,, mi E Vj,, (11) 

This yields a comparison of the two gain functions  for 
similar numbers of tracks  moved. 

5. &(x), the  result of using 5, with C, = Q and Gas  in 4. 

Figure 3 shows u(x) for volume 1. Results  for volumes 
2, 3, and 4 are given in Figs. 5 ,  7, and 9, respectively. 
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Figure 3 Fraction of occupied  space u(x)  contained in extents 
no  larger  than n for  volume 1 .  (Tracks  occupied, 12 610, 11 145 
for  user data.) 
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Figure 5 Fraction  of  occupied  space u(x)  contained in extents 
no  larger than x for  volume 2. (Tracks  occupied, 12 922, 1 1  457 
for  user data.) 

Let 

Y, = max [u(x) - &(x)]. 

Suppose space is to be  allocated for a set of extents 
whose  size is distributed according to u(x)  with  a  total 
requirement of Q tracks.  Then Yi gives a lower bound for 
the fraction of space  that  cannot be  allocated if the  free 
space distribution is x .  

The results  indicate that 5, generally  yields  a  sub- 
stantial improvement  in the  free  space distribution at  the 
cost of moving only a few percent of the volume contents. 
A  second  iteration of 5,  yields a free  space distribution 
which results in Y, = 0 for all packs. Application of 5, 
with a cost limit resulting in the relocation of a  number of 
tracks similar to  that resulting in& generally yields less 
reliable  results: Y, > 0 for volumes 3 and 4. However, if 

P.  A. FRANASZEK AND J. P. CONSIDINE IBM I.  RES. DEVELOP. VOL. 23 e NO. 2 MARCH  1979 



Largest free 
interval -+ 

1940 -+ 

0.4 - 

0.2 - 

0 50  100 150 200 250 300 350 400 450 500 

Figure 6 Distribution of free  space  for volume  3 (13  412 occu- 
pied, 1940free tracks).  Number of tracks moved--f,(x): 260;f1(x) 
and &(x): 260; &(x): 244; &(x): 1843. 
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Figure 8 Distribution of free  space  for volume  4 (13 629 occu- 
pied, 1723 free  tracks).  Number of tracks moved--f,(x): 219;f1(x) 
and&): 497;f,(x): 488; &(x): 1226. 

the  cost limit is relaxed,  the resulting organization  con- 
tains in all cases  a free interval of size comparable  to the 
overall free  space. 

8. Discussion and conclusion 
A technique was  described  for partially reorganizing the 
contents of disk storage so as  to  reduce  the level of frag- 
mentation. Experiments suggest that  the  method may be 
used to substantially  improve the utility of the available 
free  space at the  expense of moving only a fraction of the 
disk contents. 

Two types of functions were  considered for  use in the 
process of selecting intervals  to clear. The first has  the 
tendency  to  choose a single interval, while the second 
chooses a multiplicity. For a limited number of tracks  to 
be moved, the second  appears  somewhat  superior, since 
the choice of a  single  interval  often appears  to result in 

0 50 100 150 200 250 300  350  400 450 500 

Figure 7 Fraction of occupied  space .(x) contained in extents 
no larger  than x for  volume 3.  (Tracks occupied, 13 412,8187 for 
user data.) 
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Figure 9 Fraction of occupied space u(x)  contained in extents 
no larger  than x for  volume 4. (Tracks  occupied, 13 629,9829  for 
user  data.) 

the  increased  fragmentation of the remaining space. A de- 
cision  between one  or  the  other,  however, should  prob- 
ably be dictated by implementational considerations. 

Given the  technique  for increasing the utility of the  free 
space, a further possibility is the  coalescing of data  sets 
which initially occupy  several  extents.  This could  be done 
by using the  free  space obtained by the reorganization for 
coalescing data  sets which occupy more  than a given 
number of extents, followed by further reorganization. 
This process could be  iterated if necessary.  Note  that 
since  the reorganization may be  done by moving on  the 
order of ten  percent of the volume contents,  the result 
could be essentially  equivalent to a complete  copy of the 
volume at a fraction of the  expense in terms of the num- 
ber of tracks moved. An additional advantage is the 
avoidance of the  requirement  for manual handling of disk 
packs. 147 
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Appendix:  A  simple  model 
Experimental evidence indicates that reorganization  gen- 
erally  leads to a substantial improvement in the  free  space 
distribution. An interesting question is whether this is 
what should be expected.  In  the following, the  results of 
an analysis of a simple model suggest that positive  experi- 
mental  outcomes  should  not  be  surprising. 

The model is as  follows.  Storage space  is  assumed  to be 
an infinite sequence of slots  each of which is occupied 
with probability p and  free with  probability q = 1 - p .  
The value of p was chosen  as 516, yielding a utilization of 
0.83, or roughly that  encountered in practice. 

Contents of an  occupied slot are moved if and only if it 
is bordered  on  either side  by  a free  space.  Note  that this 
tends  to result in choosing  fewer  candidates  for move- 
ment  than a more  realistic criterion, which would not ar- 
bitrarily exclude extents occupying more  than a single 
slot. 

The  above choice of intervals  corresponds  to a regular 
gain function whose value is the number of occupied  slots 
bordered on each  side by free  intervals, a cost given by 
the number of occupied  slots,  and a choice threshold of 
one. 

The probability that a free interval is of size n slots is 
given by 

P,(n) = pqn-l = (5/6)  (1/6)n-1. (AI) 

A randomly chosen  free  slot is bordered  on  each side by 
an occupied  slot with probability (5/6)’ .  Thus Q = (5/6)* 
of the free space  consists of intervals of length one.  It can 
be  shown that  the  percentage of free  space occupied by 
free intervals of length 2 is Q2 = (1/3) (5/6)’. In  other 
words 25/27 = 0.93 of the  free  space  before reorganiza- 
tion  consists of intervals of size two  or smaller. 

The probability that a free interval is affected by the 
reorganization (i.e.,  borders a slot whose  contents will be 
moved) is 

V = 2pq + q’ = (11/36). (A21 

Moreover, this is  independent of the interval size. 
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The number of slots  whose  contents will be  moved is 
lower  bounded  by one half the  number of free intervals 
affected. In other  words,  at  least 0.153 times as many  ex- 
tents of size one will be moved as  there  are  free intervals. 

After reorganization (using a best fit criterion),  the pro- 
portion of free  space in intervals of length 1 is 

P,(I)[ 1 - VI - v/2 1 Q, = 0.34. 

The proportion of free  space in intervals of length 2 is 

Qi = ( 1  - V ) Q ,  = 0.16. 

In  other  words,  the  proportion of free  space in intervals of 
length 3 or  greater  is changed  from about 0.07 to more 
than 0.50. This is done by moving about 0.025 of the  over- 
all contents. 
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