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Reduction of Storage Fragmentation On Direct Access

Devices

A technique is described for partially reorganizing the contents of disk storage so as to reduce the level of fragmentation.
The method entails choosing that fraction of the contents which is estimated to have the greatest impact on the free space
distribution, followed by the relocation of these data to more favorable locations, subject to the system integrity require-

ments.

1. Introduction

Consider a memory system in which intervals of a linear
address space are allocated and de-allocated dynamically.
A situation may arise where there exists a substantial
amount of free space, but its utility is low because it con-
sists of a large number of small intervals. This condition is
generally referred to as storage fragmentation, a problem
which has received extensive investigation. References
[1-4] provide an entry into the literature. Approaches to
the problem generally fall into two categories: storage al-
location methods and techniques for reorganization.
Work on reorganization techniques for fragmentation re-
duction appears to have been motivated primarily by
questions related to the use of main or random access
memory. Relatively little attention appears to have been
devoted to reorganization in the context of secondary
storage management.

This problem, although conceptually similar to that for
main storage, is actually substantially different because of
the way disk space is used. Occupancy rates tend to be
high, residence times for data sets are typically measured
in days rather than seconds, and storage management is
done on a daily or weekly basis. Individual records gener-
ally occupy a small fraction of the space, so that a free
interval of one or two percent of the overall volume,
which may be an unusable fragment in the main memory
context, is here actually rather large. Moreover, system
integrity requirements impose restrictions on how data
items are moved.

This paper treats the problem of disk reorganization in
the context of storage management for the IBM MVS op-
erating system. Disk space is provided by devices (disk
drives) such as IBM 3330-11’s. Each contains several vol-
umes or packs, which for 3330-11’s consist of what we
regard as a linear space of tracks T, i=1,2,- - -, 15 352,
with approximately 13 000 bytes/track.

Entities stored in this space are termed data sets, each
of which is generally stored on a single pack. The mini-
mum unit of space allocation is a single track. Space allo-
cation is subject to the MVS rules, which are approxi-
mately as follows: The first space request associated with
a given data set must be satisfied with no more than five
extents, where an extent is a contiguous set of tracks T,
T, - T,, Subsequent requests may be satisfied by
allocating additional extents, but the maximum number of
extents per data set is sixteen. If a request cannot be
granted, the associated task is abnormally terminated
(ABENDed).

An extent may be reclaimed (de-allocated), as the re-
sult of user action or by the system space management.
In the latter case, unused allocated extents may be re-
claimed, or entire data sets may be migrated (shifted to
a slower medium, such as tapes).

Space management is generally invoked on a daily or
weekly basis, with the objective of providing sufficient
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space until the next scheduled invocation [5]. Specific cri-
teria for migrating data sets may vary by installation, but
the following is not untypical. Data sets are migrated until
a certain threshold of occupation is reached, for example,
no more than 85% of the volume occupied. In addition,
data sets with an excessive number of extents (more than
eight, for example) are migrated and scheduled for auto-
matic restoration. This process reduces the number of ex-
tents, leaving more potential for expanding data sets with-
out exceeding the extent limit of 16. At this point, a deter-
mination is made of the usability of the resulting free
space. If the available space is overly fragmented, the al-
ternatives today are to either migrate additional data sets
or to copy the contents of the volume. The former ap-
proach is generally not desirable because the migrated
data sets may soon be referenced. The latter alternative,
copying the pack in order to coalesce the free space, is
what is often done in practice. A large MVS installation
may have a schedule for copying the contents of several
disks nightly. This is an expensive operation, requiring a
substantial amount of machine time, system re-IPL, as
well as manual handling of packs.

A possible alternative to either additional migration or
volume copying is a partial reorganization in place. Such
an operation might be advantageous if a substantial im-
provement in the free space distribution is obtained at the
expense of moving a small fraction of the disk contents.
Since copying is an operation which due to its expense
can be done only infrequently for each disk pack, partial
reorganization might yield an improved average space
distribution, with fewer extents per data set. This could
result in decreased arm travel for batch operations, as
well as fewer job ABENDs due to exceeding the allowable
number of extents. An additional advantage is the possi-
bility of reorganizing disk packs in parallel with normal
operation.

The objective of a reorganization is to improve the us-
ability of the available free space. How then can one tell
whether one space distribution is superior to another?
This is a question which has not been fully answered, al-
though measures of fragmentation have been proposed
[6]. However, decisions on whether to copy a volume are
often made on the basis of histograms of free interval
sizes. The approach taken below is to attempt to move
data so as to increase the amount of available space in
large free intervals.

The following is a synopsis of the paper. The approach
to reorganization is described in Section 2. This consists
of a procedure for choosing a set of extents, then moving
this chosen set to new locations in the volume (the terms
pack and volume will be used interchangeably below).
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Section 3 considers the construction of selection func-
tions, whose objective is to choose extents whose current
locations are judged to be least advantageous. Sections 4
and 5, respectively, describe the use of selection func-
tions to pick relocatable extents and the movement of
these extents to new locations. Section 6 considers the
possibility of performing iterative reorganization, that is,
carrying out the above procedures more than once. The
results of experiments on a number of volumes from the
IBM Research Center, Yorktown, are given in Section 7.
Substantial improvements were obtained in the free space
distribution at the expense of moving only a fraction of
the volume contents. Analysis of a simple model, de-
scribed in the appendix, suggests that the favorable re-
sults should not be surprising.

2. Outline of the method

The set of extents and free spaces occupying a volume is
regarded as a sequence of spaces S, i =1,2---, M,
where S, is contiguous to §,_ and §,, . Each S, may be
either a free space or an extent. An interval I, is the
smallest contiguous set of tracks containing S, and S, j <
k. If both S, and S, are free spaces, then [, is termed a
proper interval. The number of occupied tracks in an
interval and the length of the interval are denoted by L, .
and M,,, respectively.

The objective of reorganizing the pack is to improve the
usability of the available free space, decreasing the num-
ber of small free intervals. Clearly there are many pos-
sible ways to do so. For example, a list could be made of
all free spaces, followed by an attempt to find extents to
fill the smallest ones. Most such approaches run into the
problem of having to consider large combinations of ex-
tents and free intervals, resulting in substantial computa-
tional complexity.

The method adopted here simplifies the computation by
separating the reorganization process into two essentially
independent phases. The first results in the selection of a
set of proper intervals (defined above). Extents residing
in these intervals are termed chosen or movable.

In the second phase, an attempt is made to move the
chosen extents to new locations. The intended effect is
twofold: Chosen intervals are cleared and their original
contents used to fill small fragments of available storage
elsewhere in the pack.

The restriction to proper intervals was instituted to re-
strict the amount of computation. The overall number of
intervals and the number of proper intervals are, respec-
tively, approximately proportional to the square of the
number of spaces (of which there might be several thou-
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sand) and the square of the number of free spaces (of
which there might be a few hundred).

Interval selection is carried out through the use of two
measures G and C defined on the intervals. G, , repre-
sents what might be considered an estimated gain or ben-
efit from attempting to clear [, ,, and C,, is the cost of
moving its contents.

3. Cost and gain functions

A reasonable measure of the cost of choosing I, con-
forming to common device characteristics, is M, ., the
number of occupied tracks in the interval.

Cie =My, (M

This is the cost function which will be assumed through-
out the paper.

Factors which affect the gain obtained from choosing
an interval ,, include:

1. The size (number of tracks) of the interval, L.

2. The sizes of the individual extents in the interval. It is
preferable to move small extents, which might be used
to fill fragments of available storage.

3. The distribution of extents within the interval, i.e., a
measure of how these extents fragment the interval.

4. Statistics describing the free space and extent size dis-
tributions.

5. The algorithm for relocating chosen extents.

Before discussing specific gain functions, it is convenient
to develop some additional notation and definitions.

Let V., = (q,, m,, m,, q,, * * -) be a tuple associated
with the interval I, . The quantity g, denotes the number
of tracks in the ith free space in the interval counting from
the leftmost or lowest numbered track. Similarly, m, rep-
resents the number of tracks occupied by the ith extent.

As an example, consider an interval I, ., whose spaces
S.,8,,and §_are, respectively, a free space of five tracks,
an extent occupying eight tracks, and a free space of three
tracks. Then Vis = (5, 8, 3). Underlined numbers repre-
sent extents.

Definition

Anallowable insertion of an extent is one which places an
extent into either a left or right justified position in a free
space.

Definition

An operation O(/;,) on an interval [, is a sequence of
removals and allowable insertions of extents into the in-
terval.
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The result of an operation is a new numbering for the
spaces {S} in the pack and a new set of intervals. Note
that if the interval {/, } is proper, the result of the opera-
tionon [, is an interval in the new ordering, I/ . That is,
the boundaries of I, , are boundaries for spaces in the new
ordering. An operation on a proper interval /, with its
associated V, , thus yields an I ;m with an associated V:z,m‘

Definition
A clearing operation changes V,  to V;,e = (g,). That is,
all extents are removed.

An operation O({; ) may be performed as a sequence of
{0, )} of operations on proper subintervals {1, yofl,.

Definition

Associated with an operation O(J, ,} on proper interval I,
is a gain G(V].’k,V;’m), where V;’m is the resulting interval.
If O is the clearing operation, this is denoted simply by
G(V,,) or G,,.

A concept one might associate with a gain function is
that equivalent changes should provide equivalent gains.
One way of formalizing this notion is the following:

Definition
A gain function for an operation O(Ij‘k) is termed regular
iff GV,,, Vi) = 2G(V,... V,, ) for any sequence

{0V, o> Vo)) Of proper subintervals [, of I, .

As an illustration of the notion of regularity, consider
the intervals shown in Fig. 1. Suppose [, , is chosen, i.e.,
a decision is made to clear this interval. How then should
one regard I, .? Given the decision, the difference be-
tween clearing /, , and /, ; might be considered equivalent
to clearing an interval such as [ ,, which is identical to
that resulting from the removal of m, from /, .. Clearing
1, , would then be equivalent to clearing 1, ,, and I, ,,.
Note that the resulting change in the distribution and the

extents to be moved are the same.

Regularity may, however, not always be appropriate.
This is partly because the selection and relocation phases
of the reorganization are independent, so that the opera-
tion which will be carried out on a particular interval is
not precisely determined in advance. Suppose for ex-
ample that the intervals discussed above are not cleared,
but rather have their contents moved to a left justified
position. Here the results of choosing 7, ; would not be
identical to those obtained from /, ,, and [, ...

It can be shown that a sufficient condition for a function
G to be regular for the clearing operation is that it be of
the form
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G, = H(L;,) — 2H(q,) — 2P(m) 4 M € Ve (2)

The above provides a valuation of free intervals which
is a function H(-) of their size. P(m,) may be regarded as
the expected reduction in the value of the overall free
space resulting from the reinsertion of an extent of size
m,.

Two regular gain functions were used in the experi-
ments. Both have H = P, with H(x) = x" and x log x,
respectively. These tend to favor large intervals with low
occupancy and a few large free spaces. For example, an
interval with V., = (50,2, 50) would be favored over ones
with V’s given by (1, 2, 99) and (25, 1, 25).

A number of irregular gain functions were also consid-
ered with the one chosen for the experiments given by

L’ - Sq; — Im’
G, = i . (3)

ik

This produces a ratio R = G/C with the following proper-
ties:

1. Itis dimensionless. This may be desirable because vol-
umes in practice exhibit different usage patterns.
Some have relatively large and others relatively small
extents and free spaces.

2. R is upper bounded by the inverse of the space utiliza-
tion within the interval.

3. R tends to increase with the level of fragmentation
within the interval. For example, location of a single
extent in the center produces a larger value than one
near the edge.

The above G thus tends to favor badly fragmented in-
tervals with low average utilization and with small ex-
tents. Experimental results suggest that it leads to the
choice of those intervals which might be picked from a
visual inspection of the space allocation map.

4. Interval selection

Once C and G functions have been defined, an attempt
can be made to maximize the overall gain, possibly sub-
ject to some limit on the expected cost. This section dis-
cusses some simple procedure for obtaining sub-optimal
sets of intervals, based on choosing those with suffi-
ciently large benefit/cost ratios.

Algorithm 1

Let ¢s be a threshold, C, a cost limit, and Q a set of chosen
intervals. Let I,, N Q denote the intersection of I, , with
the union of intervals in Q. Let 7, N* Q be the set of
intervals in Q which intersect [, and I,, U [I, . n* Q] be
the interval obtained by the union of /;, and those mem-
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Figure 1 Intervals comprised of extents and free spaces.

bers of Q which intersect I, ([, is assumed to be
proper). Initially, Q is empty.

Forj=1,2,--"
i=j—-1,j—-2,---, 1
For proper I, , such that M, ; # 0,
IfI,,N Q = ¢, then
IfR, ;= ¢, and
¢, <C,
add I, t0Q.
If I,NQ+#*, then
If1,,U[I,N" Qlhasa G/C =
and C < C_,
remove 1, , N* Q from Q and add

LU, N* Q0

Algorithm 1 produces a set of disjoint proper intervals
each of which has an R = i, where iy may be chosen to
restrict the overall cost. It should be noted that this set is
not necessarily unique; two proper intervals [, and I,
may each have an associated R = i, but their union may
not. The choice of one may thus preclude the choice of
the other.

In the case of G regular [with C given by (1)], the prob-
lem of interval selection is simplified by the fact that
many suitable G’s (i.e., gain functions which are easy to
compute and which yield desirable interval choices) tend
to produce ratios R which grow with the interval size. To
see why this is so, note that if the pattern of free spaces
and extents is roughly uniform, the quantities SH(g,),
3P(m,), and C will tend to be proportional to the interval
size. Thus, if H(L) grows faster than L, so does R. On the
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other hand, H(L) = KL is not suitable, since

G = KL, — 2q,] — 2P(m,) m, g, €V, “)

is independent of the location of extents within the inter-
val. This would result, for example, in intervals with as-
sociated V’s of (1, 1, 100) and (50, 1, 51) being judged
equally desirable for selection.

The result of the growth of R with the interval size is
that Algorithm 1 tends to choose a single interval. This
was confirmed by experiments using the regular gain
functions of the previous section, resulting in the adop-
tion, for these functions, of a procedure which simply
chooses that proper interval with the largest value of G
subject to C = C_. This will be referred to as Algorithm 2.

5. Relocation of chosen extents

Phase 2 of the procedure assigns locations to the chosen
extents and constructs a schedule for moving them. Two
essentially different approaches are: a) migration of the
extents to another medium, followed by reinsertion, and
b) reorganization in place. The latter alternative was cho-
sen so as to avoid any requirements for manual inter-
vention and also to permit movement of the extents dur-
ing normal system operation.

Movement of an extent is constrained by the data integ-
rity requirements of the system. Specifically, this means
that an extent must be fully replicated before the original
is erased, so that a valid copy is always available in case
of system failure.

Let the set of chosen extents be described by {E}, j =

1,2, - -, n, Relocating these extents involves a number
of operations. Space must be allocated according to some
schedule T,,, i = 1,2, - - -, n_, from the free space list

which is obtained from Phase 1. A schedule must then be
constructed which describes the order in which the cho-
sen extents are moved.

More precisely, a description of Phase 2 requires:

- 1. Specification of the schedule 7,,. This might for ex-

ample be largest or smallest first.

2. The assignment function which determines which free
space is allocated to a given interval (e.g., best fit or
first fit [1, 4)).

3. The effect on the free space list of assigning a location
to an extent. For example, the resulting fragment
could be added to the list.

4. The schedule for moving extents to new locations.

The following algorithm provides an assignment of ex-
tents to free spaces which are not contained in intervals
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chosen in Phase 1. The goal is to eliminate small free in-
tervals and thus to effect a further shift of available space
to large intervals. The algorithm is based on a best fit cri-
terion, with space assigned to extents in order of decreas-
ing size. Thus fragments created on insertion can be filled
by small extents, many of which typically occupy one or
two tracks.

Algorithm 3

Chosen extents are sorted by size and denoted by {E}},
i;=1,2,-- -, n, wherei<jimplies L(E) = L(E)). Let §
denote a set of free spaces not included in the set of cho-
sen intervals. Initially, § includes all such spaces.

1. Setj <0,

2. je—j+ L.
If j > n,, the procedure terminates.

3. Find afree interval in § which provides a best fit for E,
and remove it from S. If no such interval exists, go to
2.

4. Move the extent into the lowest numbered tracks in
the space obtained by 3.

5. Add the fragment resulting from insertion of E; to the
free space list S.

6. Goto2. O3

The overall effect of the reorganization can be im-
proved by attempting to move to a left justified position
within their chosen intervals those chosen extents not
successfully relocated by Algorithm 3.

Algorithm 4

1. Perform the operations indicated in Algorithm 3.

2. Let E(/, k) be the set of extents remaining in [, after
1; i < nimplies E,(j, k) is to the left of E,(j, k).

3. Fori=1,2,- - -, move E(j, k) to the leftmost feasible
position in . This is a position which may have been
cleared by moving a lower-numbered extent, but
which does not overlap the current location of E(j, k).

(Il

6. Iterated reorganization

Application of the above techniques results in a new or-
ganization of the volume contents. L.et A and A  denote
respectively the original and new organizations, and { the
reorganization process:

Ay = A, (5)
Definition

A reorganization process { is termed final if

£'(A,) = LEA,) = LA, ©6)

for any initial organization A,.
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Consider the insertion of an extent at the left edge of a
free space §,. Let S:. denote the remainder of this space
after insertion (if the remainder is empty ', will denote
the right boundary of §,). The ratio R = G/C and the gain
function G are termed nonincreasing on insertion (NONI)
if the ratio R associated with each proper interval contain-
ing S, is no smaller than that for the corresponding proper
interval containing S,

Intuitively, the NONI property may be expected to hold
for suitable gain functions, since insertion of an extent
decreases the number of free tracks without increasing
the number of free spaces. Examples of gain functions
which yield NONI ratios [with C given by (1)] are (3) and
the regular C’s resulting from H = P with H(x) = x* or
x log x.

Proposition 1

Suppose [ is the application of Algorithms 1 and 4 with
C, = =, Gis regular, and R NONI. Suppose further that all
chosen extents are relocated. Then { is final.

Proof

Reorganization may be viewed as the result of two opera-
tions: a) the removal of all chosen extents and b) their
reinsertion.

It is first shown that no nonempty proper intervals with
R = ¢ remain after a). Suppose there is such an interval
I, with R, = . Since all chosen extents are removed,
1 ;’k must include some chosen subset {Ie,m}c of proper in-
tervals in the original organization. Let C,and C, denote,
respectively, the number of occupied tracks in {Ie’m}” and
I',. Let I denote the interval I, before the removal of
the extents contained in {/, }°.

The regularity of G implies that

Ga,r = G/]k + E Ge,m Ie,m € {Ie,m}c’ (7)

=, @®

®

@ — GJ'JC + 2Gl,m = l,[l, (10)
C C,+C,

.7

so that G,, would have been chosen; R, = . No proper
intervals remain with cost benefit ratios = y after (a).
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The NONI property insures that no such intervals re-
main after (b). [J

If C, < o, the reorganization will in general not be
final, even for regular G and R NONI. It is not difficult to
show, however, that intervals in A, (the resulting organi-
zation) for which R = ¢ and C = C, intersect those cho-
sen in the selection phase of {.

Suppose reorganization is to be performed with a limit
of 2x tracks to be moved. Is it better to reorganize in two
passes, each moving x tracks, or in a single pass with a
limit of 2x? If G is regular, the gain (as measured by G)
from the choice of the two passes is the same as that ob-
tained by a single pass using the same chosen intervals.
Moreover, the above argument suggests that the choice
for two passes will tend to be more restrictive. Thus, if G
is regular and a good measure of the expected gain, a
single pass may be superior.

Suppose G is irregular. Then the initial reorganization
may create some new intervals with high values of R.
That is, the first pass may create additional opportunities.
This was found to be the case in the experiments.

7. Experimental results

This section describes the outcome of experiments on the
contents of a number of disk packs at the IBM Thomas J.
Watson Research Center, Yorktown Heights, NY. Re-
sults are given for four representative volumes.

Let f(x) denote the fraction of free space comprised of
intervals no larger than x. Similarly, let u(x) be the frac-
tion of occupied space (excluding one-time allocation for
permanent data sets) contained in extents no larger than
x. The function u(x) may be regarded as predictor of stor-
age requests for the pack.

The initial space and utilization distribution and the re-
sults of reorganization for each of the packs are illustrated
in a set of figures.

Figures 2-8 show for volumes 1 to 4, respectively, the
following curves:

1. f,(x), the distribution of free space before reorganiza-
tion. Numbers at the right-hand side of the figures in-
dicate the size of the largest free space.

2. f,(x), the result of a reorganization { , which consists
of the application of Algorithms 1 and 4 with a thresh-
old ¢y = 2 and C, set to O, the total number of free
tracks on the volume. G is the irregular function (3)
described in Section 3.
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Figure 2 Distribution of free space for volume 1 (12 610 occu-
pied, 2742 free tracks). Number of tracks moved—f,(x): 478; f,(x)
and £,(x): 1250; f,(x): 1228; f,(x): 2722.
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Figure 4 Distribution of free space for volume 2 (12 922 occu-
pied, 2430 free tracks). Number of tracks moved—f,(x): 576;
f(x) and £,(x): 901; f.(x): 851; f,(x): 1990.

3. f,(x), the result of applying a second iteration of {, to
the result obtained in (2). If A  represents the original
organization, f,(x) is the free space distribution for
£, (A

4. f,(x), the result of applying a transformation {, con-
sisting of Algorithms 2 and 4 with C_ equal to the num-
ber of tracks moved in the two iterations of {. G is
given by

G=L, logL  — 2q, — 3m logm,
am €V, (D

This yields a comparison of the two gain functions for
similar numbers of tracks moved.
5. f,(x), the result of using {, with C_ = Q and G as in 4.

Figure 3 shows u(x) for volume 1. Results for volumes
2, 3, and 4 are given in Figs. 5, 7, and 9, respectively.
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Figure 3 Fraction of occupied space u(x) contained in extents
no larger than x for volume 1. (Tracks occupied, 12 610, 11 145
for user data.)
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Figure 5 Fraction of occupied space u(x) contained in extents
no larger than x for volume 2. (Tracks occupied, 12 922, 11 457
for user data.)

Let
Y, = max [u(x) — f(x)]. (12)

Suppose space is to be allocated for a set of extents
whose size is distributed according to u(x) with a total
requirement of Q tracks. Then ¥, gives a lower bound for
the fraction of space that cannot be allocated if the free
space distribution is f,.

The results indicate that ¢, generally yields a sub-
stantial improvement in the free space distribution at the
cost of moving only a few percent of the volume contents.
A second iteration of [, yields a free space distribution
which results in ¥, = 0 for ail packs. Application of {,
with a cost limit resulting in the relocation of a number of
tracks similar to that resulting in f, generally yields less
reliable results: ¥, > 0 for volumes 3 and 4. However, if
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Figure 6 Distribution of free space for volume 3 (13 412 occu-
pied, 1940 free tracks). Number of tracks moved—f, (x): 260; £, (x)
and f,(x): 260; f,(x): 244; f,(x): 1843.
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Figure 8 Distribution of free space for volume 4 (13 629 occu-
pied, 1723 free tracks). Number of tracks moved—f, (x): 219; f,(x)
and f,(x): 497; f,(x): 488; f,(x): 1226.

the cost limit is relaxed, the resulting organization con-
tains in all cases a free interval of size comparable to the
overall free space.

8. Discussion and conclusion

A technique was described for partially reorganizing the
contents of disk storage so as to reduce the level of frag-
mentation. Experiments suggest that the method may be
used to substantially improve the utility of the available
free space at the expense of moving only a fraction of the
disk contents.

Two types of functions were considered for use in the
process of selecting intervals to clear. The first has the
tendency to choose a single interval, while the second
chooses a multiplicity. For a limited number of tracks to
be moved, the second appears somewhat superior, since
the choice of a single interval often appears to result in
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Figure 7 Fraction of occupied space u(x} contained in extents
no larger than x for volume 3. (Tracks occupied, 13 412, 8187 for
user data.)
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Figure 9 Fraction of occupied space u(x) contained in extents
no larger than x for volume 4. (Tracks occupied, 13 629, 9829 for
user data.)

the increased fragmentation of the remaining space. A de-
cision between one or the other, however, should prob-
ably be dictated by implementational considerations.

Given the technique for increasing the utility of the free
space, a further possibility is the coalescing of data sets
which initially occupy several extents. This could be done
by using the free space obtained by the reorganization for
coalescing data sets which occupy more than a given
number of extents, followed by further reorganization.
This process could be iterated if necessary. Note that
since the reorganization may be done by moving on the
order of ten percent of the volume contents, the result
could be essentially equivalent to a complete copy of the
volume at a fraction of the expense in terms of the num-
ber of tracks moved. An additional advantage is the
avoidance of the requirement for manual handling of disk
packs.
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Appendix: A simple model

Experimental evidence indicates that reorganization gen-
erally leads to a substantial improvement in the free space
distribution. An interesting question is whether this is
what should be expected. In the following, the results of
an analysis of a simple model suggest that positive experi-
mental outcomes should not be surprising.

The model is as follows. Storage space is assumed to be
an infinite sequence of slots each of which is occupied
with probability p and free with probability ¢ = 1 — p.
The value of p was chosen as 5/6, yielding a utilization of
0.83, or roughly that encountered in practice.

Contents of an occupied slot are moved if and only if it
is bordered on either side by a free space. Note that this
tends to result in choosing fewer candidates for move-
ment than a more realistic criterion, which would not ar-
bitrarily exclude extents occupying more than a single
slot.

The above choice of intervals corresponds to a regular
gain function whose value is the number of occupied slots
bordered on each side by free intervals, a cost given by
the number of occupied slots, and a choice threshold of
one.

The probability that a free interval is of size n slots is
given by
Pn) = pg"™" = (5/6) (1/6)" . (A1)
A randomly chosen free slot is bordered on each side by
an occupied slot with probability (5/6)>. Thus Q = (5/6)°
of the free space consists of intervals of length one. It can
be shown that the percentage of free space occupied by
free intervals of length 2 is Q, = (1/3) (5/6)’. In other

words 25/27 =~ 0.93 of the free space before reorganiza-
tion consists of intervals of size two or smaller.

The probability that a free interval is affected by the
reorganization (i.e., borders a slot whose contents will be
moved) is

V=2pq + ¢° = (11/36). (A2)

Moreover, this is independent of the interval size.

P. A. FRANASZEK AND I. P. CONSIDINE

The number of slots whose contents will be moved is
lower bounded by one half the number of free intervals
affected. In other words, at least 0.153 times as many ex-
tents of size one will be moved as there are free intervals.

After reorganization (using a best fit criterion), the pro-
portion of free space in intervals of length 1 is
. Pl ~V]-V/2
- P,(1)

Q,~ 0.34. (A3)

The proportion of free space in intervals of length 2 is
Q, = (1 - V)Q,~0.16. (Ad)

In other words, the proportion of free space in intervals of
length 3 or greater is changed from about 0.07 to more
than 0.50. This is done by moving about 0.025 of the over-
all contents.

Acknowledgment

The authors acknowledge valuable discussions with N.
Pass, who suggested this area of investigation, as well as
the assistance of D. Brinkley in the preparation of the
manuscript.

References

1. D. E. Knuth, The Art of Computer Programming, Vol. 1,
Addison-Wesley Publishing Company, Reading, MA, 1968.

2. J. M. Robson, ‘*Bounds for Some Functions Concerning Stor-
age Allocation,” J. ACM 21, No. 3, 491-499 (1974).

3. L. P. Deutch and D. G. Bobrow, *‘An Efficient, Incremental,
Automatic Garbage Collector,”” Commun. ACM 19, No. 9,
522-526 (1976).

4. J. E. Shore, ““On the External Storage Fragmentation Pro-
duced by First-Fit and Best-Fit Allocation Strategies,”” Com-
mun. ACM 18, No. 8, 433-440 (1975).

5. J. P. Considine and J. J. Myers, “MARC: MVS Archival
Storage and Recovery Program,”” IBM Syst. J. 16, No. 4,
378-397 (1977).

6. J. P. Considine, ‘A Computable Measure of Fragmentation
for Direct-Access Volumes,”” Research Report RC6241
(#26807), IBM Thomas J. Watson Research Center, York-
town Heights, NY, 1976.

Received August 11, 1978; revised November 6, 1978

The authors are located at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York 10598.

IBM J. RES. DEVELOP. @ VOL. 23 e NO. 2 ®« MARCH 1979




