D. B. Bogy

Break-Up of a Liquid Jet: Second Perturbation Solution
for One-Dimensional Cosserat Theory

The second perturbation solution is derived within the nonlinear one-dimensional Cosserat theory for a liquid jet emanat-
ing from a nozzle with harmonic excitation. Numerical results are presented for parameters relevant to ink-jet printing
technology. Satellite drops are predicted but always in the backward merging condition. The results are compared with
the corresponding solution obtained by Pimbley and Lee, who used a different one-dimensional set of equations with a
different formulation of the problem and obtained forward merging satellite drops under some conditions.

Introduction

This work continues the analytical study of the stability
and break-up of a liquid jet begun in Bogy [1, 2]. In this
study a one-dimensional Cosserat theory of the jet, as
published by Green [3], is utilized. The ultimate goal is to
predict analytically the experimentally observed satellite
drop behavior as reported in Pimbley and Lee [4]. They
observed that the satellite drops can be made to merge
forward or backward with the main drops, depending on
the magnitude of the time harmonic disturbance. For
larger disturbance magnitudes, so that break-up occurs
closer to the nozzle, the satellite drops merge forward.
For smaller magnitudes they merge backward.

In [1] several predictions of this one-dimensional the-
ory were compared with previous stability analyses of
Rayleigh [5], Keller et al. [6], Lee [7], and Pimbley [8]. In
[2] the stability problem was studied from the point of
view of wave propagation in the jet. The primary purpose
there was to obtain full understanding of the frequency
spectra to aid in the proper formulation of the boundary
value problem of a jet emanating from a nozzle. Green [3]
proved a uniqueness theorem, which indicates that for the
one-dimensional theory under consideration two bound-
ary conditions should be prescribed at two end points of a
jet segment. Thus only two conditions can be prescribed
at the nozzle and the other two must be set downstream.
This is also in agreement with what would be required by
the three-dimensional ideal fluid theory for this problem.

Here, as in many fluid flow problems, the downstream
boundary conditions are very difficult to set since the flow
is unknown. In [2], in the context of the linearized theory,
the jet was considered to be semi-infinite for those fre-
quencies at which a jet is stable. In this manner radiation
type conditions could be imposed as z — «, thereby elimi-
nating two of the four wave eigenfunctions of the equa-
tions. This led to a properly formulated problem in which
only two boundary conditions need to be specified at the
nozzle, in conformity with Green’s [3] uniqueness theo-
rem. This was contrasted with the analytical work in [8],
and that of Pimbley and Lee [4], wherein four boundary
conditions were prescribed at the nozzle while using
Lee’s [7] one-dimensional formulation.

In this paper the second perturbation solution is de-
rived for the one-dimensional Cosserat jet emanating
from a nozzle. The problem is formulated as described in
[2]. Numerical results are obtained and compared with
the second perturbation results of Pimbley and Lee [4].

Derivation of the inviscid Cosserat jet perturbation
equations

The inviscid form of the straight circular jet equations
was given in [1] in terms of jet radius ¢(z, #) and axial
velocity v(z, 1) as
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Figure 1 Frequency spectrum. [Solutions of Eq. (10).] Dashed
branches are excluded by radiation conditions—solid branches
are retained and designated &, k,.
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in which z is axial distance, ¢ is time, subscripts denote
partial differentiation, and length and time variables have
been nondimensionalized by nominal radius a and veloc-
ity v,. The Weber number, B, is related to surface tension
T and density p by

B2 = paui/ T. Q3)

We wish to obtain a steady time harmonic solution of
these equations for a semi-infinite jet, z > 0, satisfying the
boundary conditions at the nozzle given by

&(0,7) = 1,

where € << 1 is the magnitude of the applied disturbance
of the axial velocity and will be our perturbation parame-
ter.

v(0,7) = 1 + € cos (w?), 4)

Two other boundary conditions must be set for this
fourth-order system. As explained in [2] in the context of
the linearized theory, we satisfy a radiation condition that
energy must be outgoing at z = » at disturbance frequen-
cies w for which the jet is mathematically stable and does
not break up. This allows us to exclude two branches of

the frequency spectrum (the dashed branches in Fig. 1)
and correspondingly two of the four wave eigenfunctions
are deleted. The remaining two branches (solid lines in
Fig. 1) are retained and the corresponding eigenfunctions
are used to satisfy (4).

A straightforward perturbation expansion is assumed,
of the form

2 3
b=¢, tedp + €, +ed, +- -,
v=u0+evl+ezvz+e3v3+---. &)

This substituted into (1) and (2) leads to the following
problems:

o): ¢, =1, v,=1, 0,0 =1, 0,0 =1 ()

O(e): 2¢1, + 2¢>11 + v, = 0,
1
B_z (d)lz + d)lzzz) = 0’

6,00, =0, (0,1 = cos (w). )]

1
vlt + vlz - g (Ulzzt + Dluz) -

O(”): 2, + 26, + v, = — (v, + 0,¢,),

1
222t + vzzzz) - E

1
v, v, — g(v )

@, + &

2222

1 1
= -op + E ‘1’1, (vlzt + Ul,,) + E Vv

17 12z

1 1
PO, ) T h, 6, - 26),

6,00, =0, 1,0, 1) = 0. ®)

The O(1) solution (6) satisfies (1), (2), and (4) whene = 0,
and it represents the constant radius, constant velocity
solution of the unperturbed jet. The O(e) problem (7) is
that of the linearized theory studied in [2], where &, w,
and w, were used in place of ¢, v,, and €. The solution
obtained there for e¢,, the radius perturbation, is

€b,(z, 1) = f—Re( kik, {exp [i(wt — k,2)]

2w k —k

— exp [i{ot — klz)]}), ©)

in which k , k, represent the roots of the dispersion rela-
tion

Bw — k)P = 4K — /(K + 8), (10)

which belong to branches of the frequency spectrum that
pass through the point (w, &) = (0, 0). Whenw < 1, k, and
k, are complex conjugates and k, = k‘f + iki is chosen as
the root with klI > 0. In this case (9) can be written in the
real form
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€ Wkl Lo R
ep,(z,8) = —  sinh (k,z) sin (0t — k2). (11)

20 k'

Thus the disturbance is unstable for w < 1 and grows ex-
ponentially with distance z. For high velocity jets (large
8% k? =@ and kl1 << 1. In this case (11) gives

1 4k!
led,z, ) =1 at z =z = 0 In (——’—), (12)

;o ek}
where z, is the distance to breakoff as predicted by the
linear theory. Although the linear theory is not expected
to give valid results when ¢, = O(¢ ") this value of z,, has
been shown to be in agreement with experimental obser-
vation. When @ > 1, k, and £, are real. In this case (9)
takes the real form

€

k.k
€d (z, 1) = " ‘_2k [cos (wt — k,z) — cos (wr — kz)],

2

(13)

which is a stable solution.

A somewhat different form of the linear solution (9) is
given by

2
¢,z 1) = 2 Ck; cos (w! — k),

i=1
where

1 k, 1 k,
C,=—-— , C,=— . (15)
2w k, — k, 20 k — k,
This form also reduces to (11) for complex conjugate &,
k, and it is the same as (13) for real k, k,. Corresponding
to (14) is the expression for v ,

v(z, 1) = Y 2C w — k) cos (wt — k;z). (16)

j=1

The linear theory solution (14), (16) appears to be of the
same form as that given by Pimbley [8]; however, there
are some important differences. Pimbley’s solution,
based on different one-dimensional equations than (1) and
(2), is a four-term sum rather than two. He prescribes four
boundary conditions at z = 0 rather than the two in (7)
and retains all four eigenfunctions corresponding to the
four roots of his equation corresponding to (10). Equation
(10) has, for large 8%, four complex conjugate roots for
o < 1(see Fig. 1), whereas Pimbley’s [8] equation has the
two roots corresponding to the solid branches; but the
complex dashed branches in Fig. 1, which also occur in
the three-dimensional investigation in Keller et al. [6], are
replaced in [8] by two real branches. Since these real
roots give stable contributions, their inclusion into the so-
lution in [8] causes no obvious discrepancy in the results
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of interest, i.¢., near z = z,. However, as is shown in [2],
the well-posed boundary value problem permits only two
conditions at z = 0.

Derivation of the second perturbation solution

Next we consider the linear problem represented by (8).
Observe that the differential operators in (8) for ¢, and
v, are the same as in (7) for ¢, and v , the right-hand sides
are determined by ¢, and v, and the boundary conditions
are homogeneous. It follows that

b, = ¢, + b, Bty a7

where (b};, v'; satisfy the first two of (8) with the right-hand
sides set equal to zero, while (i):, vZP are particular solu-
tions. Furthermore,

50,0 = — 30,0,  vy0,0=— 0,0, 0. (18)

Thus we take

d5(z, 1) = X Ck, cos (ot — k;z) + C,
=1

2
vz, 1) = 2 2C (o — k;) cos (@t - kz) + D, (19)

i=1

where &, k, are the appropriate two roots of (10) corre-
sponding to @, which must be determined from d>:, v:.
The need for the constants C and D in (19) will be appar-
ent later. In order to determine ¢,, v} we must first calcu-
late the right-hand sides in (8). By use of (14) and (16) it is
found that

— (@, +2v0,,) = > f,sin(26)

+ 5, sin(6, +6,)
+ £, sin (6, — 6,),
in which
0, = ot — k}.z,

and

[ =3CKk — ),
f5, = C.C B3k kyk, + k) = 20K} + kk, + k)],

[ = C,Cylk, = k)[3kk, — 20k, + k)] (22)

Jj=12,

Likewise the right-hand side of the second of (8) is

2
2.8, sin (20) + g}, sin (6, + 6,)+ g}, sin (6, — 6,), (23)
=1

where
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1 1
g, = cz_[g (@ — k)*(K, — 4k)) — % KK+ 2) |,
i=12,
E

8= clcz[— i[s(k1 + k) + (K + kD)) — k) — k)

1

2 (k, + k)k k,2 + kk,)

+ %klkz[(kl + 2k ) — k) + (k, + 2k )w — k2)2]],
0 1 3
g, = CICZ[— 7 Bk, = k) + (k] — K)o — k)@ — k)

k,)

12

1
= 357 e~ k2 — &

!
+ 1 kk[(k, — 2k,)(w - kl)2
=k, — 2k )w — k) ]] (24)
In view of (20), (23) we assume for the particular solution
2
¢, = DA, cos(20,) + A%, cos (0, + 0,)
i=1
+ A}, cos (6, - 6,),
2 o
=2 B, cos (26,) + B, cos (8, + 9,
i=1

+ B}, cos (6, — 0,), (25)

and we determine the A and B coefficients by substitution
into (8) with right-hand sides given by (20) and (23). In
this manner we obtain the four linear systems

2B, — 4o — k)A, =f, j=12,

2
— (@ — k)2 + KB, - i (k, — 4kDA, = ¢

i

Jj=12,
(k, + k)BY, + 2(k, + k, — 2w)A%, = f5,,

1 :
(k, + k, — 2@{1 +g kz)Z}Bi‘z

1
- E[kl thy -k T+ kz)a]A'iz = g?r
(k, = k2)B(1)2 + 2k, - kz)A(:2 =f‘;2’
1
,:kl N k2 + g (kl - kz)s}B(l)z

RS
BZ

- [k1 —k, = (kl - kz)a]A(l)z =8

0
127

. . E E 0 0
which determine B, A, B',, A,, B,, A, and hence

¢>§, v*; (except at @ = 1/2 or 1 for which the coefficient

determinant for sz, A", vanishes).

Next we determine the C]. in (20) so that d)*;, v}; satisfy
the boundary conditions (18) with (25). From (25), (21),

2
$2(0, 1) = (ZAJ.J. + A‘;z) cos Qwi) + A},
i=1

2
v,(0, 1) = (ZB”. + B‘f2> cos 2wt) + BY,,

i=1
so that (18), (19) require
C=-4],, D=-B5B,
C,=[-(—k)A, +A,+A%)
+ k,(B,, + B,, + B%))/2)/A,

o = 2w,

C,= @ — k)A, + A, +A%)
- k(B,, + B,, + B%)/2]/A,
A=k - k)~ k(o — k).

This completes the second perturbation solution.

Second perturbation numerical results
Summarizing the above derivation we have that the sec-
ond perturbation jet radius is given by

bz, 1) =1+ ed(z, 1) + Tz, 1) + diz, D], (29)

where ¢ is the specified amplitude of the applied distur-
bance in the axial velocity at the nozzle as given by (4),
and ¢ (z, #) is given by (14) and (15) in which &, k, are the
roots of (10) corresponding to w and 8 that belong to the
branches that pass through the origin of the frequency
spectra. The second perturbation part d)Z(Z, 1) is deter-
mined by (22), (24), (25), and (26), while the part (b;’(z, 1) is
determined by (19), (22), (24), (26), and (28). The wave
numbers l%l, I€2 are determined from (10) for . Since
& = 2w, it follows from our previous discussion that if @
> 1/2, thenw > 1 and IEI, 122 will be real. This means that
d)*; in (19) will be stable harmonic traveling waves. How-
ever, ¢, in (25) has wave numbers 2k, 2k,, which are
complex for w < 1. These terms have exponential growth
in z at twice the rate of ¢, but are multiplied in (29) by é
rather than e. This second perturbation solution is not
uniformly valid but is singular at w = 1/2 and @ = 1 for
the reason mentioned above.

The second perturbation radius given by (29) was pro-
grammed and numerical results were obtained for
B = 250 and w = 0.525 (corresponding to the parameter
values £* = 0.002 and A\/d = 6 in Pimbley and Lee [4]).
Values of € were chosen which gave break-off lengths z,
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(i.e., the minimum value of z for which ¢(z, f) can be zero)
corresponding to those values presented in Fig. 7 of [4].
The results are shown in Fig. 2. Here we see that satellite
drops are apt to form but due to the fact that downstream
ligament separation occurs first they would be backward
merging for all values of the break-off length z,. This is
somewhat surprising since Pimbley and Lee [4] obtained
in their Fig. 7, for the same set of parameters, upstream
ligament separation and hence forward merging satellites
for z, < 90. (Recall that their experimental results for
these parameters gave forward merging satellites for z, <
185.) It was anticipated that the one-dimensional Cosserat
theory used here, which includes radial inertia, would
show better agreement with experiment than Pimbley and
Lee were able to obtain using Lee’s one-dimensional
equation. After careful study and recalculation of their
results it can be concluded that Pimbley and Lee’s for-
ward merging satellite predictions are a result of the way
they formulated the problem. As mentioned earlier, they
set four boundary conditions at the nozzle, whereas the
proper formulation (on the basis of the uniqueness theo-
rem) allows only two conditions to be set at the nozzle,
and the other two conditions must be imposed down-
stream. As explained in [2] we satisfied a downstream-
radiation-type condition by the exclusion of two of the
four branches of the frequency spectra. The significant
effect of the additional two boundary conditions enters
Pimbley and Lee’s [4] second perturbation solution
through their equations (22) and (23). Their 8, should be a
two-term summation rather than four. Then the C, in their
(23) would not depend on R, and R, since, from their (19),
these quantities arise from the two extraneous boundary
conditions at the nozzle.

There is reason to believe that at least a third per-
turbation solution is required to adequately describe the
satellite drop behavior. This is the case in the treatment of
the Rayleigh infinite jet problem by use of three-dimen-
sional theory as done by Lafrance [9], where the third
perturbation is required to predict correct size ratios of
satellite to main drops.

Conclusions

The second perturbation solution obtained here predicts
satellites but always in the backward merging condition.
The forward merging satellites predicted by Pimbley and
Lee [4] in their second-order perturbation solution using
Lee’s [7] one-dimensional equations are a result of their
formulation of the problem in which they set four bound-
ary conditions at the nozzle rather than two.
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