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Break-Up  of  a  Liquid  Jet:  Second  Perturbation  Solution 
for  One-Dimensional  Cosserat  Theory 

The  second  perturbation  solution is derived within the nonlinear  one-dimensional  Cosserat  theory for  a liquid jet  emanat- 
ing from  a nozzle with harmonic  excitation.  Numerical  results are presented  for  parameters relevant to  inkqet printing 
technology. Satellite  drops are predicted  but  always in the backward  merging condition. The  results are compared  with 
the corresponding  solution  obtained by Pimbley and Lee, who  used a different  one-dimensional set of equations with a 
different formulation of  the problem and obtained forward merging  satellite  drops  under some conditions. 

Introduction 
This  work  continues  the analytical  study of the stability 
and break-up of a liquid jet begun in Bogy [l, 21. In this 
study  a  one-dimensional Cosserat  theory of the  jet,  as 
published by Green [3],  is utilized. The ultimate  goal is to 
predict  analytically the experimentally observed satellite 
drop  behavior  as  reported in Pimbley and Lee [4]. They 
observed  that  the satellite drops  can be made to merge 
forward or backward  with the main drops, depending on 
the magnitude of the time  harmonic disturbance. For 
larger disturbance magnitudes, so that  break-up  occurs 
closer  to  the  nozzle,  the satellite drops merge forward. 
For smaller  magnitudes they merge backward. 

In [l] several predictions of this  one-dimensional  the- 
ory were  compared with previous stability analyses of 
Rayleigh [5], Keller et al. [6], Lee [7], and Pimbley [8]. In 
[2] the stability  problem was studied  from the point of 
view of wave  propagation in the  jet.  The primary purpose 
there  was  to  obtain full understanding of the  frequency 
spectra  to aid in the  proper formulation of the  boundary 
value  problem of a jet  emanating from a nozzle.  Green [3] 
proved a uniqueness theorem, which  indicates that  for  the 
one-dimensional theory  under consideration two bound- 
ary conditions  should  be  prescribed at  two  end  points of a 
jet  segment.  Thus only two  conditions  can be prescribed 
at the nozzle  and the  other  two must  be set  downstream. 
This is also in agreement  with what would be required by 
the three-dimensional ideal fluid theory  for this  problem. 

Here,  as in many fluid  flow problems, the  downstream 
boundary conditions are very difficult to  set since the flow 
is unknown. In [2],  in the  context of the linearized theory, 
the jet  was considered to be semi-infinite for  those fre- 
quencies  at which a jet is stable. In this manner radiation 
type  conditions  could  be  imposed as z + 00, thereby elimi- 
nating two of the four  wave eigenfunctions of the equa- 
tions.  This led to a  properly  formulated  problem in which 
only two boundary conditions need to be specified at  the 
nozzle, in conformity  with Green’s [3] uniqueness theo- 
rem. This  was  contrasted with the analytical  work in [8], 
and that of Pimbley and Lee [4], wherein  four boundary 
conditions  were  prescribed at  the nozzle while using 
Lee’s [7] one-dimensional  formulation. 

In this paper  the  second  perturbation solution is de- 
rived for  the one-dimensional Cosserat  jet emanating 
from a nozzle. The problem is formulated as  described in 
[ 2 ] .  Numerical results  are obtained  and compared with 
the second  perturbation results of Pimbley and Lee [4]. 

Derivation of the inviscid Cosserat  jet perturbation 
equations 
The inviscid form of the straight circular  jet  equations 
was given in [l] in terms of jet radius + ( z ,  t )  and axial 
velocity v(z, t )  as 

(+z)t  + (v+7, = 0, (1) 
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Figure 1 Frequency  spectrum.  [Solutions of Eq. (lo).] Dashed 
branches  are excluded by  radiation conditions-solid branches 
are  retained  and designated k , ,  k,. 

and 

in which z is axial distance, t is time, subscripts  denote 
partial  differentiation, and length and time  variables  have 
been  nondimensionalized by nominal  radius a and veloc- 
ity uo. The  Weber  number, P2,  is related to  surface tension 
T and density p by 

We wish to  obtain a steady time  harmonic  solution of 
these  equations  for a semi-infinite jet, z > 0,  satisfying the 
boundary conditions at  the nozzle  given by 

f#J(O, t )  = 1 ,  u(0, t )  = 1 + E cos (wt ) ,  (4) 

where e << 1 is the magnitude of the applied disturbance 
of the axial  velocity and will be our perturbation  parame- 
ter. 

Two  other  boundary  conditions must  be set  for  this 
fourth-order  system. As explained in [ 2 ]  in the  context of 
the linearized theory, we satisfy a radiation condition  that 
energy must  be  outgoing at z = co at  disturbance frequen- 
cies w for which the  jet is mathematically  stable and  does 
not  break up. This allows us  to  exclude two branches of 

the  frequency  spectrum  (the  dashed  branches in Fig. 1) 
and  correspondingly  two of the  four  wave eigenfunctions 
are  deleted.  The remaining two  branches (solid lines in 
Fig. 1 )  are retained  and the  corresponding eigenfunctions 
are  used to satisfy (4). 

A straightforward perturbation  expansion is assumed, 
of the  form 

c#J = $bo + E+1 + 24,  + E3f#13 + . . -, 
v = vo + EU1 + E2V2 + E3V3 + . . .. ( 5 )  

This  substituted into (1)  and (2) leads  to  the following 
problems: 

O(1): +o = 1 ,  u0 = 1 ,  C#J~(O, t )  = 1 ,  vo(O, t )  = 1 .  (6) 

O(E): W l f  + W l Z  + u,, = 0,  

1 1 
VI, + ul, - 8 (Ulz*, + U1J - - (9,* + 41zz) = 0,  P2 
+,(O, t )  = 0,  U , ( O ,  t )  = cos (wt).  (7) 

0kZ): 29,, + 24,, + v2* = - (9p,* + 2U19J> 
1 1 

P 0 2 ,  + v2, - s (UZ,,, + VZ,,) - 1 @z* + 4zz*) 

U P l X  + 2 41z (VI,* + V1*) + s Vl~l,,, 
+ a 9, (Vl,,, + VIz*) + 7 91z (91zz - 29,h 

1 1 - - -  

1 1 

P 
( q o ,  t )  = 0,  U,(O, t )  = 0. (8) 

The 0(1) solution (6) satisfies (l) ,  ( 2 ) ,  and (4) when E = 0, 
and it represents  the  constant  radius,  constant velocity 
solution of the  unperturbed  jet.  The O(E) problem (7) is 
that of the linearized theory studied in [2], where 6, w, 
and wo were used  in place of +,, u,, and E .  The solution 
obtained there  for  the radius perturbation,  is 

E+, (Z ,  t )  = -Re ___ 
2: (I ,  - k, 

klkz {exp [i(wt - k,z)] 

- exp [ i (wt - klz ) ] }  (9) 

in which k, ,   k ,  represent  the  roots of the dispersion rela- 
tion 

P"(o - k)' = 4k2(k2 - l ) / ( k Z  + 8 ) ,  ( 10) 

which belong to  branches of the  frequency  spectrum  that 
pass  through the point (a, k )  = (0,O). When w < I ,  k ,  and 
k ,  are complex conjugates and k ,  = k; + ik: is  chosen  as 
the root with k: > 0. In this case (9) can be written in the 
real form 
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Thus  the  disturbance is unstable f o r o  < 1 and grows  ex- 
ponentially with distance z .  For high velocity jets (large 
p2)  k: = w and k: << 1 .  In this case (1  1) gives 

where zB is  the  distance  to breakoff as predicted  by the 
linear theory. Although the linear  theory is not expected 
to give valid results when $1 = O(E-’) this  value of z B  has 
been  shown to  be in agreement  with experimental obser- 
vation. When o > 1 ,  k ,  and k ,  are real. In this case (9) 
takes  the real form 

E$,(z,  r )  = - ~ 
k1k2 [COS ( w t  - k2z)  - cos (or - k , z ) ] ,  E 

2w k ,  - k ,  

which is a  stable  solution. 

A  somewhat  different form of the linear  solution (9) is 
given by 

2 

C $ ~ ( Z ,  t )  = C C i k i  COS (ot - k i z ) ,  
j=1 

where 

This  form  also reduces  to ( 1  1) for complex  conjugate k , ,  
k ,  and it is the  same  as (13) for real k , ,   k , .  Corresponding 
to (14) is the  expression  for v l ,  

2 

v,(z, t )  = C2Ci(o - ki)  COS (ut - k p ) .  ( 16) 
j=1 

The linear theory solution (14), (16) appears  to  be of the 
same form as  that given by Pimbley [8]; however,  there 
are some important differences.  Pimbley’s  solution, 
based on different one-dimensional equations  than (1)  and 
(2), is a four-term sum  rather than two.  He  prescribes  four 
boundary  conditions at z = 0 rather  than  the  two in (7) 
and retains all four eigenfunctions corresponding  to  the 
four  roots of his equation corresponding to (10). Equation 
(10) has,  for large p2,  four complex  conjugate roots  for 
o < 1 (see Fig. l),  whereas Pimbley’s [8] equation  has  the 
two roots  corresponding  to  the solid branches; but the 
complex dashed  branches in Fig. 1 ,  which also  occur in 
the three-dimensional  investigation in Keller  et al. [ 6 ] ,  are 
replaced in [8] by two real branches.  Since  these real 
roots give stable  contributions,  their inclusion into  the so- 
lution in [8] causes  no obvious  discrepancy in the  results 
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of interest,  i.e.,  near z = z B .  However,  as  is shown in [2], 
the well-posed boundary value  problem permits only two 
conditions at z = 0. 

Derivation of the  second  perturbation  solution 
Next we consider  the linear  problem represented by (8). 
Observe  that  the differential operators in (8) for $2 and 
v, are  the  same  as in (7) for 4, and u l ,  the right-hand  sides 
are determined  by $1 and vl ,  and the  boundary conditions 
are homogeneous. It follows that 

4, = 4: + $;> u2 = v 2  + V,’ H P  (17) 

where$;, v: satisfy the first two of (8) with the right-hand 
sides set  equal  to  zero, while $:, v i  are  particular solu- 
tions. Furthermore, 

+i(O, t )  = - $;(o, t ) ,  v;(o, t )  = - V i ( 0 ,  t ) .  (18) 

Thus we take 

2 

$; ( z ,  t )  = C C i k i  cos (kt - Liz) + c, 
j=1 

2 

V ~ ( Z ,  t )  = 1 2 C j ( 6  - ki) COS (6t - Liz) + D ,  (19) 
j=1 

where kl ,  k 2  are  the  appropriate  two  roots of (10) corre- 
sponding to 6, which  must  be determined  from $;, v:. 
The need for the  constants C and D in (19) will be appar- 
ent later. In order  to  determine $;, v i  we must first calcu- 
late the right-hand sides in (8). By use of (14) and (16) it is 
found  that 

2 

- ($lvl, + 2 ~ ~ 4 ~ )  = I f ,  sin @ej) 
i=1 

+ f:, sin (e, + e,) 
+ f : z  sin (8, - e,), (20) 

in which 

Bj = at - kiz ,  (21) 

and 

f j i  = 3Ctk;(kj  - w), j = 1 ,  2 ,  

f:, = ClC2[3klkz(k l  + k2)  - 2o(k: + klk2 + kz) ] ,  

f y, = C I C , ( k l  - k,)[3k1k2 - 2 4 k ,  + k J I .  (22) 

Likewise the right-hand  side of the  second of (8) is 

2 

C g ,  sin (2ej) + gy, sin (e, + 0,) + g:, sin (8, - e,), (23) 

where 

i= 1 
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g, = Cz - (0 - kJ'(k3 - 4k j )  - - k;(k; + 2)  , L: 2P2 1 
1 :  

1 

j =  1 , 2 ,  

&= c,c, - - [W, + k,) + (k: + k3 l (w  - k , ) b  - k,) 

1 - -  

2P2 
( k ,  + k,)k,k,(2 + k,kJ 

+ - k,k,[(k, + 2k,)(w - k,)' + (k ,  + 2k,)(w - k,)'] , 
1 
4 I 

1 '  gi, = C,C, - 7 [W,  - k,) + (k; - k:)l(w - k,)(w - k,) 

1 
- - ( k ,  - k,)k,k,(2 - k,k,) 

2P2 

1 
+ 4 klk2[(k ,  - 2k,)(w - k,I2 

- ( k ,  - 2k,)(w - k,)'] . I (24) 

In view of (20),   (23) we assume  for  the  particular solution 

4: = E A ,  cos (20j)  + A;, COS (0, + 0,) 
2 

1=1 

+ Ai, COS (0, - 0,), 

2 

u: = B ,  cos (20 j )  + B:, cos (H1 + 0,) 
1=1 

+ B i z  COS (0, - O,), (25) 
and we determine  the A and B coefficients by substitution 
into (8) with right-hand  sides given by (20)  and (23).  In 
this  manner we obtain  the  four linear systems 

2kjB, - 4(w - k j ) A ,  = Aj, j = 1, 2 ,  

2 

P 
- (W - kj)(2 + k;)Bjj  - 7 (kl - 4k;)Ajj  = g,, 

j =  1 , 2 ,  

( k ,  + k,)B:, + 2(k1 + k,  - 2w)A:, = f :,, 

( k ,  + k ,  - 2 0 )  1 + - (k ,  + k,)' BF, [ :  1 
1 

- - Ek, + k,  - ( k ,  + k,)31A:, = g:,, 
P' 

( k ,  - k,)Bi, + 2(kl - k2)Ai2 = f i,, 
1 
8 1 k ,  - k, + - (k ,  - k,)3 BY, 

1 
- - rk, - k,  - (kl - ~ J ~ I A ; ,  = g;,, 

P2 
(26) 

which determine B,, A,, B:,, A:,, B:,, A;, and  hence 
+:, u: (except  at w = 112 or 1 for which the coefficient 
determinant for BF,, A:, vanishes). 

Next we determine  the C1 in (20) so that +:, u: satisfy 
the  boundary conditions (18) with (25). From (25) ,   (21) ,  

This completes  the  second  perturbation  solution. 

Second perturbation  numerical results 
Summarizing the  above derivation we have  that  the  sec- 
ond  perturbation jet radius is given by 

~ J ( z ,  4 = 1 + E+,(z, t )  + E'[+;(Z, t )  + +:(z, 0 1 ,  (29) 

where E is the specified amplitude of the applied distur- 
bance in the  axial  velocity at  the nozzle as given by (4 ) ,  
and+,(z, t )  is given by (14) and ( I S )  in which k, ,  k,  are  the 
roots of (IO) corresponding  to w and p that belong to  the 
branches that  pass through the origin of the frequency 
spectra.  The  second perturbation part +;(z, t )  is deter- 
mined by (22),   (24),   (25),  and (26) ,  while the part+:(z, t )  is 
determined by (19) ,   (22) ,   (24) ,   (26) ,  and (28).  The wave 
numbers k , ,  k, are  determined  from (IO) for 6. Since 
O = 2w, it follows  from our previous  discussion that if w 

> 112, then O > 1 and k , ,  k, will be real. This  means that 
4: in (19) will be stable harmonic  traveling waves.  How- 
ever, +: in (25) has  wave  numbers 2k,,  2k,, which are 
complex for w < 1 .  These  terms  have exponential  growth 
in z at twice the  rate of +, but are multiplied in (29) by E' 

rather than E .  This  second  perturbation solution is not 
uniformly valid but is singular at w = 1/2 and w = 1 for 
the  reason  mentioned above. 

The  second  perturbation radius given by (29) was pro- 
grammed and numerical results  were obtained for 
p' = 250 and w = 0.525 (corresponding to  the  parameter 
values E' = 0.002 and h / d  = 6 in Pimbley and  Lee [4] ) .  
Values of E were chosen which gave break-off lengths zB 
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(i.e., the minimum value  ofz  for which $(z, t )  can be  zero) 
corresponding to  those values presented in Fig. 7 of [4]. 
The results are  shown in Fig. 2. Here we see  that satellite 
drops  are  apt to form  but  due  to  the  fact  that  downstream 
ligament separation occurs first they would be backward 
merging for all values of the break-off length zB. This is 
somewhat  surprising  since Pimbley and  Lee [4] obtained 
in their Fig. 7 ,  for  the  same  set of parameters,  upstream 
ligament separation  and hence  forward merging satellites 
for zB < 90. (Recall that their experimental  results  for 
these  parameters  gave forward merging satellites for zB < 
185.) It  was  anticipated  that the one-dimensional Cosserat 
theory  used here, which includes  radial inertia, would 
show  better  agreement with experiment  than Pimbley and 
Lee were  able to  obtain using Lee’s one-dimensional 
equation.  After  careful  study and recalculation of their 
results it can  be  concluded that Pimbley and Lee’s  for- 
ward merging satellite  predictions are a result of the way 
they  formulated the problem.  As  mentioned earlier, they 
set  four boundary  conditions at  the  nozzle, whereas  the 
proper formulation (on  the basis of the  uniqueness theo- 
rem)  allows  only two conditions to be set  at  the nozzle, 
and  the other  two conditions  must be imposed  down- 
stream. As explained  in [2] we satisfied a downstream- 
radiation-type  condition by the exclusion of two of the 
four branches of the frequency spectra.  The significant 
effect of the additional  two  boundary  conditions enters 
Pimbley and  Lee’s [4] second perturbation solution 
through their  equations (22) and (23). Their 6, should  be  a 
two-term  summation rather than four.  Then  the C j  in their 
(23) would not depend  on R, and R, since,  from  their (19), 
these  quantities arise from  the two  extraneous boundary 
conditions  at the  nozzle. 

There  is  reason  to believe that  at  least a  third  per- 
turbation  solution is required to  adequately  describe the 
satellite drop  behavior. This is the case in the  treatment of 
the Rayleigh infinite jet problem by use of three-dimen- 
sional theory as  done by Lafrance [9], where  the third 
perturbation is required to predict correct size  ratios of 
satellite to main drops. 

Conclusions 
The second perturbation solution  obtained here predicts 
satellites but  always in the backward  merging  condition. 
The forward merging satellites  predicted by Pimbley and 
Lee [4] in their second-order perturbation  solution using 
Lee’s [7] one-dimensional equations  are a  result of their 
formulation of the problem in which they  set  four bound- 
ary conditions at  the nozzle rather than two. 
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