82

V. AHUJA

V. Ahuja

Algorithm to Check Network States for Deadlock

The problem of checking the states of a system for deadlock is treated for a single class of systems, or networks, and for a
single class of resources, or buffers. An algorithm is described that, for a given state, requires O[m + n’] operations,
where m and n are, respectively, the number of tasks and nodes in the state. (In general, m is greater than n.)

Introduction

In a computing system, two or more tasks may be un-
knowingly waiting for each other to release resources.
Until the wait is resolved, the system resources in ques-
tion are wasted and the progress of such tasks is blocked.
Such a state of the system is generally called a deadlock .

Unless otherwise protected, computing systems with
concurrent tasks and multiple resources are exposed to
deadlock. Several approaches have been developed to
provide such protection by checking each state of the sys-
tem for deadlock. A typical algorithm [1] to check a sys-
tem state for a deadlock takes O[mn] comparison opera-
tions, where m is the number of tasks and » is the number
of resource classes. In this paper we describe an al-
gorithm that, for a class of communication networks to be
described later, requires O[m + n’] comparisons. The al-
gorithm is computationally better, since, in general, there
are more tasks (m) than the number of resource classes

(n).

Now consider a store and forward communication net-
work, where a message is stored and then transmitted by
each node on its route. Message transmission from a node
does not start until a buffer has been obtained in the next
node on its route. The problem is restricted to buffers as
resources and assumes fixed message routes. A deadlock
occurs if tasks in two or more nodes are waiting for each
other for buffers and there is no free buffer.

The general problem of flow control in networks has
been addressed by several authors [2, 3]. Here, we con-
sider the problem of deadlock resulting from buffer deple-
tion in networks. In the literature on the ARPA network

[4, 5] such deadlocks have been described as direct or
indirect store and forward lockups. Network deadlocks
can be prevented by enforcing some buffer classification
and allocation scheme [6]. Alternatively, one can exam-
ine a network design for exposure to deadlock. Else-
where, we have described an approach that determines
the exposure of networks to deadlocks by translating this
problem into a network flow problem {7, 8]. In this paper,
we develop an algorithm that checks a given network
state for deadlock. The information obtained by execut-
ing the algorithm can also help in preventing the predicted
deadlock.

In the next section, a model is described for a network
in which deadlock can occur. In the succeeding section,
some results for the algorithm are proved. The algorithm
is then described, along with comments on its computa-
tional complexity.

A model

The nodes, links, and buffers in a network can be repre-
sented in terms of a directed graph, where each node is
labeled with the number of buffers in it. So, a network is a
triple N = (X, A, B), where X is a nonempty finite set
representing the nodes of the network; A is a relation on
X X X representing the directed links of the network, and
B is a function on X to the set of positive integers; B(x(i)),
or simply b(i), is the number of buffers in node x(i) EX. A
buffer is either free or allocated.

A network with six nodes is shown in Fig. 1(a). There
are two buffers in each node.

Copyright 1979 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. e VOL. 23 e NO. 1 ® JANUARY 1979

The activity in the network can be defined in terms of
the allocation of and request for resources. We allow a
unit of activity to have one buffer allocated in a node and
request one more in another node. In order to distinguish
among tasks requiring buffers in the same node, we in-
clude an index for the buffer allocated to a given task.
(This index is required to define some entities of the
model; it is not used in the algorithm.) So, a task is de-
fined by a triple, (x(i), p, x(j)), where x(i), x(j) are two
adjacent nodes and p is a positive integer not greater than
b(i). For a task ¢ = (x(i), p, x(j)), call x(i) the allocated
node, A(1); x(j) the requested node, R(t); and p the buffer
index of t.

In a network N = (X, A, B), the set T of all tasks is
given by

n b))

U U @xG), &, x)lx is adjacent to x(i)}),

i=1 k=1

where n is the cardinality of set X.

Then a state of a network is defined by a subset 77 of T
such that 7" has no more than one task with the same
starting node and buffer index. Our definition of state al-
lows at most one task to be allocated to any given buffer.

Next, we introduce the concept of ‘‘mutual wait™’
among tasks. Consider a set of connected nodes such that
their tasks are waiting for each other for a buffer. Further-
more, there is no free buffer in any of these nodes. Then,
the tasks in these nodes are involved in an unresolvable
wait that leads to a deadlock. This is defined next.

In a state 7’ of a network, a nonempty set 7" C T’ of
tasks is in a mutual wait if

1. For each task ¢t = (x(i), r, x(j)) in T", the tasks in the
set { x(i), p, x(N1p = b(i), x(j) € X} are in T" and x(})
is in the set {A(¢")It' € T"}.

2. There is no free buffer in the set {x(i)Ix(i) € A(T")} of
nodes.

According to the first part of the definition, if there is
some task of a node in 7", then all the tasks in that node
are in 7. It also assures that the requested node of each
task in 7" is also in the set of nodes that have tasks in 7”.
The second part implies that there is no free buffer in the
nodes that have tasks in 7".

Then, in a network, a deadlock or a deadlock state is a
state T’ if there exists a nonempty set 7" C T’ of tasks
that is in a mutual wait.

IBM I. RES. DEVELOP. & VOL. 23 & NO. 1 & JANUARY 1979

Figure 1 A deadlock in the network at (a) is shown at (b). A
task at the trailing end of the arrows is waiting for a buffer in the
node at the leading end.

By definition, a set of tasks in mutual wait must be non-
empty. Now if there is some node that has no free buffers,
then its tasks must be waiting for buffers in at least one
other node. By definition of mutual wait, this node must
also not have a free buffer. Hence, in order for a state to
be a deadlock, there must be at least two nodes without
any free buffers.

Figure 1(b) illustrates a deadlock in the network of Fig. -

1(a). The set (1, 2, 3, 4, 5) of nodes is in a deadlock, since
each task in this set of nodes is waiting for some other
node in the set and there is no free buffer.

The set of tasks in a mutual wait for this deadlock is

7 ={1,14, (1,2,2),
2, 1,0, (2,2,4),

3,1,2), (3,2,4),
4, 1,1, 4,2,5),
5, 1,1, (52,3} (1

This completes the description of a network model.

83

V. AHUJA

84

V. AHUJA

1 0 0 0 0] 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
M:
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
(a)
1 2 3 4 5 6
1 0 1 0 1 0 0
2 1 0 0 1 0 0
3 0 1 0 1 0 0
M:
4 1 0 0 0 1 0
5 1 0 1 0 0 0
6 0 0 0 0 0 0

(b)

Figure 2 Matrix M at (a) is initialized as shown at (b).

Results

Several results are required to establish an algorithm for
checking a network state. By definition, a network state is
a deadlock if it has a set of tasks in a mutual wait, In this
section, results are developed that use the description of
various tasks in a state to determine whether a subset of
its tasks is in a mutual wait.

First, we demonstrate the intuitive result that in a dead-
lock there must exist a set of tasks that are waiting for
each other in a cyclic fashion.

Theorem 1

Let 7’ be a deadlock state of a network so that the set
T" C T’ of tasks is in a mutual wait. Then any directed
path constructed by the allocated and requested nodes of
the tasks in 7” contains a cycle.

Proof

Begin construction of a directed path from any task in 7",
say ¢,. The first arc of the path is (A(t), R(z). Let
R(t,) = x(i). By definition of mutual wait, x(i) is in the set
{A(Olt € T"}. Let 1, € T" be a task with a buffer in node
x(i). Then, by repeating the above argument, we get the
next arc of the directed path.

Continuing the construction, the path must revisit a
node since there are a finite number of nodes in the net-
work. This implies that the directed path has a cycle.
Since this is true for an arbitrary directed path, it is true
for any directed path of allocated and requested nodes.
This completes the proof. O

Next we derive a result for obtaining the set of nodes, if
any, such that the tasks in those nodes are in a mutual
wait. In order to facilitate the derivation, some additional
definitions are required. First a binary relation W is de-
fined as a relation among any two tasks, 7, and ¢,, that
holds only if ¢, occupies a buffer in a node that is also the
requested node of 7. Sor, W, is true if £, = (R(z)), p, x).
Next, a binary relation W* is defined as a relation between
any two tasks ¢, and ¢, that holds if there exists a se-
quencet Wit ,t We, -t Wt .Sot, W*t istrueif
either 1)z, Wt or2): W*¢ and¢, Wt holds. Thus, the
relation W* holds between any two tasks t,and ¢ if ¢, re-
quires, directly or indirectly through other tasks, a buffer
in the node with task z,.

Consider a state T of a network N = (X, A, B) such that
the set X’ C X of nodes has no free buffers. Also, let
X" C X’ be the set of all those nodes in X’ such that at
least one task in each node in X" satisfies the relation
t W* ¢ and ¢’ is in a node with one or more free buffers.
Then, the set X’ — X" of nodes has no free buffers, and
also no task in them can obtain a buffer in the requested
node. (This is true since no task ¢ in X' — X” holds the
relation ¢+ W* ¢’, where ¢’ is in a node with a free buffer.)
So each task in X' — X" requires a buffer in nodes
X’ — X", and there is no free bu!fer in any node in
X' — X", By definition, this implies that the set of tasks
in nodes X' — X" is in a mutual wait. This proves the
next theorem.

Theorem 2
Let N = (X, A, B) be a network and 7’ be a state of N
such that there is no free buffer in the set X’ C X of nodes.

IBM J. RES. DEVELOP. ¢ VOL. 23 ¢ NO. 1 & JANUARY 1979

Also, let 7" C T’ be the set of tasks such that for each task
tinT", t W* ¢’ holds and the node A(¢’) has a free buffer.
Then the set of tasks in the nodes X' — {A(#)lt € T"}isina
mutual wait.

Finally, we prove a related result that can be used to
remove tasks, and therefore nodes, from deadlock con-
sideration. Consider a state of a network that has tasks
waiting directly, or indirectly through other tasks, for a
buffer in a node that has one or more free buffers. Then
such tasks cannot be in a mutual wait. This is proved
next.

Theorem 3

Let N = (X, A, B) be a network and T’ be a deadlock state
such that the set 77 C T’ of tasks is in a mutual wait.
Then, atask ¢, € T’ is not in T" if ¢, W* ¢, and the node
A(t,) has a free buffer.

Proof (by contradiction)

Assume that task ¢, is in T” and ¢, W* ¢, is such that the
node A(z,) has a free buffer. Lett, W*¢t, =t Wr ,t Wi,
e, W,

Since ¢, is in 7" and T” is in a mutual wait, R(z,) is in
{A(0)lt € T"} and R(z) has no free buffer. But by definition
of the relation W, R(z)) = A(t,). So, A(t,) has no free buf-
ferand ¢ isin T".

Repeating the above argument for ¢, ty
that A(z,) has no free buffer.

-, t, implies

This contradicts the assumption. Hence the task ¢, is
not in the set 7” of tasks.

Algorithm

Our algorithm is based on the above results and is de-
scribed next. Let N = (X, A, B) be the network, as de-
fined earlier, and 7" be its state to be checked. The nodes
in X are referred to as x(i), i = 1 to n, where n is the
number of nodes in X.

Step 1. Define a n X n matrix M and a vector V of dimen-
sion n. Variables i, j, k, I, p will be initialized as
they are used.

Step 2. For each node x(i), initialize V as follows:

V(i) = 0 if 'x(i) has no free buffer,
1 if x(i) has at least one free buffer.

Now check the vector V for elements with a
zero. If there are fewer than two elements with a
zero, then T’ cannot be a deadlock state and the
algorithm terminates. (The requirement for two

IBM I. RES. DEVELOP. & VOL. 23 & NO. 1 & JANUARY 1979

elements with a zero results from the fact that a
deadlock must involve at least two nodes with no
free buffers.)

Step 3. For each node x(i), initialize M so that: M(;, /) = 1

if there is a task in node x(i) that has requested a

buffer in node x(j); otherwise, M(i, j) = 0.

Step 4.

a. Create a vector Y that contains indices of all
those nodes, x(i), for which V(i) is 1. (If none,
proceed to Step 5.) Proceed to Step 4(b) with
k set to the value of the first element in Y.

b. For each row p such that M(p, k) is 1 and
V(p) is 0, set V(p) to 1 and add p to the vector
Y.

c. Set k to the next element of Y and proceed to
Step 4(b). Continue until all entries in Y have
been checked.

Step 5. Check the vector V for an element that equals
zero. If there is at least one element / such that

V() is zero, then and only then the state is a

deadlock.

To demonstrate application of the algorithm, we apply
it to the network of Fig. 1(a). Let T’ be the network state
to be examined. Tasks in T’ have been specified earlier in

(D.

Step 1. See Fig. 2(a).
V=1(0,00000).

Step2. V=1(0,0,0,0,0, 1).
Since there are more than two elements with a
zero, proceed to Step 3.

Step 3. Using the tasks specified in (1), elements of the
matrix M are initialized as in Fig. 2(b).

Step 4.
a. Y = {6},
k=6.
b. p = None.

c. There are no more entries in Y.
Step 5. The state is a deadlock since V has five elements
with a zero.

Next, we provide an estimate of the computational
complexity for the above algorithm, based on the com-
parison operations.

Step 1 defines a matrix M and a vector V. The initial-
ization of M will require O[#*] assignment operations, but
no comparisons.

In Step 2 we check to determine if there are at least two
nodes that have no free buffers. If not, then as argued
earlier the state is not a deadlock. This would require
O[n?] comparisons.

85

V. AHUJA

86

V. AHUJA

In Step 3, we set to 1 those elements M(/, j) for which a
task in node x(i) has requested a buffer in node x(). This
step would require Ofm] comparisons to check the tasks
in all the nodes and then to initialize at most m elements
in matrix M, since there are only m tasks in the state. (If
each node is checked for tasks for other nodes, it will
require O[n] comparisons.)

In Step 4, we insert a value of 1 for those node indices
in V that need not be checked for mutual wait (Theorem
2). To vector Y we add those nodes (indices) that have no
free buffers and also have some tasks in them that are
waiting for a node that either has a free buffer or is, in
turn, waiting for a node that can free a buffer. Since an
index is added to Y if V(i) is also zero, therefore, by con-
struction, the vector Y cannot have more than n elements.
For each entry in Y, the algorithm checks at most » ele-
ments of the corresponding column in M. This would
require O[n°] comparisons.

In Step 5, we check the vector V for any element with a
zero. If so, such elements represent nodes that have no
free buffers and also have tasks in them that cannot be
removed from deadlock consideration. Using Theorem 3,
tasks in such nodes are in a mutual wait. So, the state is a
deadlock if and only if there exists a node x(i) such that
V(i) is zero. This would require O[n] comparisons.

So, the complexity of this algorithm is of O[m + A”].

Although the algorithm requires O[m + #°] com-
parisons for a state, there may be several states to be
checked for a deadlock. The maximum number of states
of a network is given approximately by (see [7] for its
derivation)

hf c— 1\ h— 1\

)

where p is the number of routes, 4 is the average number
of nodes on each route (directed paths of the network),
and ¢ is the maximum number of tasks concurrently ac-
tive on a route. So m is not greater than p X c¢. Also, & is
related to # since, in general, / increases as the number of
nodes (n) increases. Now consider the states for which
there is at most one node that has no free buffer. For such
states, only the first two steps of the algorithm are exe-
cuted. This requires O(n) comparison operations, as com-
pared to O(m + n®), thereby reducing the total computa-
tion cost of the algorithm.

Summary
An algorithm was developed that can check a network
state for a deadlock in O[m + n’] comparison operations,

where 1 is the number of nodes in the network and m is
the number of tasks in the state. This is better than the
existing more general algorithms that require O[mn] com-
parisons, since, in general, there are more tasks (m)
than the number of nodes (#) in a network. Our algorithm
derives its efficiency from the fact that it eliminates nodes
whose tasks are not involved in a deadlock. This ap-
proach, which is based on Theorem 3 and is computation-
ally inexpensive, removes chains of nodes by checking
the tasks that can have their buffer requests satisfied. Ex-
istence of any remaining tasks necessarily implies that the
state is a deadlock.

The algorithm also provides information that can be
used to prevent occurrence of corresponding deadlocks.
After execution of Step 5, elements in vector V with a
zero represent the nodes that have their tasks in a mutual
wait. So the network designer must prevent all such tasks
from simultaneously occupying buffers in these nodes.
This may be achieved by reducing the number of tasks in
one of the nodes that have tasks in a mutual wait. Alterna-
tively, the network designer may allow one or more extra
buffers in one of the nodes in deadlock.

This algorithm cannot be used for systems in which a
task can have more than one resource unit allocated to it
while requesting another one. Further work is needed to
extend it to the general class of operating systems.

References

1. E. G. Coffman, Jr., and P. J. Denning, Operating Systems
Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

2. V. Ahuja, ““On Congestion Problems in Communication Net-
works,”” Trends and Applications: 1978 Distributed Process-
ing, National Bureau of Standards, Gaithersburg, MD, May
18, 1978.

3. D. W. Davies, ‘“The Control of Congestion in Packet-Switch-
ing Networks,”” IEEE Trans. Commun. COM-20, 546 (1972).

4. R. E. Kahn and W. R. Crowther, ‘‘Flow Control in a Re-
source-Sharing Computer Network,”” IEEE Trans. Commun.
COM-20, 539 (1972).

5. L. Kleinrock, Queuing Systems Volume 2: Computer Appli-
cations, John Wiley & Sons, Inc., New York, 1976.

6. E. Raubold and J. Haenle, ‘* A Method of Deadlock-Free Re-
source Allocation and Flow Control in Packet Networks,”
Proceedings of the Third International Conference on Com-
puter Communications, International Council for Computer
Communications, August 1976, p. 483.

7. V. Ahuja, ‘“‘Exposure of Routed Networks to Deadlock,”
Ph.D. Thesis, Department of Computer Science, University
of North Carolina at Chapel Hill, 1976 (Technical Report 29-
160, IBM System Communications Division laboratory, Re-
search Triangle Park, NC, July 1976).

8. V. Ahuja, ‘‘Determining Deadlock Exposure for a Class of
Store and Forward Communication Networks,”” to be pub-
lished.

Received December 7, 1977, revised August 10, 1978

The author is located at the IBM System Communica-
tions Division laboratory, Research Triangle Park,
North Carolina 27709.

IBM J. RES. DEVELOP. & VOL. 23 & NO. 1 & JANUARY 1979

