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Algorithm  to  Check  Network States for  Deadlock 

The  problem  of  checking  the  states of a  system  for  deadlock  is  treated  for  a  single  class  of  systems, or networks,  and  for  a 
single  class  of  resources, or buffers. A n  algorithm  is  described  that,  for  a  given  state,  requires O[m + n2]  operations, 
where m and  n  are,  respectively,  the  number  of  tasks  and  nodes  in  the  state. (In general, m is  greater  than  n.) 

Introduction 
In a  computing system,  two or more tasks may be  un- 
knowingly waiting for  each  other  to  release  resources. 
Until the wait is  resolved,  the system resources in ques- 
tion are wasted and  the progress of such  tasks is blocked. 
Such  a state of the  system  is generally called adeadlock. 

Unless otherwise  protected, computing systems with 
concurrent  tasks  and multiple resources  are  exposed  to 
deadlock. Several  approaches  have been  developed to 
provide such protection by checking each  state of the  sys- 
tem for  deadlock. A  typical algorithm [ 11 to  check a sys- 
tem state for a deadlock  takes O[mn] comparison  opera- 
tions, where m is the  number of tasks  and n is the  number 
of resource  classes. In this paper we describe an al- 
gorithm that,  for a class of communication networks  to be 
described later,  requires q m  + n'] comparisons.  The al- 
gorithm is computationally better,  since, in general,  there 
are more tasks (m) than  the number of resource classes 
(n) .  

Now consider a store  and forward  communication  net- 
work, where  a  message is stored and then transmitted by 
each node on  its  route. Message  transmission  from a node 
does not start until a buffer has been obtained in the next 
node on its route.  The problem is restricted  to buffers as 
resources  and  assumes fixed message routes. A  deadlock 
occurs if tasks in two  or more  nodes are waiting for  each 
other  for buffers and  there is no free  buffer. 

The general  problem of flow control in networks  has 
been addressed by several  authors [ 2 ,  31. Here, we con- 
sider the  problem of deadlock resulting from buffer deple- 
tion in networks.  In  the  literature  on  the ARPA  network 

[4, 51 such  deadlocks  have been described  as  direct or 
indirect store  and  forward lockups. Network  deadlocks 
can  be prevented by enforcing some buffer classification 
and  allocation scheme [6]. Alternatively, one  can exam- 
ine  a  network  design for  exposure  to deadlock.  Else- 
where, we have  described  an  approach  that  determines 
the exposure of networks  to deadlocks by translating  this 
problem into a network flow problem [7, 81. In this paper, 
we develop an algorithm that  checks a given network 
state  for  deadlock.  The information obtained by execut- 
ing the algorithm can  also help in preventing the predicted 
deadlock. 

In the next section, a model is described  for a network 
in which deadlock can  occur. In the succeeding section, 
some  results for  the algorithm are  proved.  The algorithm 
is then described, along with comments  on its computa- 
tional complexity. 

A model 
The  nodes, links, and buffers in a network  can  be repre- 
sented in terms of a directed graph,  where  each  node  is 
labeled with the  number of buffers in it. So, a network is a 
triple N = ( X ,  A ,  B ) ,  where X is a nonempty finite set 
representing the  nodes of the  network, A is a relation on 
X X X representing the directed  links of the  network,  and 
B is a  function on X to  the  set of positive integers; B(x( i ) ) ,  
or simply b( i ) ,  is the  number of buffers in node x( i )  E X .  A 
buffer is either free or allocated. 

A  network  with six  nodes is shown in Fig. l(a).  There 
are two buffers in each  node. 
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The activity in the network  can  be defined in terms of 
the allocation of and  request  for  resources. We allow a 
unit of activity to  have  one buffer allocated in a node  and 
request  one  more in another  node.  In  order  to distinguish 
among tasks requiring buffers in the  same  node, we in- 
clude an index for  the buffer allocated to a given task. 
(This  index is  required  to define some entities of the 
model; it is not used in the algorithm.) So, a task is de- 
fined by a triple, ( ~ ( i ) ,  p ,  ~ ( j ) ) ,  where x(i), x ( j )  are  two 
adjacent nodes  and p is a positive  integer  not greater than 
b(i). For a task t = ( x ( i ) ,  p ,  x(j)), call x(i) the allocated 
node,   A(t);  x ( $  the requested  node,  R(t); andp  the buffer 
index oft. 

In a network N = ( X ,  A ,  B ) ,  the set T of all tasks is 
given by 

u u ({(~(i), k ,  x)lx is adjacent to x(i)}), 
n b( i )  

i = l  k=l  

where n is the cardinality of set X .  

Then a state of a network is defined by a subset T' of T 
such that T' has  no more than  one task with the  same 
starting  node and buffer index. Our definition of state al- 
lows at most one  task  to be  allocated to  any given buffer. 

Next,  we  introduce  the  concept of "mutual wait" 
among tasks.  Consider a set of connected  nodes  such that 
their tasks  are waiting for each other  for a buffer. Further- 
more,  there is no free buffer in any of these  nodes.  Then, 
the  tasks in these  nodes  are involved in an unresolvable 
wait that leads to a deadlock. This is defined next. 

In a state T' of a network, a  nonempty set T" T' of 
tasks is in a mutual wait if 

1 .  For each  task t = (x(i), r ,  x ( j ) )  in T", the  tasks in the 
set {( x(i), p ,  x(j)) Ip 5 b(i), x(j) E x) are in T" and x(j) 
is in the  set {A(t')lt' E T"}. 

2. There is no  free buffer in the  set {x(i)Ix(i) E A(T")} of 
nodes. 

According to  the first  part of the definition, if there is 
some  task of a node in T",  then all the  tasks in that node 
are in T .  It  also  assures  that  the  requested node of each 
task in T" is also in the  set of nodes that  have  tasks in T".  

The second part implies that  there is no  free buffer in the 
nodes  that have  tasks in T".  

Then, in a network, a deadlock or a deadlock  state is a 
state T' if there  exists a nonempty set T" C T' of tasks 
that  is in a mutual wait. 

Figure 1 A deadlock in the network at (a) is  shown  at (b). A 
task at  the trailing end of the  arrows is waiting for a buffer in the 
node at  the leading end. 

By definition,  a set of tasks in mutual wait must be non- 
empty. Now if there  is  some node that  has  no  free buffers, 
then  its tasks must  be waiting for buffers in at least one 
other node. By definition of mutual wait, this  node  must 
also not have  a free buffer. Hence, in order  for a state  to 
be  a  deadlock, there must be at least two nodes  without 
any  free buffers. 

Figure l(b) illustrates  a  deadlock in the  network of Fig. 
l(a). The set ( 1 ,  2 ,  3 , 4 ,  5) of nodes is in a deadlock, since 
each task in this set of nodes is waiting for some other 
node in the set  and  there is no  free buffer. 

This  completes the description of a network model. 83 
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1 2 3 4 5 6 

M =  

2 3 4 5 6 

Figure 2 Matrix M at (a) is initialized as shown at (b). 

Results 
Several results  are required to establish an algorithm for 
checking a network  state. By definition, a network  state  is 
a deadlock if it has a set of tasks in a  mutual  wait. In this 
section,  results  are developed that use the description of 
various tasks in a state  to determine whether a subset of 
its  tasks  is in a mutual  wait. 

First, we demonstrate  the intuitive  result that in a dead- 
lock  there  must exist a set of tasks  that  are waiting for 

04 each  other in a  cyclic fashion. 

Theorem 1 
Let T’ be a deadlock  state of a network so that  the  set 
T“ T’ of tasks is in a mutual  wait. Then  any  directed 
path  constructed by the allocated and  requested nodes of 
the  tasks in T contains a cycle. 

Proof 
Begin construction of a directed path from  any task in T ” ,  
say t,. The first arc of the  path  is (A( t , ) ,  R(t,)). Let 
R(t,) = x( i ) .  By definition of mutual wait, x ( i )  is in the  set 
{A(t)lt E T ” } .  Let t ,  E T ”  be  a  task with a buffer in node 
x ( i ) .  Then, by repeating the  above  argument, we get the 
next arc of the  directed  path. 

Continuing the  construction,  the  path must  revisit  a 
node  since there  are a finite number of nodes in the net- 
work. This implies that  the directed path  has a cycle. 
Since this is true  for  an arbitrary directed  path, it is true 
for  any directed  path of allocated  and requested  nodes. 
This  completes the proof. 0 

Next we derive a result for obtaining the  set of nodes, if 
any, such that  the  tasks in those  nodes  are in a mutual 
wait. In order  to facilitate the  derivation,  some additional 
definitions are  required.  First a binary  relation W is de- 
fined as a relation among any two  tasks, t ,  and t,, that 
holds only if t ,  occupies a buffer in a node  that is also  the 
requested node  oft,. So t ,  W t, is  true if t ,  = (R(t,), p ,  x). 
Next, a binary relation W* is defined as a relation between 
any two  tasks t ,  and t ,  that holds if there  exists a se- 
quence t ,  W ta,  ta W t,, . . ., t,, W t,,. So t ,  w* t,, is  true if 
either 1) t ,  W tn or 2) t ,  W* t, and f a  W t ,  holds. Thus,  the 
relation W* holds between any two  tasks t ,  and t ,  if t ,  re- 
quires, directly or indirectly  through other  tasks, a buffer 
in the node with task t,. 

Consider a state T of a  network N = ( X ,  A ,  B )  such  that 
the set X ’  X of nodes  has  no  free buffers. Also, let 
X” X ’  be  the  set of all those nodes in X ’  such  that  at 
least  one task  in each  node in X satisfies the relation 
t W* t’ and t ’  is in a node with one or more  free buffers. 
Then,  the  set X ’  - X of nodes has  no  free buffers,  and 
also no task in them  can obtain a buffer in the  requested 
node. (This is true  since  no  task t in X ’  - X” holds the 
relation t W* t ’ ,  where t‘ is in a node  with  a free buffer.) 
So each  task in X ’  - X ”  requires a buffer in nodes 
X ‘  - X ” ,  and there is no  free  burer in any  node in 
X ‘  - X “ .  By definition,  this implies that  the  set of tasks 
in nodes X ‘  - X ”  is in a  mutual  wait.  This proves  the 
next theorem. 

Theorem 2 
Let N = ( X ,  A ,  B )  be a network and T’ be a state of N 
such  that  there is no  free buffer in the  set X ’  X of nodes. 
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Also,  let T” c T’ be  the  set of tasks  such  that  for  each  task 
t in T ” ,  t W* t’ holds  and  the  node A(t ’ )  has a free buffer. 
Then  the  set of tasks in the  nodes X ’  - {A(t)lt E T“} is in a 
mutual  wait. 

Finally, we prove a related  result that  can be  used to 
remove tasks,  and  therefore  nodes, from  deadlock  con- 
sideration. Consider a state of a network that  has  tasks 
waiting directly,  or indirectly  through other  tasks,  for a 
buffer in a  node that  has  one or more  free buffers. Then 
such  tasks  cannot be in a  mutual  wait.  This is proved 
next. 

Theorem 3 
Let N = ( X ,  A ,  B )  be a network and T’ be a deadlock state 
such  that  the  set T” T‘ of tasks is in a  mutual  wait. 
Then, a task t ,  E T’ is not in T” if t ,  W* t ,  and  the node 
A(t,) has a free buffer. 

Proof (by contradiction) 
Assume that task t ,  is in T” and t ,  W* t, is  such  that  the 
node A($)  has a free buffer. Let t ,  W* t ,  = t ,  W t,, ta W t,, 
. . ., t ,  w t,. 

Since t ,  is in T” and T is in a mutual  wait, R(t , )  is in 
{A(t)lt E T”} and R(t , )  has no free buffer. But by definition 
of the relation W ,  R( t , )  = A(t,). So, A(t,) has  no  free buf- 
fer and ta is in T .  

Repeating the  above argument for ta,  t,, . . ., t ,  implies 
that A(t,) has  no  free buffer. 

This contradicts  the assumption. Hence  the  task t ,  is 
not in the  set T” of tasks. 

Algorithm 
Our algorithm is based on the  above  results  and is de- 
scribed next.  Let N = ( X ,  A ,  B )  be the  network,  as de- 
fined earlier,  and T’ be its  state  to be checked.  The nodes 
in X are referred to  as x ( i ) ,  i = 1 to n, where II is the 
number of nodes in X .  

Step 1. Define a n X n matrix M and a vector V of dimen- 
sion n. Variables i ,  j ,  k ,  1, p will be initialized as 
they are  used. 

Step 2. For  each  node x ( i ) ,  initialize V as follows: 

V(i)  = 0 if x(i) has  no  free buffer, 
= 1 ifx(i)  has  at  least  one  free buffer. 

Now check  the  vector V for  elements with a 
zero. If there  are  fewer than two  elements with a 
zero, then T’ cannot be a deadlock state and the 
algorithm terminates. (The requirement  for  two 
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elements with a zero results from  the  fact  that a 
deadlock  must  involve at  least  two  nodes with no 
free buffers .) 

Step 3 .  For each  nodex(i), initialize M so that: M(i,jJ = 1 
if there is a task in node x(i) that  has  requested a 
buffer in node x ( j ) ;  otherwise, M(i,JJ = 0. 

a. Create a vector Y that  contains indices of all 
those  nodes, x( i ) ,  for which V(i )  is 1. (If none, 
proceed  to  Step 5.) Proceed to  Step 4(b) with 
k set  to  the value of the first element in Y. 

b. For  each row p such  that M ( p ,  k )  is 1 and 
V ( p )  is 0, set V ( p )  to 1 and add p to  the  vector 
Y. 

c.  Set k to  the  next element of Y and proceed to 
Step 4(b).  Continue until all entries in Y have 
been checked. 

Step 5. Check the  vector V for  an  element  that equals 
zero. If there is at  least  one  element 1 such that 
V(I) is zero, then and only then  the  state is a 
deadlock. 

Step 4. 

To  demonstrate application of the algorithm, we apply 
it to the  network of Fig. l(a).  Let T’ be  the  network  state 
to  be examined. Tasks in T‘ have been specified earlier in 
(1). 

Step 1 .  See Fig. 2(a). 
v = (0, 0,  0 ,  0,  0, 0).  

Step 2. V = (0, 0 ,  0, 0, 0, 1). 
Since  there  are more  than two  elements with  a 
zero,  proceed  to  Step 3 .  

Step 3. Using the  tasks specified in (I),  elements of the 
matrix M are initialized as in Fig. 2(b). 

Step 4. 
a. Y = {6}, 

k = 6. 
b. p = None. 
c.  There  are  no more entries in Y. 

Step 5. The  state is a  deadlock  since V has five elements 
with a zero. 

Next,  we  provide  an estimate of the computational 
complexity for  the  above algorithm, based  on  the com- 
parison operations. 

Step 1 defines a matrix M and a vector V .  The initial- 
ization of M will require 0 [ n 2 ]  assignment operations,  but 
no comparisons. 

In  Step 2 we  check  to determine if there  are  at  least  two 
nodes that  have  no  free buffers. If not,  then  as argued 
earlier the  state is not a deadlock. This would require 
q n 2 ]  comparisons. 85 
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In Step 3, we set  to 1 those  elements M(i , j )  for which a 
task in node x ( i )  has  requested a buffer in node x( j ) .  This 
step would require O[m] comparisons to  check  the  tasks 
in all the nodes and then to initialize at most m elements 
in matrix M, since  there  are only m tasks in the  state. (If 
each node is  checked  for  tasks  for  other  nodes, it  will 
require O[n] comparisons.) 

In  Step 4, we  insert a value of 1 for  those  node indices 
in V that  need  not be  checked  for mutual wait (Theorem 
2 ) .  To  vector Y we add  those nodes  (indices) that  have  no 
free buffers and  also  have some tasks in them that  are 
waiting for a node  that  either  has a free buffer or  is, in 
turn, waiting for a node  that can free a  buffer.  Since an 
index is added to Y if V(i) is also  zero,  therefore, by con- 
struction,  the  vector Y cannot  have  more  than n elements. 
For each entry in Y ,  the algorithm checks  at most n ele- 
ments of the  corresponding column in M. This would 
require ~ [ n * ]  comparisons. 

In  Step 5, we  check  the  vector V for  any element with a 
zero. If so, such  elements  represent  nodes  that have no 
free buffers and  also  have  tasks in them  that  cannot  be 
removed from  deadlock  consideration. Using Theorem 3, 
tasks in such  nodes  are in a  mutual  wait. So, the  state is a 
deadlock if and only if there  exists a node x ( ; )  such that 
V(i) is  zero.  This would require O[n] comparisons. 

So, the complexity of this algorithm is  of O[m + n’]. 

Although the algorithm  requires O[m + n’] com- 
parisons for a state,  there may be several  states  to be 
checked for a deadlock.  The maximum number of states 
of a network is given  approximately by (see [7] for its 
derivation) 

where p is  the  number of routes, h is the  average number 
of nodes on  each  route (directed paths of the  network), 
and c is the maximum  number of tasks concurrently  ac- 
tive on a route. So m is not greater than p X c.  Also, h is 
related to n since, in general, h increases  as  the number of 
nodes (n)  increases. Now  consider the  states  for which 
there is at most one  node  that  has  no  free buffer. For  such 
states, only the first two  steps of the algorithm are  exe- 
cuted. This requires O(n) comparison operations, as  com- 
pared to O(m + n2) ,  thereby reducing the  total  computa- 
tion cost of the algorithm. 

Summary 
An algorithm was  developed that can check a  network 
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where n is the  number of nodes in the  network and m is 
the number of tasks in the  state. This is better than the 
existing more general algorithms that  require O[mn] com- 
parisons, since, in general,  there  are more tasks (m) 
than the  number of nodes (n )  in a network.  Our algorithm 
derives its efficiency from the  fact  that it eliminates nodes 
whose tasks  are not  involved in a deadlock. This  ap- 
proach, which is based on Theorem 3 and is computation- 
ally inexpensive, removes chains of nodes by checking 
the  tasks  that can have  their buffer requests satisfied. Ex- 
istence of any remaining tasks necessarily implies that  the 
state is a deadlock. 

The algorithm also provides  information that can be 
used to  prevent  occurrence of corresponding deadlocks. 
After  execution of Step 5, elements in vector V with a 
zero  represent  the  nodes  that  have  their  tasks in a  mutual 
wait. So the network  designer  must prevent all such  tasks 
from simultaneously  occupying buffers in these  nodes. 
This may be achieved by reducing the  number of tasks in 
one of the  nodes that  have  tasks in a mutual wait. Alterna- 
tively, the  network designer may allow one  or more extra 
buffers in one of the  nodes in deadlock. 

This algorithm cannot be used for  systems in which a 
task can have more than  one  resource unit  allocated to it 
while requesting another  one.  Further work is needed to 
extend it to  the  general class of operating systems. 
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